WO2015129548A1 - 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム - Google Patents

熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム Download PDF

Info

Publication number
WO2015129548A1
WO2015129548A1 PCT/JP2015/054661 JP2015054661W WO2015129548A1 WO 2015129548 A1 WO2015129548 A1 WO 2015129548A1 JP 2015054661 W JP2015054661 W JP 2015054661W WO 2015129548 A1 WO2015129548 A1 WO 2015129548A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat cycle
working medium
heat
cycle
cycle system
Prior art date
Application number
PCT/JP2015/054661
Other languages
English (en)
French (fr)
Inventor
岡本 秀一
正人 福島
聡史 河口
宜伸 門脇
哲央 大塚
勝也 上野
和良 倉嶋
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016505167A priority Critical patent/JP6540685B2/ja
Publication of WO2015129548A1 publication Critical patent/WO2015129548A1/ja
Priority to US15/232,167 priority patent/US10131828B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds

Definitions

  • the present invention relates to a working medium for thermal cycle containing trifluoroethylene and difluoromethane, a composition for a thermal cycle system using the working medium, and a thermal cycle system.
  • CFC Chlorofluorocarbons
  • HCFC hydrochlorofluorocarbons
  • CFCs and HCFCs are now subject to regulation because of their impact on the stratospheric ozone layer.
  • the abbreviation of the compound is described in parentheses after the compound name, and the abbreviation is used instead of the compound name as necessary.
  • HFCs hydrofluorocarbons
  • HFC-32 difluoromethane
  • HFC-125 tetrafluoroethane
  • HFC-125 pentafluoroethane
  • R410A a pseudo-azeotropic mixture of HFC-32 and HFC-125 having a mass ratio of 1: 1
  • HFC may cause global warming. For this reason, there is an urgent need to develop a working medium for heat cycle that can be substituted for R410A and has little influence on the ozone layer and has a low global warming potential.
  • 1,1,1,2-tetrafluoroethane (HFC-134a) used as a refrigerant for automobile air conditioning equipment has a large global warming potential of 1430.
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • HFC-152a 1,1-difluoroethane
  • HFC-152a has a combustion range and has a problem to ensure safety.
  • hydrofluoroolefin having a carbon-carbon double bond as a working medium for heat cycle because it is easily decomposed by OH radicals in the atmosphere and thus has little influence on the ozone layer and has little influence on global warming. (HFO) is used
  • HFO used for a working medium for heat cycle examples include, for example, Patent Document 1, 3,3,3-trifluoropropene (HFO-1243zf), 1,3,3,3-tetrafluoropropene (HFO-1234ze). 2-fluoropropene (HFO-1261yf), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,1,2-trifluoropropene (HFO-1243yc) have been proposed.
  • Patent Document 2 discloses 1, 2, 3, 3, 3-pentafluoropropene (HFO-1225ye), trans-1,3,3,3-tetrafluoro. Examples include propene (HFO-1234ze (E)), cis-1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)), HFO-1234yf, and the like.
  • HFO-1123 a composition containing trifluoroethylene (HFO-1123) (for example, see Patent Document 3) is known as a working medium for heat cycle having excellent refrigerant performance.
  • Patent Document 3 further attempts to use HFO-1123 in combination with various HFCs and HFOs for the purpose of improving the nonflammability and cycle performance of the working medium.
  • Patent Document 1 and Patent Document 2 both have insufficient cycle performance (capability), and those having a small proportion of fluorine atoms have combustibility. Also, the HFO described in Patent Document 2 has insufficient cycle performance (capability).
  • Patent Document 3 describes that HFO-1123, HFC, and other components are used from the viewpoint of obtaining a working medium for heat cycle that can be put into practical use by comprehensively considering the balance of capacity, efficiency, safety, and discharge temperature.
  • HFO-1123 may cause a self-decomposition reaction under high temperature and high pressure conditions.
  • the durability of the working medium for heat cycle using HFO-1123 is not limited. There are challenges to improvement.
  • the compressor discharge gas temperature (hereinafter also referred to as discharge temperature) when the heat cycle working medium is applied to the refrigeration cycle is high
  • the working medium is used as the material constituting the compressor, usually the composition for the heat cycle system.
