WO2015125884A1 - 熱サイクルシステム用組成物および熱サイクルシステム - Google Patents

熱サイクルシステム用組成物および熱サイクルシステム Download PDF

Info

Publication number
WO2015125884A1
WO2015125884A1 PCT/JP2015/054658 JP2015054658W WO2015125884A1 WO 2015125884 A1 WO2015125884 A1 WO 2015125884A1 JP 2015054658 W JP2015054658 W JP 2015054658W WO 2015125884 A1 WO2015125884 A1 WO 2015125884A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
mass
working medium
cycle system
composition
Prior art date
Application number
PCT/JP2015/054658
Other languages
English (en)
French (fr)
Inventor
正人 福島
宏明 光岡
真維 橋本
白川 大祐
高木 洋一
豪明 荒井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016504171A priority Critical patent/JP6583261B2/ja
Priority to CN201580009546.6A priority patent/CN106062159B/zh
Priority to EP15751792.1A priority patent/EP3109302B1/en
Publication of WO2015125884A1 publication Critical patent/WO2015125884A1/ja
Priority to US15/239,353 priority patent/US9957430B2/en
Priority to US15/937,231 priority patent/US10233371B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • C10M2209/043Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a composition for a heat cycle system and a heat cycle system using the composition.
  • CFC chlorofluorocarbons
  • HCFC hydrochlorofluorocarbons
  • HFC-32 difluoromethane
  • HFC-125 pentafluoroethane
  • HFC-125 hydrofluorocarbons
  • R410A a pseudo-azeotropic mixture of HFC-32 and HFC-125 having a mass ratio of 1: 1 is a refrigerant that has been widely used.
  • HFC may cause global warming.
  • R410A has been widely used for ordinary air-conditioning equipment called so-called package air conditioners and room air conditioners because of its high refrigerating capacity.
  • GWP global warming potential
  • the global warming potential (GWP) is as high as 2088, and therefore development of a low GWP working medium is required.
  • R410A is simply replaced and the devices that have been used so far continue to be used.
  • HFO olefins
  • HFC saturated HFC
  • HFC is referred to as HFC, and is used separately from HFO.
  • HFC is specified as a saturated hydrofluorocarbon.
  • Patent Document 1 discloses a technique related to a working medium using trifluoroethylene (HFO-1123) that has the above-described characteristics and provides excellent cycle performance.
  • Patent Document 2 discloses a technique related to a working medium using 1,2-difluoroethylene (HFO-1132) that has the above-mentioned characteristics and provides excellent cycle performance.
  • HFO-1123 or HFO-1132 in combination with various HFCs and HFOs for the purpose of improving the nonflammability and cycle performance of the working medium. ing.
  • HFOs such as these are compounds that contain unsaturated bonds in the molecule and have a very short lifetime in the atmosphere. Therefore, under conditions where compression and heating in a thermal cycle are repeated, It is inferior in stability to saturated hydrofluorocarbons and hydrochlorofluorocarbons such as HFC and HCFC, and lubricity may be reduced in the thermal cycle system.
  • the present invention has been made from the above viewpoint, and in a composition for a thermal cycle system containing HFO, while making full use of the low global warming potential and excellent cycle performance possessed by HFO, HFO is more stably produced.
  • Composition for thermal cycle system that can be lubricated, and thermal cycle system that uses the composition has less impact on global warming, has high cycle performance, and further improves the lubricity of the working medium for thermal cycle The purpose is to provide.
  • the present invention provides a working medium for heat cycle, a composition for heat cycle system, and a heat cycle system having the configurations described in [1] to [15] below.
  • a thermal cycle working medium comprising at least one unsaturated fluorinated hydrocarbon compound selected from compounds represented by the following general formula (I) and having one or more carbon-carbon unsaturated bonds in the molecule: And a refrigerating machine oil having a dielectric breakdown voltage of 25 kV or more, a hydroxyl value of 0.1 mgKOH / g or less, and an aniline point of ⁇ 100 ° C. or more and 0 ° C. or less. object.
  • the unsaturated fluorinated hydrocarbon compound is trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2-difluoroethylene (HFO-1132).
  • the composition for a heat cycle system according to any one of [1] to [3], wherein the working medium for heat cycle further contains a saturated fluorinated hydrocarbon compound.
  • the saturated fluorinated hydrocarbon compound is trifluoromethane, difluoromethane (HFC-32), difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, trifluoroiodomethane, pentafluoropropane, hexafluoropropane,
  • the composition for a thermal cycle system according to [4] comprising at least one selected from the group consisting of heptafluoropropane, pentafluorobutane, and heptafluorocyclopentane.
  • the unsaturated fluorinated hydrocarbon compound contains HFO-1123, and the content of HFO-1123 with respect to 100% by mass of the working medium for heat cycle is 20 to 80% by mass.
  • the composition for thermal cycle systems in any one of. [7] The saturated fluorinated hydrocarbon compound contains HFC-32, and the content of HFC-32 with respect to 100% by mass of the working medium for heat cycle is 20 to 80% by mass. [4] to [6] The composition for thermal cycle systems according to any one of the above. [8]
  • the unsaturated fluorinated hydrocarbon compound includes HFO-1123 and HFO-1234yf, and the saturated fluorinated hydrocarbon compound includes HFC-32.
  • the ratio of the total amount of HFO-1123, HFO-1234yf, and HFC-32 to the total amount of the working medium for heat cycle is more than 90% by mass and 100% by mass or less, As a percentage of the total amount of HFO-1123, HFO-1234yf and HFC-32, HFO-1123 is 10 mass% or more and less than 70 mass%, HFO-1234yf is more than 0% by mass and 50% by mass or less,
  • the unsaturated fluorinated hydrocarbon compound includes HFO-1123 and HFO-1234yf
  • the saturated fluorinated hydrocarbon compound includes HFC-32.
  • the ratio of the total amount of HFO-1123, HFO-1234yf, and HFC-32 to the total amount of the working medium for heat cycle is more than 90% by mass and 100% by mass or less, The ratio of mass to the total amount of HFO-1123, HFO-1234yf and HFC-32,
  • the total amount of HFO-1123 and HFO-1234yf is 70% by mass or more, HFO-1123 is 30 mass% or more and 80 mass% or less, HFO-1234yf is more than 0% by mass and 40% by mass or less, HFC-32 exceeds 0% by mass and is 30% by mass or less,
  • the ratio of HFO-1123 to HFO-1234yf is 95/5 or less,
  • the composition for a heat cycle system according to [4] or [5].
  • composition for a heat cycle system according to any one of [1] to [9], wherein the refrigerating machine oil is at least one selected from polyol ester type refrigerating machine oil and polyvinyl ether type refrigerating machine oil.
  • refrigerating machine oil according to any one of [1] to [10], wherein the refrigerating machine oil has a kinematic viscosity at 40 ° C. of 5 to 200 mm 2 / s and a kinematic viscosity at 100 ° C. of 1 to 100 mm 2 / s.
  • a composition for a thermal cycle system A composition for a thermal cycle system.
  • thermal cycle system using the thermal cycle system composition according to any one of [1] to [11].
  • the thermal cycle system according to [12] wherein the thermal cycle system is at least one selected from refrigeration / refrigeration equipment, air conditioning equipment, power generation systems, heat transport devices, and secondary coolers.
  • the thermal cycle system has a compression mechanism, and a contact portion of the compression mechanism that contacts the composition for the thermal cycle system is composed of at least one selected from engineering plastics, organic films, and inorganic films. , [12] or [13].
  • the engineering plastic is at least one selected from a polyamide resin, a polyphenylene sulfide resin, a polyacetal resin, and a fluororesin.
  • the unsaturated fluorinated hydrocarbon compound in a composition for a thermal cycle system containing an unsaturated fluorinated hydrocarbon compound, is fully unsaturated while fully utilizing the low global warming potential and excellent cycle performance of the unsaturated fluorinated hydrocarbon compound.
  • a composition for a heat cycle system that can more stably lubricate a working medium for heat cycle containing a fluorinated hydrocarbon compound can be provided.
  • the thermal cycle system of the present invention is a thermal cycle system that has little influence on global warming, has high cycle performance, and further improves the lubrication characteristics of the working medium for thermal cycle.
  • FIG. 2 is a cycle diagram in which a change in state of a working medium in the refrigeration cycle system of FIG. 1 is described on a pressure-enthalpy diagram.
  • composition for a heat cycle system includes a working medium for a heat cycle containing an unsaturated fluorinated hydrocarbon compound and a refrigerating machine oil.
  • a heat cycle system using a heat exchanger such as a condenser or an evaporator is used without particular limitation.
  • a heat cycle system for example, a refrigeration cycle
  • a gas working medium is compressed by a compressor, cooled by a condenser to produce a high-pressure liquid, the pressure is reduced by an expansion valve, and vaporized at a low temperature by an evaporator. It has a mechanism that takes heat away with heat.
  • an unsaturated fluorinated hydrocarbon compound When used as a working medium in such a heat cycle system, the unsaturated fluorinated hydrocarbon compound becomes unstable depending on temperature and pressure conditions, and self-decomposition occurs, resulting in a working medium for heat cycle. May degrade.
  • the composition for a heat cycle system of the present invention it is possible to enhance the lubricity of the unsaturated fluorinated hydrocarbon compound as a heat cycle working medium and exhibit efficient cycle performance by coexisting with refrigeration oil. It becomes.
  • each component which the composition for thermal cycle systems of this invention contains is demonstrated.
  • the composition for a heat cycle system of the present invention has at least one unsaturated fluoride selected from compounds represented by the following general formula (I) as a working medium and having one or more carbon-carbon unsaturated bonds in the molecule. Contains hydrocarbon compounds. C x F y R z ............ (I) (In the formula, R is H or Cl, x is an integer of 2 to 6, y is an integer of 1 to 12, z is an integer of 0 to 11, and 2x ⁇ y + z ⁇ 2.)
  • the general formula (I) represents the type and number of elements in the molecule, and the formula (I) represents a fluorine-containing organic compound having 2 to 6 carbon atoms C.
  • a fluorine-containing organic compound having 2 to 6 carbon atoms can have physical and chemical properties such as boiling point, freezing point, and latent heat of vaporization required as a working medium.
  • the bond form of x carbon atoms represented by C x includes a carbon-carbon single bond, an unsaturated bond such as a carbon-carbon double bond, and the like. Has one or more unsaturated bonds.
  • the unsaturated bond such as a carbon-carbon double bond is preferably a carbon-carbon double bond from the viewpoint of stability, and the number is preferably 1.
  • R represents H or Cl, and any of these may be used, but R is preferably H because there is little possibility of destroying the ozone layer.
  • the range of y + z is preferably 4 or more.
  • examples of the unsaturated fluorinated hydrocarbon compound used as the working medium for the heat cycle system include compounds represented by the above general formula (I), and examples thereof include straight-chain compounds having 2 to 6 carbon atoms or Preferable examples include branched chain olefins and fluorinated products of cyclic olefins having 4 to 6 carbon atoms.
  • ethylene having 1 to 3 fluorine atoms introduced propene having 1 to 5 fluorine atoms introduced, butenes having 1 to 7 fluorine atoms introduced, 1 to 9 Pentenes introduced with fluorine atoms, hexenes introduced with 1 to 11 fluorine atoms, cyclobutene introduced with 1 to 5 fluorine atoms, cyclopentene introduced with 1 to 7 fluorine atoms, 1 And cyclohexene introduced with up to 9 fluorine atoms.
  • unsaturated fluorinated hydrocarbon compounds having 2 to 3 carbon atoms are preferred, and ethylene fluorides having 2 carbon atoms are more preferred.
  • unsaturated fluorinated hydrocarbon compound having 2 to 3 carbon atoms include trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoropropene (HFO-1234yf), and 1,2-difluoro.
  • the working medium according to the present invention may contain an optional component described later, if necessary, in addition to the unsaturated fluorinated hydrocarbon compound of the general formula (I).
  • the content of the unsaturated fluorinated hydrocarbon compound of the above general formula (I) with respect to 100% by mass of the working medium is preferably 10% by mass or more, more preferably 20 to 80% by mass, even more preferably 40 to 80% by mass. Preferably, 40 to 60% by mass is more preferable.
  • HFO-1123 the working medium containing HFO-1123 as an essential component as the unsaturated fluorinated hydrocarbon compound of the general formula (I) will be described as an example.
  • HFO-1123 is the same as the above-mentioned general other than HFO-1123. It can also be replaced by an unsaturated fluorinated hydrocarbon compound of formula (I).
  • Table 1 the characteristics of HFO-1123 as a working medium are shown in Table 1 in a relative comparison with R410A (a pseudo-azeotropic mixture of HFC-32 and HFC-125 having a mass ratio of 1: 1).
  • the cycle performance is indicated by a coefficient of performance and a refrigerating capacity obtained by a method described later.
  • the coefficient of performance and the refrigerating capacity of HFO-1123 are shown as relative values (hereinafter referred to as relative performance coefficient and relative refrigerating capacity) with R410A as the reference (1.000).
  • the global warming potential (GWP) is a value of 100 years indicated in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007) or measured according to the method. In this specification, GWP refers to this value unless otherwise specified.
  • IPCC Intergovernmental Panel on climate Change
  • the working medium used in the present invention may optionally contain a compound used as a normal working medium in addition to HFO-1123 as long as the effects of the present invention are not impaired.
  • a compound used as a normal working medium in addition to HFO-1123 as long as the effects of the present invention are not impaired.
  • examples of such an arbitrary compound (optional component) include HFO other than HFC and HFO-1123 (HFC having a carbon-carbon double bond), other components that vaporize and liquefy together with HFO-1123 other than these, etc. Is mentioned.
  • HFO other than HFC and HFO-1123 HFC having a carbon-carbon double bond
  • a compound capable of keeping the GWP and temperature gradient within an allowable range while having the effect of further increasing the relative coefficient of performance and the relative refrigeration capacity when used in a heat cycle in combination with HFO-1123 is preferable.
  • the working medium contains such a compound in combination with HFO-1123, a better cycle performance can be obtained while keeping the GWP low, and the influence of the temperature gradient is small.
  • thermo gradient When the working medium contains an optional component, it has a considerable temperature gradient except when the HFO-1123 and the optional component have an azeotropic composition.
  • the temperature gradient of the working medium varies depending on the type of the optional component and the mixing ratio of HFO-1123 and the optional component.
  • azeotropic or pseudo-azeotropic mixture such as R410A is preferably used.
  • Non-azeotropic compositions have the problem of causing composition changes when filled from a pressure vessel to a refrigeration air conditioner. Furthermore, when refrigerant leakage from the refrigeration air conditioner occurs, the refrigerant composition in the refrigeration air conditioner is very likely to change, and it is difficult to restore the refrigerant composition to the initial state. On the other hand, the above problem can be avoided if the mixture is azeotropic or pseudo-azeotropic.
  • Temperature gradient is generally used as an index for measuring the possibility of using the mixture in the working medium.
  • a temperature gradient is defined as the nature of heat exchangers, such as evaporation in an evaporator or condensation in a condenser, with different start and end temperatures. In the azeotrope, the temperature gradient is 0, and in the pseudoazeotrope, the temperature gradient is very close to 0, for example, the temperature gradient of R410A is 0.2.
  • the inlet temperature in the evaporator decreases, which increases the possibility of frost formation, which is a problem.
  • a heat cycle system in order to improve heat exchange efficiency, it is common to make the working medium flowing through the heat exchanger and a heat source fluid such as water or air counter flow, and in a stable operation state, Since the temperature difference of the heat source fluid is small, it is difficult to obtain an energy efficient heat cycle system in the case of a non-azeotropic mixed medium having a large temperature gradient. For this reason, when a mixture is used as a working medium, a working medium having an appropriate temperature gradient is desired.
  • HFC The optional HFC is preferably selected from the above viewpoint.
  • HFC is known to have higher GWP than HFO-1123. Therefore, the HFC combined with HFO-1123 is appropriately selected from the viewpoint of improving the cycle performance as the working medium and keeping the temperature gradient within an appropriate range, and particularly keeping the GWP within an allowable range. It is preferred that
  • an HFC having 1 to 5 carbon atoms is preferable as an HFC that has little influence on the ozone layer and has little influence on global warming.
  • the HFC may be linear, branched, or cyclic.
  • HFCs include fluorides of alkanes having 1 to 5 carbon atoms, such as trifluoromethane, difluoromethane (HFC-32), difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane (HFC-125). Trifluoroiodomethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane and the like are preferable.
  • HFC 1,1-difluoroethane
  • HFC-152a 1,1,1-trifluoroethane
  • HFC-134a 1,1,2,2-tetrafluoroethane
  • HFC-125 1,1,1,2,2-penta Fluoroethane
  • One HFC may be used alone, or two or more HFCs may be used in combination.
  • the content of HFC in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium.
  • the coefficient of performance and the refrigerating capacity are improved when the content of HFC-32 is in the range of 1 to 99% by mass.
  • the coefficient of performance improves when the content of HFC-134a is in the range of 1 to 99% by mass.
  • the preferred HFC GWP is 675 for HFC-32, 1430 for HFC-134a and 3500 for HFC-125. From the viewpoint of keeping the GWP of the obtained working medium low, the HFC-32 is most preferable as an optional HFC.
  • HFO-1123 and HFC-32 can form a pseudo-azeotropic mixture close to azeotropy in a composition range of 99: 1 to 1:99 by mass ratio. The temperature gradient is close to zero. Also in this respect, HFC-32 is advantageous as an HFC combined with HFO-1123.
  • the content of HFC-32 with respect to 100% by mass of the working medium is specifically preferably 20% by mass or more, and 20 to 80% by mass. % Is more preferable, and 40 to 60% by mass is further preferable.
  • HFO other than HFO-1123 is also preferably selected from the same viewpoint as HFC.
  • GWP is much lower than HFC. Therefore, as HFOs other than HFO-1123 combined with HFO-1123, it is particularly noted that the cycle performance as the working medium is improved and the temperature gradient is kept within an appropriate range rather than considering GWP. These are preferably selected as appropriate.
  • HFO other than HFO-1123 examples include 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf), 1, 1,2-trifluoropropene (HFO-1243yc), (E) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), (Z) -1,2,3,3 , 3-pentafluoropropene (HFO-1225ye (Z)), (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), (Z) -1,3,3,3 -Tetrafluoropropene (HFO-1234ze (Z)), 3,3,3-trifluoropropene (HFO-1243zf) and the like.
  • HFOs other than HFO-1123 may be used alone or in combination of two or more.
  • the content of HFO other than HFO-1123 in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium.
  • the coefficient of performance improves when the content of HFO-1234yf or HFO-1234ze is in the range of 1 to 99% by mass.
  • composition range (S) A preferred composition range in the case where the working medium used in the present invention contains HFO-1123 and HFO-1234yf is shown below as a composition range (S).
  • the abbreviation of each compound indicates the ratio (% by mass) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and other components (such as HFC-32). .
  • the working medium in the composition range (S) has an extremely low GWP and a small temperature gradient.
  • refrigeration cycle performance that can be substituted for the conventional R410A can be expressed.
  • the ratio of HFO-1123 to the total amount of HFO-1123 and HFO-1234yf is more preferably 40 to 95% by mass, further preferably 50 to 90% by mass, and more preferably 50 to 85% by mass. % Is particularly preferable, and 60 to 85% by mass is most preferable.
  • the total content of HFO-1123 and HFO-1234yf in 100% by mass of the working medium is more preferably 80 to 100% by mass, further preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass.
  • the working medium used in the present invention may be a combination of HFO-1123, HFC, and HFO other than HFO-1123.
  • the working medium is preferably composed of HFO-1123, HFC-32, and HFO-1234yf, and the ratio of each compound to the total amount of the working medium is preferably in the following range. 10% by mass ⁇ HFO-1123 ⁇ 80% by mass 10 mass% ⁇ HFC-32 ⁇ 75 mass% 5% by mass ⁇ HFO-1234yf ⁇ 60% by mass
  • composition range (P) a preferred composition range (P) is shown below.
  • the abbreviation of each compound indicates the ratio (mass%) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32.
  • R composition range
  • L composition range
  • M composition range
  • the total amount of HFO-1123, HFO-1234yf, and HFC-32 specifically described is more than 90% by mass and less than 100% by mass with respect to the total amount of the working medium for heat cycle. Preferably there is.
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the defects possessed by each are suppressed.
  • this working medium is a working medium that has a very low GWP, has a small temperature gradient, and has a certain capacity and efficiency when used in a thermal cycle, and can obtain good cycle performance.
  • the total amount of HFO-1123 and HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf and HFC-32 is preferably 70% by mass or more.
  • composition of the working medium used in the present invention 30 to 70% by mass of HFO-1123 and 4 to 40 of HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf and HFC-32. And a composition containing HFC-32 in a proportion of 0 to 30% by mass and the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less.
  • the working medium in the above range is a highly durable working medium in which the above effect is enhanced and the self-decomposition reaction of HFO-1123 is suppressed.
  • the content of HFC-32 is preferably 5% by mass or more, and more preferably 8% by mass or more.
  • the working medium used in the present invention contains HFO-1123, HFO-1234yf, and HFC-32.
  • the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less.
  • the self-decomposition reaction of HFO-1123 is suppressed, and a highly durable working medium can be obtained.
  • a more preferred composition range (R) is shown below. ⁇ Composition range (R)> 10% by mass ⁇ HFO-1123 ⁇ 70% by mass 0% by mass ⁇ HFO-1234yf ⁇ 50% by mass 30% by mass ⁇ HFC-32 ⁇ 75% by mass
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the defects possessed by each are suppressed. That is, it is a working medium in which good cycle performance can be obtained by having a low temperature gradient and high performance and efficiency when used in a thermal cycle after GWP is kept low and durability is ensured.
  • composition range (R) preferred ranges are shown below. 20% by mass ⁇ HFO-1123 ⁇ 70% by mass 0% by mass ⁇ HFO-1234yf ⁇ 40% by mass 30% by mass ⁇ HFC-32 ⁇ 75% by mass
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the defects possessed by each of them are suppressed. That is, it is a working medium in which GWP is kept low and durability is ensured, and when used in a thermal cycle, the temperature gradient is smaller and the cycle performance is higher by having higher capacity and efficiency. is there.
  • composition range (R) a more preferred composition range (L) is shown below.
  • the composition range (M) is more preferable.
  • the working medium having the composition range (M) is a working medium in which the characteristics of the HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the drawbacks of the working medium are suppressed.
  • this working medium has a GWP with an upper limit of 300 or less, and durability is ensured, and when used in a heat cycle, the temperature gradient is less than 5.8, and the relative coefficient of performance and relative This is a working medium having a refrigerating capacity close to 1 and good cycle performance.
  • the upper limit of the temperature gradient is lowered, and the lower limit of the relative coefficient of performance x the relative refrigeration capacity is raised. From the viewpoint of a large relative coefficient of performance, 8% by mass ⁇ HFO-1234yf is more preferable. Further, HFO-1234yf ⁇ 35 mass% is more preferable from the viewpoint of high relative refrigeration capacity.
  • the working medium used in the composition for a heat cycle system of the present invention may contain carbon dioxide, hydrocarbon, chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO) and the like in addition to the above optional components.
  • CFO chlorofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • the other optional component a component that has little influence on the ozone layer and little influence on global warming is preferable.
  • hydrocarbon examples include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.
  • a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
  • the working medium contains a hydrocarbon
  • the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 5% by weight, and more preferably 3 to 5% by weight. If a hydrocarbon is more than a lower limit, the solubility of the mineral refrigeration oil to a working medium will become more favorable.
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • CFO 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium.
  • CFO-1214yb 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are preferred.
  • One type of CFO may be used alone, or two or more types may be used in combination.
  • the working medium contains CFO
  • the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 8% by weight, and more preferably 2 to 5% by weight. If the CFO content is at least the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of CFO is not more than the upper limit value, good cycle performance can be easily obtained.
  • HCFO examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
  • HCFO 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd)
  • 1-chloro can be used because flammability of the working medium can be easily suppressed without greatly reducing the cycle performance of the working medium.
  • -1,2-difluoroethylene (HCFO-1122) is preferred.
  • HCFO may be used alone or in combination of two or more.
  • the content of HCFO in 100% by mass of the working medium is less than 10% by mass, preferably 1 to 8% by mass, and more preferably 2 to 5% by mass. If the content of HCFO is equal to or higher than the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of HCFO is not more than the upper limit value, good cycle performance can be easily obtained.
  • the total content of the other optional components in the working medium is 10% by mass with respect to 100% by mass of the working medium. %, Preferably 8% by mass or less, more preferably 5% by mass or less.
  • the composition for a heat cycle system of the present invention comprises a refrigerating machine oil capable of improving the lubricating properties of the working medium in addition to the working medium.
  • the dielectric breakdown voltage of the refrigerating machine oil in the present invention is 25 kV or more.
  • the dielectric breakdown voltage is more preferably 30 kV or more, and further preferably 40 kV or more.
  • the breakdown voltage in this specification is measured in accordance with JIS C 2101.
  • the dielectric breakdown voltage in this specification determined whether the dielectric breakdown voltage of the refrigeration oil is a catalog value, or whether it is 25 kV, 50 kV or more by simple confirmation based on JIS C 2101.
  • the hydroxyl value of this refrigerating machine oil is 0.1 mgKOH / g or less.
  • the hydroxyl value in the refrigerating machine oil sufficiently low as 0.1 mgKOH / g or less, it is possible to suppress the generation of hydroxy radicals that cause deterioration due to the polymerization and decomposition reaction of the refrigerating machine oil and the working medium for the heat cycle. .
  • the hydroxy radical attacks and decomposes the double bond, and an acid is generated at that time.
  • the acid is generated, there is a possibility that the members constituting the system are corroded or deteriorated in the thermal cycle system.
  • the hydroxyl value is lowered as described above, the generation of acid can be significantly suppressed, and the thermal cycle system can be stably operated.
  • the hydroxyl value is more preferably 0.05 mgKOH / g or less.
  • the hydroxyl value in this specification is measured based on JIS K 2501.
  • aniline point of this refrigerating machine oil is ⁇ 100 ° C. or higher and 0 ° C. or lower.
  • the “aniline point” is a numerical value indicating the solubility of, for example, a hydrocarbon solvent.
  • a sample here, refrigeration oil
  • the samples cannot be dissolved and become cloudy. It represents the temperature at the start of viewing, and is a value measured according to JIS K 2256.
  • the working medium has a carbon-carbon double bond, it will be described later.
  • an acid-resistant resin material or the like as described in the description of the thermal cycle system may be applied instead of a metal member such as copper that is usually used as a component of the thermal cycle system. is there.
  • the resin material may be in trouble due to shrinkage or swelling due to the refrigerating machine oil. Therefore, by setting the aniline point of the refrigerating machine oil within the predetermined range ( ⁇ 100 ° C.
  • the aniline point is too low, the refrigerating machine oil easily penetrates into the resin material constituting the sliding member and the insulating material, and the sliding member and the insulating material easily swell. If the sliding member swells and deforms, the gap (gap) at the sliding portion cannot be maintained at a desired length. As a result, there is a risk of increasing the sliding resistance.
  • the aniline point is too high, the refrigerating machine oil hardly penetrates into the sliding member and the insulating material, and the sliding member and the insulating material easily contract. When the sliding member contracts and deforms, the hardness of the sliding member increases and the rigidity of the sliding portion decreases. As a result, the sliding member may be damaged by the vibration of the compressor.
  • the insulating material (insulating coating material, insulating film, etc.) of the electric motor swells and deforms, the insulating property of the insulating material decreases. If the insulating material shrinks and deforms, the insulating material may be damaged as in the case of the sliding member described above, and in this case, the insulating property is also lowered.
  • the aniline point of the refrigerating machine oil within a predetermined range as described above, the swelling / shrinkage deformation of the sliding member and the insulating material can be suppressed, and thus such a problem can be avoided.
  • the kinematic viscosity of the refrigeration oil at 40 ° C does not deteriorate the lubricity and the hermeticity of the compressor, and is satisfactory in compatibility with the working medium under low temperature conditions. From the viewpoint of sufficient heat exchange in the vessel, 5 to 200 mm 2 / s is preferable, and 5 to 100 mm 2 / s is more preferable.
