WO2017145278A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2017145278A1
WO2017145278A1 PCT/JP2016/055350 JP2016055350W WO2017145278A1 WO 2017145278 A1 WO2017145278 A1 WO 2017145278A1 JP 2016055350 W JP2016055350 W JP 2016055350W WO 2017145278 A1 WO2017145278 A1 WO 2017145278A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
hfo
machine oil
refrigerating
Prior art date
Application number
PCT/JP2016/055350
Other languages
English (en)
French (fr)
Inventor
幹一朗 杉浦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018501462A priority Critical patent/JPWO2017145278A1/ja
Priority to KR1020187022111A priority patent/KR102103225B1/ko
Priority to CN201680081752.2A priority patent/CN108700339A/zh
Priority to PCT/JP2016/055350 priority patent/WO2017145278A1/ja
Priority to CZ2018-419A priority patent/CZ309434B6/cs
Publication of WO2017145278A1 publication Critical patent/WO2017145278A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/06Well-defined hydrocarbons aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration apparatus in which the refrigerant circulating in the refrigeration cycle is propylene-based fluorinated hydrocarbon or a mixture containing propylene-based fluorinated hydrocarbon.
  • refrigerating machine oil used in refrigerating apparatuses contains substances for suppressing deterioration of refrigerating machine oil and corrosion of expansion valves due to acids such as hydrofluoric acid generated by the decomposition of the refrigerant.
  • Patent Document 1 discloses a lubricating oil composition for a refrigerator in which an acid scavenger having an addition amount of 0.005 to 10.0% by weight is added to the refrigerator oil.
  • fluorine-based refrigerants such as R32 which is a single refrigerant and R410A and R407C which are mixed refrigerants are used.
  • fluorine-based refrigerants do not contain chlorine, the effect of destroying the ozone layer is small, but there is a problem that the effect on global warming is large due to the greenhouse effect. Therefore, in recent years, HFO-1234yf refrigerant, HFO-1234ze (E) refrigerant, and the like have attracted attention as propylene-based fluorinated hydrocarbon refrigerants that have a small global warming potential and have little impact on global warming.
  • Propylene-based fluorinated hydrocarbon refrigerant is less stable than other fluorine-based refrigerants such as R32 and R410A, and is easily decomposed when exposed to a high temperature environment or mixed with air and water.
  • a large amount of acid such as hydrofluoric acid is generated due to decomposition.
  • the acid generated by the decomposition of the refrigerant may degrade the refrigeration oil used in the refrigeration system, corrode parts such as expansion valves, and the sliding wear powder of the compressor that constitutes the refrigeration oil deterioration product and the air conditioner. May combine and become foreign matter (hereinafter referred to as sludge), which may clog refrigerant circuit components such as expansion valves.
  • Propylene-based fluorinated hydrocarbon refrigerant is more compatible with refrigeration oil than other fluorinated refrigerants, and is supplied with low-viscosity refrigeration oil in which the refrigerant has melted into the sliding parts of the compressor. As a result, the sliding portion of the compressor contacts the metal and abnormally generates heat, and the generation of acid due to the decomposition of the refrigerant is promoted.
  • the present invention has been made to solve the above-described problems, and has an object to provide a highly reliable refrigeration apparatus that suppresses deterioration of refrigeration oil, expansion valve corrosion, and sludge abnormality occurrence. To do.
  • a refrigeration apparatus is a refrigeration apparatus including a refrigerant circuit that circulates a refrigerant by connecting a compressor, a condenser, an expansion mechanism, and an evaporator with refrigerant piping, and the refrigerant includes at least an HFO refrigerant.
  • the refrigerating machine oil containing 10% by weight or more and HFC-based refrigerant at least 50% by weight or more and lubricating the sliding portion of the compressor has an addition amount of 0.1% to 1.0% by weight.
  • An acid scavenger is blended.
  • the refrigerating apparatus of the present invention uses propylene-based fluorocarbon or a mixture containing propylene-based fluorocarbon as a refrigerant, and adds an acid such as hydrofluoric acid by refrigerant decomposition to the refrigerating machine oil sealed in the compression element. Since the composition contains an acid scavenger in an amount effective for trapping, deterioration of refrigerating machine oil, expansion valve corrosion, and sludge abnormality can be suppressed.
  • FIG. 1 is a schematic diagram schematically showing a refrigerant circuit of a refrigeration apparatus according to an embodiment of the present invention.
  • the refrigeration apparatus 1 of the present embodiment includes a compressor 2, a four-way switching valve 3, an outdoor heat exchanger 4, an expansion mechanism 5, and an indoor heat exchanger 6 that are sequentially connected by refrigerant piping.
  • a refrigerant circuit for circulating the refrigerant is provided, and the refrigerant circuit is used for indoor air conditioning by performing a vapor compression refrigeration cycle operation.
  • the compressor 2 compresses the sucked refrigerant and discharges it in a high-temperature and high-pressure state.
  • the refrigerant discharge side is connected to the four-way switching valve 3 and the refrigerant suction side is connected to the accumulator 9.