  • the present invention provides a thermal cycle working medium and a thermal cycle system composition having a small temperature gradient, little impact on global warming, sufficiently low discharge temperature, high durability and cycle performance (capacity), and It is an object of the present invention to provide a heat cycle system using the composition.
  • the present invention provides a working medium for heat cycle, a composition for heat cycle system, and a heat cycle system having the following configuration.
  • a composition for a thermal cycle system comprising the thermal cycle working medium according to any one of [1] to [5] and a refrigerating machine oil.
  • the heat cycle system of [7] which is a refrigeration / refrigeration device, an air conditioning device, a power generation system, a heat transport device, or a secondary cooler.
  • Room air conditioner store packaged air conditioner, building packaged air conditioner, facility packaged air conditioner, gas engine heat pump, train air conditioner, automotive air conditioner, built-in showcase, separate showcase, commercial refrigerator / refrigerator
  • the heat cycle system according to [7] which is an ice making machine or a vending machine.
  • the working medium for heat cycle and the composition for heat cycle system of the present invention have a small temperature gradient, a sufficiently low discharge temperature, and high durability. Furthermore, it has little impact on global warming and is excellent in cycle performance (capacity). Moreover, since the thermal cycle system of the present invention uses the thermal cycle working medium of the present invention, the thermal cycle system has high durability, little influence of global warming, and excellent cycle performance (ability) and energy efficiency.
  • FIG. 3 is a cycle diagram in which a change in state of a working medium for heat cycle in a refrigeration cycle system is described on a pressure-enthalpy diagram.
  • the working medium for heat cycle of the present invention is a working medium for heat cycle containing HFO-1123 and HFC-32, and the ratio of the total amount of HFO-1123 and HFC-32 to the total amount of working medium for heat cycle is 90 mass. % And 100% by mass or less. Further, the mass ratio represented by HFO-1123 / HFC-32 in the working medium for heat cycle is 41/59 to 59/41.
  • HFO-1123 used in the working medium for heat cycle of the present invention When HFO-1123 used in the working medium for heat cycle of the present invention is used alone, if there is an ignition source at a high temperature or high pressure, a chain self-decomposition reaction accompanied by a rapid temperature and pressure increase will occur. It is known to cause.
  • the self-decomposition reaction can be suppressed by mixing HFO-1123 with HFC-32 to reduce the content of HFO-1123.
  • the pressure condition when the working medium for heat cycle of the present invention is applied to a heat cycle system is usually about 5.0 MPa or less.
  • the working medium for heat cycle composed of HFO-1123 and HFC-32 does not have self-decomposability under a pressure condition of 5.0 MPa, so that it can be used under general temperature conditions when applied to a heat cycle system.
  • a highly durable working medium for heat cycle can be obtained.
  • a highly durable working medium for thermal cycle is obtained by using a composition that does not have self-decomposability at about 7.0 MPa. Can be obtained.
  • the working medium for heat cycle of the present invention can be used in a heat cycle system even if it has a self-decomposable composition, depending on the use conditions, with careful handling.
  • the compressor discharge gas temperature (discharge temperature) is the highest temperature in the refrigeration cycle.
  • the discharge temperature affects the heat resistance of the material constituting the compressor, the refrigerating machine oil that the composition for a heat cycle system normally contains in addition to the working medium, and the polymer material. Therefore, it is preferable that the discharge temperature is low. For example, in order to substitute for R410A, even if the discharge temperature is lower or higher than the discharge temperature of R410A, it is necessary that the heat cycle system equipment operated by R410A be acceptable.
  • the discharge temperature is operated under the temperature conditions in which the average evaporation temperature is 0 ° C., the average aggregation temperature is 40 ° C., the degree of superheat is 5 ° C., and the degree of supercooling is 5 ° C. Evaluation can be made using the discharge temperature T when the body is applied.
  • the discharge temperature T R410A of R410A when applied to the refrigeration cycle system under the above temperature condition is 73.4 ° C.
  • the working medium for heat cycle of the present invention has a global warming potential (100 years) of 400 according to the Intergovernmental Panel on Climate Change (IPCC) Fourth Report (2007) from the viewpoint of influence on global warming. Or less, more preferably 385 or less.
  • IPCC Intergovernmental Panel on climate Change
  • the global warming potential of HFC-32 (100 years) is 675 as measured by the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007), and the global warming potential of HFO-1123 (100 Year) is 0.3 as a value measured according to the IPCC Fourth Assessment Report.