  • the kinematic viscosity at 100 ° C. is preferably 1 to 100 mm 2 / s, and more preferably 2 to 30 mm 2 / s, from the viewpoint of maintaining power consumption and wear resistance within an appropriate range.
  • kinematic viscosity in this specification is measured based on JISK2283.
  • the refrigerating machine oil used in the present invention include oxygen-containing synthetic oils (ester-based refrigerating machine oil, ether-based refrigerating machine oil, polyglycol-based refrigerating machine oil, and the like).
  • ester-based refrigerating machine oil and ether-based refrigerating machine oil are suitable from the viewpoint of compatibility with the fluorinated hydrocarbon compound that is an essential working medium component of the present invention.
  • polyol ester type refrigerating machine oil is preferable as the ester type refrigerating machine oil
  • polyvinyl ether type refrigerating machine oil is preferable as the ether type refrigerating machine oil.
  • carbon atoms and oxygen atoms are typically cited as the atoms constituting the refrigerating machine oil. If the ratio of carbon atoms to oxygen atoms (carbon / oxygen molar ratio) is too small, the hygroscopicity is increased, and if it is too large, the compatibility with the working medium is lowered. From this viewpoint, the ratio of carbon atoms to oxygen atoms in the refrigerating machine oil is suitably 2 to 7.5 in terms of molar ratio.
  • ester-based refrigerating machine oil in terms of chemical stability, dibasic acid ester-based refrigerating machine oil of dibasic acid and monohydric alcohol, polyol ester refrigerating machine oil of polyol and fatty acid, or polyol and polyvalent base
  • base oil components include complex ester refrigerating machine oils of acids and monohydric alcohols (or fatty acids), polyol carbonate refrigerating machine oils, and the like.
  • Dibasic acid ester refrigerating machine oils include dibasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, etc.
  • divalent acids having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and monovalent monovalent C 1-15 having a linear or branched alkyl group
  • Esters with alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, etc.
  • alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecan
  • dibasic ester refrigerating machine oil examples include ditridecyl glutarate, di (2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, di (3-ethylhexyl) sebacate and the like.
  • the polyol ester type refrigerating machine oil is an ester synthesized from a polyhydric alcohol and a fatty acid (carboxylic acid).
  • polyhydric alcohol constituting the polyol ester type refrigerating machine oil examples include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3 -Propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2- Propyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, etc.), polyol having
  • the fatty acid constituting the polyol ester type refrigerating machine oil is not particularly limited, but usually those having 1 to 24 carbon atoms are used. Straight chain fatty acids and branched fatty acids are preferred. Linear fatty acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid , Heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, oleic acid, linoleic acid, linolenic acid, etc., and the hydrocarbon group bonded to the carboxy group may be all saturated hydrocarbons or unsaturated hydro
  • branched fatty acids include 2-methylpropanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2 , 2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethyl Pentanoic acid, 3-ethylpentanoic acid, 2,2,3-trimethylbutanoic acid
  • the polyol constituting the ester may be one kind or a mixture of two or more kinds.
  • the fatty acid constituting the ester may be a single component or an ester with two or more fatty acids. Each of the fatty acid and the fatty acid may be one kind or a mixture of two or more kinds.
  • the polyol ester refrigerating machine oil may have a free hydroxyl group.
  • particularly preferable polyol ester refrigerating machine oils are the following compounds (a) to (c): (A) a compound having two or more hydroxyl groups or a derivative thereof, (B) a compound having two or more carboxy groups or a derivative thereof, and (c) a compound having one carboxy group or a derivative thereof, and / or an ester obtained using a compound having one hydroxyl group or a derivative thereof. And is used together with the working medium described in the above general formula (I), and is characterized by lubricity, sealing properties, compatibility with the working medium, thermal / chemical stability, electrical insulation, etc. Is sufficiently satisfied in a well-balanced manner, and it is possible to sufficiently prevent poor lubrication of the compressor and a decrease in refrigeration efficiency.
  • the compound (a) constituting this ester is a compound having two or more hydroxyl groups or a derivative thereof.
  • the number of hydroxyl groups is preferably 2 to 6.
  • sufficient viscosity cannot be obtained in the resulting ester, and poor lubrication and reduced refrigeration efficiency are likely to occur. The fluidity becomes insufficient.
  • the compound (a) include polyhydric alcohols, polyhydric phenols, polyhydric amino alcohols and condensates thereof, and compounds in which the hydroxyl groups of these compounds are esterified with a carboxylic acid such as acetic acid.
  • a polyhydric alcohol or a condensate thereof or a derivative thereof because compatibility with the working medium, electrical insulation and thermal stability tend to be further improved.
  • the number of carbon atoms of the polyhydric alcohol is not particularly limited, but a polyhydric alcohol having 2 to 12 carbon atoms is preferably used.
  • Specific examples of such polyhydric alcohols include dihydric alcohols (diols) such as ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, and 1,2-butanediol.
  • trihydric or higher alcohols include trimethylolethane, trimethylolpropane, trimethylolbutane, di- (trimethylolpropane), tri- (trimethylolpropane), pentaerythritol, di- ( Pentaerythritol), tri- (pentaerythritol), glycerin, polyglycerin (glycerin dimer to trimer), 1,3,5-pentanetriol, sorbitol, sorbitan, sorbitol glycerin condensate, adonitol, arabitol, xylitol, mannitol Polysaccharides such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose, cellobiose, and partial etherified products thereof It is.
  • hindered alcohols such as neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, di- (trimethylol propane), tri- (trimethylol propane), pentaerythritol, di- (pentaerythritol), etc. Is preferred.
  • the compound (a) having a hydroxyl group esterified with a carboxylic acid can be used.
  • a compound in which a hydroxyl group is esterified with a lower carboxylic acid is preferable, and specifically, an acetate ester or a propionate ester of the compound exemplified in the above description of the polyhydric alcohol is preferably used.
  • the compound (b) constituting the ester is a compound having two or more carboxy groups or a derivative thereof.
  • the number of carboxy groups is preferably 2-6. If only a compound having one carboxy group or its derivative is used as the acid component, the resulting ester will have insufficient viscosity, which may cause poor lubrication and reduced refrigeration efficiency, thermal / chemical stability, and low-temperature flow. The property becomes insufficient.
  • the compound (b) include divalent to hexavalent carboxylic acids and carboxylic acid derivatives such as acid anhydrides, esters and acid halides thereof.
  • the number of carbon atoms of the divalent to hexavalent carboxylic acid is not particularly limited, but divalent carboxylic acids having 2 to 10 carbon atoms are preferably used. Specific examples of such divalent to hexavalent carboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, methylmalonic acid, and ethylmalon.
  • Acid dimethylmalonic acid, methylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, 2-ethyl-2-methylsuccinic acid, 2-methylglutaric acid, 3-methylglutaric acid, 3-methyladipine
  • Saturated aliphatic dicarboxylic acids such as acids; unsaturated aliphatic dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid and mesaconic acid; 1,2-cyclohexanedicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid
  • Alicyclic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, etc.
  • Carboxylic acid, and the like also preferably a divalent carboxylic acid Among these, further, saturated aliphatic dicarboxylic acids from the viewpoint of oxid
  • esters as described above, a derivative of a compound having two carboxy groups can be used as the compound (b).
  • Such derivatives include esters, acid anhydrides, acid halides, etc.
  • esters of the above divalent carboxylic acids and lower alcohols are preferably used.
  • the compound (c) constituting the ester is a compound having one carboxy group or a derivative thereof and / or a compound having one hydroxyl group or a derivative thereof.
  • this compound (c) any one of a compound having one carboxy group or a derivative thereof and a compound having one hydroxyl group or a derivative thereof may be used alone or as a mixture of both. Good. If only a compound having two or more carboxy groups or its derivative is used as the acid component and only a compound having two or more hydroxyl groups or its derivative is used as the alcohol component, the thermal / chemical stability is poor. It will be enough.
  • the compound having one carboxy group or a derivative thereof include monovalent fatty acids and acid anhydrides, esters and acid halides thereof.
  • the carbon number of the monovalent fatty acid is not particularly limited, and those having 1 to 24 carbon atoms are usually used.
  • the monovalent fatty acid preferably has 3 or more carbon atoms, more preferably 4 or more. 5 or more is more preferable, and 8 or more is particularly preferable.
  • the number of carbon atoms of the monovalent fatty acid is less than 3, the resulting ester inherently has insufficient lubricity, and the compatibility with the working medium described in the above general formula (I) becomes excessively high.
  • the viscosity is lowered, and the refrigeration efficiency is lowered and poor lubrication tends to occur due to a decrease in sealing performance.
  • the carbon number of the monovalent fatty acid is preferably 22 or less, more preferably 20 or less, and further preferably 18 or less.
  • the compatibility between the resulting ester and the working medium becomes insufficient, and the lubrication of the compressor due to a decrease in oil return and the refrigerating efficiency tend to occur. .
  • the monovalent fatty acid as the compound (c) may be either linear or branched, but is preferably a linear monovalent fatty acid from the viewpoint of lubricity, and has heat and hydrolysis stability. From this point, a branched monovalent fatty acid is preferable.
  • the monovalent fatty acid may be either a saturated fatty acid or an unsaturated fatty acid.
  • monovalent fatty acid as this compound (c), specifically, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid Straight chain or branched ones such as hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, icosanoic acid, oleic acid, or those in which the ⁇ carbon atom is a quaternary carbon atom (neoic acid).
  • valeric acid n-pentanoic acid
  • caproic acid n-hexanoic acid
  • enanthic acid n-heptanoic acid
  • caprylic acid n-octanoic acid
  • pelargonic acid n-nonanoic acid
  • capric acid N-decanoic acid
  • lauric acid n-dodecanoic acid
  • myristic acid n-tetradecanoic acid
  • palmitic acid n-hexadecanoic acid
  • Stearic acid n-octadecanoic acid
  • oleic acid cis-9-octadecenoic acid
  • isopentanoic acid (3-methylbutanoic acid), 2-methylhexanoic acid, 2-ethylpentanoic acid, 2-ethylhexanoic acid, 3, 5,5-trimethylhexanoic acid is preferably used.
  • monohydric alcohol, monohydric phenol, monovalent amino alcohol, and the hydroxyl group of these compounds are esterified with carboxylic acid such as acetic acid.
  • carboxylic acid such as acetic acid.
  • the number of carbon atoms of these compounds is not particularly limited, but those having 1 to 24 carbon atoms are preferable from the viewpoint that both the lubricity and the compatibility with the working medium are further improved in the resulting ester.
  • a linear monohydric alcohol having ⁇ 18, a branched monohydric alcohol having 3 to 18 carbon atoms, and a monovalent cycloalcohol having 5 to 10 carbon atoms are preferable.
  • the monohydric alcohol having a carbon number within the above-mentioned preferred range include linear or branched propanol (including n-propanol, 1-methylethanol, etc.), linear or branched butanol. (Including n-butanol, 1-methylpropanol, 2-methylpropanol, etc.), linear or branched pentanol (n-pentanol, 1-methylbutanol, 2-methylbutanol, 3-methylbutanol, etc.) ), Linear or branched hexanol (including n-hexanol, 1-methylpentanol, 2-methylpentanol, 3-methylpentanol, etc.), linear or branched heptanol (n-heptanol) 1-methylhexanol, 2-methylhexanol, 3-methylhexanol, 4-methylhexanol , 5-methylhexanol, 2,4-dimethylpentanol,
  • a derivative in which a hydroxyl group is esterified with a carboxylic acid can also be used.
  • acetates, propionates and the like of the compounds exemplified in the description of the monohydric alcohol are preferably used.
  • esters the following compounds (a ′), (b ′) and (c ′): (A ′) at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, glycerin, neopentyl glycol, diethylene glycol, dipropylene glycol, dibutylene glycol and dibutylene glycol; (B ′) at least one selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and (c ′) valeric acid, capron Acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, isopentanoic acid, 2-methylhexanoic acid, 2-ethylpentanoi
  • the composition ratio of the compounds (a) to (c) is not particularly limited, but the lubricity, sealability, compatibility with the working medium, thermal / chemical stability, electrical insulation, etc. are balanced at a higher level. Since they tend to be satisfactorily satisfied, it is preferably within the following ranges based on the total amount of the compounds (a) to (c).
  • Compound (b) 3 to 55 mol%, preferably 5 to 50 mol%, more preferably 10 to 45 mol%
  • the ester described here is esterified by heating the above compounds (a) to (c) according to a conventional method, preferably in an inert gas atmosphere such as nitrogen, in the presence or absence of an esterification catalyst. It is prepared by.
  • esterification used in the above esterification reaction include Lewis acids such as aluminum derivatives, tin derivatives and titanium derivatives; alkali metal salts such as sodium alkoxide and potassium alkoxide; paratoluenesulfonic acid and methanesulfonic acid And sulfonic acids such as sulfuric acid are exemplified, but among these, use of Lewis acids such as aluminum derivatives, tin derivatives and titanium derivatives is preferable because the thermal and hydrolytic stability of the resulting ester is further enhanced. Furthermore, tin derivatives are particularly preferable from the viewpoint of reaction efficiency.
  • the amount of the esterification catalyst used is, for example, about 0.1 to 1% by mass with respect to the total amount of the starting compounds (a) to (c).
  • the reaction temperature in the above esterification reaction is exemplified by 150 to 230 ° C., and the reaction is usually completed in 3 to 30 hours.
  • esterification reaction After the esterification reaction is completed, excess raw materials are distilled off under reduced pressure or normal pressure, followed by a conventional purification method, for example, liquid purification, vacuum distillation, activated purification treatment such as activated carbon treatment, etc.
  • a conventional purification method for example, liquid purification, vacuum distillation, activated purification treatment such as activated carbon treatment, etc.
  • the ester can be purified.
  • the reaction product obtained may be a mixture even in other cases.
  • the ester is a mixture of two or more compounds, the compound (a) and the compound (b) are directly converted from the viewpoint of the balance between the compatibility with the working medium and various performances and the ease of production.
  • the content of the bound ester is preferably 10 to 100% by mass, more preferably 20 to 100% by mass, and further preferably 25 to 100% by mass based on the total amount of the mixture.
  • the complex ester refrigerating machine oil is an ester of a fatty acid and a dibasic acid, a monohydric alcohol and a polyol.
  • fatty acid, dibasic acid, monohydric alcohol, and polyol the same ones as described above can be used.
  • fatty acid As fatty acid, what was shown with the fatty acid of the said polyol ester is mentioned.
  • dibasic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid and the like.
  • polyol examples include those shown as the polyhydric alcohol of the above polyol ester.
  • Complex esters are esters of these fatty acids, dibasic acids, and polyols, and each may be a single component or an ester composed of a plurality of components.
  • the polyol carbonate type refrigerating machine oil is an ester of carbonic acid and polyol.
  • Polyols include polyglycols (polyalkylene glycols, ether compounds thereof, modified compounds thereof, etc.) obtained by homopolymerization or copolymerization of diols (same as above), polyols (same as above), polyols and polyglycols. And the like added.
  • polyalkylene glycol examples include those obtained by polymerizing C 2-4 alkylene oxide (ethylene oxide, propylene oxide, etc.) using water or alkali hydroxide as an initiator. Moreover, what etherified the hydroxyl group of polyalkylene glycol may be used.
  • the oxyalkylene units in the polyalkylene glycol may be the same in one molecule, or two or more oxyalkylene units may be included. It is preferable that at least an oxypropylene unit is contained in one molecule.
  • the polyol carbonate refrigerating machine oil may be a ring-opening polymer of cyclic alkylene carbonate.
  • ether refrigerating machine oil examples include polyvinyl ether refrigerating machine oil and polyalkylene glycol refrigerating machine oil.
  • Polyvinyl ether refrigerating machine oil Polyvinyl ether refrigerating machine oils obtained by polymerizing vinyl ether monomers, those obtained by copolymerizing vinyl ether monomers and hydrocarbon monomers having an olefinic double bond, and polyvinyl ether and alkylene glycol Or there are polyalkylene glycols or their copolymers with monoethers.
  • a preferable example of this polyvinyl ether type refrigerating machine oil is a polyvinyl ether type compound having a structure represented by the following general formula (1) and having a molecular weight of 300 to 3,000.
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, which may be the same or different, and R b is a divalent having 2 to 4 carbon atoms
  • R a is a hydrogen atom, an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group optionally having a substituent having 1 to 20 carbon atoms, 20 acyl groups or oxygen-containing hydrocarbon groups having 2 to 50 carbon atoms
  • R 4 represents a hydrocarbon group having 1 to 10 carbon atoms
  • R a , R b and R 4 are the same when there are a plurality of them.
  • M is an average value of 1 to 50, o is a number of 1 to 50, p is a number of 2 to 25, and o and p are each a block when there are a plurality of them. It may be random.).
  • the hydrocarbon group having 1 to 8 carbon atoms of R 1 to R 3 is specifically a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec -Butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, alkyl groups of various octyl groups, cyclopentyl groups, cyclohexyl groups, various methylcyclohexyl groups, various ethylcyclohexyl groups, various dimethylcyclohexyl groups, etc.
  • a hydrogen atom is especially preferable as each of these R ⁇ 1 >, R ⁇ 2 > and R ⁇ 3 >.
  • examples of the divalent hydrocarbon group having 2 to 4 carbon atoms represented by R b include divalent alkylene groups such as a methylene group, an ethylene group, a propylene group, a trimethylene group, and various butylene groups.
  • m represents the number of R b O repeats, and the average value thereof is in the range of 1 to 50, preferably 2 to 20, more preferably 2 to 10, particularly preferably 2 to 5. Is a number.
  • R b O is plural, plural R b O may be the same or different.
  • O is 1 to 50, preferably 1 to 10, more preferably 1 to 2, particularly preferably 1
  • p is a number from 2 to 25, preferably 5 to 15, and o and p are plural.
  • each block may be random.
  • the aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 5 to 10 carbon atoms.
  • aromatic group which may have a substituent having 1 to 20 carbon atoms in Ra
  • aromatic group which may have a substituent having 1 to 20 carbon atoms in Ra
  • aryl groups such as various butylphenyl groups and various naphthyl groups, benzyl groups, various phenylethyl groups, various methylbenzyl groups, various phenylpropyl groups, and arylalkyl groups of various phenylbutyl groups.
  • Examples of the acyl group having 2 to 20 carbon atoms in Ra include acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, benzoyl group, and toluoyl group.
  • specific examples of the oxygen-containing hydrocarbon group having 2 to 50 carbon atoms in R a include methoxymethyl group, methoxyethyl group, methoxypropyl group, 1,1-bismethoxypropyl group, 1,2-bismethoxy group.
  • Preferable examples include propyl group, ethoxypropyl group, (2-methoxyethoxy) propyl group, (1-methyl-2-methoxy) propyl group and the like.
  • the hydrocarbon group having 1 to 10 carbon atoms represented by R 4 is specifically a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or an isobutyl group.
  • the polyvinyl ether compound can be obtained, for example, by copolymerizing a vinyl ether compound represented by the following general formula (2) and a vinyl ether compound represented by the following general formula (3).
  • R a , R b , m and R 1 to R 4 are as described above.
  • Examples of the vinyl ether compound represented by the general formula (2) include alkylene glycol monovinyl ether, polyoxyalkylene glycol monovinyl ether, alkylene glycol alkyl vinyl ether, polyoxyalkylene glycol alkyl vinyl ether, and the like.
  • ethylene glycol monovinyl ether ethylene glycol methyl vinyl ether, diethylene glycol monovinyl ether, diethylene glycol methyl vinyl ether, triethylene glycol monovinyl ether, triethylene glycol methyl vinyl ether, propylene glycol monovinyl ether, propylene glycol methyl vinyl ether, dipropylene glycol monovinyl ether , Dipropylene glycol methyl vinyl ether, tripropylene glycol monovinyl ether, tripropylene glycol methyl vinyl ether, and the like.
  • examples of the vinyl ether compound represented by the general formula (3) include vinyl methyl ether, vinyl ethyl ether, vinyl n-propyl ether, vinyl isopropyl ether, vinyl n butyl ether, vinyl isobutyl ether and vinyl.
  • Vinyl ethers such as -sec-butyl ether, vinyl-tert-butyl ether, vinyl-n-pentyl ether, vinyl-n-hexyl ether; 1-methoxypropene, 1-ethoxypropene, 1-n-propoxypropene, 1-isopropoxy Propene, 1-n-butoxypropene, 1-isobutoxypropene, 1-sec-butoxypropene, 1-tert-butoxypropene, 2-methoxypropene, 2-ethoxypropene, 2-n-propoxypropene, 2-i Propenes such as propoxypropene, 2-n-butoxypropene, 2-isobutoxypropene, 2-sec-butoxypropene, 2-tert-butoxypropene; 1-methoxy-1-butene, 1-ethoxy-1-butene, 1-n-propoxy-1-butene, 1-isopropoxy-1-butene, 1-n-butoxy-1-butene, 1-isopropoxy
  • the vinyl ether compound can be produced by radical polymerization, cationic polymerization, radiation polymerization or the like of a corresponding vinyl ether compound and a hydrocarbon monomer having an olefinic double bond that is used as desired.
  • a vinyl ether monomer can be polymerized using the method shown below to obtain a polymer having a desired viscosity.
  • a combination of Bronsted acids, Lewis acids or organometallic compounds with an adduct of water, alcohols, phenols, acetals or vinyl ethers and a carboxylic acid may be used. it can.
  • Bronsted acids include hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, trichloroacetic acid, and trifluoroacetic acid.
  • Lewis acids include boron trifluoride, aluminum trichloride, aluminum tribromide, tin tetrachloride, zinc dichloride, and ferric chloride. Among these Lewis acids, boron trifluoride is particularly preferred. Is preferred.
  • the organometallic compound include diethyl aluminum chloride, ethyl aluminum chloride, diethyl zinc and the like.
  • Any adduct of water, alcohols, phenols, acetals or vinyl ethers and carboxylic acid combined with these can be selected.
  • alcohols include those having 1 to 20 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, and various octanols.
  • C3-10 unsaturated aliphatic alcohol such as saturated aliphatic alcohol and allyl alcohol, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol
  • alkylene glycols such as monomethyl ether.
  • Examples of the carboxylic acid in the case of using an adduct of vinyl ethers and carboxylic acid include acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, isovaleric acid, 2-methylbutyric acid, pivalic acid, n -Caproic acid, 2,2-dimethylbutyric acid, 2-methylvaleric acid, 3-methylvaleric acid, 4-methylvaleric acid, enanthic acid, 2-methylcaproic acid, caprylic acid, 2-ethylcaproic acid, 2-n -Propylvaleric acid, n-nonanoic acid, 3,5,5-trimethylcaproic acid, caprylic acid, undecanoic acid and the like.
  • the vinyl ether used in the case of using an adduct of vinyl ether and carboxylic acid may be the same as that used for the polymerization, or may be different.
  • This adduct of vinyl ethers and carboxylic acid is obtained by mixing and reacting at a temperature of about 0 to 100 ° C., and can be separated by distillation or the like and used for the reaction. It can also be used for the reaction without.
  • the polymerization initiation terminal of the polymer is such that when water, alcohols or phenols are used, hydrogen is bonded, and when acetals are used, one alkoxy group is eliminated from hydrogen or the used acetals.
  • an adduct of vinyl ethers and carboxylic acid is used, the alkylcarbonyloxy group derived from the carboxylic acid moiety is eliminated from the adduct of vinyl ethers and carboxylic acid.
  • the terminal ends are acetals, olefins, or aldehydes.
  • an adduct of vinyl ethers and carboxylic acid it becomes a carboxylic acid ester of hemiacetal.
  • the terminal of the polymer thus obtained can be converted into a desired group by a known method.
  • the desired group include residues of saturated hydrocarbons, ethers, alcohols, ketones, nitriles, amides and the like, but saturated hydrocarbon, ether and alcohol residues are preferable.
  • the polyvinyl ether compound contained in the refrigerating machine oil used in the present invention preferably has a carbon / oxygen molar ratio of 4 or less, and when this molar ratio exceeds 4, the general formula (I) Compatibility with the described working medium is reduced. About adjustment of this molar ratio, the polymer which has this molar ratio in the said range can be manufactured by adjusting carbon / oxygen molar ratio of a raw material monomer.
  • the ratio of the monomer having a large carbon / oxygen molar ratio is large, a polymer having a large carbon / oxygen molar ratio is obtained, and if the ratio of the monomer having a small carbon / oxygen molar ratio is large, the polymer having a small carbon / oxygen molar ratio is obtained. Is obtained.
  • the adjustment of the carbon / oxygen molar ratio is carried out by using water, alcohols, phenols, acetals, and adducts of vinyl ethers and carboxylic acids used as initiators as shown in the polymerization method of vinyl ether monomers. The combination with monomers is also possible.
  • a polymer having a larger carbon / oxygen molar ratio than the raw material monomer can be obtained, while carbon / such as methanol or methoxyethanol If an alcohol having a small oxygen molar ratio is used, a polymer having a smaller carbon / oxygen molar ratio than the raw material monomer can be obtained.
  • polyalkylene glycol refrigerating machine oil examples include those obtained by a method of polymerizing alkylene oxide (ethylene oxide, propylene oxide, etc.) having 2 to 4 carbon atoms using water or alkali hydroxide as an initiator. Moreover, what etherified the hydroxyl group of polyalkylene glycol may be used.
  • the oxyalkylene units in the polyalkylene glycol refrigerating machine oil may be the same in one molecule, or two or more oxyalkylene units may be included. It is preferable that at least an oxypropylene unit is contained in one molecule.
  • R 101 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, or an aliphatic hydrocarbon group having 1 to 10 carbon atoms having 2 to 6 bonding parts
  • R 102 Is an alkylene group having 2 to 4 carbon atoms
  • R 103 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an acyl group having 2 to 10 carbon atoms
  • l is an integer of 1 to 6
  • k is an average value of k ⁇ l Is a number from 6 to 80.
  • the alkyl group in R 101 and R 103 may be linear, branched or cyclic.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Cyclopentyl group, cyclohexyl group and the like. When the number of carbon atoms in the alkyl group exceeds 10, the compatibility with the working medium is lowered and phase separation may occur.
  • the alkyl group preferably has 1 to 6 carbon atoms.
  • the alkyl group portion of the acyl group in R 101 and R 103 may be linear, branched or cyclic.
  • various groups having 1 to 9 carbon atoms exemplified as specific examples of the alkyl group can be exemplified.
  • compatibility with the working medium may be reduced and phase separation may occur.
  • a preferred acyl group has 2 to 6 carbon atoms.
  • R 101 and R 103 are both alkyl groups or acyl groups, R 101 and R 103 may be the same or different from each other. Further, when l is 2 or more, a plurality of R 103 in one molecule may be the same or different.
  • R 101 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms having 2 to 6 bonding sites
  • the aliphatic hydrocarbon group may be a chain or a cyclic one. Also good.
  • Examples of the aliphatic hydrocarbon group having two binding sites include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, cyclopentylene group, and cyclohexylene. Group and the like.
  • Examples of the aliphatic hydrocarbon group having 3 to 6 binding sites include trimethylolpropane, glycerin, pentaerythritol, sorbitol; 1,2,3-trihydroxycyclohexane; 1,3,5-trihydroxycyclohexane. Examples thereof include a residue obtained by removing a hydroxyl group from a polyhydric alcohol.
  • the compatibility with the working medium is lowered, and phase separation may occur.
  • a preferred carbon number is 2-6.
  • R 102 in the general formula (4) is an alkylene group having 2 to 4 carbon atoms, and examples of the oxyalkylene group of the repeating unit include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • the oxyalkylene groups in one molecule may be the same or two or more oxyalkylene groups may be contained, but those containing at least an oxypropylene unit in one molecule are preferred, and in particular, oxyalkylene units. Those containing 50 mol% or more of oxypropylene units are preferred.
  • l is an integer of 1 to 6, and is determined according to the number of R 101 binding sites.
  • R 101 is an alkyl group or an acyl group
  • l is 1, and when R 101 is an aliphatic hydrocarbon group having 2, 3, 4, 5, and 6 binding sites, l is 2, 3 respectively. , 4, 5 and 6.
  • k is a number with an average value of k ⁇ l of 6 to 80, and if the average value of k ⁇ l deviates from the above range, the object of the present invention cannot be sufficiently achieved.
  • the structure of the polyalkylene glycol is such that polypropylene glycol dimethyl ether represented by the following general formula (5) and poly (oxyethyleneoxypropylene) glycol dimethyl ether represented by the following general formula (6) are economical and have the aforementioned effects.
  • the polypropylene glycol monobutyl ether represented by the following general formula (7), the polypropylene glycol monomethyl ether represented by the following general formula (8), and the polyglycol represented by the following general formula (9) (Oxyethyleneoxypropylene) glycol monomethyl ether, poly (oxyethyleneoxypropylene) glycol monobutyl ether represented by the following general formula (10), polypropylene glycol diacetate represented by the following general formula (11) are economical, etc. of In is suitable.
  • These refrigeration oils may be used alone or in combination of two or more.
  • These refrigerating machine oils are preferably mixed with a working medium and used as a composition for a heat cycle system.
  • the blending ratio of the refrigerating machine oil is desirably 5 to 60% by mass and more preferably 10 to 50% by mass with respect to the total amount of the composition for a heat cycle system.