  • the compressor 2 has a configuration in which the operating capacity (frequency) can be varied.
  • a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used. .
  • the four-way switching valve 3 has a function of switching the refrigerant flow path.
  • the four-way switching valve 3 connects the refrigerant discharge side of the compressor 2 and the gas side of the outdoor heat exchanger 4 and also the refrigerant suction side of the compressor 2 during the cooling operation. And the refrigerant flow path are switched so as to connect the gas side of the indoor heat exchanger 6.
  • the four-way switching valve 3 connects the refrigerant discharge side of the compressor 2 and the gas side of the indoor heat exchanger 6 as shown by the broken arrow in FIG.
  • the refrigerant flow path is switched so as to connect the suction side and the gas side of the outdoor heat exchanger 4.
  • the outdoor heat exchanger 4 functions as a condenser during cooling operation, and performs heat exchange between the refrigerant discharged from the compressor 2 and air.
  • the outdoor heat exchanger 4 functions as an evaporator during heating operation, and allows heat to be exchanged between the refrigerant flowing out of the expansion mechanism 5 and the air.
  • the outdoor heat exchanger 4 sucks outdoor air by the outdoor blower 7 and discharges the air exchanged heat with the refrigerant to the outside.
  • the outdoor heat exchanger 4 has a gas side connected to the four-way switching valve 3 and a liquid side connected to the expansion mechanism 5.
  • the expansion mechanism 5 expands the refrigerant flowing in the refrigerant circuit by reducing the pressure, and is constituted by an electronic expansion valve whose opening degree is variably controlled as an example.
  • One of the expansion mechanisms 5 is connected to the outdoor heat exchanger 4 and the other is connected to the indoor heat exchanger 6.
  • the indoor heat exchanger 6 functions as an evaporator during the cooling operation, and exchanges heat between the refrigerant flowing out of the expansion mechanism 5 and the air.
  • the indoor heat exchanger 6 functions as a condenser during heating operation, and allows heat exchange between the refrigerant discharged from the compressor 2 and the air.
  • the indoor heat exchanger 6 sucks indoor air by the indoor blower 8 and supplies the air that has exchanged heat with the refrigerant into the room.
  • the indoor heat exchanger 6 has a gas side connected to the four-way switching valve 3 and a liquid side connected to the expansion mechanism 5.
  • the compressor 2 compresses the low-pressure gas refrigerant and discharges the high-temperature and high-pressure gas refrigerant.
  • the refrigerant discharged from the compressor 2 passes through the four-way switching valve 3 and is supplied to the outdoor heat exchanger 4.
  • the high-temperature and high-pressure gas refrigerant is condensed and becomes a high-pressure liquid refrigerant.
  • the liquid refrigerant that has passed through the outdoor heat exchanger 4 passes through the expansion valve of the expansion mechanism 5 to become a low-pressure gas-liquid mixed refrigerant, and is supplied to the indoor heat exchanger 6.
  • the refrigerant that has passed through the indoor heat exchanger 6 becomes a low-temperature, low-pressure gas refrigerant from a low-pressure gas-liquid mixed state.
  • the refrigerant that has passed through the indoor heat exchanger 6 is supplied to the compressor 2.
  • the outdoor heat exchanger 4 functions as a condenser
  • the indoor heat exchanger 6 functions as an evaporator. That is, the room is cooled by the latent heat of vaporization of the refrigerant generated in the indoor heat exchanger 6.
  • the outdoor heat exchanger 4 functions as an evaporator
  • the indoor heat exchanger 6 functions as a condenser. That is, the room is overheated by the latent heat of condensation of the refrigerant generated in the outdoor heat exchanger 4.
  • an HFO refrigerant that is a propylene fluorocarbon hydrogen refrigerant is used as the refrigerant that circulates in the refrigerant circuit of the refrigeration apparatus 1.
  • the HFO-based refrigerant is an HFO simple substance or a mixed refrigerant containing R32.
  • the mixed refrigerant including the HFO refrigerant is a mixed refrigerant including at least 10% by weight of the HFO refrigerant and including at least 50% by weight of the R32 refrigerant as the HFC refrigerant.
  • the HFO refrigerant is preferably HFO-1234yf, HFO-1234ze (E) or the like.
  • the global warming coefficient as a mixed refrigerant becomes like this. Preferably it is 1000 or less, More preferably, it is 500 or less.
  • HFO refrigerant has less impact on global warming than fluorine refrigerants such as R32, which is another single refrigerant, and R410A and R407C, which are mixed refrigerants.
  • a large amount of acid such as hydrogen (hydrofluoric acid), formic acid and acetic acid is generated.
  • the acid generated by the decomposition of the refrigerant dissolves in the water contained in the refrigerant and the refrigerating machine oil, circulates in the refrigerant circuit, degrades the refrigerating machine oil, and further adheres to the expansion valve of the expansion mechanism 5, so The parts corrode and cause a failure of the expansion mechanism 5. Further, the refrigerating machine oil deteriorated by the acid and the sliding wear powder of the compressor 2 are combined to form sludge, which may clog refrigerant circuit components such as an expansion valve.
  • the refrigerating machine oil used in the refrigerating apparatus 1 of the present embodiment contains 0.1 to 1.0% by weight of an acid scavenger.