  • the global warming potential (GWP) is a value of 100 years in the IPCC Fourth Assessment Report unless otherwise specified.
  • the working medium for heat cycle of the present invention contains an optional component as described later in addition to HFO-1123 and HFC-32, GWP per unit mass of the optional component is further added to the composition.
  • the GWP of the working medium for heat cycle can be obtained by weighted averaging with the mass of each component.
  • HFO-1123 / HFC-32 is 41/59 to 59/41 (GWP: 398 to 277) in the working medium for heat cycle of the present invention.
  • HFO-1123 / HFC-32 is 41/59 or higher so that the temperature gradient is small, the discharge temperature T is sufficiently low, the impact on global warming is small, and the cycle performance (capability) is excellent.
  • a working medium can be obtained.
  • HFO-1123 / HFC-32 is 59/41 or less, a working medium for heat cycle that is not self-decomposable under temperature conditions when applied to a heat cycle system and has excellent durability can be obtained. Can do.
  • HFO-1123 / HFC-32 is preferably 43/57 or more, and more preferably 45/55 or more. In this range, the discharge temperature T, GWP, and temperature gradient can be further reduced. HFO-1123 / HFC-32 is preferably 55/45 or less, and in this range, there is no self-decomposition even under high pressure, and an extremely stable working medium for heat cycle can be obtained. Accordingly, in the working medium for heat cycle of the present invention, it is preferably 43/57 to 59/41, HFO-1123 / HFC-32 is more preferably 45/55 to 59/41, and 45/55 It is even more preferable that the ratio is 55/45.
  • the working medium for heat cycle of the present invention has a very small temperature gradient.
  • the temperature gradient is an index for measuring the difference in composition between the liquid phase and the gas phase in the working medium of the mixture.
  • a temperature gradient is defined as the nature of heat exchangers, such as evaporation in an evaporator or condensation in a condenser, with different start and end temperatures. In the azeotrope, the temperature gradient is zero, and in the pseudoazeotrope, the temperature gradient is very close to zero.
  • the inlet temperature in the evaporator decreases, which increases the possibility of frost formation, which is a problem.
  • a heat cycle system in order to improve heat exchange efficiency, it is common for the heat cycle working medium flowing through the heat exchanger and a heat source fluid such as water or air to face each other in a stable operation state. Therefore, in the case of a non-azeotropic mixture having a large temperature gradient, it is difficult to obtain an energy efficient heat cycle system. For this reason, when a mixture is used as a working medium, a working medium having an appropriate temperature gradient is desired.
  • the non-azeotropic mixture has a problem of causing a composition change when being filled from the pressure vessel to the refrigeration and air-conditioning equipment. Furthermore, when refrigerant leakage from the refrigeration air conditioner occurs, the refrigerant composition in the refrigeration air conditioner is very likely to change, and it is difficult to restore the refrigerant composition to the initial state. On the other hand, since the working medium for heat cycle of the present invention is a pseudoazeotropic mixture, the above problem can be avoided.
  • the ratio of the total amount of HFO-1123 and HFC-32 to the total amount of the working medium for heat cycle is more than 90% by mass and 100% by mass or less.
  • the ratio of the total amount of HFO-1123 and HFC-32 exceeds 90% by mass, the composition change is extremely small, and therefore the temperature gradient is small, and the working medium for heat cycle is excellent in balance of various characteristics such as discharge temperature and GWP. Can be obtained.
  • the ratio of the total amount of HFO-1123 and HFC-32 exceeds 97% by mass in terms of maintaining a balance of various characteristics such as a small temperature gradient, discharge temperature, and GWP. Is preferable, and it is especially preferable that it is 100 mass%.
  • the refrigeration cycle system is a system that cools the load fluid to a lower temperature by removing the thermal energy from the load fluid by the working medium for the heat cycle in the evaporator.
  • FIG. 1 is a schematic configuration diagram showing an example of the refrigeration cycle system of the present invention.
  • the refrigeration cycle system 10 cools the heat cycle working medium vapor B discharged from the compressor 11 by compressing the heat cycle working medium vapor A into a high-temperature and high-pressure heat cycle working medium vapor B. Then, the condenser 12 that is liquefied and used as the working medium C for the low-temperature and high-pressure heat cycle, and the working medium C for the heat cycle discharged from the condenser 12 is expanded to obtain the working medium D for the low-temperature and low-pressure heat cycle.