  • the water content of the refrigerating machine oil is not particularly limited, but is preferably 300 ppm or less, more preferably 200 ppm or less, and most preferably 100 ppm or less based on the total amount of refrigerating machine oil.
  • the moisture content when used for closed-type refrigerators, it is required that the moisture content is low from the viewpoint of decomposition stability of the working medium and influence on the thermal / chemical stability and electrical insulation of the refrigerator oil. .
  • the moisture content was measured according to JIS K 2275.
  • the residual air partial pressure of the refrigerating machine oil is not particularly limited, but is preferably 10 kPa or less, and more preferably 5 kPa or less.
  • the ash content of the refrigerating machine oil used here is not particularly limited, but in order to increase the thermal and chemical stability of the refrigerating machine oil and suppress the generation of sludge and the like, it is preferably 100 ppm or less, more preferably 50 ppm or less. it can.
  • an ash content means the value of the ash content measured based on JISK2272.
  • the composition for thermal cycle systems can contain known optional components as long as the effects of the present invention are not impaired.
  • an additive for stably containing a refrigerating machine oil in the composition for a heat cycle system such an additive includes a copper deactivator, an extreme pressure agent, an oily agent, Antioxidants, acid scavengers, antifoaming agents, polymerization inhibitors and the like can be mentioned.
  • Each additive may be added as necessary, and the blending amount of each additive may be set to 0.01% by mass or more and 5% by mass or less in 100% by mass of the composition for heat cycle system. Good.
  • the compounding amount of the acid scavenger and the compounding amount of the antioxidant are preferably in the range of 0.05% by mass to 5% by mass.
  • benzotriazole and its derivatives can be used as the copper deactivator.
  • a silicon compound can be used as the antifoaming agent.
  • the oily agent higher alcohols can be used.
  • phosphate ester can be used for an extreme pressure agent.
  • phosphoric acid esters that can be used include phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, and acidic phosphorous acid esters.
  • amine salt of phosphoric acid ester, phosphorous acid ester, acidic phosphoric acid ester, and acidic phosphorous acid ester can also be used for an extreme pressure agent.
  • phosphate esters include triaryl phosphates, trialkyl phosphates, trialkylaryl phosphates, triarylalkyl phosphates, and trialkenyl phosphates.
  • phosphoric acid esters are specifically listed as triphenyl phosphate, tricresyl phosphate, benzyl diphenyl phosphate, ethyl diphenyl phosphate, tributyl phosphate, ethyl dibutyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, ethyl phenyl diphenyl phosphate.
  • phosphites include triethyl phosphite, tributyl phosphite, triphenyl phosphite, tricresyl phosphite, tri (nonylphenyl) phosphite, tri (2-ethylhexyl) phosphite, tridecyl
  • phosphites trilauryl phosphites, triisooctyl phosphites, diphenylisodecyl phosphites, tristearyl phosphites, trioleyl phosphites and the like.
  • acidic phosphate ester examples include 2-ethylhexyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, isodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, Examples include stearyl acid phosphate and isostearyl acid phosphate.
  • acidic phosphites include dibutyl hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, distearyl hydrogen phosphite, diphenyl hydrogen phosphite and the like.
  • phosphoric acid esters oleyl acid phosphate and stearyl acid phosphate are preferred.
  • mono-substituted amines among the amines used in the amine salts of phosphoric acid ester, phosphorous acid ester, acidic phosphoric acid ester or acidic phosphorous acid ester include butylamine, pentylamine, hexylamine, cyclohexylamine, There are octylamine, laurylamine, stearylamine, oleylamine, benzylamine and the like.
  • disubstituted amines include dibutylamine, dipentylamine, dihexylamine, dicyclohexylamine, dioctylamine, dilaurylamine, distearylamine, dioleylamine, dibenzylamine, stearyl monoethanolamine, decyl monoethanol.
  • Examples include ethanolamine, hexyl monopropanolamine, benzyl monoethanolamine, phenyl monoethanolamine, and tolyl monopropanol.
  • tri-substituted amine examples include tributylamine, tripentylamine, trihexylamine, tricyclohexylamine, trioctylamine, trilaurylamine, tristearylamine, trioleylamine, tribenzylamine, dioleyl monoethanolamine, Dilauryl monopropanolamine, dioctyl monoethanolamine, dihexyl monopropanolamine, dibutyl monopropanolamine, oleyl diethanolamine, stearyl dipropanolamine, lauryl diethanolamine, octyl dipropanolamine, butyl diethanolamine, benzyl Diethanolamine, phenyl diethanolamine, tolyl dipropanolamine, xylyl diethanolamine Emissions, triethanolamine, there is a tri-propanolamine and the like.
  • extreme pressure agents other than those mentioned above.
  • extreme pressure agents based on organic sulfur compounds such as monosulfides, polysulfides, sulfoxides, sulfones, thiosulfinates, sulfurized fats and oils, thiocarbonates, thiophenes, thiazoles, methanesulfonate esters, Thiophosphate ester-type extreme pressure agents such as thiophosphate triesters, higher fatty acid, hydroxyaryl fatty acids, polyhydric alcohol esters, ester-type extreme pressure agents such as acrylate esters, chlorinated hydrocarbons, chlorine Organic chlorinated extreme pressure agents such as fluorinated carboxylic acid derivatives, fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorinated alkylpolysiloxanes, organic fluorinated extreme pressure agents such as fluorinated graphite, higher alcohols, etc.
  • Alcohol-based extreme pressure agents naphthenates (lead naphthenate, etc.), fatty acid salts (lead fatty acid, etc.), Phosphates (zinc dialkyl dithiophosphate, etc.), thiocarbamic acid salts, organomolybdenum compounds, organotin compounds, organogermanium compounds, it is possible to use extreme pressure metal compound-based, such as boric acid ester.
  • a phenolic antioxidant or an amine antioxidant can be used as the antioxidant.
  • the phenolic antioxidants include 2,6-di-tert-butyl-4-methylphenol (DBPC), 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylenebis (4 -Methyl-6-tert-butylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol and the like.
  • Amine-based antioxidants include N, N′-diisopropyl-p-phenylenediamine, N, N′-di-sec-butyl-p-phenylenediamine, N-phenyl-1-naphthylamine, N, N '-Di-phenyl-p-phenylenediamine and the like.
  • An oxygen scavenger that traps oxygen can also be used as the antioxidant.
  • epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil can be used.
  • preferred acid scavengers from the viewpoint of compatibility are phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, and ⁇ -olefin oxide.
  • the alkyl group of the alkyl glycidyl ether and the alkylene group of the alkylene glycol glycidyl ether may have a branch. These carbon numbers should just be 3 or more and 30 or less, more preferably 4 or more and 24 or less, and still more preferably 6 or more and 16 or less.
  • the ⁇ -olefin oxide may have a total carbon number of 4 to 50, more preferably 4 to 24, and even more preferably 6 to 16. Only one type of acid scavenger may be used, or a plurality of types may be used in combination.
  • Polymerization inhibitors include polymerization inhibitors such as 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole. Can be used.
  • the composition for the heat cycle system of the present embodiment includes, as necessary, a load-bearing additive, an oxygen scavenger, a chlorine scavenger, a cleaning dispersant, a viscosity index improver, a rust inhibitor, a stabilizer, and corrosion. It is also possible to add an inhibitor, a pour point depressant and the like.
  • An oxygen scavenger is an additive that scavenges oxygen.
  • the compounding amount of each additive may be 0.01% by mass or more and 5% by mass or less, and preferably 0.05% by mass or more and 2% by mass or less in 100% by mass of the composition for a heat cycle system. .
  • a leak detection substance can be mentioned, and as this optional leak detection substance, an ultraviolet fluorescent dye, an odor gas, an odor masking agent, etc. can be mentioned. .
  • the ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-T-10-502737, JP-T 2007-511645, JP-T 2008-500437, JP-T 2008-531836.
  • odor masking agent examples include known fragrances used in heat cycle systems, together with working media composed of halogenated hydrocarbons, such as those described in JP-T-2008-500337 and JP-A-2008-531836. Can be mentioned.
  • a solubilizing agent that improves the solubility of the leak detection substance in the working medium may be used.
  • solubilizer examples include those described in JP-T 2007-511645, JP-T 2008-500337, JP-T 2008-531836.
  • the content of the leak detection substance in the composition for a heat cycle system may be in a range that does not significantly reduce the effect of the present invention, and is preferably 2 parts by mass or less, based on 100 parts by mass of the working medium, and 0.5 mass. Part or less is more preferable.
  • the thermal cycle system of the present invention is a system using the composition for a thermal cycle system of the present invention.
  • the heat cycle system of the present invention may be a heat pump system that uses warm heat obtained by a condenser, or may be a refrigeration cycle system that uses cold heat obtained by an evaporator.
  • thermal cycle system of the present invention examples include refrigeration / refrigeration equipment, air conditioning equipment, power generation systems, heat transport devices, and secondary coolers.
  • the thermal cycle system of the present invention can exhibit thermal cycle performance efficiently even in a higher temperature operating environment, it is preferably used as an air conditioner that is often installed outdoors.
  • the thermal cycle system of the present invention is also preferably used as a refrigeration / refrigeration apparatus.
  • air conditioners include room air conditioners, packaged air conditioners (store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, etc.), gas engine heat pumps, train air conditioners, automobile air conditioners, and the like.
  • refrigeration / refrigeration equipment include showcases (built-in showcases, separate showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
  • a power generation system using a Rankine cycle system is preferable.
  • the working medium is heated by geothermal energy, solar heat, waste heat in the middle to high temperature range of about 50 to 200 ° C in the evaporator, and the working medium turned into high-temperature and high-pressure steam is expanded.
  • An example is a system in which power is generated by adiabatic expansion by a machine, and a generator is driven by work generated by the adiabatic expansion.
  • the heat cycle system of the present invention may be a heat transport device.
  • a latent heat transport device is preferable.
  • the latent heat transport device include a heat pipe and a two-phase sealed thermosyphon device that transport latent heat using phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device.
  • the heat pipe is applied to a relatively small cooling device such as a cooling device for a heat generating part of a semiconductor element or an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for a gas-gas heat exchanger, for promoting snow melting on roads, and for preventing freezing.
  • the refrigeration cycle system is a system that uses cold heat obtained by an evaporator.
  • a refrigeration cycle system 10 shown in FIG. 1 cools and liquefies a compressor 11 that compresses the working medium vapor A into a high-temperature and high-pressure working medium vapor B and the working medium vapor B discharged from the compressor 11.
  • the condenser 12 as a low-temperature and high-pressure working medium C
  • the expansion valve 13 that expands the working medium C discharged from the condenser 12 to form a low-temperature and low-pressure working medium D
  • the working medium D discharged from the expansion valve 13 Is composed of an evaporator 14 that heats the working medium vapor A to a high-temperature and low-pressure working medium vapor A, a pump 15 that supplies a load fluid E to the evaporator 14, and a pump 16 that supplies a fluid F to the condenser 12.
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to obtain a low-temperature and low-pressure working medium D (hereinafter referred to as “CD process”).
  • the working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to obtain high-temperature and low-pressure working medium vapor A. At this time, the load fluid E is cooled to become the load fluid E ′ and discharged from the evaporator 14 (hereinafter referred to as “DA process”).
  • the refrigeration cycle system 10 is a cycle system including adiabatic / isoentropic change, isoenthalpy change, and isopressure change.
  • the state change of the working medium is described on the pressure-enthalpy line (curve) diagram shown in FIG. 2, it can be expressed as a trapezoid having A, B, C, and D as apexes.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 to convert the high-temperature and low-pressure working medium vapor A into a high-temperature and high-pressure working medium vapor B, which is indicated by an AB line in FIG.
  • the BC process is a process in which the condenser 12 performs isobaric cooling to convert the high-temperature and high-pressure working medium vapor B into a low-temperature and high-pressure working medium C, and is indicated by a BC line in FIG.
  • the pressure at this time is the condensation pressure.
  • Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature.
  • T 1 and T 2 are equal.
  • a difference occurs between T 1 and T 2 .
  • a higher temperature of T 1 and T 2 is defined as a “condensation temperature”.
  • the temperature gradient in the case of a non-azeotropic mixed medium is shown as the difference between T 1 and T 2.
  • the CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 and the low-temperature and high-pressure working medium C is used as the low-temperature and low-pressure working medium D, and is indicated by a CD line in FIG.
  • T 2 -T 3 is (i) ⁇ supercooling degree of the working medium in the cycle of (iv) (hereinafter, optionally in the "SC" It is shown.)
  • the DA process is a process of performing isobaric heating in the evaporator 14 to return the low-temperature and low-pressure working medium D to the high-temperature and low-pressure working medium vapor A, and is indicated by a DA line in FIG.
  • the pressure at this time is the evaporation pressure.
  • Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA lines are "evaporation temperature". If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ⁇ superheat of the working medium in the cycle of (iv) (hereinafter, referred to as. "SH" where appropriate) a.
  • T 4 indicates the temperature of the working medium D.
  • T 4 and T 6 are equal.
  • evaporation temperature the lower temperature of T 4 and T 6 is referred to as “evaporation temperature”.
  • the cycle performance of the working medium is evaluated by, for example, the refrigerating capacity of the working medium (hereinafter, indicated as “Q” as necessary) and the coefficient of performance (hereinafter, indicated as “COP” as necessary).
  • Q and COP of the working medium in each state of A after evaporation, high temperature and low pressure
  • B after compression, high temperature and high pressure
  • C after condensation, low temperature and high pressure
  • D after expansion, low temperature and low pressure.
  • COP means efficiency in the refrigeration cycle system. The higher the COP value, the smaller the input, for example, the amount of power required to operate the compressor, and the larger the output, for example, Q can be obtained. It represents what you can do.
  • Q means the ability to freeze the load fluid, and the higher Q means that more work can be done in the same system.
  • a large Q indicates that the target performance can be obtained with a small amount of working medium, and the system can be miniaturized.
  • both the Q and COP are high, that is, equivalent to R410A, while keeping the global warming coefficient much lower. It is possible to set a level higher than that.
  • the composition that keeps the temperature gradient of the working medium contained in the composition for the heat cycle system to be a certain value or less, in which case, the composition change when filling from the pressure vessel to the refrigeration air conditioner, A change in the refrigerant composition in the refrigeration air conditioner when the refrigerant leaks from the refrigeration air conditioner can be suppressed to a low level.
  • the lubrication characteristics of the fluorinated hydrocarbon compound contained as the working medium can be improved. Therefore, the heat cycle system using the composition is more efficient than the conventional working medium. The system can be maintained in a stable state and the system can be operated stably.
  • the working medium used in the present invention since the working medium used in the present invention has a carbon-carbon double bond, there is a possibility that the working medium is decomposed and acid is generated during system operation. is there.
  • the refrigerating machine oil used in combination with this working medium is configured to suppress acid generation. However, even when acid is generated for some reason, the heat cycle system can be stably operated. It is preferable that
  • the contact portion that comes into contact with the composition for a heat cycle system is composed of at least one selected from engineering plastics, organic films, and inorganic films.
  • this contact portion in particular, a sliding portion in the case of having a compression mechanism, a seal portion inside the thermal cycle system, and the like should be protected. More specifically, a sliding member (bearing, etc.) provided in the sliding portion of the compressor, a seal member for preventing leakage of the working medium in the gap of the compressor, an insulating material provided in the electric motor, etc. Is mentioned.
  • the engineering plastic used here is preferably at least one material selected from polyamide resin, polyphenylene sulfide resin, polyacetal resin, and fluororesin.
  • the organic film used here is formed by using a polytetrafluoroethylene coating film, a polyimide coating film, a polyamideimide coating film, or a resin paint containing a resin composed of a polyhydroxy ether resin and a polysulfone resin and a crosslinking agent.
  • the material is at least one material selected from thermosetting insulating films.
  • the inorganic film used here is preferably at least one material selected from a graphite film, a diamond-like carbon film, a tin film, a chromium film, a nickel film, and a molybdenum film.
  • the contact portion is a sliding member, for example, it is preferable to use any of polytetrafluoroethylene, polyphenylene sulfide, and polyamide.
  • the contact portion is a seal portion, for example, polytetrafluoroethylene, polyphenylene sulfide Chloroprene rubber, silicon rubber, hydrogenated nitrile rubber, fluorine rubber, and hydrin rubber are preferred.
  • an insulating material for an electric motor there are an insulating coating material for a stator winding, an insulating film, and the like.
  • These insulation coating materials and insulation films are resins that are not physically or chemically modified by the working medium even when they come into contact with a high-temperature / high-pressure working medium, especially solvent resistance, extraction resistance, thermal / chemical Resins having stability and resistance to foaming are used.
  • any of polyvinyl formal, polyester, THEIC-modified polyester, polyamide, polyamideimide, polyesterimide, and polyesteramideimide is used as an insulating coating material for the stator winding. It is preferable to use a double coated wire in which the upper layer is polyamideimide and the lower layer is polyesterimide. In addition to the above substances, an enamel coating having a glass transition temperature of 120 ° C. or higher may be used.
  • polyethylene terephthalate PET
  • polyethylene naphthalate PEN
  • polyphenylene sulfide PPS
  • polybutylene terephthalate PBT
  • PEEK polyether ether ketone
  • LCP liquid crystal polymer
  • the aniline point of the refrigerating machine oil contained in the composition for the heat cycle system is -100 ° C. or higher and 0 ° C. or lower, swelling / shrinkage deformation of the resin material can be prevented.
  • the sliding member, the insulating material of the electric motor, the sealing member inside the thermal cycle system, etc. in the compression mechanism as described above are prevented from deteriorating or damaged, and the thermal cycle system will not function or stop. be able to.
  • a method for controlling the moisture concentration in the thermal cycle system a method using a moisture removing means such as a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned.
  • the desiccant is preferably brought into contact with the liquid thermal cycle system composition in terms of dehydration efficiency. For example, it is preferable to place a desiccant at the outlet of the condenser 12 or the inlet of the evaporator 14 to contact the composition for the thermal cycle system.
  • a zeolitic desiccant is preferable from the viewpoint of chemical reactivity between the desiccant and the composition for the heat cycle system and the moisture absorption capacity of the desiccant.
  • the main component is a compound represented by the following formula (C) because it has a high hygroscopic capacity.
  • Zeolite desiccants are preferred.
  • M is a Group 1 element such as Na or K, or a Group 2 element such as Ca
  • n is the valence of M
  • x and y are values determined by the crystal structure.
  • pore diameter and breaking strength are important.
  • the working medium or the desiccant having a pore size larger than the molecular diameter of the refrigerating machine oil contained in the composition for the heat cycle system is used, the working medium or the refrigerating machine oil is adsorbed in the desiccant, and as a result, the working medium or A chemical reaction occurs between the refrigerating machine oil and the desiccant, and undesired phenomena such as generation of non-condensable gas, a decrease in the strength of the desiccant, and a decrease in adsorption capacity occur.
  • a zeolitic desiccant having a small pore size as the desiccant.
  • a sodium / potassium A type synthetic zeolite having a pore diameter of 3.5 angstroms or less is preferable.
  • sodium / potassium type A synthetic zeolite having a pore size smaller than the molecular diameter of the working medium or refrigerating machine oil only the water in the heat cycle system is selectively absorbed without adsorbing the working medium or refrigerating machine oil. Can be removed by adsorption. In other words, the adsorption of the working medium and the refrigerating machine oil to the desiccant is unlikely to occur, so that thermal decomposition is difficult to occur.
  • the size of the zeolitic desiccant is preferably about 0.5 to 5 mm because if it is too small, it will cause clogging of valves and piping details of the heat cycle system, and if it is too large, the drying ability will be reduced.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be formed into an arbitrary shape by solidifying powdery zeolite with a binder (such as bentonite).
  • a binder such as bentonite
  • Other desiccants silicon gel, activated alumina, etc.
  • the use ratio of the zeolitic desiccant with respect to the composition for a heat cycle system is not particularly limited.
  • non-condensable gas when non-condensable gas is mixed in the heat cycle system, it adversely affects heat transfer in the condenser and the evaporator and increases in operating pressure. Therefore, it is necessary to suppress mixing as much as possible.
  • oxygen which is one of non-condensable gases, reacts with the working medium and refrigerating machine oil to promote decomposition.
  • the non-condensable gas concentration is preferably 1.5% by volume or less, particularly preferably 0.5% by volume or less in terms of volume ratio to the working medium in the gas phase part of the working medium.
  • the composition for the thermal cycle system of the present invention described above, by using the composition for the thermal cycle system of the present invention, the lubrication characteristics are good, and the practically sufficient cycle performance is suppressed while suppressing the influence on global warming. Is obtained, and there is almost no problem with the temperature gradient.
  • the present invention will be described in more detail with reference to examples, conventional examples, and comparative examples.
  • one of each of the following working media 1 to 64 and refrigerating machine oils A to I is selected and combined, and 50 g of the refrigerating machine oil is mixed and dissolved in 50 g of the working medium, and the composition for the heat cycle system. 576 types were manufactured. Therefore, the composition for a heat cycle system in this example is composed of 50% by mass of a working medium and 50% by mass of refrigerating machine oil.
  • an antioxidant is added to constitute a composition for a heat cycle system.
  • Refrigerating machine oil A Polyol ester type refrigerating machine oil (trade name: Unistar RH-208BRS, product of NOF Corporation)
  • Refrigerating machine oil B Polyol ester type refrigerating machine oil (trade name: Unistar RH-481R, product of NOF Corporation)
  • Refrigerating machine oil C Polyol ester type refrigerating machine oil (trade name: Unistar RHR-32, product of NOF Corporation)
  • Refrigerating machine oil D: Polyol ester type refrigerating machine oil (trade name: Unistar RHR-64, product of NOF Corporation)
  • Refrigerating machine oil E Polyol ester type refrigerating machine oil (trade name: Unistar RHR-200, product of NOF Corporation)
  • Refrigerating machine oil F Polyol ester type refrigerating machine oil (trade name: Unistar RHR-609BR, product of NOF Corporation)
  • Refrigerator oil G Refrigerator oil mainly composed of polyol ester (trade name: Ze-GLES RB-68, product of JX
  • Refrigerating machine oils A to F contain, as additives, an antioxidant (2,6-di-tert-butyl-4-methylphenol) when the total amount of refrigerating machine oil and antioxidant is 100% by mass. It added so that it might become 0.5 mass%, it was set as the refrigerator oil composition, and it manufactured and evaluated using this.
  • an antioxidant (2,6-di-tert-butyl-4-methylphenol) when the total amount of refrigerating machine oil and antioxidant is 100% by mass. It added so that it might become 0.5 mass%, it was set as the refrigerator oil composition, and it manufactured and evaluated using this.
  • refrigerating machine oil composition when used, it is also expressed as “refrigerating machine oil”.
  • ⁇ Test items (Aniline point of refrigerating machine oil) Using the refrigerating machine oil described above, the aniline point of each sample oil was evaluated in accordance with JIS K 2256 “Petroleum products” “How to determine aniline points and mixed aniline points”. The aniline and the refrigerating machine oil were blended so as to be 50% by mass, respectively, and the obtained mixed liquid was cooled from 0 ° C. to ⁇ 100 ° C., and the phase separation state was visually confirmed and evaluated according to the following criteria. ⁇ : There is an aniline point in the range of ⁇ 100 to 0 ° C. ⁇ : No aniline point in the range of ⁇ 100 to 0 ° C.
  • the test was carried out in accordance with “Plastics—Test method for determining the effect of immersion in liquid chemicals” described in JIS K 7114.
  • the composition for a heat cycle system was put into a 200 ml stainless steel pressure vessel containing a 150 ml glass tube inside, and about 10 g of a nylon-11 test piece was placed and sealed.
  • the sealed pressure vessel was stored in a thermostatic chamber (Perfect Oven PHH-202, manufactured by ESPEC Corporation) at 175 ° C. for 14 days, and the weight change of the test piece was confirmed and evaluated according to the following criteria.
  • No mass change of 1% or more
  • x Mass change of 1% or more When there is a mass change, it indicates that the resin swelled by the immersion test.
  • the test was carried out in accordance with “Testing method for chemical stability of refrigerant and refrigerating machine oil (autoclave)” described in JIS K2211.
  • the composition for the heat cycle system was put into a 200 ml stainless steel pressure vessel containing a 150 ml glass tube inside, and further, as a catalyst, iron, copper and aluminum test pieces were put into one pressure vessel and sealed. .
  • the sealed pressure vessel was then stored in a thermostatic chamber (Perfect Oven PHH-202, manufactured by ESPEC Corporation) at 175 ° C. for 14 days.
  • the acid content of the working medium was measured, the hue of the refrigerating machine oil was observed, and the catalyst The appearance change was observed.
  • the following metal pieces were used as the catalyst.
  • Test piece of cold-rolled steel sheet for general steel (as defined in JIS G3141, symbol type SPCC-SB), 30 mm ⁇ 25 mm ⁇ thickness 3.2 mm
  • Copper Tough pitch copper (as defined in JIS H3100, alloy number C1100, symbol C1100P) test piece, 30 mm ⁇ 25 mm ⁇ thickness 2 mm
  • Aluminum Test piece of pure aluminum (as defined in JIS H4000, alloy number 1050, symbol A1050P), 30 mm ⁇ 25 mm ⁇ thickness 2 mm
  • the working fluid 11 containing a working medium 11 From the observation result of the circulating state, the working fluid 11 containing a working medium 11 ( It was confirmed that a sufficient amount of circulation similar to R-410A) can be secured. However, from the results of the stability test, the combination of the working medium containing the unsaturated fluorinated hydrocarbon compound and the refrigerating machine oils B and F having a high hydroxyl value resulted in specific coloring of the refrigerating machine oil, discoloration of the catalyst and generation of sludge. confirmed. This is presumed that the double bond contained in the working medium other than the working medium 11 caused some decomposition and polymerization reaction starting from the hydroxyl group.
  • a composition for a heat cycle system having good characteristics can be obtained by having a low hydroxyl value.
  • composition for heat cycle using a refrigerating machine oil having a kinematic viscosity at 40 ° C. of 200 mm 2 / s or less ensures a sufficient circulation amount similar to the working medium 11 (R-410A) which is a commercially available composition. It was confirmed from the observation result of the circulation state that it was possible.
  • the thermal cycle composition containing a polyol ester type refrigerating machine oil having an aniline point at ⁇ 100 to 0 ° C. or a polyvinyl ether type refrigerating machine oil has a small resin swelling amount, taking nylon-11 as an example. Further, from the observation result of the circulation state, it was confirmed that a sufficient circulation amount similar to that of the working medium 11 (R-410A) having a commercially available composition can be secured.
  • composition for the heat cycle system in which the working media 1 to 10 and 12 to 64 as examples of the present invention and the refrigeration oils A, C to D, and GH are combined, all the heat cycles It was revealed that the composition for a system has good circulation conditions and excellent stability, and is suitable as a composition for a heat cycle system.
  • the composition for a heat cycle system of the present invention and the heat cycle system using the composition are refrigeration / refrigeration equipment (built-in showcase, separate-type showcase, commercial refrigeration / refrigerator, vending machine, ice maker, etc.) , Air conditioners (room air conditioners, store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, gas engine heat pumps, train air conditioners, automotive air conditioners, etc.), power generation systems (waste heat recovery power generation, etc.), heat transport It can be used for equipment (heat pipe, etc.).
  • refrigeration / refrigeration equipment built-in showcase, separate-type showcase, commercial refrigeration / refrigerator, vending machine, ice maker, etc.
  • Air conditioners room air conditioners, store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, gas engine heat pumps, train air conditioners, automotive air conditioners, etc.
  • power generation systems waste heat recovery power generation, etc.
  • heat transport It can be used for equipment (heat pipe, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Lubricants (AREA)