  • the refrigerating machine oil is a lubricating oil used for preventing wear and seizure in the sliding portion of the compressor 2.
  • the sliding portion of the compressor 2 includes a sliding surface between the vane and the roller and a sliding surface between the crankshaft and the bearing.
  • the acid scavenger is an additive used for capturing an acid such as hydrofluoric acid generated by the decomposition of the HFO refrigerant.
  • Refrigerating machine oil mainly consists of a base oil, an acid scavenger, an extreme pressure agent, and an antioxidant.
  • the base oil is mineral oil or synthetic oil. Although the base oil has good compatibility with the HFO refrigerant used in the refrigeration apparatus 1, a refrigerating machine oil having a viscosity that enables fluid lubrication at the sliding portion of the compressor 2 is appropriately selected.
  • the mineral oil is, for example, a naphthenic mineral oil or a paraffinic mineral oil.
  • Examples of the synthetic oil include polyvinyl ether, polyol ester, polyalkylene glycol, and alkylbenzene. In the present embodiment, it is preferable to use synthetic oil such as polyvinyl ether or polyol ester as the base oil. In addition, you may use the mixture which combined 2 or more types of said mineral oil or synthetic oil as base oil.
  • the acid scavenger is an additive used for suppressing deterioration of the refrigerating machine oil due to the acid by reacting with an acid such as hydrofluoric acid generated by the decomposition of the HFO refrigerant.
  • the acid scavenger is contained in the refrigerator oil in an amount of 0.1 wt% to 1.0 wt%.
  • the acid scavenger is, for example, an epoxy compound, a carbodiimide compound, or a tempen compound.
  • the extreme pressure agent is an additive used to prevent wear and seizure in the sliding portion of the compressor 2 and the like.
  • Refrigerating machine oil prevents contact between the sliding members by forming an oil film between the surfaces of the members that slide on each other at the sliding portion.
  • the base oil viscosity is low, the refrigerant is dissolved in a large amount to reduce the viscosity, or when the pressure applied to the sliding member is high, the sliding members are likely to come into metal contact with each other. .
  • the extreme pressure agent reacts with the surfaces of the members that slide with each other at the sliding portion to form a film, thereby suppressing the occurrence of wear and seizure.
  • extreme pressure agents include phosphate esters, phosphites, thiophosphates, sulfide esters, etc. Specific examples include tricresyl phosphate (TCP), triphenyl phosphate (TPP), and triphenyl phosphorothioate. (TPPT).
  • TCP tricresyl phosphate
  • TPP triphenyl phosphate
  • TPPT triphenyl phosphorothioate.
  • An antioxidant is an additive used to prevent the oxidation of refrigerating machine oil.
  • Specific examples of the antioxidant include zinc dithiophosphate, organic sulfur compound, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,2 Phenols such as' -methylenebis (4-methyl-6-tert-butylphenol), amine-based antioxidants such as phenyl- ⁇ -naphthylamine, N, N'-di-phenyl-p-phenylenediamine, N, N Examples include '-disalicylidene-1,2-diaminopropane.
  • the test conditions of the actual product test are as follows: the temperature of the refrigerant gas discharged from the compressor 2 is 140 ° C., the operating time of the refrigeration apparatus 1 is 500 hours, and the operating pressure of the refrigeration apparatus 1 is set appropriately. there were.
  • Polyvinyl ether oil was used as the base oil for the refrigerating machine oil.
  • the amount of the acid scavenger added to the refrigerating machine oil is changed to 0.005 wt%, 0.05 wt%, 0.1 wt%, 1.0 wt%, 6.0 wt%, 10.0 wt%. After mixing, the refrigeration apparatus 1 was operated, and the state of the expansion valve of the expansion mechanism 5 of the refrigeration apparatus 1 was confirmed.
  • the evaluation result with the R410A refrigerant is used as a reference, and the case where the fluorine detection amount is 5% by weight or less and the sludge generation amount is 1% by weight or less passes, Others were rejected.
  • the acid such as hydrofluoric acid generated by the decomposition of the HFO refrigerant is more preferably the acid scavenger contained in the refrigerating machine oil by 0.1 wt% to 1.0 wt%. Is captured by an acid scavenger comprised between 0.2% and 1.0% by weight. Thereby, deterioration of the refrigerating machine oil caused by the acid generated by the decomposition of the HFO refrigerant, corrosion of the expansion valve of the expansion mechanism 5, and occurrence of abnormal sludge are suppressed. Therefore, the reliability of the refrigeration apparatus 1 can be improved.
  • the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above.
  • the refrigerant flow path configuration (piping connection), the compressor 2, the four-way switching valve 3, the outdoor heat exchanger 4, the expansion mechanism 5, the configuration of the refrigerant circuit elements such as the indoor heat exchanger 6, etc.
  • the present invention is not limited to the contents described in the embodiments, and can be appropriately changed within the scope of the technology of the present invention.
  • the scope of the present invention also includes the scope of various changes, applications, and uses made by those skilled in the art as needed.
  • Refrigeration equipment 2 compressors, 4 way switching valve, 4 outdoor heat exchanger, 5 expansion mechanism, 6 indoor heat exchanger, 7 outdoor blower, 8 indoor blower, 9 accumulator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