  • a valve 13 an evaporator 14 that heats the working medium D for heat cycle discharged from the expansion valve 13 to form a high-temperature and low-pressure working medium vapor A for heat cycle, and a pump 15 that supplies a load fluid E to the evaporator 14. And a pump 16 that supplies the fluid F to the condenser 12.
  • the working medium vapor A for heat cycle discharged from the evaporator 14 is compressed by the compressor 11 to obtain a working medium vapor B for high-temperature and high-pressure heat cycle.
  • the heat cycle working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to obtain a low temperature and high pressure heat cycle working medium C. At this time, the fluid F is heated to become a fluid F ′ and discharged from the condenser 12.
  • the thermal cycle working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to obtain a low temperature and low pressure thermal cycle working medium D.
  • the refrigeration cycle system 10 is a cycle system including adiabatic / isoentropic change, isoenthalpy change, and isopressure change.
  • the state change of the working medium for heat cycle is described on the pressure-enthalpy diagram, it can be expressed as a trapezoid having A, B, C, and D as apexes as shown in FIG.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 to convert the high-temperature and low-pressure heat cycle working medium vapor A into a high-temperature and high-pressure heat cycle working medium vapor B.
  • the heat cycle working medium vapor A is introduced into the compressor 11 in an overheated state, and the obtained heat cycle working medium vapor B is also an overheated steam.
  • the BC process is a process in which isobaric cooling is performed by the condenser 12 and the high-temperature and high-pressure heat cycle working medium vapor B is used as the low-temperature and high-pressure heat cycle working medium C.
  • the CD process is a process in which an isoenthalpy expansion is performed by the expansion valve 13 and the working medium C for low-temperature and high-pressure heat cycle is used as the working medium D for low-temperature and low-pressure heat cycle.
  • the DA process is a process in which isobaric heating is performed by the evaporator 14 and the low-temperature low-pressure heat cycle working medium D is returned to the high-temperature low-pressure heat cycle working medium vapor A.
  • the cycle performance of the working medium for heat cycle is, for example, the refrigeration capacity of the working medium for heat cycle (hereinafter referred to as “Q” as necessary) and the coefficient of performance (hereinafter referred to as “COP” as necessary). It can be evaluated by.
  • Q and COP of the heat cycle working medium are A (after evaporation, high temperature and low pressure), B (after compression, high temperature and high pressure), C (after condensation, low temperature and high pressure), and D (low temperature after expansion).
  • each enthalpy, hA, hB, hC, hD in each state of low pressure is used, it can be obtained from the following equations (1) and (2).
  • COP means efficiency in the refrigeration cycle system. The higher the COP value, the smaller the input, for example, the amount of power required to operate the compressor, and the larger the output, for example, Q can be obtained. It represents what you can do.
  • Q means the ability to freeze the load fluid, and the higher Q means that more work can be done in the same system.
  • a large Q indicates that the desired performance can be obtained with a small amount of working medium for heat cycle, and the system can be downsized.
  • the working medium for heat cycle of the present invention may optionally contain a compound used as a normal working medium in addition to HFO-1123 and HFC-32 as long as the effects of the present invention are not impaired.
  • the working fluid for heat cycle of the present invention may optionally contain in addition to HFO-1123 and HFC-32 (hereinafter referred to as optional components) as HFO other than HFC-1123, other than HFC-32.
  • optional components include HFC, hydrocarbon, HCFO and CFO having a carbon-carbon double bond.
  • the total content of the optional components is less than 10% by weight and preferably less than 3% by weight in the working fluid for heat cycle (100% by weight). If the content of the optional component exceeds 10% by mass, in the case of leakage from a heat cycle device in a refrigerant or the like, the temperature gradient of the heat cycle working medium may be increased, the discharge temperature, GWP May be out of balance.
  • HFO other than HFO-1123 examples of HFO other than HFO-1123 that may be included in the working medium for heat cycle of the present invention include 1,2-difluoroethylene (HFO-1132), HFO-1261yf, HFO-1243yc, trans-1,2,3,3 , 3-pentafluoropropene (HFO-1225ye (E)), cis-1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z)), HFO-1234yf, HFO-1234ze (E), HFO-1234ze (Z), HFO-1243zf, and the like.