Abstract

 R410Aを代替可能で、地球温暖化係数が小さい熱サイクル用の作動媒体を含む潤滑特性の良好な熱サイクルシステム用組成物、および該組成物を用いた熱サイクルシステムの提供。 特定の構造を有する不飽和フッ化炭化水素化合物を含む熱サイクル用作動媒体と、絶縁破壊電圧が25kV以上で、水酸基価が0.1mgKOH/g以下であり、かつアニリン点が-100℃以上0℃以下である冷凍機油と、を含む熱サイクルシステム用組成物、およびこの熱サイクルシステム用組成物を用いた熱サイクルシステム。

Description

熱サイクルシステム用組成物および熱サイクルシステム
 本発明は熱サイクルシステム用組成物および該組成物を用いた熱サイクルシステムに関する。
 本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。
 従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクルシステム用の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(CFC)、クロロジフルオロメタン等のヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCおよびHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。
 このような経緯から、熱サイクルシステム用作動媒体としては、CFCやHCFCに代えて、オゾン層への影響が少ない、ジフルオロメタン(HFC-32)、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)等のヒドロフルオロカーボン(HFC)が用いられるようになった。例えば、R410A(HFC-32とHFC-125の質量比1:1の擬似共沸混合物)等は従来から広く使用されてきた冷媒である。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。
 R410Aは、冷凍能力の高さからいわゆるパッケージエアコンやルームエアコンと言われる通常の空調機器等に広く用いられてきた。しかし、地球温暖化係数(GWP)が2088と高く、そのため低GWP作動媒体の開発が求められている。この際、R410Aを単に置き換えて、これまで用いられてきた機器をそのまま使用し続けることを前提にした作動媒体の開発が求められている。
 最近、炭素-炭素二重結合を有しその結合が大気中のOHラジカルによって分解されやすいことから、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない作動媒体である、ヒドロフルオロオレフィン(HFO)、すなわち炭素-炭素二重結合を有するHFCに期待が集まっている。本明細書においては、特に断りのない限り飽和のHFCをHFCといい、HFOとは区別して用いる。また、HFCを飽和のヒドロフルオロカーボンのように明記する場合もある。
 HFOを用いた作動媒体として、例えば、特許文献1には上記特性を有するとともに、優れたサイクル性能が得られるトリフルオロエチレン(HFO-1123)を用いた作動媒体に係る技術が開示されている。また、特許文献2には上記特性を有するとともに、優れたサイクル性能が得られる1,2-ジフルオロエチレン(HFO-1132)を用いた作動媒体に係る技術が開示されている。これらの特許文献1および2においては、さらに、該作動媒体の不燃性、サイクル性能等を高める目的で、HFO-1123またはHFO-1132に、各種HFCやHFOを組み合わせて作動媒体とする試みもされている。
 しかしながら、これらのようなHFOは、分子中に不飽和結合を含む化合物であり、大気中での寿命が非常に小さい化合物であることから、熱サイクルにおける圧縮、加熱が繰り返される条件では、従来のHFCやHCFCといった飽和のヒドロフルオロカーボン、ヒドロクロロフルオロカーボンよりも安定性に劣り、熱サイクルシステム内において潤滑性が低下する場合があった。
 そこで、HFOを作動媒体として使用する熱サイクルシステムにおいて、HFOが有する優れたサイクル性能を充分に活かしながら、潤滑性を維持し、熱サイクルシステムを効率的に稼働できる方法が求められていた。
国際公開第2012/157764号 国際公開第2012/157765号
 本発明は、上記観点からなされたものであって、HFOを含む熱サイクルシステム用組成物において、HFOの有する低い地球温暖化係数および優れたサイクル性能を充分に活かしながら、HFOをより安定的に潤滑可能とした熱サイクルシステム用組成物、および該組成物を用いた、地球温暖化への影響が少なく、かつ高いサイクル性能を兼ね備え、さらに熱サイクル用作動媒体の潤滑性を改善した熱サイクルシステムの提供を目的とする。
 本発明は、以下の[1]~[15]に記載の構成を有する熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステムを提供する。
[1]下記一般式(I)で表され、分子中に炭素-炭素不飽和結合を1個以上有する化合物から選ばれる少なくとも一種の不飽和フッ化炭化水素化合物、を含む熱サイクル用作動媒体と、絶縁破壊電圧が25kV以上で、水酸基価が0.1mgKOH/g以下であり、かつアニリン点が-100℃以上0℃以下である冷凍機油と、を含むことを特徴とする熱サイクルシステム用組成物。
   C     …………(I)
(式中、RはHまたはClであり、xは2~6の整数、yは1~12の整数、zは0~11の整数であり、2x≧y+z≧2である。)
[2]前記一般式(I)におけるxが2または3である化合物を含む、[1]に記載の熱サイクルシステム用組成物。
[3]前記不飽和フッ化炭化水素化合物が、トリフルオロエチレン(HFO-1123)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))および3,3,3-トリフルオロプロペン(HFO-1243zf)からなる群から選ばれる少なくとも一種を含む、[2]に記載の熱サイクルシステム用組成物。
[4]熱サイクル用作動媒体が飽和フッ化炭化水素化合物をさらに含む、[1]~[3]のいずれかに記載の熱サイクルシステム用組成物。
[5]前記飽和フッ化炭化水素化合物が、トリフルオロメタン、ジフルオロメタン(HFC-32)、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン、トリフルオロヨードメタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、およびヘプタフルオロシクロペンタンからなる群から選ばれる少なくとも一種を含む、[4]に記載の熱サイクルシステム用組成物。
[6]前記不飽和フッ化炭化水素化合物がHFO-1123を含み、前記熱サイクル用作動媒体の100質量%に対するHFO-1123の含有量が、20~80質量%である[1]~[5]のいずれかに記載の熱サイクルシステム用組成物。
[7]前記飽和フッ化炭化水素化合物がHFC-32を含み、前記熱サイクル用作動媒体の100質量%に対するHFC-32の含有量が、20~80質量%である[4]~[6]のいずれかに記載の熱サイクルシステム用組成物。
[8]前記不飽和フッ化炭化水素化合物が、HFO-1123およびHFO-1234yfを含み、前記飽和フッ化炭化水素化合物がHFC-32を含み、
 前記熱サイクル用作動媒体全量に対するHFO-1123とHFO-1234yfとHFC-32の合計量の割合が90質量%を超え100質量%以下であり、
 HFO-1123とHFO-1234yfとHFC-32の合計量に対する割合で、
 HFO-1123が10質量%以上70質量%未満、
 HFO-1234yfが0質量%を超え50質量%以下、
 かつHFC-32が30質量%を超え75質量%以下
 である[4]または[5]に記載の熱サイクルシステム用組成物。
[9]前記不飽和フッ化炭化水素化合物が、HFO-1123およびHFO-1234yfを含み、前記飽和フッ化炭化水素化合物がHFC-32を含み、
 前記熱サイクル用作動媒体全量に対するHFO-1123とHFO-1234yfとHFC-32の合計量の割合が90質量%を超え100質量%以下であり、
 HFO-1123とHFO-1234yfとHFC-32の合計量に対する質量の割合で、
 HFO-1123とHFO-1234yfの合計量が70質量%以上、
 HFO-1123が30質量%以上80質量%以下、
 HFO-1234yfが0質量%を超え40質量%以下、
 HFC-32が0質量%を超え30質量%以下、
 かつHFO-1234yfに対するHFO-1123の比が95/5以下、
 である[4]または[5]に記載の熱サイクルシステム用組成物。
[10]前記冷凍機油が、ポリオールエステル系冷凍機油、およびポリビニルエーテル系冷凍機油から選ばれる少なくとも一種である、[1]~[9]のいずれかに記載の熱サイクルシステム用組成物。
[11]前記冷凍機油は、40℃における動粘度が5~200mm/sであり、100℃における動粘度が1~100mm/sである、[1]~[10]のいずれかに記載の熱サイクルシステム用組成物。
[12][1]~[11]のいずれかに記載の熱サイクルシステム用組成物を用いた熱サイクルシステム。
[13]熱サイクルシステムが、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置および二次冷却機から選ばれる少なくとも一種である[12]に記載の熱サイクルシステム。
[14]前記熱サイクルシステムが圧縮機構を有し、該圧縮機構の前記熱サイクルシステム用組成物と接触する接触部が、エンジニアリングプラスチック、有機膜、および無機膜から選ばれる少なくとも一種から構成される、[12]または[13]に記載の熱サイクルシステム。
[15]前記エンジニアリングプラスチックが、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、およびフッ素樹脂から選ばれる少なくとも一種である、[14]に記載の熱サイクルシステム。
 本発明によれば、不飽和フッ化炭化水素化合物を含む熱サイクルシステム用組成物において、不飽和フッ化炭化水素化合物の有する低い地球温暖化係数および優れたサイクル性能を充分に活かしながら、不飽和フッ化炭化水素化合物を含む熱サイクル用作動媒体をより安定的に潤滑可能とした熱サイクルシステム用組成物が提供できる。
 本発明の熱サイクルシステムは、地球温暖化への影響が少なく、かつ高いサイクル性能を兼ね備え、さらに熱サイクル用作動媒体の潤滑特性を改善した熱サイクルシステムである。
本発明の熱サイクルシステムの一例である冷凍サイクルシステムを示した概略構成図である。 図1の冷凍サイクルシステムにおける作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。
 以下、本発明の実施の形態について説明する。
[熱サイクルシステム用組成物]
 熱サイクルシステム用組成物は、不飽和フッ化炭化水素化合物を含む熱サイクル用作動媒体と、冷凍機油とを含む。
 本発明の熱サイクルシステム用組成物が適用される熱サイクルシステムとしては、凝縮器や蒸発器等の熱交換器による熱サイクルシステムが特に制限なく用いられる。熱サイクルシステム、例えば、冷凍サイクルにおいては、気体の作動媒体を圧縮機で圧縮し、凝縮器で冷却して圧力が高い液体をつくり、膨張弁で圧力を下げ、蒸発器で低温気化させて気化熱で熱を奪う機構を有する。
 このような熱サイクルシステムに不飽和フッ化炭化水素化合物を作動媒体として用いると、温度条件、圧力条件によって、不飽和フッ化炭化水素化合物が不安定化し、自己分解が生じて熱サイクル用作動媒体の機能が低下する場合がある。本発明の熱サイクルシステム用組成物においては、冷凍機油を共存させることで、不飽和フッ化炭化水素化合物の熱サイクル作動媒体としての潤滑性を高め、効率的なサイクル性能を発揮することが可能となる。
 以下、本発明の熱サイクルシステム用組成物が含有する各成分を説明する。
<作動媒体>
 本発明の熱サイクルシステム用組成物は作動媒体として、下記一般式(I)で表され、分子中に炭素-炭素不飽和結合を1個以上有する化合物から選ばれる少なくとも1種の不飽和フッ化炭化水素化合物を含有する。
   C     …………(I)
(式中、RはHまたはClであり、xは2~6の整数、yは1~12の整数、zは0~11の整数であり、2x≧y+z≧2である。)
 上記一般式(I)は、分子中の元素の種類と数を表すものであり、式(I)は、炭素原子Cの数xが2~6の含フッ素有機化合物を表している。炭素数が2~6の含フッ素有機化合物であれば、作動媒体として要求される沸点、凝固点、蒸発潜熱などの物理的、化学的性質を有することができる。
 該一般式(I)において、Cで表されるx個の炭素原子の結合形態は、炭素-炭素単結合、炭素-炭素二重結合等の不飽和結合などが含まれ、炭素-炭素の不飽和結合を1以上有する。炭素-炭素二重結合等の不飽和結合は、安定性の点から、炭素-炭素二重結合であることが好ましく、その数は1であるものが好ましい。
 また、一般式(I)において、Rは、HまたはClを表し、これらのいずれであってもよいが、オゾン層を破壊するおそれが小さいことから、Rは、Hであることが好ましい。 また、上記一般式(I)において、y+zの範囲は4以上であることが好ましい。
[不飽和フッ化炭化水素化合物]
 本発明において、熱サイクルシステム用作動媒体として用いられる不飽和フッ化炭化水素化合物としては、上記一般式(I)で表される化合物が挙げられ、例えば、炭素数2~6の直鎖状または分岐状の鎖状オレフィンや炭素数4~6の環状オレフィンのフッ素化物を好ましいものとして挙げることができる。
 具体的には、1~3個のフッ素原子が導入されたエチレン、1~5個のフッ素原子が導入されたプロペン、1~7個のフッ素原子が導入されたブテン類、1~9個のフッ素原子が導入されたペンテン類、1~11個のフッ素原子が導入されたヘキセン類、1~5個のフッ素原子が導入されたシクロブテン、1~7個のフッ素原子が導入されたシクロペンテン、1~9個のフッ素原子が導入されたシクロヘキセンなどが挙げられる。
 これらの不飽和フッ化炭化水素化合物の中では、炭素数2~3の不飽和フッ化炭化水素化合物が好ましく、炭素数2のエチレンのフッ化物がより好ましい。この炭素数2~3の不飽和フッ化炭化水素化合物としては、例えば、トリフルオロエチレン(HFO-1123)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))および3,3,3-トリフルオロプロペン(HFO-1243zf)等が挙げられる。
 本発明においては、この不飽和フッ化炭化水素化合物は、1種を単独で用いてよく、2種以上組み合わせて用いてもよい。
 本発明に係る作動媒体は、上記一般式(I)の不飽和フッ化炭化水素化合物に加えて、必要に応じて、後述する任意成分を含んでいてもよい。作動媒体の100質量%に対する上記一般式(I)の不飽和フッ化炭化水素化合物の含有量は、10質量%以上が好ましく、20~80質量%がより好ましく、40~80質量%がより一層好ましく、40~60質量%がさらに好ましい。
(HFO-1123)
 以下、上記一般式(I)の不飽和フッ化炭化水素化合物としてHFO-1123を必須の成分として含有する作動媒体を例に説明するが、ここで、HFO-1123をHFO-1123以外の上記一般式(I)の不飽和フッ化炭化水素化合物に置き換えることもできる。
 まず、HFO-1123の作動媒体としての特性を、特に、R410A(HFC-32とHFC-125の質量比1:1の擬似共沸混合物)との相対比較において表1に示す。サイクル性能は、後述する方法で求められる成績係数と冷凍能力で示される。HFO-1123の成績係数と冷凍能力は、R410Aを基準(1.000)とした相対値(以下、相対成績係数および相対冷凍能力という)で示す。地球温暖化係数(GWP)は、気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)に示される、または該方法に準じて測定された100年の値である。本明細書において、GWPは特に断りのない限りこの値をいう。作動媒体が混合物からなる場合、後述するとおり温度勾配は、作動媒体を評価する上で重要なファクターとなり、値は小さい方が好ましい。
Figure JPOXMLDOC01-appb-T000001
[任意成分]
 本発明に用いる作動媒体は、本発明の効果を損なわない範囲でHFO-1123以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。このような任意の化合物(任意成分)としては、例えば、HFC、HFO-1123以外のHFO(炭素-炭素二重結合を有するHFC)、これら以外のHFO-1123とともに気化、液化する他の成分等が挙げられる。任意成分としては、HFC、HFO-1123以外のHFO(炭素-炭素二重結合を有するHFC)が好ましい。
 任意成分としては、HFO-1123と組み合わせて熱サイクルに用いた際に、上記相対成績係数、相対冷凍能力をより高める作用を有しながら、GWPや温度勾配を許容の範囲にとどめられる化合物が好ましい。作動媒体がHFO-1123との組合せにおいてこのような化合物を含むと、GWPを低く維持しながら、より良好なサイクル性能が得られるとともに、温度勾配による影響も少ない。
(温度勾配)
 作動媒体が任意成分を含有する場合、HFO-1123と任意成分が共沸組成である場合を除いて相当の温度勾配を有する。作動媒体の温度勾配は、任意成分の種類およびHFO-1123と任意成分との混合割合により異なる。
 作動媒体として混合物を用いる場合、通常、共沸またはR410Aのような擬似共沸の混合物が好ましく用いられる。非共沸組成物は、圧力容器から冷凍空調機器へ充てんされる際に組成変化を生じる問題点を有している。さらに、冷凍空調機器からの冷媒漏えいが生じた場合、冷凍空調機器内の冷媒組成が変化する可能性が極めて大きく、初期状態への冷媒組成の復元が困難である。一方、共沸または擬似共沸の混合物であれば上記問題が回避できる。
 混合物の作動媒体における使用可能性をはかる指標として、一般に「温度勾配」が用いられる。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、または凝縮器における凝縮の、開始温度と終了温度が異なる性質、と定義される。共沸混合物においては、温度勾配は0であり、擬似共沸混合物では、例えばR410Aの温度勾配が0.2であるように、温度勾配は極めて0に近い。
 温度勾配が大きいと、例えば、蒸発器における入口温度が低下することで着霜の可能性が大きくなり問題である。さらに、熱サイクルシステムにおいては、熱交換効率の向上をはかるために熱交換器を流れる作動媒体と水や空気等の熱源流体を対向流にすることが一般的であり、安定運転状態においては該熱源流体の温度差が小さいことから、温度勾配の大きい非共沸混合媒体の場合、エネルギー効率のよい熱サイクルシステムを得ることが困難である。このため、混合物を作動媒体として使用する場合は適切な温度勾配を有する作動媒体が望まれる。
(HFC)
 任意成分のHFCとしては、上記観点から選択されることが好ましい。ここで、HFCは、HFO-1123に比べてGWPが高いことが知られている。したがって、HFO-1123と組合せるHFCとしては、上記作動媒体としてのサイクル性能を向上させ、かつ温度勾配を適切な範囲にとどめることに加えて、特にGWPを許容の範囲にとどめる観点から、適宜選択されることが好ましい。
 オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCとして具体的には炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。
 HFCとしては、炭素数1~5のアルカンのフッ化物等が挙げられ、例えば、トリフルオロメタン、ジフルオロメタン(HFC-32)、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)、トリフルオロヨードメタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が好ましいものとして挙げられる。
 なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクル特性が優れる点から、HFC-32、1,1-ジフルオロエタン(HFC-152a)、1,1,1-トリフルオロエタン(HFC-143a)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、および1,1,1,2,2-ペンタフルオロエタン(HFC-125)が好ましく、HFC-32、HFC-152a、HFC-134a、およびHFC-125がより好ましい。
 HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体(100質量%)中のHFCの含有量は、作動媒体の要求特性に応じ任意に選択可能である。例えば、HFO-1123とHFC-32からなる作動媒体の場合、HFC-32の含有量が1~99質量%の範囲で成績係数および冷凍能力が向上する。HFO-1123とHFC-134aからなる作動媒体の場合、HFC-134aの含有量が1~99質量%の範囲で成績係数が向上する。
 また、上記好ましいHFCのGWPは、HFC-32については675であり、HFC-134aについては1430であり、HFC-125については3500である。得られる作動媒体のGWPを低く抑える観点から、任意成分のHFCとしては、HFC-32が最も好ましい。
 また、HFO-1123とHFC-32とは、質量比で99:1~1:99の組成範囲で共沸に近い擬似共沸混合物を形成可能であり、両者の混合物はほぼ組成範囲を選ばずに温度勾配が0に近い。この点においてもHFO-1123と組合せるHFCとしてはHFC-32が有利である。
 本発明に用いる作動媒体において、HFO-1123とともにHFC-32を用いる場合、作動媒体の100質量%に対するHFC-32の含有量は、具体的には、20質量%以上が好ましく、20~80質量%がより好ましく、40~60質量%がさらに好ましい。
(HFO-1123以外のHFO)
 HFO-1123以外のHFOについても、上記HFCと同様の観点から選択されることが好ましい。なお、HFO-1123以外であってもHFOであれば、GWPはHFCに比べて桁違いに低い。したがって、HFO-1123と組合せるHFO-1123以外のHFOとしては、GWPを考慮するよりも、上記作動媒体としてのサイクル性能を向上させ、かつ温度勾配を適切な範囲にとどめることに特に留意して、適宜選択されることが好ましい。
 HFO-1123以外のHFOとしては、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)等が挙げられる。
 なかでも、HFO-1123以外のHFOとしては、高い臨界温度を有し、耐久性、成績係数が優れる点から、HFO-1234yf(GWP=4)、HFO-1234ze(E)、HFO-1234ze(Z)((E)体、(Z)体共にGWP=6)が好ましく、HFO-1234yfがより好ましい。HFO-1123以外のHFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体(100質量%)中のHFO-1123以外のHFOの含有量は、作動媒体の要求特性に応じ任意に選択可能である。例えば、HFO-1123とHFO-1234yfまたはHFO-1234zeとからなる作動媒体の場合、HFO-1234yfまたはHFO-1234zeの含有量が1~99質量%の範囲で成績係数が向上する。
 本発明に用いる作動媒体が、HFO-1123およびHFO-1234yfを含む場合の、好ましい組成範囲を組成範囲(S)として以下に示す。
 なお、組成範囲(S)を示す各式において、各化合物の略称は、HFO-1123とHFO-1234yfと他の成分(HFC-32等)の合計量に対する当該化合物の割合(質量%)を示す。
<組成範囲(S)>
 HFO-1123+HFO-1234yf≧70質量%
 95質量%≧HFO-1123/(HFO-1123+HFO-1234yf)≧35質量%
 組成範囲(S)の作動媒体は、GWPが極めて低く、温度勾配が小さい。また、成績係数、冷凍能力および臨界温度の観点からも従来のR410Aに代替し得る冷凍サイクル性能を発現できる。
 組成範囲(S)の作動媒体において、HFO-1123とHFO-1234yfの合計量に対するHFO-1123の割合は、40~95質量%がより好ましく、50~90質量%がさらに好ましく、50~85質量%が特に好ましく、60~85質量%がもっとも好ましい。
 また、作動媒体100質量%中のHFO-1123とHFO-1234yfの合計の含有量は、80~100質量%がより好ましく、90~100質量%がさらに好ましく、95~100質量%が特に好ましい。
 また、本発明に用いる作動媒体は、HFO-1123とHFCとHFO-1123以外のHFOとの組合せであってもよい。この場合、作動媒体は、HFO-1123とHFC-32とHFO-1234yfからなることが好ましく、作動媒体全量における各化合物の割合は以下の範囲が好ましい。
 10質量%≦HFO-1123≦80質量%
 10質量%≦HFC-32≦75質量%
  5質量%≦HFO-1234yf≦60質量%
 さらに、本発明に用いる作動媒体が、HFO-1123、HFO-1234yfおよびHFC-32を含有する場合、好ましい組成範囲(P)を以下に示す。
 なお、組成範囲(P)を示す各式において、各化合物の略称は、HFO-1123とHFO-1234yfとHFC-32の合計量に対する当該化合物の割合(質量%)を示す。組成範囲(R)、組成範囲(L)、組成範囲(M)においても同様である。また、以下に記載の組成範囲では、具体的に記載したHFO-1123とHFO-1234yfとHFC-32の合計量が、熱サイクル用作動媒体全量に対して90質量%を超え100質量%以下であることが好ましい。
<組成範囲(P)>
 70質量%≦HFO-1123+HFO-1234yf
 30質量%≦HFO-1123≦80質量%
 0質量%<HFO-1234yf≦40質量%
 0質量%<HFC-32≦30質量%
 HFO-1123/HFO-1234yf≦95/5質量%
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性がバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、この作動媒体は、GWPが極めて低く抑えられ、熱サイクルに用いた際に、温度勾配が小さく、一定の能力と効率を有することで良好なサイクル性能が得られる作動媒体である。ここで、HFO-1123とHFO-1234yfとHFC-32の合計量に対する、HFO-1123とHFO-1234yfの合計量は70質量%以上であることが好ましい。
 また、本発明に用いる作動媒体のより好ましい組成としては、HFO-1123とHFO-1234yfとHFC-32の合計量に対して、HFO-1123を30~70質量%、HFO-1234yfを4~40質量%、およびHFC-32を0~30質量%の割合で含有し、かつ、作動媒体全量に対するHFO-1123の含有量が70モル%以下である組成が挙げられる。前記範囲の作動媒体は、上記の効果が高まるのに加え、HFO-1123の自己分解反応が抑制され、耐久性の高い作動媒体である。相対成績係数の観点からは、HFC-32の含有量は5質量%以上が好ましく、8質量%以上がより好ましい。
 また、本発明に用いる作動媒体がHFO-1123、HFO-1234yfおよびHFC-32を含む場合の、別の好ましい組成を示すが、作動媒体全量に対するHFO-1123の含有量が70モル%以下であれば、HFO-1123の自己分解反応が抑制され、耐久性の高い作動媒体が得られる。
 さらに好ましい組成範囲(R)を、以下に示す。
<組成範囲(R)>
 10質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦50質量%
 30質量%<HFC-32≦75質量%
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性がバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、GWPが低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配が小さく、高い能力と効率を有することで良好なサイクル性能が得られる作動媒体である。
 上記組成範囲(R)を有する本発明の作動媒体において、好ましい範囲を、以下に示す。
 20質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦40質量%
 30質量%<HFC-32≦75質量%
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性が特にバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、GWPが低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配がより小さく、より高い能力と効率を有することで良好なサイクル性能が得られる作動媒体である。
 上記組成範囲(R)を有する本発明の作動媒体において、より好ましい組成範囲(L)を、以下に示す。組成範囲(M)がさらに好ましい。
<組成範囲(L)>
 10質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦50質量%
 30質量%<HFC-32≦44質量%
<組成範囲(M)>
 20質量%≦HFO-1123<70質量%
 5質量%≦HFO-1234yf≦40質量%
 30質量%<HFC-32≦44質量%