冷凍装置は、圧縮機、凝縮器、膨張機構及び蒸発器を冷媒配管で接続して冷媒を循環させる冷媒回路を備えている。冷媒は、HFO系冷媒を少なくとも10重量%以上と、HFC系冷媒を少なくとも50重量%以上とを含み、圧縮機の摺動部を潤滑する冷凍機油には、添加量が0.1重量%から1.0重量%である酸捕捉剤が配合されている。

Description

冷凍装置
 本発明は、冷凍サイクルを循環する冷媒をプロピレン系フッ化炭化水素、またはプロピレン系フッ化炭化水素を含む混合物とした冷凍装置に関するものである。
 従来、空気調和装置等の冷凍装置に用いられる冷凍機油には、冷媒の分解により発生するフッ酸等の酸による冷凍機油の劣化および膨張弁の腐食を抑制するための物質が含有されている。例えば、下記特許文献1には、冷凍機油に添加量が0.005~10.0重量%である酸捕捉剤を配合した冷凍機用潤滑油組成物が開示されている。
 また、従来、空気調和装置等の冷凍装置の冷凍サイクルを循環する冷媒は、単一冷媒であるR32、混合冷媒であるR410AおよびR407C等のフッ素系冷媒が使用されている。しかし、これらのフッ素系冷媒は、塩素を含まないのでオゾン層を破壊する影響は小さいが、温室効果により地球温暖化への影響が大きい問題がある。そこで、近年、地球温暖化係数が小さく地球温暖化への影響が小さいプロピレン系フッ化炭化水素冷媒として、HFO-1234yf冷媒、HFO-1234ze(E)冷媒等が注目されている。
特開2011-202031号公報
 プロピレン系フッ化炭化水素冷媒は、R32、R410A等の他のフッ素系冷媒と比べて、安定性が低く、高温環境下にさらされたり、空気および水が混入したりすることで分解しやすく、分解によるフッ酸等の酸の発生量も多い。冷媒の分解により発生する酸は、冷凍装置に用いられる冷凍機油を劣化させ、膨張弁等の部品を腐食させるおそれや、冷凍機油劣化物と空気調和装置内を構成する圧縮機の摺動摩耗粉が結合し夾雑物(以下、スラッジと云う。)となり、膨張弁等の冷媒回路部品を詰まらせるおそれがある。また、上記特許文献1に開示された冷凍機用潤滑油組成物に基づいて、酸捕捉剤を10重量%添加した場合には、フッ素の発生量を抑制することはできるが、スラッジの異常発生を抑制することはできない。
 また、プロピレン系フッ化炭化水素冷媒は、他のフッ素系冷媒と比べて、冷凍機油との相溶性が良く、圧縮機の摺動部に冷媒が溶け込んだ粘度の低い冷凍機油が供給されることにより、圧縮機の摺動部が金属接触し異常発熱して、冷媒の分解による酸の発生が促進される。
 本発明は、上述のような課題を解決するためになされたものであり、冷凍機油の劣化および膨張弁の腐食及びスラッジ異常発生を抑制し、信頼性の高い冷凍装置を提供することを目的とする。
 本発明に係る冷凍装置は、圧縮機、凝縮器、膨張機構及び蒸発器を冷媒配管で接続して冷媒を循環させる冷媒回路を備えた冷凍装置であって、前記冷媒は、HFO系冷媒を少なくとも10重量%以上と、HFC系冷媒を少なくとも50重量%以上とを含み、前記圧縮機の摺動部を潤滑する冷凍機油には、添加量が0.1重量%から1.0重量%である酸捕捉剤が配合されているものである。
 本発明の冷凍装置は、冷媒として、プロピレン系フッ化炭素水素、またはプロピレン系フッ化炭素水素を含む混合物を用い、圧縮要素内に封入された冷凍機油に、冷媒分解によるフッ酸等の酸を捕捉するのに効果的な量の酸捕捉剤を配合した構成なので、冷凍機油の劣化および膨張弁の腐食、スラッジの異常発生を抑制することができる。
本発明の実施の形態に係る冷凍装置の冷媒回路を概略的に示した模式図である。
実施の形態.
 以下に、本発明に係る冷凍装置の構成及び動作を図示した実施の形態に基づいて説明する。図1は、本発明の実施の形態に係る冷凍装置の冷媒回路を概略的に示した模式図である。本実施の形態の冷凍装置1は、図1に示すように、圧縮機2、四方切替弁3、室外熱交換器4、膨張機構5及び室内熱交換器6を、順次冷媒配管で接続されて冷媒を循環させる冷媒回路を備えており、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内の冷暖房に使用される。
 圧縮機2は、吸入した冷媒を圧縮し、高温高圧の状態にして吐出するものであり、冷媒吐出側が四方切替弁3に接続され、冷媒吸入側がアキュムレータ9に接続されている。圧縮機2は、一例として、運転容量(周波数)を可変させることが可能とした構成であり、例えばインバータにより制御されるモータ(図示することは省略)によって駆動される容積式圧縮機を使用する。
 四方切替弁3は、冷媒の流路を切り替える機能を有するものである。四方切替弁3は、冷房運転時には、図1の実線の矢印で示すように、圧縮機2の冷媒吐出側と室外熱交換器4のガス側とを接続するとともに、圧縮機2の冷媒吸入側と室内熱交換器6のガス側とを接続するように冷媒流路を切り替える。一方、四方切替弁3は、暖房運転時には、図1の破線の矢印で示すように、圧縮機2の冷媒吐出側と室内熱交換器6のガス側とを接続するとともに、圧縮機2の冷媒吸入側と室外熱交換器4のガス側とを接続するように冷媒流路を切り替える。