  • HFO may be used individually by 1 type and may be used in combination of 2 or more type.
  • the working medium for heat cycle of the present invention contains HFO other than HFO-1123, the content thereof is preferably 1 to 9% by weight in the working medium for heat cycle (100% by weight), and 1 to 2% by weight. % Is more preferable.
  • HFC HFC other than HFC-32
  • HFC is a component that improves the cycle performance (capacity) of a thermal cycle system.
  • HFCs other than HFC-32 that may be included in the working medium for heat cycle of the present invention include HFC-152a, difluoroethane, trifluoroethane, HFC-134a, HFC-125, pentafluoropropane, hexafluoropropane, and heptafluoropropane. , Pentafluorobutane, heptafluorocyclopentane, and the like.
  • One HFC may be used alone, or two or more HFCs may be used in combination.
  • HFC-134 and HFC-152a are particularly preferable because they have little influence on the ozone layer and little influence on global warming.
  • the working medium for heat cycle of the present invention contains HFC other than HFC-32, the content thereof is preferably 1 to 9% by weight in the working medium for heat cycle (100% by weight), and 1 to 2% by weight. % Is more preferable.
  • the content of these HFCs can be controlled according to the required characteristics of the working medium for heat cycle.
  • hydrocarbon examples include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.
  • a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
  • the working medium for heat cycle of the present invention contains hydrocarbon, the content thereof is preferably 1 to 9% by weight, more preferably 1 to 2% by weight in the working medium for heat cycle (100% by weight). . If the hydrocarbon is 1% by mass or more, the solubility of the refrigerating machine oil in the working medium for heat cycle is sufficiently improved. If the hydrocarbon is 9% by mass or less, it is effective to suppress the combustibility of the working medium for heat cycle.
  • HCFO hydrochlorofluoropropene
  • hydrochlorofluoroethylene hydrochlorofluoroethylene
  • HCFO-1224yd 1-chloro-1,2-difluoroethylene
  • HCFO-1122 1-chloro-1,2-difluoroethylene
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • 1,1 -Dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are particularly preferred.
  • the working medium for heat cycle of the present invention contains HCFO and / or CFO, the total content thereof is preferably 1 to 9% by weight in the working medium for heat cycle (100% by weight).
  • Chlorine atoms have the effect of suppressing combustibility, and if the contents of HCFO and CFO are in this range, the cycle performance (capacity) of the thermal cycle system is not greatly reduced, and the thermal cycle working medium Combustibility can be sufficiently suppressed. Moreover, it is a component which improves the solubility of the refrigerating machine oil to the working medium for heat cycles. As HCFO and CFO, HCFO having little influence on the ozone layer and little influence on global warming is preferable.
  • the heat cycle working medium of the present invention can be used as a composition for a heat cycle system of the present invention, usually mixed with refrigeration oil when applied to a heat cycle system.
  • the composition for thermal cycle systems of this invention may contain well-known additives other than these, such as a stabilizer and a leak detection substance.
  • refrigerator oil As refrigerating machine oil, well-known refrigerating machine oil used for the composition for heat cycle systems is used. Examples of the refrigerating machine oil include oxygen-containing synthetic oils (such as ester-based refrigerating machine oils, ether-based refrigerating machine oils, polyglycol oils), fluorine-based refrigerating machine oils, mineral oils, hydrocarbon synthetic oils, and the like.
  • ester refrigerating machine oils include dibasic acid ester oils, polyol ester oils, complex ester oils, and polyol carbonate oils.
  • the dibasic acid ester oil includes a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a carbon number having a linear or branched alkyl group.
  • Esters with 1 to 15 monohydric alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, etc. are preferred.
  • ditridecyl glutarate di (2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, di (3-ethylhexyl) sebacate and the like.
  • Polyol ester oils include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7- Heptanediol, 1,12-dodecanediol, etc.) or polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.); Fatty acids having 6 to 20 carbon atoms (hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, eicosanoic acid,
  • esters of is preferable.
  • the polyol ester oil may have a free hydroxyl group.
  • Polyol ester oils include esters of hindered alcohols (neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.) (trimethylol propane tripelargonate, pentaerythritol 2-ethylhexanoate). And pentaerythritol tetrapelargonate) are preferred.