 上記組成範囲(M)を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性が特にバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、この作動媒体は、GWPの上限が300以下に低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配が5.8未満と小さく、相対成績係数および相対冷凍能力が1に近く良好なサイクル性能が得られる作動媒体である。
 この範囲にあると温度勾配の上限が下がり、相対成績係数×相対冷凍能力の下限が上がる。相対成績係数が大きい点から8質量%≦HFO-1234yfがより好ましい。また、相対冷凍能力が大きい点からHFO-1234yf≦35質量%がより好ましい。
(他の任意成分)
 本発明の熱サイクルシステム用組成物に用いる作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)、ヒドロクロロフルオロオレフィン(HCFO)等を含有してもよい。他の任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。
 炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記作動媒体が炭化水素を含有する場合、その含有量は作動媒体の100質量%に対して10質量%未満であり、1~5質量%が好ましく、3~5質量%がさらに好ましい。炭化水素が下限値以上であれば、作動媒体への鉱物系冷凍機油の溶解性がより良好になる。
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。
 CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体がCFOを含有する場合、その含有量は作動媒体の100質量%に対して10質量%未満であり、1~8質量%が好ましく、2~5質量%がさらに好ましい。CFOの含有量が下限値以上であれば、作動媒体の燃焼性を抑制しやすい。CFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。
 HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、HCFOとしては、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)が好ましい。
 HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記作動媒体がHCFOを含む場合、作動媒体100質量%中のHCFOの含有量は、10質量%未満であり、1~8質量%が好ましく、2~5質量%がさらに好ましい。HCFOの含有量が下限値以上であれば、作動媒体の燃焼性を抑制しやすい。HCFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。
 本発明の熱サイクルシステム用組成物に用いる作動媒体が上記のような他の任意成分を含有する場合、作動媒体における他の任意成分の合計含有量は、作動媒体100質量%に対して10質量%未満であり、8質量%以下が好ましく、5質量%以下がさらに好ましい。
<冷凍機油>
 本発明の熱サイクルシステム用組成物には、上記作動媒体に加え、該作動媒体の潤滑特性を改善可能な冷凍機油を含んでなる。
 本発明における冷凍機油の絶縁破壊電圧は、25kV以上である。絶縁破壊電圧が25kV以上の冷凍機油を使用することで、駆動のための電磁石と冷凍機油が直接接する熱サイクルシステムにおいても絶縁を維持し、安定した運転ができる。絶縁破壊電圧は30kV以上がより好ましく、40kV以上がさらに好ましい。なお、本明細書における絶縁破壊電圧は、JIS C 2101に準拠して測定されたものである。なお、本明細書における絶縁破壊電圧は、冷凍機油の絶縁破壊電圧はカタログ値か、JIS C 2101に基づく簡易確認で25kVまたは50kV以上か以下かを判定した。
 さらに、この冷凍機油の水酸基価は、0.1mgKOH/g以下である。冷凍機油中の水酸基価が0.1mgKOH/g以下と十分に低いものとしておくことで、冷凍機油や熱サイクル用作動媒体の重合、分解反応による劣化を引き起こす原因となるヒドロキシラジカルの発生を抑制できる。ヒドロキシラジカルは、炭素-炭素二重結合を有する作動媒体を使用した系においては、該二重結合を攻撃して分解させ、その際に酸が発生すると推測される。酸が発生すると、熱サイクルシステム内において、システムを構成する部材等が腐食や劣化等が生じるおそれがある。そのため、上記のように水酸基価を低くした本発明においては、酸の発生を有意に抑制でき熱サイクルシステムの安定した運転ができる。この水酸基価は、0.05mgKOH/g以下がより好ましい。なお、本明細書における水酸基価は、JIS K 2501に準拠して測定されたものである。
 さらに、この冷凍機油のアニリン点は、-100℃以上0℃以下である。「アニリン点」は、例えば炭化水素系溶剤等の溶解性を示す数値であり、試料(ここでは冷凍機油)を等容積のアニリンと混合して冷やしたときに、互いに溶解し合えなくなって濁りがみえ始めたときの温度を表すものであり、JIS K 2256に準じて測定した値である。なお、これらの値は、熱サイクル用作動媒体が溶解していない状態の冷凍機油自体の値である。
 本発明の一般式(I)で表される熱サイクル用作動媒体を含む熱サイクルシステム用組成物を用いる熱サイクルシステムにおいては、該作動媒体が炭素-炭素二重結合を有するため、後述するように、通常、熱サイクルシステムを構成する部材として使用される銅等の金属製の部材の代わりに、熱サイクルシステムの説明中で記載しているような耐酸性の樹脂材料等を適用することがある。ところで、このような樹脂材料であっても、使用する冷凍機油の種類によっては、樹脂材料が冷凍機油に起因して収縮や膨潤等による不具合が生じる場合がある。そこで、冷凍機油のアニリン点を上述した所定の範囲(-100℃以上0℃以下)とすることで、樹脂材料の膨潤/収縮変形を防止することができ、特に、圧縮機の有する、圧縮機構における摺動部材、電動機の絶縁材料や、熱サイクルシステム内部のシール部材、等において劣化や損傷が生じて、システムが機能しなくなったり、停止したりすることを回避できる。
 具体的には、アニリン点が低すぎると、冷凍機油が摺動部材や絶縁材料を構成する樹脂材料に浸透し易くなり、摺動部材や絶縁材料が膨潤し易くなる。摺動部材が膨潤変形してしまうと、摺動部での隙間(ギャップ)を所望とする長さに維持することができない。その結果、摺動抵抗の増大を招くおそれがある。一方、アニリン点が高すぎると、冷凍機油が摺動部材や絶縁材料に浸透し難くなり、摺動部材や絶縁材料が収縮し易くなる。摺動部材が収縮変形してしまうと、摺動部材の硬度が高くなり、摺動部の剛性が低下する。その結果、圧縮機の振動によって摺動部材が破損するおそれがある。
 また、電動機の絶縁材料(絶縁被覆材料や絶縁フィルム等)が膨潤変形してしまうと、その絶縁材料の絶縁性が低下してしまう。絶縁材料が収縮変形してしまうと、上述した摺動部材の場合と同様に絶縁材料が破損するおそれがあり、この場合もまた絶縁性が低下してしまう。ところが、上記のように冷凍機油のアニリン点を所定の範囲とすることで、摺動部材や絶縁材料の膨潤/収縮変形を抑制できるため、このような不具合を回避することができる。
 冷凍機油の40℃における動粘度は、潤滑性や圧縮機の密閉性が低下せず、低温条件下で作動媒体に対して相溶性が満足にあり、冷凍機圧縮機の潤滑不良の抑制や蒸発器における熱交換を十分に行うという観点から、5~200mm/sが好ましく、5~100mm/sがより好ましい。また、100℃における動粘度は、消費電力および耐摩耗性を適正な範囲に維持できる観点から、1~100mm/sが好ましく、2~30mm/sであることがより好ましい。なお、本明細書における動粘度は、JIS K 2283に準拠して測定されたものである。
 本発明に使用する冷凍機油として具体的には、含酸素系合成油(エステル系冷凍機油、エーテル系冷凍機油、ポリグリコール系冷凍機油等)等が挙げられる。
 その中でも、本発明の必須の作動媒体成分であるフッ化炭化水素化合物との相溶性の観点からエステル系冷凍機油、エーテル系冷凍機油が適している。さらに、エステル系冷凍機油としてはポリオールエステル系冷凍機油が、エーテル系冷凍機油としてはポリビニルエーテル系冷凍機油が好ましいものとして挙げられる。
 なお、特に、エステル系冷凍機油、エーテル系冷凍機油の場合には、冷凍機油を構成する原子として炭素原子と酸素原子が代表的に挙げられる。この炭素原子と酸素原子の比率(炭素/酸素モル比)により、小さすぎると吸湿性が高くなり、大きすぎると作動媒体との相溶性が低下する問題がある。この観点より、冷凍機油の炭素原子と酸素原子の比率はモル比で2~7.5が適している。
〈エステル系冷凍機油〉
 エステル系冷凍機油としては、化学的な安定性の面で、二塩基酸と1価アルコールとの二塩基酸エステル系冷凍機油、ポリオールと脂肪酸とのポリオールエステル系冷凍機油、またはポリオールと多価塩基酸と1価アルコール(または脂肪酸)とのコンプレックスエステル冷凍機油、ポリオール炭酸エステル冷凍機油等が基油成分として挙げられる。
(二塩基酸エステル系冷凍機油)
 二塩基酸エステル系冷凍機油としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸等の二塩基酸、特に、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖または分岐アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール等)とのエステルが好ましい。この二塩基酸エステル系冷凍機油としては、具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3-エチルヘキシル)等が挙げられる。
(ポリオールエステル系冷凍機油)
 ポリオールエステル系冷凍機油とは、多価アルコールと脂肪酸(カルボン酸)とから合成されるエステルである。
 ポリオールエステル系冷凍機油を構成する多価アルコールとしては、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等)、水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)、グリセリン、ポリグリセリン(グリセリンの2~3量体)、1,3,5-ペンタントリオール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトールなどの多価アルコール、キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオース、マルトース、イソマルトース、トレハロース、シュクロース、ラフィノース、ゲンチアノース、メレンジトースなどの糖類、ならびにこれらの部分エーテル化物等)が挙げられ、エステルを構成する多価アルコールとしては、上記の1種でもよく、2種以上が含まれていてもよい。
 ポリオールエステル系冷凍機油を構成する脂肪酸としては、特に炭素数は制限されないが、通常炭素数1~24のものが用いられる。直鎖の脂肪酸、分岐を有する脂肪酸が好ましい。直鎖の脂肪酸としては、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、オレイン酸、リノール酸、リノレン酸等が挙げられ、カルボキシ基に結合する炭化水素基は、全て飽和炭化水素であってもよく、不飽和炭化水素を有していてもよい。さらに、分岐を有する脂肪酸としては、2-メチルプロパン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸、2,2,3-トリメチルブタン酸、2,3,3-トリメチルブタン酸、2-エチル-2-メチルブタン酸、2-エチル-3-メチルブタン酸、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、4-エチルヘキサン酸、2,2-ジメチルヘキサン酸、2,3-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、2,5-ジメチルヘキサン酸、3,3-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、3,5-ジメチルヘキサン酸、4,4-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、5,5-ジメチルヘキサン酸、2-プロピルペンタン酸、2-メチルオクタン酸、3-メチルオクタン酸、4-メチルオクタン酸、5-メチルオクタン酸、6-メチルオクタン酸、7-メチルオクタン酸、2,2-ジメチルヘプタン酸、2,3-ジメチルヘプタン酸、2,4-ジメチルヘプタン酸、2,5-ジメチルヘプタン酸、2,6-ジメチルヘプタン酸、3,3-ジメチルヘプタン酸、3,4-ジメチルヘプタン酸、3,5-ジメチルヘプタン酸、3,6-ジメチルヘプタン酸、4,4-ジメチルヘプタン酸、4,5-ジメチルヘプタン酸、4,6-ジメチルヘプタン酸、5,5-ジメチルヘプタン酸、5,6-ジメチルヘプタン酸、6,6-ジメチルヘプタン酸、2-メチル-2-エチルヘキサン酸、2-メチル-3-エチルヘキサン酸、2-メチル-4-エチルヘキサン酸、3-メチル-2-エチルヘキサン酸、3-メチル-3-エチルヘキサン酸、3-メチル-4-エチルヘキサン酸、4-メチル-2-エチルヘキサン酸、4-メチル-3-エチルヘキサン酸、4-メチル-4-エチルヘキサン酸、5-メチル-2-エチルヘキサン酸、5-メチル-3-エチルヘキサン酸、5-メチル-4-エチルヘキサン酸、2-エチルヘプタン酸、3-メチルオクタン酸、3,5,5-トリメチルヘキサン酸、2-エチル-2,3,3-トリメチル酪酸、2,2,4,4-テトラメチルペンタン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2-ジイソプロピルプロパン酸などが挙げられる。脂肪酸は、これらの中から選ばれる1種または2種以上の脂肪酸とのエステルでも構わない。
 エステルを構成するポリオールは1種類でもよく、2種以上の混合物でもよい。また、エステルを構成する脂肪酸は、単一成分でもよく、2種以上の脂肪酸とのエステルでもよい。および脂肪酸は、各々1種類でもよく、2種類以上の混合物でもよい。また、ポリオールエステル系冷凍機油は、遊離の水酸基を有していてもよい。
 なかでも、特に好ましいポリオールエステル系冷凍機油としては、下記化合物(a)~(c):
 (a)水酸基を2個以上有する化合物もしくはその誘導体、
 (b)カルボキシ基を2個以上有する化合物もしくはその誘導体、ならびに
 (c)カルボキシ基を1個有する化合物またはその誘導体、および/または、水酸基を1個有する化合物またはその誘導体
を用いて得られるエステルを含有し、上記一般式(I)に記載の作動媒体と共に用いられることを特徴とするものであり、潤滑性、シール性、作動媒体との相溶性、熱・化学的安定性、電気絶縁性等をバランスよく十分に満足し、圧縮機の潤滑不良や冷凍効率の低下を十分に防止することが可能なものである。
 このエステルを構成する化合物(a)は、水酸基を2個以上有する化合物もしくはその誘導体である。適正な粘度を確保すること、および上記一般式(I)に記載の作動媒体との相溶性の点から、水酸基の個数は2~6個であることが好ましい。また、アルコール成分として水酸基を1個有する化合物もしくはその誘導体のみを用いると、得られるエステルにおいて十分な粘度が得られず、潤滑不良や冷凍効率の低下が起こりやすくなり、熱・化学安定性や低温流動性が不十分となる。
 化合物(a)としては、具体的には、多価アルコール、多価フェノール、多価アミノアルコールおよびこれらの縮合物、ならびにこれらの化合物の水酸基が酢酸等のカルボン酸でエステル化された化合物等が挙げられるが、中でも、多価アルコールもしくはその縮合物またはその誘導体を用いると、作動媒体との相溶性、電気絶縁性および熱安定性がより高められる傾向にあるので好ましい。
 かかる多価アルコールの炭素数は特に制限されないが、炭素数2~12の多価アルコールが好ましく用いられる。このような多価アルコールとしては、2価アルコール(ジオール)としては、具体的には例えば、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、2ーメチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオールなどが挙げられる。また、3価以上のアルコールとしては、具体的には例えば、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)、グリセリン、ポリグリセリン(グリセリンの2~3量体)、1,3,5ーペンタントリオール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトールなどの多価アルコール、キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオースなどの糖類、ならびにこれらの部分エーテル化物などが挙げられる。これらの中でも、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)などのヒンダードアルコールが好ましい。
 また、このエステルにおいては、上述の通り、化合物(a)として水酸基がカルボン酸でエステル化されたものを用いることができる。このような誘導体としては、水酸基が低級カルボン酸でエステル化された化合物が好ましく、具体的には、上記の多価アルコールの説明において例示された化合物の酢酸エステルまたはプロピオン酸エステルが好ましく用いられる。
 上記エステルを構成する化合物(b)は、カルボキシ基を2個以上有する化合物もしくはその誘導体である。カルボキシ基の個数は2~6個であることが好ましい。酸成分としてカルボキシ基を1個有する化合物もしくはその誘導体のみを用いると、得られるエステルにおいて粘度が不十分となり、潤滑不良や冷凍効率の低下が起こりやすくなったり、熱・化学的安定性や低温流動性が不十分となる。
 化合物(b)としては、具体的には、2~6価カルボン酸、ならびにその酸無水物、エステル、酸ハロゲン化物等のカルボン酸誘導体が挙げられる。
 かかる2~6価カルボン酸の炭素数は特に制限されないが、炭素数2~10の2価カルボン酸が好ましく用いられる。このような2~6価カルボン酸としては、具体的には、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、メチルマロン酸、エチルマロン酸、ジメチルマロン酸、メチルコハク酸、2,2-ジメチルコハク酸、2,3-ジメチルコハク酸、2-エチル-2-メチルコハク酸、2-メチルグルタル酸、3-メチルグルタル酸、3-メチルアジピン酸等の飽和脂肪族ジカルボン酸;マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸等の不飽和脂肪族ジカルボン酸;1,2-シクロヘキサンジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等の脂環式ジカルボン酸;フタル酸、テレフタル酸、イソフタル酸、トリメリット酸、ピロメリット酸等の芳香族多価カルボン酸、等が挙げられるが、これらの中でも2価カルボン酸が好ましく、さらには、酸化安定性の点から飽和脂肪族ジカルボン酸がより好ましい。
 また、このエステルにおいては、上述の通り、化合物(b)としてカルボキシ基を2個有する化合物の誘導体を用いることができる。かかる誘導体としては、エステル、酸無水物、酸ハロゲン化物等が挙げられるが、中でも、上記の2価カルボン酸と低級アルコール(より好ましくはメタノールまたはエタノール)とのエステルが好ましく用いられる。
 上記エステルを構成する化合物(c)は、カルボキシ基を1個有する化合物もしくはその誘導体および/または水酸基を1個有する化合物もしくはその誘導体である。この化合物(c)として、カルボキシ基を1個有する化合物もしくはその誘導体と、水酸基を1個有する化合物もしくはその誘導体とのうちのいずれか一方を単独で用いてもよく、双方の混合物として用いてもよい。なお、酸成分としてカルボキシ基を2個以上有する化合物もしくはその誘導体のみを用い、かつアルコール成分として水酸基を2個以上有する化合物もしくはその誘導体のみを用いた場合には、熱・化学的安定性が不十分となる。
 このカルボキシ基を1個有する化合物もしくはその誘導体としては、具体的には、1価脂肪酸、ならびにその酸無水物、エステルおよび酸ハロゲン化物が挙げられる。かかる1価脂肪酸の炭素数は特に制限されず、通常、炭素数1~24のものが用いられるが、1価脂肪酸の炭素数は3以上であることが好ましく、4以上であることがより好ましく、5以上であることがさらに好ましく、8以上のものが特に好ましい。1価脂肪酸の炭素数が3未満であると、得られるエステルが本来的に有する潤滑性が不十分となると共に、上記一般式(I)に記載の作動媒体との相溶性が過剰に高くなり、作動媒体により希釈されて粘度が低下して、シール性の低下による冷凍効率の低下や潤滑不良が起こりやすくなる傾向にある。
 また、当該1価脂肪酸の炭素数は、22以下であることが好ましく、20以下であることがより好ましく、18以下であることがさらに好ましい。1価脂肪酸の炭素数が22を超えると、得られるエステルと作動媒体との相溶性が不十分となり、油戻り性の低下による圧縮機の潤滑不良や冷凍効率の低下が起こりやすくなる傾向にある。
 化合物(c)としての1価脂肪酸は直鎖状、分岐鎖状のいずれであってもよいが、潤滑性の点からは直鎖状の1価脂肪酸が好ましく、また、熱・加水分解安定性の点からは分岐鎖状の1価脂肪酸が好ましい。また、当該1価脂肪酸は飽和脂肪酸、不飽和脂肪酸のいずれであってもよい。
 この化合物(c)としての1価脂肪酸としては、具体的には、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、オレイン酸等の直鎖または分岐のもの、あるいはα炭素原子が4級炭素原子であるもの(ネオ酸)等が挙げられるが、これらの中でも、吉草酸(n-ペンタン酸)、カプロン酸(n-ヘキサン酸)、エナント酸(n-ヘプタン酸)、カプリル酸(n-オクタン酸)、ペラルゴン酸(n-ノナン酸)、カプリン酸(n-デカン酸)、ラウリン酸(n-ドデカン酸)、ミリスチン酸(n-テトラデカン酸)、パルミチン酸(n-ヘキサデカン酸)、ステアリン酸(n-オクタデカン酸)、オレイン酸(cis-9-オクタデセン酸)、イソペンタン酸(3-メチルブタン酸)、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸が好ましく用いられる。
 また、この水酸基を1個有する化合物もしくはその誘導体としては、具体的には、1価アルコール、1価フェノール、1価アミノアルコール、ならびにこれらの化合物の水酸基が酢酸等のカルボン酸によりエステル化された化合物等が挙げられる。これらの化合物の炭素数は特に制限されないが、得られるエステルにおいて潤滑性と作動媒体との相溶性との双方がより高められる点から、炭素数1~24のものが好ましく、中でも、炭素数3~18の直鎖状の1価アルコール、炭素数3~18の分岐状の1価アルコールおよび炭素数5~10の1価シクロアルコールが好ましい。
 炭素数が上記の好ましい範囲内である1価アルコールとしては、具体的には、直鎖状または分岐状のプロパノール(n-プロパノール、1メチルエタノール等を含む)、直鎖状または分岐状のブタノール(n-ブタノール、1-メチルプロパノール、2-メチルプロパノール等を含む)、直鎖状または分岐状のペンタノール(n-ペンタノール、1-メチルブタノール、2-メチルブタノール、3-メチルブタノール等を含む)、直鎖状または分岐状のヘキサノール(n-ヘキサノール、1-メチルペンタノール、2-メチルペンタノール、3-メチルペンタノール等を含む)、直鎖状または分岐状のヘプタノール(n-ヘプタノール、1-メチルヘキサノール、2-メチルヘキサノール、3-メチルヘキサノール、4-メチルヘキサノール、5-メチルヘキサノール、2,4-ジメチルペンタノール等を含む)、直鎖状または分岐状のオクタノール(n-オクタノール、2-エチルヘキサノール、1-メチルヘプタノール、2-メチルヘプタノール等を含む)、直鎖状または分岐状のノナノール(n-ノナノール、1-メチルオクタノール、3,5,5-トリメチルヘキサノール、1-(2’-メチルプロピル)-3-メチルブタノール等を含む)、直鎖状または分岐状のデカノール(n-デカノール、イソデカノール等を含む)、直鎖状または分岐状のウンデカノール(n-ウンデカノール、イソウンデカノール等を含む)、直鎖状または分岐状のドデカノール(n-ドデカノール、イソドデカノール等を含む)、直鎖状または分岐状のトリデカノール(n-トリデカノール、イソトリデカノール等を含む)、直鎖状または分岐状のテトラデカノール(n-テトラデカノール、イソテトラデカノール等を含む)、直鎖状または分岐状のペンタデカノール(n-ペンタデカノール、イソペンタデカノール等を含む)、直鎖状または分岐状のヘキサデカノール(n-ヘキサデカノール、イソヘキサデカノール等を含む)、直鎖状または分岐状のヘプタデカノール(n-ヘプタデカノール、イソヘプタデカノール等を含む)、直鎖状または分岐状のオクタデカノール(n-オクタデカノール、イソオクタデカノール等を含む)、シクロヘキサノール、メチルシクロヘキサノール、ジメチルシクロヘキサノール等が挙げられる。
 また、この化合物(c)として、水酸基がカルボン酸でエステル化された誘導体を用いることもできる。かかる誘導体としては、上記1価アルコールの説明において例示された化合物の酢酸エステル、プロピオン酸エステル等が好ましく使用される。
 このエステルの中でも、下記化合物(a’)、(b’)および(c’):
(a’)エチレングリコール、プロピレングリコール、ブチレングリコール、グリセリン、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、ジブチレングリコールおよびジブチレングリコールからなる群より選ばれる少なくとも1種、
(b’)シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、からなる群より選ばれる少なくとも1種、ならびに
(c’)吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、イソペンタン酸、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール、n-ウンデカノール、n-ドデカノール、n-トリデカノール、n-テトラデカノール、n-ペンタデカノール、n-ヘキサデカノール、n-ヘプタデカノール、n-オクタデカノール、イソブタノール、イソペンタノール、イソヘキサノール、イソヘプタノール、2-エチルヘキサノール、3,5,5-トリメチルヘキサノール、イソデカノール、イソドデカノール、イソテトラデカノールおよびイソヘキサデカノールからなる群より選ばれる少なくとも1種を用いて得られるエステルが特に好ましい。上記化合物(a’)~(c’)を用いて得られるエステルを冷凍機油に含有させると、潤滑性、シール性、作動媒体との相溶性、熱・化学的安定性、電気絶縁性等がよりバランスよく満たされる傾向にある。
 ここで、上記化合物(a)~(c)の組成比は特に制限されないが、潤滑性、シール性、作動媒体との相溶性、熱・化学安定性、電気絶縁性等がより高水準でバランスよく満たされる傾向にあることから、化合物(a)~(c)の合計量を基準としてそれぞれ以下に示す範囲内であることが好ましい。
 化合物(a):3~55mol%、好ましくは5~50mol%、より好ましくは10~45mol%
 化合物(b):3~55mol%、好ましくは5~50mol%、より好ましくは10~45mol%
 化合物(c):3~90mol%、好ましくは5~80mol%、より好ましくは10~70mol%。
 ここで説明したエステルは、上記化合物(a)~(c)を、常法に従って、好ましくは窒素等の不活性ガス雰囲気下、エステル化触媒の存在下もしくは無触媒下で加熱しながらエステル化することによって調製される。
 また、化合物(a)、(c)としてアルコールの酢酸エステル、プロピオン酸エステル等を用いる場合や、化合物(b)、(c)としてカルボン酸の低級アルコールエステル等を用いる場合は、エステル交換反応によりこのエステルを得ることが可能である。
 上記のエステル化反応において用いられるエステル化としては、具体的には、アルミニウム誘導体、スズ誘導体、チタン誘導体等のルイス酸類;ナトリウムアルコキシド、カリウムアルコキシド等のアルカリ金属塩;パラトルエンスルホン酸、メタンスルホン酸、硫酸等のスルホン酸類、等が例示されるが、これらの中でも、アルミニウム誘導体、スズ誘導体、チタン誘導体等のルイス酸類を用いると、得られるエステルの熱・加水分解安定性がより高められるので好ましく、さらには、反応効率の点からスズ誘導体が特に好ましい。上記のエステル化触媒の使用量は、例えば、原料である化合物(a)~(c)の総量に対して0.1~1質量%程度である。
 上記のエステル化反応における反応温度としては、150~230℃が例示され、通常、3~30時間で反応は完結する。
 また、エステル化反応終了後、過剰の原料を減圧下または常圧下において留去し、引き続いて慣用の精製方法、例えば液液抽出、減圧蒸留、活性炭処理等の吸着精製処理等を行うことにより、エステルを精製することができる。
 なお、ここでは、特定の化合物(a)~(c)を用いたエステル化反応について説明したが、その他の場合であっても、得られる反応生成物は混合物であってもよい。さらには、このエステルが2種以上の化合物の混合物である場合、作動媒体との相溶性と各種性能とのバランス、ならびに製造容易性の点から、化合物(a)と化合物(b)とが直接結合したエステルの含有量は、混合物全量を基準として、10~100質量%であることが好ましく、20~100質量%であることがより好ましく、25~100質量%であることがさらに好ましい。
(コンプレックスエステル系冷凍機油)
 コンプレックスエステル系冷凍機油とは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、上述と同様のものを用いることができる。
 脂肪酸としては、上記ポリオールエステルの脂肪酸で示したものが挙げられる。