 室外熱交換器4は、冷房運転時には凝縮器として機能し、圧縮機2から吐出された冷媒と空気との間で熱交換を行わせるものである。また、室外熱交換器4は、暖房運転時には蒸発器として機能し、膨張機構5から流出した冷媒と空気との間で熱交換を行わせるものである。室外熱交換器4は、室外送風機7によって室外空気を吸入し、冷媒との間で熱交換した空気を室外に排出する。室外熱交換器4は、ガス側が四方切替弁3に接続され、液側が膨張機構5に接続されている。
 膨張機構5は、冷媒回路内を流れる冷媒を減圧して膨張させるものであり、一例として開度が可変に制御される電子膨張弁で構成される。膨張機構5は、一方が室外熱交換器4に接続され、他方が室内熱交換器6に接続されている。
 室内熱交換器6は、冷房運転時には蒸発器として機能し、膨張機構5から流出した冷媒と空気との間で熱交換を行わせるものである。また、室内熱交換器6は、暖房運転時には凝縮器として機能し、圧縮機2から吐出された冷媒と空気との間で熱交換を行わせるものである。室内熱交換器6は、室内送風機8によって室内空気を吸入し、冷媒との間で熱交換した空気を室内に供給する。室内熱交換器6は、ガス側が四方切替弁3に接続され、液側が膨張機構5に接続されている。
 次に、冷房運転時における冷凍装置1の動作について説明する。
 圧縮機2は、低圧のガス冷媒を圧縮して、高温、高圧のガス冷媒を吐出する。圧縮機2から吐出された冷媒は、四方切替弁3を通過して、室外熱交換器4に供給される。室外熱交換器4を冷媒が通過することで、高温、高圧のガス冷媒が凝縮され、高圧の液冷媒となる。室外熱交換器4を通過した液冷媒は、膨張機構5の膨張弁を通過して低圧の気液混合冷媒となり、室内熱交換器6に供給される。室内熱交換器6を通過した冷媒は、低圧の気液混合状態から、低温、低圧のガス冷媒となる。室内熱交換器6を通過した冷媒は、圧縮機2に供給される。
 冷房運転時では、室外熱交換器4は凝縮器として機能し、室内熱交換器6は蒸発器として機能する。すなわち、室内熱交換器6で発生する冷媒の蒸発潜熱によって、室内が冷却さえる。一方、暖房運転時では、四方切替弁3を切り替えることで、室外熱交換器4は蒸発器として機能し、室内熱交換器6は凝縮器として機能する。すなわち、室外熱交換器4で発生する冷媒の凝縮潜熱によって、室内が過熱される。
 本実施の形態では、冷凍装置1の冷媒回路を循環する冷媒として、プロピレン系フッ化炭素水素冷媒であるHFO系冷媒が用いられる。具体的には、HFO系冷媒は、HFO単体、または、R32を含む混合冷媒である。HFO冷媒を含む混合冷媒は、HFO冷媒を少なくとも10重量%以上含み、HFC系冷媒としてR32冷媒を少なくとも50重量%以上含む混合冷媒である。HFO冷媒は、HFO-1234yfおよびHFO-1234ze(E)等が好ましい。また、混合冷媒としての地球温暖化係数は、好ましくは1000以下であり、より好ましくは、500以下である。
 HFO系冷媒は、他の単一冷媒であるR32、混合冷媒であるR410AおよびR407C等のフッ素系冷媒に比べて、地球温暖化に与える影響が小さいが、安定性が低いため、分解によるフッ化水素(フッ酸)、ギ酸および酢酸等の酸の発生量が多い。冷媒の分解により発生する酸は、冷媒および冷凍機油に含まれる水に溶解して冷媒回路を循環し、冷凍機油を劣化させ、更に膨張機構5の膨張弁に酸が付着すると、膨張弁の金属部品が腐食して、膨張機構5の不具合の原因となる。また、酸によって劣化された冷凍機油と圧縮機2の摺動摩耗粉が結合してスラッジとなり、膨張弁等の冷媒回路部品を詰まらせるおそれがある。
 次に、HFO冷媒の分解が発生しやすい、冷凍装置1の運転モードの例を挙げる。圧縮機2から吐出される高圧のガス冷媒の温度が、例えば120℃を超える運転の場合、圧縮機2内部の摺動部の温度が、局部的に高温になることがあり、HFO冷媒が熱分解するおそれがある。また、冷凍装置1の起動時に大量の液冷媒が圧縮機2に戻った場合、圧縮機2の冷凍機油に液冷媒が溶解し、低粘度の冷凍機油が圧縮機2の摺動部に供給された状態で行われる運転がある。この場合、圧縮機2の摺動部が金属接触を起こし、摺動部の異常な発熱によってHFO冷媒が熱分解するおそれがある。
 そこで、本実施の形態の冷凍装置1で使用される冷凍機油には、酸捕捉剤が0.1重量%から1.0重量%配合されている。冷凍機油は、圧縮機2の摺動部における摩耗および焼き付きの防止のために用いられる潤滑油である。圧縮機2の摺動部は、例えば、圧縮機2がロータリ圧縮機の場合、ベーンとローラとの間の摺動面、および、クランク軸と軸受との間の摺動面等である。酸捕捉剤は、HFO系冷媒の分解によって発生するフッ酸等の酸を捕捉するために用いられる添加剤である。
 次に、本実施の形態で使用される冷凍機油の組成について説明する。冷凍機油は、主に、基油、酸捕捉剤、極圧剤および酸化防止剤からなる。
 基油は、鉱油または合成油が用いられる。基油は、冷凍装置1に使用されるHFO系冷媒との相溶性が良いが、圧縮機2の摺動部において流体潤滑可能となる粘度の冷凍機油が適宜に選択される。鉱油は、例えば、ナフテン系鉱油、パラフィン系鉱油である。合成油は、例えば、ポリビニルエーテル、ポリオールエステル、ポリアルキレングリコール、アルキルベンゼン等が挙げられる。本実施の形態では、基油として、ポリビニルエーテル、ポリオールエステル等の合成油を用いることが好ましい。なお、基油として、上記の鉱油または合成油を2種以上組み合わせた混合物を用いてもよい。