  • the complex ester oil is an ester of a fatty acid and a dibasic acid, a monohydric alcohol and a polyol.
  • fatty acid, dibasic acid, monohydric alcohol, and polyol the same ones as described above can be used.
  • the polyol carbonate oil is an ester of carbonic acid and polyol.
  • Polyols include polyglycols (polyalkylene glycols, ether compounds thereof, modified compounds thereof, etc.) obtained by homopolymerization or copolymerization of diols (same as above), polyols (same as above), polyols and polyglycols. And the like added.
  • Examples of polyalkylene glycols include those obtained by polymerizing alkylene oxides having 2 to 4 carbon atoms (ethylene oxide, propylene oxide, etc.) using water or alkali hydroxide as an initiator.
  • etherified the hydroxyl group of polyalkylene glycol may be used.
  • the oxyalkylene units in the polyalkylene glycol may be the same in one molecule, or two or more oxyalkylene units may be included. It is preferable that at least an oxypropylene unit is contained in one molecule.
  • Examples of the ether refrigerating machine oil include polyvinyl ether.
  • Polyvinyl ethers include those obtained by polymerizing vinyl ether monomers, those obtained by copolymerizing vinyl ether monomers and hydrocarbon monomers having olefinic double bonds, and polyvinyl ether and alkylene glycol or polyalkylene. There are glycols or their copolymers with monoethers.
  • a vinyl ether monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • hydrocarbon monomers having an olefinic double bond examples include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, various alkyl-substituted styrenes, etc. Is mentioned.
  • the hydrocarbon monomer which has an olefinic double bond may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyvinyl ether copolymer may be either a block or a random copolymer. A polyvinyl ether may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyglycol oil is preferably a polyalkylene glycol oil based on polyalkylene glycol.
  • the polyalkylene glycol include a hydroxy group-initiated polyalkylene glycol such as a compound in which an alkylene oxide having 2 to 4 carbon atoms is added to a monovalent or polyhydric alcohol (methanol, butanol, pentaerythritol, glycerol, etc.).
  • a hydroxy group-initiated polyalkylene glycol whose end is capped with an alkyl group such as a methyl group is also exemplified.
  • fluorinated refrigerating machine oil examples include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly ⁇ -olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, and the like.
  • the refrigerating machine oil fraction obtained by subjecting crude oil to atmospheric distillation or vacuum distillation is refined (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, And paraffinic mineral oils, naphthenic mineral oils, etc., which are refined by appropriately combining white clay treatment and the like.
  • hydrocarbon synthetic oil examples include poly ⁇ -olefin, alkylbenzene, alkylnaphthalene and the like.
  • Refrigerating machine oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a polyol ester oil and / or a polyglycol oil is preferable from the viewpoint of compatibility with the working medium for heat cycle, and a polyalkylene glycol oil is preferable because a significant antioxidant effect can be obtained by the stabilizer. Particularly preferred.
  • the content of the refrigerating machine oil in the composition for the heat cycle system may be within a range that does not significantly reduce the effect of the present invention, and varies depending on the use, the type of the compressor, etc., but the heat cycle working medium (100 parts by mass) ) Is usually 10 to 100 parts by mass, preferably 20 to 50 parts by mass.
  • Stabilizers are components that improve the stability of the thermal cycle working medium against heat and oxidation.
  • examples of the stabilizer include an oxidation resistance improver, a heat resistance improver, and a metal deactivator.
  • oxidation resistance improver and heat resistance improver examples include N, N′-diphenylphenylenediamine, p-octyldiphenylamine, p, p′-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2-naphthylamine.
  • the oxidation resistance improver and the heat resistance improver may be used alone or in combination of two or more.
  • Metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimercaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzimidazole, 3,5-dimethyl Of pyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Examples thereof include amine salts and derivatives thereof.
  • the content of the stabilizer may be in a range that does not significantly reduce the effect of the present invention, and is usually 5% by mass or less and preferably 1% by mass or less in the composition for a heat cycle system (100% by mass).
  • leak detection substance examples include ultraviolet fluorescent dyes, odorous gases and odor masking agents.
  • the ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-T-10-502737, JP-T 2007-511645, JP-T 2008-500437, JP-T 2008-531836.
  • known ultraviolet fluorescent dyes examples include known fragrances such as those described in JP-T-2008-500337 and JP-T-2008-531836.