 二塩基酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸等が挙げられる。
 ポリオールとしては、上記ポリオールエステルの多価アルコールとして示したものが挙げられる。コンプレックスエステルは、これらの脂肪酸、二塩基酸、ポリオールのエステルであり、各々単一成分でもよいし、複数成分からなるエステルでもよい。
(ポリオール炭酸エステル系冷凍機油)
 ポリオール炭酸エステル系冷凍機油とは、炭酸とポリオールとのエステルである。
 ポリオールとしては、ジオール(上述と同様のもの)を単独重合または共重合したポリグリコール(ポリアルキレングリコール、そのエーテル化合物、それらの変性化合物等)、ポリオール(上述と同様のもの)、ポリオールにポリグリコールを付加したもの等が挙げられる。
 ポリアルキレングリコールとしては、炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を、水や水酸化アルカリを開始剤として重合させる方法等により得られたものが挙げられる。また、ポリアルキレングリコールの水酸基をエーテル化したものであってもよい。ポリアルキレングリコール中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。また、ポリオール炭酸エステル系冷凍機油としては、環状アルキレンカーボネートの開環重合体であってもよい。
〈エーテル系冷凍機油〉
 エーテル系冷凍機油としては、ポリビニルエーテル系冷凍機油、ポリアルキレングリコール系冷凍機油等が挙げられる。
(ポリビニルエーテル系冷凍機油)
 ポリビニルエーテル系冷凍機油としては、ビニルエーテルモノマーを重合して得られたもの、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとを共重合して得られたもの、およびポリビニルエーテルと、アルキレングリコールもしくはポリアルキレングリコール、またはそれらのモノエーテルとの共重合体がある。
 このポリビニルエーテル系冷凍機油の好ましいものとしては、次の一般式(1)で表される構造を有し、分子量が300~3,000のポリビニルエーテル系化合物
Figure JPOXMLDOC01-appb-C000002
(式中、R、RおよびRはそれぞれ水素原子または炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよく、Rは炭素数2~4の二価の炭化水素基、Rは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基または炭素数2~50の酸素含有炭化水素基、Rは炭素数1~10の炭化水素基を示し、R、R、Rはそれらが複数ある場合にはそれぞれ同一であっても異なっていてもよく、mはその平均値が1~50、oは1~50、pは2~25の数を示し、oおよびpはそれらが複数ある場合にはそれぞれブロックでもランダムでもよい。)が挙げられる。
 ここで、R~Rのうちの炭素数1~8の炭化水素基とは、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基のアルキル基、シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基などのシクロアルキル基、フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基のアリール基、ベンジル基、各種フェニルエチル基、各種メチルベンジル基のアリールアルキル基を示す。なお、これらのR、RおよびRの各々としては、特に水素原子が好ましい。
 一方、Rで示される炭素数2~4の二価の炭化水素基としては、具体的にはメチレン基、エチレン基、プロピレン基、トリメチレン基、各種ブチレン基などの二価のアルキレン基がある。
 なお、一般式(1)におけるmは、ROの繰り返し数を示し、その平均値が1~50、好ましくは2~20、さらに好ましくは2~10、特に好ましくは2~5の範囲の数である。ROが複数ある場合には、複数のROは同一でも異なっていてもよい。
 また、oは1~50、好ましくは1~10、さらに好ましくは1~2、特に好ましくは1、pは2~25、好ましくは5~15の数を示し,oおよびpはそれらが複数ある場合にはそれぞれブロックでもランダムでもよい。
 Rのうち炭素数1~20の脂肪族もしくは脂環式炭化水素基としては、好ましくは、炭素数1~10のアルキル基もしくは炭素数5~10のシクロアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基,n-ブチル基,イソブチル基,sec-ブチル基,tert-ブチル基,各種ペンチル基,各種ヘキシル基,各種ヘプチル基,各種オクチル基,各種ノニル基,各種デシル基、シクロペンチル基,シクロヘキシル基,各種メチルシクロヘキシル基,各種エチルシクロヘキシル基,各種プロピルシクロヘキシル基,各種ジメチルシクロヘキシル基などである。
 Rのうち炭素数1~20の置換基を有していてもよい芳香族基としては、具体的には、フェニル基、各種トリル基、各種エチルフェニル基、各種キシリル基、各種トリメチルフェニル基、各種ブチルフェニル基、各種ナフチル基などのアリール基、ベンジル基,各種フェニルエチル基,各種メチルベンジル基、各種フェニルプロピル基、各種フェニルブチル基のアリールアルキル基などが挙げられる。
 また、Rのうち炭素数2~20のアシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ベンゾイル基、トルオイル基などを挙げることができる。
 さらに、Rのうち炭素数2~50の酸素含有炭化水素基の具体例としては、メトキシメチル基、メトキシエチル基、メトキシプロピル基、1,1-ビスメトキシプロピル基、1,2-ビスメトキシプロピル基、エトキシプロピル基、(2-メトキシエトキシ)プロピル基、(1-メチル-2-メトキシ)プロピル基などを好ましく挙げることができる。
 一般式(1)において、Rで示される炭素数1~10の炭化水素基とは、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシルのアルキル基、シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種プロピルシクロヘキシル基、各種ジメチルシクロヘキシル基などのシクロアルキル基、フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基、各種プロピルフェニル基、各種トリメチルフェニル基、各種ブチルフェニル基、各種ナフチル基などのアリール基、ベンジル基、各種フェニルエチル基、各種メチルベンジル基、各種フェニルプロピル基、各種フェニルブチル基のアリールアルキル基などを指す。
 なお、R~R、R、RおよびmならびにR~Rは、それぞれ構成単位毎に同一であっても異なっていてもよい。
 当該ポリビニルエーテル系化合物は、例えば下記一般式(2)で表されるビニルエーテル化合物と下記一般式(3)で表されるビニルエーテル化合物とを共重合させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000003
 上記式において、R、R、mおよびR~Rは前記で説明した通りである。
 一般式(2)で表されるビニルエーテル系化合物としては、アルキレングリコールモノビニルエーテル、ポリオキシアルキレングリコールモノビニルエーテル、アルキレングリコールアルキルビニルエーテル、ポリオキシアルキレングリコールアルキルビニルエーテルなどが挙げられる。具体的には、エチレングリコールモノビニルエーテル、エチレングリコールメチルビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールメチルビニルエーテル、トリエチレングリコールモノビニルエーテル、トリエチレングリコールメチルビニルエーテル、プロピレングリコールモノビニルエーテル、プロピレングリコールメチルビニルエーテル、ジプロピレングリコールモノビニルエーテル、ジプロピレングリコールメチルビニルエーテル、トリプロピレングリコールモノビニルエーテル、トリプロピレングリコールメチルビニルエーテルなどが挙げられる。
 一方、一般式(3)で表されるビニルエーテル系化合物としては、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニル-n-プロピルエーテル、ビニル-イソプロピルエーテル、ビニル-n-ブチルエーテル、ビニル-イソブチルエーテル、ビニル-sec-ブチルエーテル、ビニル-tert-ブチルエーテル、ビニル-n-ペンチルエーテル、ビニル-n-ヘキシルエーテル等のビニルエーテル類;1-メトキシプロペン、1-エトキシプロペン、1-n-プロポキシプロペン、1-イソプロポキシプロペン、1-n-ブトキシプロペン、1-イソブトキシプロペン、1-sec-ブトキシプロペン、1-tert-ブトキシプロペン、2-メトキシプロペン、2-エトキシプロペン、2-n-プロポキシプロペン、2-イソプロポキシプロペン、2-n-ブトキシプロペン、2-イソブトキシプロペン、2-sec-ブトキシプロペン、2-tert-ブトキシプロペン等のプロペン類;1-メトキシ-1-ブテン、1-エトキシ-1-ブテン、1-n-プロポキシ-1-ブテン、1-イソプロポキシ-1-ブテン、1-n-ブトキシ-1-ブテン、1-イソブトキシ-1-ブテン、1-sec-ブトキシ-1-ブテン、1-tert-ブトキシ-1-ブテン、2-メトキシ-1-ブテン、2-エトキシ-1-ブテン、2-n-プロポキシ-1-ブテン、2-イソプロポキシ-1-ブテン、2-n-ブトキシ-1-ブテン、2-イソブトキシ-1-ブテン、2-sec-ブトキシ-1-ブテン、2-tert-ブトキシ-1-ブテン、2-メトキシ-2-ブテン、2-エトキシ-2-ブテン、2-n-プロポキシ-2-ブテン、2-イソプロポキシ-2-ブテン、2-n-ブトキシ-2-ブテン、2-イソブトキシ-2-ブテン、2-sec-ブトキシ-2-ブテン、2-tert-ブトキシ-2-ブテンなどのブテン類が挙げられる。これらのビニルエーテル系モノマーは公知の方法により製造することができる。
 上記ビニルエーテル系化合物は、対応するビニルエーテル系化合物および所望により用いられるオレフィン性二重結合を有する炭化水素モノマーをラジカル重合、カチオン重合、放射線重合などによって製造することができる。例えばビニルエーテル系モノマーについては、以下に示す方法を用いて重合することにより、所望の粘度の重合物が得られる。重合の開始には、ブレンステッド酸類、ルイス酸類または有機金属化合物類に対して、水、アルコール類、フェノール類、アセタール類またはビニルエーテル類とカルボン酸との付加物を組み合わせたものを使用することができる。ブレンステッド酸類としては、例えばフッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、トリクロロ酢酸、トリフルオロ酢酸などが挙げられる。ルイス酸類としては、例えば三フッ化ホウ素、三塩化アルミニウム、三臭化アルミニウム、四塩化スズ、二塩化亜鉛、塩化第二鉄などが挙げられ、これらのルイス酸類の中では、特に三フッ化ホウ素が好適である。また、有機金属化合物としては、例えばジエチル塩化アルミニウム、エチル塩化アルミニウム、ジエチル亜鉛などが挙げられる。
 これらと組み合わせる水、アルコール類、フェノール類、アセタール類またはビニルエーテル類とカルボン酸との付加物は任意のものを選択することができる。ここで、アルコール類としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、各種ペンタノール、各種ヘキサノール、各種ヘプタノール、各種オクタノールなどの炭素数1~20の飽和脂肪族アルコール、アリルアルコールなどの炭素数3~10の不飽和脂肪族アルコール、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテルなどのアルキレングリコールのモノエーテルなどが挙げられる。ビニルエーテル類とカルボン酸との付加物を使用する場合のカルボン酸としては、例えば酢酸、プロピオン酸、n-酪酸、イソ酪酸、n-吉草酸、イソ吉草酸、2-メチル酪酸、ピバリン酸、n-カプロン酸、2,2-ジメチル酪酸、2-メチル吉草酸、3-メチル吉草酸、4-メチル吉草酸、エナント酸、2-メチルカプロン酸、カプリル酸、2-エチルカプロン酸、2-n-プロピル吉草酸、n-ノナン酸、3,5,5-トリメチルカプロン酸、カプリル酸、ウンデカン酸などが挙げられる。
 また、ビニルエーテル類とカルボン酸との付加物を使用する場合のビニルエーテル類は重合に用いるものと同一のものであってもよいし、異なるものであってもよい。このビニルエーテル類と該カルボン酸との付加物は、両者を混合して0~100℃程度の温度で反応させることにより得られ、蒸留などにより分離し、反応に用いることができるが、そのまま分離することなく反応に用いることもできる。
 ポリマーの重合開始末端は、水,アルコール類,フェノール類を使用した場合は水素が結合し、アセタール類を使用した場合は水素または使用したアセタール類から一方のアルコキシ基が脱離したものとなる。またビニルエーテル類とカルボン酸との付加物を使用した場合には、ビニルエーテル類とカルボン酸との付加物からカルボン酸部分由来のアルキルカルボニルオキシ基が脱離したものとなる。
 一方、停止末端は、水、アルコール類、フェノール類、アセタール類を使用した場合には、アセタール、オレフィンまたはアルデヒドとなる。またビニルエーテル類とカルボン酸との付加物の場合は、ヘミアセタールのカルボン酸エステルとなる。このようにして得られたポリマーの末端は、公知の方法により所望の基に変換することができる。この所望の基としては、例えば飽和の炭化水素、エーテル、アルコール、ケトン、ニトリル、アミドなどの残基を挙げることができるが、飽和の炭化水素、エーテルおよびアルコールの残基が好ましい。
 本発明で使用される冷凍機油に、それぞれ含有されるポリビニルエーテル系化合物は、炭素/酸素モル比が4以下であることが好ましく、このモル比が4を超えると、上記一般式(I)に記載の作動媒体との相溶性が低下する。該モル比の調整については、原料モノマーの炭素/酸素モル比を調節することにより、該モル比が前記範囲にあるポリマーを製造することができる。すなわち、炭素/酸素モル比が大きいモノマーの比率が大きければ、炭素/酸素モル比の大きなポリマーが得られ、炭素/酸素モル比の小さいモノマーの比率が大きければ、炭素/酸素モル比の小さなポリマーが得られる。また、炭素/酸素モル比の調整は、上記ビニルエーテル系モノマーの重合方法で示したように、開始剤として使用する水、アルコール類、フェノール類、アセタール類およびビニルエーテル類とカルボン酸との付加物と、モノマー類との組合せによっても可能である。重合するモノマーより炭素/酸素モル比が大きいアルコール類、フェノール類などを開始剤として使用すれば、原料モノマーより炭素/酸素モル比の大きなポリマーが得られ、一方、メタノールやメトキシエタノールなどの炭素/酸素モル比の小さなアルコール類を用いれば、原料モノマーより炭素/酸素モル比の小さなポリマーが得られる。
 さらに、ビニルエーテル系モノマーとオレフィン性二重結合を有する炭化水素モノマーとを共重合させる場合には、ビニルエーテル系モノマーの炭素/酸素モル比より炭素/酸素モル比の大きなポリマーが得られるが、その割合は、使用するオレフィン性二重結合を有する炭化水素モノマーの比率やその炭素数により調節することができる。
(ポリアルキレングリコール系冷凍機油)
 ポリアルキレングリコール系冷凍機油としては、炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を、水や水酸化アルカリを開始剤として重合させる方法等により得られたものが挙げられる。また、ポリアルキレングリコールの水酸基をエーテル化したものであってもよい。ポリアルキレングリコール系冷凍機油中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。
 具体的なポリオキシアルキレングリコール系冷凍機油としては、例えば次の一般式(4)
 R101-[(OR102-OR103   …(4)
(式中、R101は水素原子、炭素数1~10のアルキル基、炭素数2~10のアシル基または結合部2~6個を有する炭素数1~10の脂肪族炭化水素基、R102は炭素数2~4のアルキレン基、R103は水素原子、炭素数1~10のアルキル基または炭素数2~10のアシル基、lは1~6の整数、kはk×lの平均値が6~80となる数を示す。)で表される化合物が挙げられる。
 上記一般式(4)において、R101、R103におけるアルキル基は直鎖状、分岐鎖状、環状のいずれであってもよい。該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、シクロペンチル基、シクロヘキシル基などを挙げることができる。このアルキル基の炭素数が10を超えると作動媒体との相溶性が低下し、相分離を生じる場合がある。好ましいアルキル基の炭素数は1~6である。
 また、R101、R103における該アシル基のアルキル基部分は直鎖状、分岐鎖状、環状のいずれであってもよい。該アシル基のアルキル基部分の具体例としては、上記アルキル基の具体例として挙げた炭素数1~9の種々の基を同様に挙げることができる。該アシル基の炭素数が10を超えると作動媒体との相溶性が低下し、相分離を生じる場合がある。好ましいアシル基の炭素数は2~6である。
 R101およびR103が、いずれもアルキル基またはアシル基である場合には、R101とR103は同一であってもよいし、互いに異なっていてもよい。
 さらにlが2以上の場合には、1分子中の複数のR103は同一であってもよいし、異なっていてもよい。
 R101が結合部位2~6個を有する炭素数1~10の脂肪族炭化水素基である場合、この脂肪族炭化水素基は鎖状のものであってもよいし、環状のものであってもよい。結合部位2個を有する脂肪族炭化水素基としては、例えば、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、シクロペンチレン基、シクロヘキシレン基などが挙げられる。また、結合部位3~6個を有する脂肪族炭化水素基としては、例えば、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトール;1,2,3-トリヒドロキシシクロヘキサン;1,3,5-トリヒドロキシシクロヘキサンなどの多価アルコールから水酸基を除いた残基を挙げることができる。
 この脂肪族炭化水素基の炭素数が10を超えると作動媒体との相溶性が低下し、相分離が生じる場合がある。好ましい炭素数は2~6である。
 上記一般式(4)中のR102は炭素数2~4のアルキレン基であり、繰り返し単位のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。1分子中のオキシアルキレン基は同一であってもよいし、2種以上のオキシアルキレン基が含まれていてもよいが、1分子中に少なくともオキシプロピレン単位を含むものが好ましく、特にオキシアルキレン単位中に50モル%以上のオキシプロピレン単位を含むものが好適である。
 上記一般式(4)中のlは1~6の整数で、R101の結合部位の数に応じて定められる。例えばR101がアルキル基やアシル基の場合、lは1であり、R101が結合部位2,3,4,5および6個を有する脂肪族炭化水素基である場合、lはそれぞれ2,3,4,5および6となる。また、kはk×lの平均値が6~80となる数であり、k×lの平均値が前記範囲を逸脱すると本発明の目的は十分に達せられない。
 ポリアルキレングリコールの構造は、下記一般式(5)で表されるポリプロピレングリコールジメチルエーテル、ならびに下記一般式(6)で表されるポリ(オキシエチレンオキシプロピレン)グリコールジメチルエーテルが経済性および前述の効果の点で好適であり、また、下記一般式(7)で表されるポリプロピレングリコールモノブチルエーテル、さらには下記一般式(8)で表されるポリプロピレングリコールモノメチルエーテル、下記一般式(9)で表されるポリ(オキシエチレンオキシプロピレン)グリコールモノメチルエーテル、下記一般式(10)で表されるポリ(オキシエチレンオキシプロピレン)グリコールモノブチルエーテル、下記一般式(11)で表されるポリプロピレングリコールジアセテートが、経済性等の点で好適である。
CHO-(CO)-CH   …(5)
(式中、hは6~80の数を表す。)
CHO-(CO)-(CO)-CH   …(6)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
O-(CO)-H   …(7)
(式中、hは6~80の数を示す。)
CHO-(CO)-H   …(8)
(式中、hは6~80の数を表す。)
CHO-(CO)-(CO)-H   …(9)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
O-(CO)-(CO)-H   …(10)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
CHCOO-(CO)-COCH   …(11)
(式中、hは6~80の数を表す。)
 このポリオキシアルキレングリコール類は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの冷凍機油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの冷凍機油は、作動媒体と混合して熱サイクルシステム用組成物として使用することが好ましい。このとき、冷凍機油の配合割合は、熱サイクルシステム用組成物全量に対して5~60質量%が望ましく、10~50質量%がより好ましい。
 また、この冷凍機油の水分含有量は特に限定されないが、冷凍機油全量基準で好ましくは300ppm以下、より好ましくは200ppm以下、最も好ましくは100ppm以下である。特に密閉型の冷凍機用に用いる場合には、作動媒体の分解安定性や、冷凍機油の熱・化学的安定性や電気絶縁性への影響の観点から、水分含有量が少ないことが求められる。なお、本明細書において、水分含有量は、JIS K 2275に準拠して測定した。
 また、この冷凍機油の残存空気分圧は特に限定されないが、10kPa以下が好ましく、さらには5kPa以下が好ましい。
 また、ここで使用する冷凍機油の灰分は特に限定されないが、冷凍機油の熱・化学的安定性を高めスラッジ等の発生を抑制するため、好ましくは100ppm以下、より好ましくは50ppm以下とすることができる。なお、本明細書において、灰分とは、JIS K 2272に準拠して測定した灰分の値を意味する。
<その他任意成分>
 熱サイクルシステム用組成物は、その他、本発明の効果を阻害しない範囲で公知の任意成分を含有できる。この任意成分としては、例えば、熱サイクルシステム用組成物中において冷凍機油を安定して含有させる添加剤が挙げられ、このような添加剤として、銅不活性化剤、極圧剤、油性剤、酸化防止剤、酸捕捉剤、消泡剤、重合防止剤等が挙げられる。各添加剤は必要に応じて添加すればよく、個々の添加剤の配合量は、熱サイクルシステム用組成物100質量%中に0.01質量%以上5質量%以下になるように設定すればよい。なお、酸捕捉剤の配合量および酸化防止剤の配合量は、0.05質量%以上5質量%以下の範囲が好ましい。
 また、銅不活性化剤としては、ベンゾトリアゾールやその誘導体等を用いることができる。消泡剤としては、ケイ素化合物を用いることができる。油性剤としては、高級アルコール類を用いることができる。
 なお、極圧剤には、リン酸エステル類を含むものを用いることができる。リン酸エステル類としては、リン酸エステル、亜リン酸エステル、酸性リン酸エステルおよび酸性亜リン酸エステル等を用いることができる。また、極圧剤には、リン酸エステル、亜リン酸エステル、酸性リン酸エステルおよび酸性亜リン酸エステルのアミン塩を含むものを用いることもできる。
 リン酸エステルには、トリアリールホスフェート、トリアルキルホスフェート、トリアルキルアリールホスフェート、トリアリールアルキルホスフェート、トリアルケニルホスフェート等がある。さらに、リン酸エステルを具体的に列挙すると、トリフェニルホスフェート、トリクレジルホスフェート、ベンジルジフェニルホスフェート、エチルジフェニルホスフェート、トリブチルホスフェート、エチルジブチルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、エチルフェニルジフェニルホスフェート、ジエチルフェニルフェニルホスフェート、プロピルフェニルジフェニルホスフェート、ジプロピルフェニルフェニルホスフェート、トリエチルフェニルホスフェート、トリプロピルフェニルホスフェート、ブチルフェニルジフェニルホスフェート、ジブチルフェニルフェニルホスフェート、トリブチルフェニルホスフェート、トリヘキシルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリデシルホスフェート、トリラウリルホスフェート、トリミリスチルホスフェート、トリパルミチルホスフェート、トリステアリルホスフェート、トリオレイルホスフェート等がある。
 また、亜リン酸エステルの具体例としては、トリエチルホスファイト、トリブチルホスファイト、トリフェニルホスファイト、トリクレジルホスファイト、トリ(ノニルフェニル)ホスファイト、トリ(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリイソオクチルホスファイト、ジフェニルイソデシルホスファイト、トリステアリルホスファイト、トリオレイルホスファイト等がある。
 また、酸性リン酸エステルの具体例としては、2-エチルヘキシルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、イソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート等がある。
 また、酸性亜リン酸エステルの具体例としては、ジブチルハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドゲンホスファイト、ジステアリルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト等がある。以上のリン酸エステル類の中で、オレイルアシッドホスフェート、ステアリルアシッドホスフェートが好適である。
 また、リン酸エステル、亜リン酸エステル、酸性リン酸エステルまたは酸性亜リン酸エステルのアミン塩に用いられるアミンのうちモノ置換アミンの具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、ベンジルアミン等がある。また、ジ置換アミンの具体例としては、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジオクチルアミン、ジラウリルアミン、ジステアリルアミン、ジオレイルアミン、ジベンジルアミン、ステアリル・モノエタノールアミン、デシル・モノエタノールアミン、ヘキシル・モノプロパノールアミン、ベンジル・モノエタノールアミン、フェニル・モノエタノールアミン、トリル・モノプロパノール等がある。また、トリ置換アミンの具体例としては、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリオクチルアミン、トリラウリルアミン、トリステアリルアミン、トリオレイルアミン、トリベンジルアミン、ジオレイル・モノエタノールアミン、ジラウリル・モノプロパノールアミン、ジオクチル・モノエタノールアミン、ジヘキシル・モノプロパノールアミン、ジブチル・モノプロパノールアミン、オレイル・ジエタノールアミン、ステアリル・ジプロパノールアミン、ラウリル・ジエタノールアミン、オクチル・ジプロパノールアミン、ブチル・ジエタノールアミン、ベンジル・ジエタノールアミン、フェニル・ジエタノールアミン、トリル・ジプロパノールアミン、キシリル・ジエタノールアミン、トリエタノールアミン、トリプロパノールアミン等がある。
 また、上記以外の極圧剤を添加することも可能である。例えば、モノスルフィド類、ポリスルフィド類、スルホキシド類、スルホン類、チオスルフィネート類、硫化油脂、チオカーボネート類、チオフェン類、チアゾール類、メタンスルホン酸エステル類等の有機硫黄化合物系の極圧剤、チオリン酸トリエステル類等のチオリン酸エステル系の極圧剤、高級脂肪酸、ヒドロキシアリール脂肪酸類、多価アルコールエステル類、アクリル酸エステル類等のエステル系の極圧剤、塩素化炭化水素類、塩素化カルボン酸誘導体等の有機塩素系の極圧剤、フッ素化脂肪族カルボン酸類、フッ素化エチレン樹脂、フッ素化アルキルポリシロキサン類、フッ素化黒鉛等の有機フッ素化系の極圧剤、高級アルコール等のアルコール系の極圧剤、ナフテン酸塩類(ナフテン酸鉛等)、脂肪酸塩類(脂肪酸鉛等)、チオリン酸塩類(ジアルキルジチオリン酸亜鉛等)、チオカルバミン酸塩類、有機モリブデン化合物、有機スズ化合物、有機ゲルマニウム化合物、ホウ酸エステル等の金属化合物系の極圧剤を用いることが可能である。
 また、酸化防止剤には、フェノール系の酸化防止剤やアミン系の酸化防止剤を用いることができる。フェノール系の酸化防止剤には、2,6-ジ-tert-ブチル-4-メチルフェノール(DBPC)、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,4-ジメチル-6-tert-ブチルフェノール、2,6-ジ-tert-ブチルフェノール等がある。また、アミン系の酸化防止剤には、N,N’-ジイソプロピル-p-フェニレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、N-フェニル-1-ナフチルアミン、N,N’-ジ-フェニル-p-フェニレンジアミン等がある。なお、酸化防止剤には、酸素を捕捉する酸素捕捉剤も用いることができる。