 酸捕捉剤は、HFO系冷媒の分解によって発生したフッ酸等の酸と反応することにより、酸による冷凍機油の劣化を抑制するために用いられる添加剤である。酸捕捉剤は、冷凍機油に0.1重量%から1.0重量%含まれている。酸捕捉剤は、例えば、エポキシ化合物、カルボジイミド化合物、テンペン系化合物である。
 極圧剤は、圧縮機2等の摺動部における摩耗および焼き付きを防止するために用いられる添加剤である。冷凍機油は、摺動部において互いに摺動する部材表面の間に油膜を形成することで、摺動部材同士の接触を防止する。しかし、冷凍機油は、基油粘度が低い場合や、冷媒が大量に溶解して低粘度化した場合、或いは摺動部材にかかる圧力が高い場合には、摺動部材同士が金属接触しやすくなる。極圧剤は、上記した場合であっても、摺動部において互いに摺動する部材表面と反応して被膜を形成することで、摩耗および焼き付きの発生を抑制する。極圧剤は、例えば、リン酸エステル、亜リン酸エステル、チオリン酸塩、硫化エステル等であり、具体例としては、トリクレジルホスフェート(TCP)、トリフェニルフォスフェート(TPP)、トリフェニルホスホロチオエート(TPPT)等が挙げられる。
 酸化防止剤は、冷凍機油の酸化を防止するために用いられる添加剤である。酸化防止剤の具体例としては、ジチオリン酸亜鉛、有機硫黄化合物、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等のフェノール系、フェニル-α-ナフチルアミン、N,N’-ジ-フェニル-p-フェニレンジアミン等のアミン系の酸化防止剤、N,N’‐ジサリシリデン‐1,2‐ジアミノプロパン等が挙げられる。
 次に、本実施の形態の冷凍装置に用いる冷凍機油が、冷凍装置1に与える影響について、下記の表1に基づいて説明する。本出願人は、製品実機試験を行い、冷凍機油が冷凍装置1に与える影響を分析した。
 製品実機試験の試験条件は、圧縮機2から吐出される冷媒ガスの温度が140℃であり、冷凍装置1の運転時間が500時間であり、冷凍装置1の運転圧力が適宜設定された値であった。冷凍機油の基油として、ポリビニルエーテル油を用いた。冷凍機油に、酸捕捉剤の添加量を0.005重量%、0.05重量%、0.1重量%、1.0重量%、6.0重量%、10.0重量%と変更させて配合し、冷凍装置1を稼働させて、冷凍装置1の膨張機構5の膨張弁の状態を確認した。具体的には、試験後の膨張弁をX線装置で元素分析して、冷媒分解物であるフッ素の量と、膨張弁に付着したスラッジ量を確認した。下記の表1は、製品実機試験の試験結果を表している。
Figure JPOXMLDOC01-appb-T000001
 冷凍機油が、合格か不合格であるか否かの判定基準として、R410A冷媒での評価結果を参考とし、フッ素検出量5重量%以下、かつ、スラッジ発生量1重量%以下の場合を合格、それ以外を不合格とした。
 表1において、酸捕捉剤の添加量が0.005~0.05重量%である「I」、「II」のケースにおいては、フッ素検出量が5重量%よりも高く、膨張弁の腐食が確認されたため不合格と判定した。また、酸捕捉剤の添加量が6~10重量%である「V」、「VI」のケースにおいては、スラッジの発生量が1重量%以上であり、スラッジの大量発生を確認されたため不合格と判定した。一方、酸捕捉剤の添加量が0.1~1.0重量%である「III」、「IV」のケースにおいて、フッ素検出量、及びスラッジの発生量は、共に問題ないことが確認されたため合格と判定した。
 表1より、HFO系冷媒を使用する冷凍装置では、冷凍機油の酸捕捉剤の添加量が0.1から1.0重量%の場合に、膨張弁の腐食及びスラッジ異常発生が抑制された。
 さらに、酸捕捉剤の添加量を0.2から1.0重量%の場合に、フッ素検出量が著しく低下し、膨張弁の耐腐食効果が向上することが確認できた。
 したがって、本実施の形態に冷凍装置1では、HFO系冷媒の分解によって発生するフッ酸等の酸は、冷凍機油に0.1重量%から1.0重量%含まれる酸捕捉剤によって、より好ましくは0.2重量%から1.0重量%含まれる酸捕捉剤によって捕捉される。これにより、HFO系冷媒の分解によって発生する酸に起因する冷凍機油の劣化および膨張機構5の膨張弁の腐食及びスラッジの異常発生が抑制される。従って、冷凍装置1の信頼性を向上させることができる。
 以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成に限定されるものではない。例えば、冷媒の流路構成(配管接続)、圧縮機2、四方切替弁3、室外熱交換器4、膨張機構5、室内熱交換器6等の冷媒回路要素の構成等の内容は、実施の形態で説明した内容に限定されるものではなく、本発明の技術の範囲内で適宜変更が可能である。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本発明の要旨(技術的範囲)に含むことを念のため申し添える。
 1 冷凍装置、2 圧縮機、3 四方切替弁、4 室外熱交換器、5 膨張機構、6 室内熱交換器、7 室外送風機、8 室内送風機、9 アキュムレータ。