  • solubilizer which improves the solubility of the leak detection substance to the working medium for thermal cycles.
  • solubilizer include those described in JP-T-2007-511645, JP-T-2008-500437, JP-T-2008-531836.
  • the content of the leak detection substance may be in a range that does not significantly reduce the effect of the present invention, and is usually 2% by mass or less and 0.5% by mass or less in the composition for a heat cycle system (100% by mass). preferable.
  • composition for a heat cycle system of the present invention comprises an alcohol having 1 to 4 carbon atoms or a compound used as a conventional heat cycle working medium, refrigerant, or heat transfer medium (hereinafter, the alcohol and the compound are collectively referred to). , May be referred to as other compounds).
  • examples of other compounds include the following compounds.
  • Fluorine-containing ether perfluoropropyl methyl ether (C 3 F 7 OCH 3 ), perfluorobutyl methyl ether (C 4 F 9 OCH 3 ), perfluorobutyl ethyl ether (C 4 F 9 OC 2 H 5 ), 1, 1, 2 , 2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (CF 2 HCF 2 OCH 2 CF 3 , manufactured by Asahi Glass Co., Ltd., AE-3000).
  • the content of the other compound may be in a range that does not significantly reduce the effect of the present invention, and is usually 30% by mass or less, preferably 20% by mass or less in the composition for a heat cycle system (100% by mass), 15 mass% or less is more preferable.
  • the working medium for heat cycle and the composition for heat cycle system of the present invention contain HFO-1123 and HFC-32 at a predetermined ratio, so that the temperature gradient is small, the discharge temperature is low, and the self-decomposability is improved. Because it can be suppressed, it has excellent durability and little impact on global warming. Furthermore, a thermal cycle system having excellent cycle performance can be provided.
  • the thermal cycle system of the present invention is a system using the working medium for thermal cycle of the present invention.
  • the working medium for heat cycle of the present invention When applying the working medium for heat cycle of the present invention to a heat cycle system, it is usually applied in the form of containing the working medium for heat cycle in the composition for heat cycle system.
  • heat cycle systems include refrigeration / refrigeration equipment, air conditioning equipment, power generation systems, heat transport devices, or secondary coolers.
  • Specific examples of heat cycle systems include room air conditioners, store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, gas engine heat pumps, train air conditioners, automotive air conditioners, built-in showcases, and separate showcases. Cases, commercial refrigerators / refrigerators, ice machines, vending machines, and the like.
  • the water concentration in the heat cycle system is preferably less than 10,000 ppm, more preferably less than 1000 ppm, and particularly preferably less than 100 ppm in terms of mass ratio with respect to the working medium for heat cycle.
  • a method for suppressing the water concentration in the heat cycle system a method using a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned.
  • a desiccant sica gel, activated alumina, zeolite, etc.
  • a zeolitic desiccant is preferable from the viewpoint of chemical reactivity between the desiccant and the heat cycle working medium and the moisture absorption capacity of the desiccant.
  • the main component is a compound represented by the following formula (3) from the viewpoint of excellent hygroscopic capacity.
  • Zeolite desiccants are preferred.
  • M is a Group 1 element such as Na or K, or a Group 2 element such as Ca
  • n is the valence of M
  • x and y are values determined by the crystal structure.
  • pore size and fracture strength are particularly important.
  • a desiccant having a pore size larger than the molecular diameter of the heat cycle working medium is used, the heat cycle working medium is adsorbed in the desiccant, and as a result, a chemical reaction between the heat cycle working medium and the desiccant.
  • undesirable phenomena such as generation of non-condensable gas, decrease in the strength of the desiccant, and decrease in adsorption ability occur.
  • a zeolitic desiccant having a small pore size as the desiccant.
  • a sodium / potassium A type synthetic zeolite having a pore diameter of 3.5 mm or less is preferable.
  • sodium / potassium type A synthetic zeolite having a pore size smaller than the molecular diameter of the heat cycle working medium only moisture in the heat cycle system is selectively absorbed without adsorbing the heat cycle working medium. Can be removed by adsorption.