 酸捕捉剤には、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物を用いることができる。なお、これらの中で相溶性の観点から好ましい酸捕捉剤は、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシドである。アルキルグリシジルエーテルのアルキル基およびアルキレングリコールグリシジルエーテルのアルキレン基は、分岐を有していてもよい。これらの炭素数は、3以上30以下であればよく、4以上24以下であればより好ましく、6以上16以下であればさらに好ましい。また、α-オレフィンオキシドは、全炭素数が4以上50以下であればよく、4以上24以下であればより好ましく、6以上16以下であればさらに好ましい。酸捕捉剤は、1種だけを用いてもよく、複数種類を併用することも可能である。
 また、重合防止剤には、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-tert-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等の重合防止剤を用いることができる。
 また、本実施形態の熱サイクルシステム用組成物には、必要に応じて、耐荷重添加剤、酸素捕捉剤、塩素捕捉剤、清浄分散剤、粘度指数向上剤、防錆剤、安定剤、腐食防止剤および流動点降下剤等を添加することも可能である。酸素捕捉剤は、酸素を捕捉する添加剤である。個々の添加剤の配合量は、熱サイクルシステム用組成物100質量%中に0.01質量%以上5質量%以下であればよく、0.05質量%以上2質量%以下であることが好ましい。
 さらに、熱サイクルシステム用組成物に配合する任意成分としては、例えば、漏れ検出物質が挙げられ、この任意に含有する漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来、ハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の紫外線蛍光染料が挙げられる。
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の香料が挙げられる。
 漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
 可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。
 熱サイクルシステム用組成物における、漏れ検出物質の含有量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、2質量部以下が好ましく、0.5質量部以下がより好ましい。
[熱サイクルシステム]
 本発明の熱サイクルシステムは、本発明の熱サイクルシステム用組成物を用いたシステムである。本発明の熱サイクルシステムは、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。
 本発明の熱サイクルシステムとして、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置および二次冷却機等が挙げられる。なかでも、本発明の熱サイクルシステムは、より高温の作動環境でも効率的に熱サイクル性能を発揮できるため、屋外等に設置されることが多い空調機器として用いられることが好ましい。また、本発明の熱サイクルシステムは、冷凍・冷蔵機器として用いられることも好ましい。
 空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等)、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等が挙げられる。
 冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケース等)、業務用冷凍・冷蔵庫、自動販売機、製氷機等が挙げられる。
 発電システムとしては、ランキンサイクルシステムによる発電システムが好ましい。
 発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。
 また、本発明の熱サイクルシステムは、熱輸送装置であってもよい。熱輸送装置としては、潜熱輸送装置が好ましい。
 潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮等の現象を利用して潜熱輸送を行うヒートパイプおよび二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子や電子機器の発熱部の冷却装置等、比較的小型の冷却装置に適用される。二相密閉型熱サイフォンは、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進および凍結防止等に広く利用される。
 以下、本発明の実施形態の熱サイクルシステムの一例として、冷凍サイクルシステムについて、上記で大枠を説明した図1に概略構成図が示される冷凍サイクルシステム10を例として説明する。冷凍サイクルシステムとは、蒸発器で得られる冷熱を利用するシステムである。
 図1に示す冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。
 冷凍サイクルシステム10においては、以下の(i)~(iv)のサイクルが繰り返される。
(i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする(以下、「AB過程」という。)。
(ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される(以下、「BC過程」という。)。
(iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする(以下、「CD過程」という。)。
(iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される(以下、「DA過程」という。)。
 冷凍サイクルシステム10は、断熱・等エントロピ変化、等エンタルピ変化および等圧変化からなるサイクルシステムである。作動媒体の状態変化を、図2に示される圧力-エンタルピ線(曲線)図上に記載すると、A、B、C、Dを頂点とする台形として表すことができる。
 AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程であり、図2においてAB線で示される。
 BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程であり、図2においてBC線で示される。この際の圧力が凝縮圧である。圧力-エンタルピ線とBC線の交点のうち高エンタルピ側の交点Tが凝縮温度であり、低エンタルピ側の交点Tが凝縮沸点温度である。ここで、作動媒体が単一の化合物または共沸混合物の場合TとTは等しい。非共沸混合物である場合、TとTに差が生じる。本発明においては、この場合、TとTのうち高い温度を「凝縮温度」とする。なお、非共沸混合媒体である場合の温度勾配はTとTの差として示される。
 CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程であり、図2においてCD線で示される。なお、低温高圧の作動媒体Cにおける温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過冷却度(以下、必要に応じて「SC」で示す。)となる。
 DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程であり、図2においてDA線で示される。この際の圧力が蒸発圧である。圧力-エンタルピ線とDA線の交点のうち高エンタルピ側の交点Tは「蒸発温度」である。作動媒体蒸気Aの温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過熱度(以下、必要に応じて「SH」という。)となる。なお、Tは作動媒体Dの温度を示す。ここで、作動媒体が単一の化合物または共沸混合物の場合TとTは等しい。非共沸混合物である場合、TとTに差が生じる。本発明においては、この場合、TとTのうち低い温度を「蒸発温度」とする。
 ここで、作動媒体のサイクル性能は、例えば、作動媒体の冷凍能力(以下、必要に応じて「Q」で示す。)と成績係数(以下、必要に応じて「COP」で示す。)で評価できる。作動媒体のQとCOPは、作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態における各エンタルピ、h、h、h、hを用いると、下式(A)、(B)からそれぞれ求められる。
 Q=h-h  …(A)
 COP=Q/圧縮仕事=(h-h)/(h-h)  …(B)
 なお、COPは冷凍サイクルシステムにおける効率を意味しており、COPの値が高いほど少ない入力、例えば圧縮機を運転するために必要とされる電力量、により大きな出力、例えば、Qを得ることができることを表している。
 一方、Qは負荷流体を冷凍する能力を意味しており、Qが高いほど同一のシステムにおいて、多くの仕事ができることを意味している。言い換えると、大きなQを有する場合は、少量の作動媒体で目的とする性能が得られることを表しており、システムの小型化が可能となる。
 本発明の熱サイクルシステム用組成物を用いた本発明の熱サイクルシステムによれば、例えば、図1に示される冷凍サイクルシステム10において、従来から空調機器等で一般的に使用されているR410A(HFC-32とHFC-125の質量比1:1の混合媒体)を用いた場合に比べて、地球温暖化係数を格段に低く抑えながら、QとCOPをともに高いレベル、すなわち、R410Aと同等またはそれ以上のレベルに設定することが可能である。
 さらに、用いる熱サイクルシステム用組成物が含有する作動媒体の温度勾配を一定値以下に抑える組成とすることも可能であり、その場合、圧力容器から冷凍空調機器へ充てんされる際の組成変化や冷凍空調機器からの冷媒漏えいが生じた場合の冷凍空調機器内の冷媒組成の変化を低いレベルに抑えることができる。また、本発明の熱サイクルシステム用組成物によれば、作動媒体として含有するフッ化炭化水素化合物の潤滑特性を向上できることから、該組成物を用いた熱サイクルシステムは従来よりも作動媒体の効率的な循環状態を維持でき、システムの安定した稼働が可能である。
 なお、この熱サイクルシステム内においては、上記したように、本発明で使用する作動媒体が炭素-炭素二重結合を有するため、システム運転時において作動媒体が分解して酸が発生する可能性がある。本発明では、この作動媒体と組み合わせて使用する冷凍機油において、酸発生を抑制するような構成としているが、さらに何らかの原因で酸が発生した場合においても、熱サイクルシステムを安定的に運転できる構成とすることが好ましい。
 すなわち、上記熱サイクルシステム用組成物と接触する接触部が、エンジニアリングプラスチック、有機膜、および無機膜から選ばれる少なくとも1種から構成されていることが好ましい。この接触部としては、特に、圧縮機構を有する場合におけるその摺動部分や熱サイクルシステム内部のシール部分等が保護すべきものとして挙げられる。より具体的には、圧縮機の摺動部に設けられる摺動部材(軸受等)、圧縮機の隙間での作動媒体の漏れを防止するためのシール部材、電動機に配設される絶縁材料等が挙げられる。
 ここで使用するエンジニアリングプラスチックは、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、フッ素樹脂から選ばれる少なくとも1種の材料であることが好ましい。
 また、ここで使用する有機膜は、ポリテトラフルオロエチレンコーティング膜、ポリイミドコーティング膜、ポリアミドイミドコーティング膜、およびポリヒドロキシエーテル樹脂とポリサルホン系樹脂からなる樹脂と架橋剤を含む樹脂塗料を用いて形成された熱硬化型絶縁膜、から選ばれる少なくとも1種の材料であることが好ましい。
 また、ここで使用する無機膜は、黒鉛膜、ダイヤモンドライクカーボン膜、スズ膜、クロム膜、ニッケル膜、およびモリブデン膜から選ばれる少なくとも1種の材料であることが好ましい。
 なお、上記接触部が摺動部材である場合には例えば、ポリテトラフルオロエチレン、ポリフェニレンスルフィド、ポリアミドの何れかを用いることが好ましく、シール部である場合には例えば、ポリテトラフルオロエチレン、ポリフェニレンスルフィド、クロロプレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムから選ばれる少なくとも1種の材料であることが好ましい。
 また、電動機の絶縁材料としては、ステータの巻き線の絶縁被覆材料や絶縁フィルム等がある。これら絶縁被覆材料および絶縁フィルムは、高温高圧の作動媒体に接触した場合でも、作動媒体により物理的や化学的に変性を受けない樹脂で、特に耐溶剤性、耐抽出性、熱的・化学的安定性、耐発泡性を有する樹脂が用いられている。
 具体的に、ステータの巻き線の絶縁被覆材料には、ポリビニルフォルマール、ポリエステル、THEIC変性ポリエステル、ポリアミド、ポリアミドイミド、ポリエステルイミド、ポリエステルアミドイミドの何れかが用いられている。なお、好ましいのは、上層がポリアミドイミド、下層がポリエステルイミドの二重被覆線である。また、上記物質以外に、ガラス転移温度が120℃以上のエナメル被覆を用いてもよい。
 また、絶縁フィルムには、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンスルフィド(PPS)、ポリブチレンテフタレート(PBT)の何れかが用いられている。なお、絶縁フィルムに、発泡材料が冷凍サイクルの作動媒体と同じ発泡フィルムを用いることも可能である。インシュレーター等の巻き線を保持する絶縁材料には、ポリエーテルエーテルケトン(PEEK)または液晶ポリマー(LCP)が用いられている。ワニスには、エポキシ樹脂が用いられている。
 本発明の熱サイクルシステムにおいては、熱サイクルシステム用組成物に含まれる冷凍機油のアニリン点が-100℃以上0℃以下であるため、樹脂材料の膨潤/収縮変形を防止することができる。特に、上記したような圧縮機構における摺動部材、電動機の絶縁材料、熱サイクルシステム内部のシール部材等が劣化や損傷して、熱サイクルシステムが機能しなくなったり、停止したりすることを回避することができる。
 なお、熱サイクルシステムの稼働に際しては、水分の混入や、酸素等の不凝縮性気体の混入による不具合の発生を避けるために、これらの混入を抑制する手段を設けることが好ましい。
 熱サイクルシステム内に水分が混入すると、特に低温で使用される際に問題が生じる場合がある。例えば、キャピラリーチューブ内での氷結、作動媒体や冷凍機油の加水分解、サイクル内で発生した酸成分による材料劣化、コンタミナンツの発生等の問題が発生する。特に、冷凍機油がポリグリコール系冷凍機油、ポリオールエステル系冷凍機油等である場合は、吸湿性が極めて高く、また、加水分解反応を生じやすく、冷凍機油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。したがって、冷凍機油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を制御する必要がある。
 熱サイクルシステム内の水分濃度を制御する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)等の水分除去手段を用いる方法が挙げられる。乾燥剤は、液状の熱サイクルシステム用組成物と接触させることが、脱水効率の点で好ましい。例えば、凝縮器12の出口、または蒸発器14の入口に乾燥剤を配置して、熱サイクルシステム用組成物と接触させることが好ましい。
 乾燥剤としては、乾燥剤と熱サイクルシステム用組成物との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
 ゼオライト系乾燥剤としては、従来の鉱物系冷凍機油に比べて吸湿量の高い冷凍機油を用いる場合には、吸湿能力に優れる点から、下式(C)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
 M2/nO・Al・xSiO・yHO  …(C)
 ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
 乾燥剤の選定においては、細孔径および破壊強度が重要である。
 熱サイクルシステム用組成物が含有する作動媒体や冷凍機油の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、作動媒体や冷凍機油が乾燥剤中に吸着され、その結果、作動媒体や冷凍機油と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。
 したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5オングストローム以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。作動媒体や冷凍機油の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、作動媒体や冷凍機油を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、作動媒体や冷凍機油の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。
 ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、約0.5~5mmが好ましい。形状としては、粒状または円筒状が好ましい。
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等。)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等。)を併用してもよい。
 熱サイクルシステム用組成物に対するゼオライト系乾燥剤の使用割合は、特に限定されない。
 さらに、熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、作動媒体や冷凍機油と反応し、分解を促進する。
 不凝縮性気体濃度は、作動媒体の気相部において、作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。
 以上説明した本発明の熱サイクルシステムにあっては、本発明の熱サイクルシステム用組成物を用いることで、潤滑特性が良好で、地球温暖化への影響を抑えつつ、実用上充分なサイクル性能が得られるとともに、温度勾配に係る問題も殆どない。
 以下、本発明について、実施例、従来例および比較例を参照しながら、さらに詳細に説明する。各例においては、以下に示した作動媒体1~64と冷凍機油A~Iとからそれぞれ1つずつ選択して組み合わせ、作動媒体50gに冷凍機油50gを混合、溶解して熱サイクルシステム用組成物を576種類製造した。したがって、本例における熱サイクルシステム用組成物は、作動媒体50質量%と冷凍機油50質量%とから構成されたものである。なお、後述するが使用する作動媒体によっては、酸化防止剤を添加して熱サイクルシステム用組成物を構成している。
 ここで、作動媒体、冷凍機油としては、以下に示すものを使用した。なお、作動媒体については、それを構成する化合物と混合割合について表2に、冷凍機油については表3にまとめて示した。
Figure JPOXMLDOC01-appb-T000004
冷凍機油A:ポリオールエステル系冷凍機油(商品名:ユニスター RH-208BRS、日油株式会社製品)
冷凍機油B:ポリオールエステル系冷凍機油(商品名:ユニスター RH-481R、日油株式会社製品)
冷凍機油C:ポリオールエステル系冷凍機油(商品名:ユニスター RHR-32、日油株式会社製品)
冷凍機油D:ポリオールエステル系冷凍機油(商品名:ユニスター RHR-64、日油株式会社製品)
冷凍機油E:ポリオールエステル系冷凍機油(商品名:ユニスター RHR-200、日油株式会社製品)
冷凍機油F:ポリオールエステル系冷凍機油(商品名:ユニスター RHR-609BR、日油株式会社製品)
冷凍機油G:ポリオールエステルを主成分とする冷凍機油(商品名:Ze-GLES RB-68、JX日鉱日石エネルギー株式会社製品)
冷凍機油H:ポリビニルエーテルを主成分とする冷凍機油(商品名:ダフニーハーメチックオイルFVC68D、出光興産株式会社製品)
冷凍機油I:ナフテン系高級冷凍機油(商品名:スニソ4GS、出光興産株式会社製品)
Figure JPOXMLDOC01-appb-T000005
 なお、冷凍機油A~Fには添加剤として、冷凍機油と酸化防止剤の合計量を100質量%としたとき、酸化防止剤(2,6-ジ-tert-ブチル-4-メチルフェノール)を0.5質量%となるように添加して冷凍機油組成物とし、これを用いて製造、評価を行った。以下、試験例においては、冷凍機油組成物を用いた場合も「冷凍機油」と表記した。
〔試験項目〕
(冷凍機油のアニリン点)
 上述した冷凍機油を用いて、JIS K 2256「石油製品」の「アニリン点及び混合アニリン点の求め方」に準拠して、各試料油のアニリン点を評価した。アニリンおよび冷凍機油がそれぞれ50質量%になるように配合し、得られた混合液を0℃から-100℃まで冷却し、相分離状態を目視で確認して、以下の基準で評価した。
○:-100~0℃の範囲に、アニリン点がある。
×:-100~0℃の範囲に、アニリン点がない。
(浸せき試験による重量変化)
JIS K 7114に記された「プラスチック-液体薬品への浸せき効果を求める試験方法」に準拠して実施した。内部に150mlのガラス筒を入れた200mlのステンレス製の耐圧容器に、熱サイクルシステム用組成物を投入し、さらに約10gのナイロン-11の試験片を入れ、密閉した。次いで、密閉した耐圧容器を恒温槽(パーフェクトオーブンPHH-202、エスペック株式会社製)中に175℃で14日間保存し、試験片の重量変化を確認し、以下の基準で評価した。
○:1%以上の質量変化なし
×:1%以上の質量変化あり
 質量変化ありの場合は、上記浸せき試験により樹脂が膨潤したことを示す。
(冷凍機油の循環状態)
 図1に示した熱サイクルシステム10に、各熱サイクルシステム用組成物を入れ、熱サイクルシステムの連続運転を行った。熱サイクルシステム用組成物の循環状態を評価するために、熱サイクルシステムにおける蒸発器14から圧縮機11への流路の一部をガラス配管とした。このガラス配管から内部を観察して熱サイクルシステム内の熱サイクルシステム用組成物の循環状態を評価した。循環状態は、目視にて以下の基準により評価した。
○:冷凍機油の循環が確認できた
△:冷凍機油の循環は見られるが循環量がやや少ない
×:冷凍機油の循環が確認できない
(安定性試験)
 JIS K 2211に記された「冷媒と冷凍機油の化学的安定性試験方法(オートクレーブ)」に準拠して実施した。内部に150mlのガラス筒を入れた200mlのステンレス製の耐圧容器に、熱サイクルシステム用組成物を投入し、さらに触媒として、1つの耐圧容器に鉄、銅およびアルミニウムの試験片を入れ、密閉した。次いで、密閉した耐圧容器を恒温槽(パーフェクトオーブンPHH-202、エスペック株式会社製)中に175℃で14日間保存し、次のように作動媒体の酸分量測定、冷凍機油の色相観察および触媒の外観変化観察を行った。
 なお、触媒となる金属片は,次のものを用いた。
a)鉄一般用冷間圧延鋼板(JIS G3141に定められたもの、記号の種類SPCC-SB)の試験片,30mm×25mm×厚さ3.2mm
b)銅 タフピッチ銅(JIS H3100に定められたもの、合金番号C1100、記号C1100P)の試験片、30mm×25mm×厚さ2mm
c)アルミニウム 純アルミニウム(JIS H4000に定められたもの、合金番号1050、記号A1050P)の試験片、30mm×25mm×厚さ2mm
(冷凍機油の色相)
 安定性試験後、作動媒体を抜き出した圧力容器に残った冷凍機油を取り出し、ASTM-D156に準拠して冷凍機油の色相を評価した。
○:変化なし
×:着色が進行した
 着色が進行した場合は、上記安定性試験により熱サイクルシステム用組成物が劣化したことを示す。
(触媒の外観変化)
 触媒の外観変化は、安定性試験後の触媒金属の外観を目視で確認し、以下の基準により評価した。
○:変化なし
×:光沢なしまたは黒く変色
 光沢なしまたは黒く変色の場合は、上記安定性試験により熱サイクルシステム用組成物が劣化したことを示す。
(スラッジ有無)
 スラッジ有無は、安定性試験後の容器を目視で確認し、以下の基準により評価した。
○:スラッジなし
×:スラッジあり
 スラッジありの場合は、上記安定性試験により熱サイクルシステム用組成物が何らかの分解、または重合反応を起こしたことを示す。
〔試験結果〕
(冷凍機油のアニリン点確認)
 結果を表4に示す。冷凍機油Iのみが80℃にアニリン点を有し、ポリオールエステル系冷凍機油、ポリビニルエーテル系冷凍機油と明確な違いが確認された。
Figure JPOXMLDOC01-appb-T000006
(浸せき試験による重量変化)
 結果を表5、6に示す。-100~0℃にアニリン点を有しない冷凍機油Iのみで重量変化が発生し、ポリオールエステル系冷凍機油、ポリビニルエーテル系冷凍機油と明確な違いが確認された。一方、作動媒体種による顕著な差はみられず、市販される組成である作動媒体11(R-410A)と同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(冷凍機油の循環状態)
 結果を表7,8に示す。冷凍機油Iのみが十分な流量を確保できず、ポリオールエステル系冷凍機油、ポリビニルエーテル系冷凍機油と明確な違いが確認された。一方、作動媒体種による顕著な差はみられず、市販される組成である作動媒体11(R-410A)と同様の結果が得られた。ただし、ポリオールエステル系冷凍機油であっても、動粘度の高い冷凍機油E、Fは循環量がやや少なくなる傾向がみられた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
〔安定性試験〕
 安定性試験は十分な流量を確保できなかった冷凍機油I以外の冷凍機油について実施した。
(冷凍機油の色相)
 結果を表9,10に示す。作動媒体11(R-410A)以外の作動媒体において、冷凍機油A、C~E、G~Hとの組み合わせではすべて良好であった。冷凍機油B、Fとの組み合わせにおいて顕著な着色の進行が確認された。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(触媒の外観変化)
 結果を表11,12に示す。色相試験同様、作動媒体11(R-410A)以外の作動媒体において、冷凍機油A、C~E、G~Hとの組み合わせではすべて良好であった。冷凍機油B、Fとの組み合わせにおいて、触媒の外観に顕著な変化が確認された。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
(スラッジ有無)
 結果を表13,14に示す。色相試験同様、作動媒体11(R-410A)以外の作動媒体において、冷凍機油A、C~E、G~Hとの組み合わせではすべて良好であった。冷凍機油B、Fとの組み合わせにおいて顕著なスラッジの発生が確認された。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
〔結論〕
 不飽和フッ化炭化水素化合物を含む作動媒体とポリオールエステル系冷凍機油、あるいはポリビニルエーテル系冷凍機油を含む熱サイクル用組成物は、循環状態の観測結果より、市販される組成である作動媒体11(R-410A)と同様の十分な循環量を確保することができることが確認された。しかし、安定性試験の結果から、不飽和フッ化炭化水素化合物を含む作動媒体と、水酸基価が高い冷凍機油B、Fの組み合わせで特異的に冷凍機油の着色、触媒の変色およびスラッジの発生が確認された。これは水酸基を起点に、作動媒体11以外の作動媒体に含有される二重結合が何らかの分解、重合反応を発生させたと推測される。したがって、所定の構造を有する不飽和フッ化炭化水素化合物を含む作動媒体と組み合わせて使用する冷凍機油としては、水酸基価が低いものとすることで、良好な特性の熱サイクルシステム用組成物が得られることがわかった。
 また、40℃における動粘度が200mm/s以下の冷凍機油を用いた熱サイクル用組成物は、市販される組成である作動媒体11(R-410A)と同様の十分な循環量を確保することができることが、循環状態の観測結果より確認された。
 -100~0℃にアニリン点を有するポリオールエステル系冷凍機油、あるいはポリビニルエーテル系冷凍機油を含む熱サイクル用組成物はナイロン-11を例に樹脂の膨潤量が小さいことが確認された。また、循環状態の観測結果より、市販される組成である作動媒体11(R-410A)と同様の十分な循環量を確保することができることが確認された。
 以上の結果から、本発明の実施例である作動媒体1~10および12~64と、冷凍機油A、C~D、G~Hとを組み合わせた熱サイクルシステム用組成物では、全ての熱サイクルシステム用組成物において循環状態が良好で安定性にも優れた特性を有し、熱サイクルシステム用組成物として適していることが明らかになった。
 本発明の熱サイクルシステム用組成物および該組成物を用いた熱サイクルシステムは、冷凍・冷蔵機器(内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、自動販売機、製氷機等)、空調機器(ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等)、発電システム(廃熱回収発電等)、熱輸送装置(ヒートパイプ等)に利用できる。
 なお、2014年2月20日に出願された日本特許出願2014-030857号、2014年6月20日に出願された日本特許出願2014-127744号、2014年7月18日に出願された日本特許出願2014-148347号および2014年9月12日に出願された日本特許出願2014-187006号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ

Claims (15)

  1.  下記一般式(I)で表され、分子中に炭素-炭素不飽和結合を1個以上有する化合物から選ばれる少なくとも一種の不飽和フッ化炭化水素化合物、を含む熱サイクル用作動媒体と、
     絶縁破壊電圧が25kV以上で、水酸基価が0.1mgKOH/g以下であり、かつアニリン点が-100℃以上0℃以下である冷凍機油と、
     を含むことを特徴とする熱サイクルシステム用組成物。
       C     …………(I)
    (式中、RはHまたはClであり、xは2~6の整数、yは1~12の整数、zは0~11の整数であり、2x≧y+z≧2である。)
  2.  前記一般式(I)におけるxが2または3である化合物を含む、請求項1に記載の熱サイクルシステム用組成物。
  3.  前記不飽和フッ化炭化水素化合物が、トリフルオロエチレン、2,3,3,3-テトラフルオロプロペン、1,2-ジフルオロエチレン、2-フルオロプロペン、1,1,2-トリフルオロプロペン、(E)-1,2,3,3,3-ペンタフルオロプロペン、(Z)-1,2,3,3,3-ペンタフルオロプロペン、(E)-1,3,3,3-テトラフルオロプロペン、(Z)-1,3,3,3-テトラフルオロプロペンおよび3,3,3-トリフルオロプロペンからなる群から選ばれる少なくとも一種を含む、請求項2に記載の熱サイクルシステム用組成物。
  4.  熱サイクル用作動媒体が飽和フッ化炭化水素化合物をさらに含む、請求項1~3のいずれか一項に記載の熱サイクルシステム用組成物。
  5.  前記飽和フッ化炭化水素化合物が、トリフルオロメタン、ジフルオロメタン、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン、トリフルオロヨードメタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、およびヘプタフルオロシクロペンタンからなる群から選ばれる少なくとも一種を含む、請求項4に記載の熱サイクルシステム用組成物。
  6.  前記不飽和フッ化炭化水素化合物がトリフルオロエチレンを含み、前記熱サイクル用作動媒体の100質量%に対するトリフルオロエチレンの含有量が、20~80質量%である請求項1~5のいずれか一項に記載の熱サイクルシステム用組成物。
  7.  前記飽和フッ化炭化水素化合物がジフルオロメタンを含み、前記熱サイクル用作動媒体の100質量%に対するジフルオロメタンの含有量が、20~80質量%である請求項4~6のいずれか一項に記載の熱サイクルシステム用組成物。
  8.  前記不飽和フッ化炭化水素化合物が、トリフルオロエチレンおよび2,3,3,3-テトラフルオロプロペンを含み、前記飽和フッ化炭化水素化合物がジフルオロメタンを含み、
     前記熱サイクル用作動媒体全量に対するトリフルオロエチレンと2,3,3,3-テトラフルオロプロペンとジフルオロメタンの合計量の割合が90質量%を超え100質量%以下であり、
     トリフルオロエチレンと2,3,3,3-テトラフルオロプロペンとジフルオロメタンの合計量に対する質量の割合で、
     トリフルオロエチレンが10質量%以上70質量%未満、
     2,3,3,3-テトラフルオロプロペンが0質量%を超え50質量%以下、
     かつジフルオロメタンが30質量%を超え75質量%以下
     である請求項4または5に記載の熱サイクルシステム用組成物。
  9.  前記不飽和フッ化炭化水素化合物が、トリフルオロエチレンおよび2,3,3,3-テトラフルオロプロペンを含み、前記飽和フッ化炭化水素化合物がジフルオロメタンを含み、
     前記熱サイクル用作動媒体全量に対するトリフルオロエチレンと2,3,3,3-テトラフルオロプロペンとジフルオロメタンの合計量の割合が90質量%を超え100質量%以下であり、
     トリフルオロエチレンと2,3,3,3-テトラフルオロプロペンとジフルオロメタンの合計量に対する質量の割合で、
     トリフルオロエチレンと2,3,3,3-テトラフルオロプロペンの合計量が70質量%以上、
     トリフルオロエチレンが30質量%以上80質量%以下、
     2,3,3,3-テトラフルオロプロペンが0質量%を超え40質量%以下、
     ジフルオロメタンが0質量%を超え30質量%以下、
     かつ2,3,3,3-テトラフルオロプロペンに対するトリフルオロエチレンの比が95/5以下、
     である請求項4または5に記載の熱サイクルシステム用組成物。
  10.  前記冷凍機油が、ポリオールエステル系冷凍機油、およびポリビニルエーテル系冷凍機油から選ばれる少なくとも一種である、請求項1~9のいずれか一項に記載の熱サイクルシステム用組成物。
  11.  前記冷凍機油は、40℃における動粘度が5~200mm/sであり、100℃における動粘度が1~100mm/sである、請求項1~10のいずれか一項に記載の熱サイクルシステム用組成物。
  12.  請求項1~11のいずれか一項に記載の熱サイクルシステム用組成物を用いた熱サイクルシステム。
  13.  熱サイクルシステムが、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置および二次冷却機から選ばれる少なくとも一種である請求項12に記載の熱サイクルシステム。
  14.  前記熱サイクルシステムが圧縮機構を有し、該圧縮機構の前記熱サイクルシステム用組成物と接触する接触部が、エンジニアリングプラスチック、有機膜、および無機膜から選ばれる少なくとも一種から構成される、請求項12または13に記載の熱サイクルシステム。
  15.  前記エンジニアリングプラスチックが、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、およびフッ素樹脂から選ばれる少なくとも一種である、請求項14に記載の熱サイクルシステム。
PCT/JP2015/054658 2014-02-20 2015-02-19 熱サイクルシステム用組成物および熱サイクルシステム WO2015125884A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016504171A JP6583261B2 (ja) 2014-02-20 2015-02-19 熱サイクルシステム用組成物および熱サイクルシステム
CN201580009546.6A CN106062159B (zh) 2014-02-20 2015-02-19 热循环系统用组合物以及热循环系统
EP15751792.1A EP3109302B1 (en) 2014-02-20 2015-02-19 Composition for heat cycle system, and heat cycle system
US15/239,353 US9957430B2 (en) 2014-02-20 2016-08-17 Composition for heat cycle system, and heat cycle system
US15/937,231 US10233371B2 (en) 2014-02-20 2018-03-27 Composition for heat cycle system, and heat cycle system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014030857 2014-02-20
JP2014-030857 2014-02-20
JP2014-127744 2014-06-20
JP2014127744 2014-06-20
JP2014148347 2014-07-18
JP2014-148347 2014-07-18
JP2014187006 2014-09-12
JP2014-187006 2014-09-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/239,353 Continuation US9957430B2 (en) 2014-02-20 2016-08-17 Composition for heat cycle system, and heat cycle system

Publications (1)

Publication Number Publication Date
WO2015125884A1 true WO2015125884A1 (ja) 2015-08-27

Family

ID=53878381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054658 WO2015125884A1 (ja) 2014-02-20 2015-02-19 熱サイクルシステム用組成物および熱サイクルシステム

Country Status (5)

Country Link
US (2) US9957430B2 (ja)
EP (1) EP3109302B1 (ja)
JP (2) JP6583261B2 (ja)
CN (1) CN106062159B (ja)
WO (1) WO2015125884A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145278A1 (ja) * 2016-02-24 2017-08-31 三菱電機株式会社 冷凍装置
JP2018040517A (ja) * 2016-09-06 2018-03-15 日立ジョンソンコントロールズ空調株式会社 空気調和機
WO2019123897A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍サイクル装置
KR20200101401A (ko) * 2017-12-18 2020-08-27 다이킨 고교 가부시키가이샤 냉동 사이클 장치
JPWO2021015128A1 (ja) * 2019-07-25 2021-01-28
JPWO2021075075A1 (ja) * 2019-10-18 2021-04-22
WO2022075390A1 (ja) 2020-10-08 2022-04-14 ダイキン工業株式会社 組成物、熱サイクルシステム、及び冷媒の不均化反応を抑制する方法
WO2022075389A1 (ja) * 2020-10-09 2022-04-14 ダイキン工業株式会社 冷媒を含有する組成物
JP2022063196A (ja) * 2020-10-09 2022-04-21 ダイキン工業株式会社 冷媒を含有する組成物
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
WO2023033122A1 (ja) * 2021-09-02 2023-03-09 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015031288B1 (pt) 2013-07-12 2021-10-13 AGC Inc. Fluido de trabalho para ciclo térmico, composição para sistema de ciclo térmico e sistema de ciclo térmico
DE112015000583T5 (de) * 2014-01-31 2016-11-03 Asahi Glass Company, Limited Arbeitsfluid für einen Wärmekreisprozess, Zusammensetzung für ein Wärmekreisprozesssystem und Wärmekreisprozesssystem
EP3109302B1 (en) * 2014-02-20 2020-08-05 AGC Inc. Composition for heat cycle system, and heat cycle system
CN106029853B (zh) * 2014-02-20 2019-04-09 Agc株式会社 热循环系统用组合物及热循环系统
JP6520915B2 (ja) * 2014-02-20 2019-05-29 Agc株式会社 熱サイクルシステム用組成物および熱サイクルシステム
CN110079276B (zh) * 2014-02-20 2022-01-14 Agc株式会社 热循环系统用组合物以及热循环系统
CN106029825A (zh) 2014-02-24 2016-10-12 旭硝子株式会社 热循环系统用组合物及热循环系统
BR112016020985B1 (pt) * 2014-03-18 2022-09-20 Agc Inc Composição para sistema de ciclo de calor e sistema de ciclo de calor
CN106414654A (zh) * 2014-06-06 2017-02-15 旭硝子株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
WO2015186670A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2016098256A (ja) * 2014-11-18 2016-05-30 Jxエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
CN107532074A (zh) 2015-05-14 2018-01-02 旭硝子株式会社 流体组合物、制冷剂组合物和空调机
WO2016198668A1 (en) * 2015-06-12 2016-12-15 Novamont S.P.A. Low pour point trimethylolpropane esters.
EP3334989B1 (en) 2015-08-11 2023-09-27 Trane International Inc. Refrigerant recovery and repurposing
CN108473898A (zh) * 2016-02-24 2018-08-31 Jxtg能源株式会社 冷冻机油
US20190113256A1 (en) * 2016-05-17 2019-04-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6418284B1 (ja) * 2017-06-12 2018-11-07 ダイキン工業株式会社 冷媒を含有する組成物、その使用、それを用いた冷凍方法、及びそれを含む冷凍機
JP7282746B2 (ja) * 2018-04-02 2023-05-29 Eneos株式会社 冷凍機、冷凍機油及び冷凍機用作動流体組成物
JPWO2019221178A1 (ja) * 2018-05-18 2021-07-08 ダイキン工業株式会社 冷凍サイクル装置
US20210122960A1 (en) * 2018-06-22 2021-04-29 Daikin Industries, Ltd. Composition containing refrigerant, use thereof, refrigerator having same, and operation method for said refrigerator
US11912922B2 (en) * 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
MX2020012684A (es) * 2018-07-20 2021-02-09 Chemours Co Fc Llc Composicion refrigerante.
CN112805352A (zh) * 2018-10-01 2021-05-14 Agc株式会社 热循环系统用组合物及热循环系统
BR112021022059A2 (pt) 2018-10-26 2021-12-28 Chemours Co Fc Llc Composições de fluoropropeno, métodos de produção de uma mistura e de resfriamento, processos para transferência de calor, para tratamento de uma superfície e para formação de uma composição, sistema de refrigeração, aparelhos de refrigeração, uso da composição de fluoropropeno e método para substituição de um refrigerante
US11209196B2 (en) 2018-10-26 2021-12-28 The Chemours Company Fc, Llc HFO-1234ZE, HFO-1225ZC and HFO-1234YF compositions and processes for producing and using the compositions
AU2019363604B2 (en) * 2018-10-26 2024-09-19 The Chemours Company Fc, Llc HFO-1234ze and hfo-1234yf compositions and processes for producing and using the compositions
PL3877487T3 (pl) * 2018-11-05 2024-08-05 Basf Se Środek smarujący zawierający diester kwasu adypinowego z tridekanolem
WO2020256146A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 フルオロエチレン組成物
US20220349633A1 (en) * 2019-10-02 2022-11-03 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153106A1 (ja) * 2007-06-12 2008-12-18 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物及びこれを用いた圧縮機
JP2009191212A (ja) * 2008-02-15 2009-08-27 Idemitsu Kosan Co Ltd 冷凍機用潤滑油組成物
JP2009222032A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
WO2010029704A1 (ja) * 2008-09-09 2010-03-18 株式会社ジャパンエナジー 冷媒2,3,3,3‐テトラフルオロ‐1‐プロペン用冷凍機油
WO2013115160A1 (ja) * 2012-02-01 2013-08-08 Khネオケム株式会社 混合多価アルコールとカルボン酸との混合エステル
WO2015005290A1 (ja) * 2013-07-12 2015-01-15 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511325B1 (ko) * 2002-12-20 2005-08-31 엘지전자 주식회사 왕복동식 압축기를 구비한 냉동장치
JP5241261B2 (ja) * 2008-02-15 2013-07-17 出光興産株式会社 冷凍機用潤滑油組成物
RU2011118429A (ru) * 2008-10-10 2012-11-20 Е.И.Дюпон де Немур энд Компани (US) Композиции, содержащие 2,3,3,3-тетрафторпропен, 2-хлор-2,3,3,3-тетрафторпропанол, 2-хлор-2,3,3,3-тетрафторпропилацетат или (2-хлор-2,3,3,3-тетрафторпропокси)хлорид цинка
JP5304531B2 (ja) * 2009-08-20 2013-10-02 ダイキン工業株式会社 冷凍装置
JP5466556B2 (ja) * 2010-03-25 2014-04-09 出光興産株式会社 冷凍機用潤滑油組成物
FR2959998B1 (fr) * 2010-05-11 2012-06-01 Arkema France Fluides de transfert de chaleur ternaires comprenant du difluoromethane, du pentafluoroethane et du tetrafluoropropene
US8889031B2 (en) * 2010-11-30 2014-11-18 Jx Nippon Oil & Energy Corporation Working fluid composition for refrigerator machine and refrigerating machine oil
JP5935798B2 (ja) * 2011-05-19 2016-06-15 旭硝子株式会社 作動媒体および熱サイクルシステム
EP2711407B1 (en) 2011-05-19 2018-11-07 AGC Inc. Working medium and heat-cycle system
CN103890155A (zh) * 2011-10-26 2014-06-25 吉坤日矿日石能源株式会社 冷冻机用工作流体组合物以及冷冻机油
EP2955214A4 (en) * 2013-02-05 2016-10-05 Asahi Glass Co Ltd HEAT PUMP WORKING MEDIUM AND HEAT PUMP SYSTEM
CN105164228B (zh) * 2013-04-30 2019-06-11 Agc株式会社 热循环用工作介质
DE112015000583T5 (de) * 2014-01-31 2016-11-03 Asahi Glass Company, Limited Arbeitsfluid für einen Wärmekreisprozess, Zusammensetzung für ein Wärmekreisprozesssystem und Wärmekreisprozesssystem
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
EP3101083B1 (en) * 2014-01-31 2020-12-23 AGC Inc. Method for producing working fluid
EP3109303B1 (en) * 2014-02-20 2019-11-06 AGC Inc. Composition for heat cycle system, and heat cycle system
CN106029823B (zh) * 2014-02-20 2020-11-06 Agc株式会社 热循环用工作介质
EP3109302B1 (en) * 2014-02-20 2020-08-05 AGC Inc. Composition for heat cycle system, and heat cycle system
CN110079276B (zh) * 2014-02-20 2022-01-14 Agc株式会社 热循环系统用组合物以及热循环系统
JP6520915B2 (ja) * 2014-02-20 2019-05-29 Agc株式会社 熱サイクルシステム用組成物および熱サイクルシステム
CN106029853B (zh) * 2014-02-20 2019-04-09 Agc株式会社 热循环系统用组合物及热循环系统
EP3845620B1 (en) * 2014-02-24 2024-09-18 Agc Inc. Composition for heat cycle systems, and heat cycle system
WO2015129548A1 (ja) * 2014-02-28 2015-09-03 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6262035B2 (ja) * 2014-03-14 2018-01-17 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
BR112016020985B1 (pt) * 2014-03-18 2022-09-20 Agc Inc Composição para sistema de ciclo de calor e sistema de ciclo de calor
JP6159373B2 (ja) * 2015-10-07 2017-07-05 出光興産株式会社 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153106A1 (ja) * 2007-06-12 2008-12-18 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物及びこれを用いた圧縮機
JP2009191212A (ja) * 2008-02-15 2009-08-27 Idemitsu Kosan Co Ltd 冷凍機用潤滑油組成物
JP2009222032A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
WO2010029704A1 (ja) * 2008-09-09 2010-03-18 株式会社ジャパンエナジー 冷媒2,3,3,3‐テトラフルオロ‐1‐プロペン用冷凍機油
WO2013115160A1 (ja) * 2012-02-01 2013-08-08 Khネオケム株式会社 混合多価アルコールとカルボン酸との混合エステル
WO2015005290A1 (ja) * 2013-07-12 2015-01-15 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOKYU HYOJUN TEXT REITO KUCHO GIJUTSU REITO HEN, 20 January 1988 (1988-01-20), pages 81 - 82, XP008184528 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145278A1 (ja) * 2016-02-24 2017-08-31 三菱電機株式会社 冷凍装置
JPWO2017145278A1 (ja) * 2016-02-24 2018-10-11 三菱電機株式会社 冷凍装置
JP2018040517A (ja) * 2016-09-06 2018-03-15 日立ジョンソンコントロールズ空調株式会社 空気調和機
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
JP7269499B2 (ja) 2017-12-18 2023-05-09 ダイキン工業株式会社 冷凍サイクル装置
JPWO2019123897A1 (ja) * 2017-12-18 2020-12-24 ダイキン工業株式会社 冷凍サイクル装置
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
WO2019123897A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍サイクル装置
KR102655619B1 (ko) * 2017-12-18 2024-04-09 다이킨 고교 가부시키가이샤 냉동 사이클 장치
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
KR20200101401A (ko) * 2017-12-18 2020-08-27 다이킨 고교 가부시키가이샤 냉동 사이클 장치
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
WO2021015128A1 (ja) * 2019-07-25 2021-01-28 Eneos株式会社 冷媒循環システムの運転方法
JPWO2021015128A1 (ja) * 2019-07-25 2021-01-28
JPWO2021075075A1 (ja) * 2019-10-18 2021-04-22
AU2020367564B2 (en) * 2019-10-18 2023-08-03 Mitsubishi Electric Corporation Refrigeration cycle device
JP7354271B2 (ja) 2019-10-18 2023-10-02 三菱電機株式会社 冷凍サイクル装置
WO2021075075A1 (ja) * 2019-10-18 2021-04-22 三菱電機株式会社 冷凍サイクル装置
JP7132527B2 (ja) 2020-10-08 2022-09-07 ダイキン工業株式会社 組成物、熱サイクルシステム、及び冷媒の不均化反応を抑制する方法
JP2022062517A (ja) * 2020-10-08 2022-04-20 ダイキン工業株式会社 組成物、熱サイクルシステム、及び冷媒の不均化反応を抑制する方法
WO2022075390A1 (ja) 2020-10-08 2022-04-14 ダイキン工業株式会社 組成物、熱サイクルシステム、及び冷媒の不均化反応を抑制する方法
JP2022063196A (ja) * 2020-10-09 2022-04-21 ダイキン工業株式会社 冷媒を含有する組成物
JP7231849B2 (ja) 2020-10-09 2023-03-02 ダイキン工業株式会社 冷媒を含有する組成物
WO2022075389A1 (ja) * 2020-10-09 2022-04-14 ダイキン工業株式会社 冷媒を含有する組成物
WO2023033122A1 (ja) * 2021-09-02 2023-03-09 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2023036561A (ja) * 2021-09-02 2023-03-14 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Also Published As

Publication number Publication date
JPWO2015125884A1 (ja) 2017-03-30
EP3109302A1 (en) 2016-12-28
JP2020073632A (ja) 2020-05-14
EP3109302B1 (en) 2020-08-05
EP3109302A4 (en) 2017-11-01
US9957430B2 (en) 2018-05-01
JP6583261B2 (ja) 2019-10-02
JP6753497B2 (ja) 2020-09-09
CN106062159B (zh) 2019-04-16
US20180215980A1 (en) 2018-08-02
US20160355719A1 (en) 2016-12-08
US10233371B2 (en) 2019-03-19
CN106062159A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
JP7010277B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6753497B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6900991B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6354616B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6520915B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6409865B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JPWO2016171264A1 (ja) 熱サイクルシステム用組成物および熱サイクルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015751792

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015751792

Country of ref document: EP