Claims (10)

  1.  圧縮機、凝縮器、膨張機構及び蒸発器を冷媒配管で接続して冷媒を循環させる冷媒回路を備えた冷凍装置であって、
     前記冷媒は、HFO系冷媒を少なくとも10重量%以上と、HFC系冷媒を少なくとも50重量%以上とを含み、
     前記圧縮機の摺動部を潤滑する冷凍機油には、添加量が0.1重量%から1.0重量%である酸捕捉剤が配合されている冷凍装置。
  2.  前記酸捕捉剤は、添加量が0.2重量%以上である請求項1に記載の冷凍装置。
  3.  前記冷凍機油には、極圧剤が配合されている請求項1又は2に記載の冷凍装置。
  4.  前記冷凍機油には、酸化防止剤が配合されている請求項1~3のいずれか一項に記載の冷凍装置。
  5.  前記冷凍機油には、ポリビニルエーテル油が含まれている請求項1~4のいずれか一項に記載の冷凍装置。
  6.  前記冷凍機油には、ポリオールエステル油が含まれている請求項1~4のいずれか一項に記載の冷凍装置。
  7.  前記冷凍機油には、アルキルベンゼン油が含まれている請求項1~4のいずれか一項に記載の冷凍装置。
  8.  前記HFO系冷媒は、少なくともHFO-1234yf、またはHFO-1234ze(E)である請求項1~7のいずれか一項に記載の冷凍装置。
  9.  前記HFC系冷媒は、R32である請求項1~8のいずれか一項に記載の冷凍装置。
  10.  前記冷媒は、地球温暖化係数が1000以下である請求項1~9のいずれか一項に記載の冷凍装置。
PCT/JP2016/055350 2016-02-24 2016-02-24 冷凍装置 WO2017145278A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018501462A JPWO2017145278A1 (ja) 2016-02-24 2016-02-24 冷凍装置
KR1020187022111A KR102103225B1 (ko) 2016-02-24 2016-02-24 냉동 장치
CN201680081752.2A CN108700339A (zh) 2016-02-24 2016-02-24 制冷装置
PCT/JP2016/055350 WO2017145278A1 (ja) 2016-02-24 2016-02-24 冷凍装置
CZ2018-419A CZ309434B6 (cs) 2016-02-24 2016-02-24 Chladivo pro chladicí zařízení

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055350 WO2017145278A1 (ja) 2016-02-24 2016-02-24 冷凍装置

Publications (1)

Publication Number Publication Date
WO2017145278A1 true WO2017145278A1 (ja) 2017-08-31

Family

ID=59684881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055350 WO2017145278A1 (ja) 2016-02-24 2016-02-24 冷凍装置

Country Status (5)

Country Link
JP (1) JPWO2017145278A1 (ja)
KR (1) KR102103225B1 (ja)
CN (1) CN108700339A (ja)
CZ (1) CZ309434B6 (ja)
WO (1) WO2017145278A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031530A (ja) * 2018-08-20 2020-02-27 ダイキン工業株式会社 冷凍サイクル装置
WO2021153137A1 (ja) * 2020-01-31 2021-08-05 ダイキン工業株式会社 冷凍装置の冷媒置換方法、冷凍機油、および容器
CN114001471A (zh) * 2018-05-18 2022-02-01 大金工业株式会社 制冷循环装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203759A (ja) * 2009-02-04 2010-09-16 Panasonic Corp 冷凍装置
JP2011052032A (ja) * 2009-08-31 2011-03-17 Hitachi Appliances Inc 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置
JP2011236314A (ja) * 2010-05-10 2011-11-24 Bridgestone Corp 冷凍機用潤滑油組成物
JP2013133443A (ja) * 2011-12-27 2013-07-08 Japan Sun Oil Co Ltd 冷凍機油組成物
JP2015054928A (ja) * 2013-09-12 2015-03-23 出光興産株式会社 冷凍機用混合組成物
JP2015061926A (ja) * 2012-10-31 2015-04-02 ダイキン工業株式会社 冷凍装置
WO2015125884A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2016027296A (ja) * 2014-07-02 2016-02-18 旭硝子株式会社 熱サイクルシステム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129179A (ja) * 2000-10-24 2002-05-09 Mitsubishi Electric Corp 冷凍機
JP2009222361A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP5248960B2 (ja) * 2008-09-12 2013-07-31 Jx日鉱日石エネルギー株式会社 冷凍機油および冷凍機用作動流体ならびに冷蔵庫
WO2010029704A1 (ja) * 2008-09-09 2010-03-18 株式会社ジャパンエナジー 冷媒2,3,3,3‐テトラフルオロ‐1‐プロペン用冷凍機油
JP5466555B2 (ja) 2010-03-25 2014-04-09 出光興産株式会社 冷凍機用潤滑油組成物
JP2012031239A (ja) * 2010-07-29 2012-02-16 Hitachi Appliances Inc 冷凍空調用圧縮機及び冷凍空調装置
JP2012057812A (ja) * 2010-09-06 2012-03-22 Hitachi Appliances Inc 冷媒圧縮機及び冷凍サイクル
JP5562920B2 (ja) * 2011-09-30 2014-07-30 日立アプライアンス株式会社 冷凍空調用圧縮機及び冷凍空調装置
CN104039939A (zh) * 2011-12-27 2014-09-10 日本太阳石油株式会社 冷冻机油组合物
PT2814896T (pt) * 2012-02-13 2018-11-16 Chemours Co Fc Llc Misturas refrigerantes que compreendem tetrafluoropropeno, difluorometano, pentafluoroetano e tetrafluoroetano e suas utilizações
JP2015014395A (ja) * 2013-07-04 2015-01-22 日立アプライアンス株式会社 空気調和機
JP2015117923A (ja) * 2013-12-20 2015-06-25 日立アプライアンス株式会社 空調装置
JP2016033426A (ja) * 2014-07-31 2016-03-10 日立アプライアンス株式会社 空気調和機
CN105331422A (zh) * 2014-08-08 2016-02-17 百达精密化学股份有限公司 高效能冷冻润滑油组成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203759A (ja) * 2009-02-04 2010-09-16 Panasonic Corp 冷凍装置
JP2011052032A (ja) * 2009-08-31 2011-03-17 Hitachi Appliances Inc 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置
JP2011236314A (ja) * 2010-05-10 2011-11-24 Bridgestone Corp 冷凍機用潤滑油組成物
JP2013133443A (ja) * 2011-12-27 2013-07-08 Japan Sun Oil Co Ltd 冷凍機油組成物
JP2015061926A (ja) * 2012-10-31 2015-04-02 ダイキン工業株式会社 冷凍装置
JP2015054928A (ja) * 2013-09-12 2015-03-23 出光興産株式会社 冷凍機用混合組成物
WO2015125884A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2016027296A (ja) * 2014-07-02 2016-02-18 旭硝子株式会社 熱サイクルシステム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001471A (zh) * 2018-05-18 2022-02-01 大金工业株式会社 制冷循环装置
JP2020031530A (ja) * 2018-08-20 2020-02-27 ダイキン工業株式会社 冷凍サイクル装置
WO2020039692A1 (ja) * 2018-08-20 2020-02-27 ダイキン工業株式会社 冷凍サイクル装置
CN112601917A (zh) * 2018-08-20 2021-04-02 大金工业株式会社 冷冻循环装置
WO2021153137A1 (ja) * 2020-01-31 2021-08-05 ダイキン工業株式会社 冷凍装置の冷媒置換方法、冷凍機油、および容器
CN115066585A (zh) * 2020-01-31 2022-09-16 大金工业株式会社 制冷装置的制冷剂替换方法、冷冻机油以及容器
CN115066585B (zh) * 2020-01-31 2023-06-02 大金工业株式会社 制冷装置的制冷剂替换方法
US11808499B2 (en) 2020-01-31 2023-11-07 Daikin Industries, Ltd. Method for replacing refrigerant in refrigeration apparatus, refrigerating machine oil, and container

Also Published As

Publication number Publication date
CN108700339A (zh) 2018-10-23
CZ309434B6 (cs) 2023-01-11
JPWO2017145278A1 (ja) 2018-10-11
CZ2018419A3 (cs) 2018-10-24
KR102103225B1 (ko) 2020-04-22
KR20180099850A (ko) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6798590B2 (ja) 冷凍装置
JP2020034260A (ja) 冷凍サイクル装置
WO2017145278A1 (ja) 冷凍装置
JP2022089538A (ja) 冷凍サイクル装置
JP2008275275A (ja) 冷凍装置
JP6736910B2 (ja) 冷凍装置
JP2023078840A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501462

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187022111

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2018-419

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891435

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891435

Country of ref document: EP

Kind code of ref document: A1