  • the heat cycle working medium is less likely to be adsorbed to the desiccant, thermal decomposition is less likely to occur, and as a result, deterioration of materials constituting the heat cycle system and generation of contamination can be suppressed.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be formed into an arbitrary shape by solidifying powdered zeolite with a binder (such as bentonite). As long as the zeolitic desiccant is mainly used, other desiccants (silica gel, activated alumina, etc.) may be used in combination.
  • the use ratio of the zeolitic desiccant with respect to the working medium for heat cycle is not particularly limited.
  • Oxygen may be mixed in the thermal cycle system. Since mixing of oxygen also causes deterioration of the working medium for the heat cycle, etc., it is necessary to suppress the oxygen concentration in the heat cycle system.
  • the oxygen concentration in the heat cycle system is preferably less than 10,000 ppm, more preferably less than 1000 ppm, and particularly preferably less than 100 ppm in terms of mass ratio with respect to the working medium for heat cycle.
  • the presence of chlorine in the heat cycle system has undesirable effects such as deposit formation due to reaction with metals, wear of bearings, decomposition of heat cycle working medium and refrigeration oil.
  • the chlorine concentration in the heat cycle system is preferably 100 ppm or less, and particularly preferably 50 ppm or less in terms of a mass ratio with respect to the heat cycle working medium.
  • Non-condensable gas concentration If a non-condensable gas is mixed in the heat cycle system, it adversely affects the heat transfer in the condenser or the evaporator and the operating pressure rises. Therefore, it is necessary to suppress the mixing as much as possible.
  • oxygen which is one of non-condensable gases, reacts with a heat cycle working medium and refrigeration oil, and promotes decomposition.
  • the non-condensable gas concentration is preferably 1.5% by volume or less, particularly preferably 0.5% by volume or less in terms of the volume ratio with respect to the thermal cycle working medium in the gas phase portion of the thermal cycle working medium.
  • Example 1 Evaluation of self-degradability
  • the self-degradability of the working medium for heat cycle composed of HFO-1123 and HFC-32 was evaluated under pressure conditions up to 7.0 MPa.
  • the self-decomposability was evaluated using equipment conforming to the A method recommended as equipment for measuring the combustion range in a gas containing a halogen-containing gas in the individual notification in the High Pressure Gas Safety Law.
  • HFO-1123 / HFC-32 a composition in which the mass ratio of HFO-1123 and HFC-32 in the heat cycle working medium (hereinafter referred to as HFO-1123 / HFC-32) is less than 60/40. It was confirmed that even if the pressure was 5.0 MPa or higher, it did not have self-decomposability, and even if it was 7.0 MPa, it did not have self-decomposability.
  • Example 2 Evaluation of discharge temperature, GWP, temperature gradient
  • the discharge temperature T was determined by the method described above, and ⁇ T was calculated.
  • the global warming potential (GWP) was calculated.
  • the results are shown in Table 2.
  • the temperature gradient under the conditions for determining the discharge temperature is also shown in Table 2.
  • the composition range not having self-decomposability is indicated by a solid line arrow in the table, and the range having self-decomposability is indicated by a broken arrow.
  • the working medium for heat cycle of the present invention had a low GWP, a low temperature gradient, and no self-decomposability. Further, it was confirmed that ⁇ T was 15 ° C. or lower and the discharge temperature T was low.
  • Example 3 Evaluation of refrigeration cycle performance 1 is applied to the heat cycle working medium composed of HFO-1123 and HFC-32 in the proportions shown in Table 3, and the heat insulation shown in FIG.
  • Refrigeration cycle performance as cycle performance (capacity and efficiency) when compression, isothermal cooling by condenser 12 during BC process, isoenthalpy expansion by expansion valve 13 during CD process, and isobaric heating by evaporator 14 during DA process (Refrigeration capacity and coefficient of performance) were evaluated.
  • the evaluation was performed under the same temperature conditions as when the above-described discharge temperature T was obtained. That is, the average evaporation temperature of the heat cycle working medium in the evaporator 14 is 0 ° C., the average condensation temperature of the heat cycle working medium in the condenser 12 is 40 ° C., and the degree of subcooling of the heat cycle working medium in the condenser 12 is 5 degreeC and the superheat degree of the working medium for heat cycles in the evaporator 14 were implemented as 5 degreeC. In addition, it was assumed that there was no pressure loss in equipment efficiency and piping and heat exchanger.
  • the refrigeration capacity and the coefficient of performance are A (after evaporation, high temperature and low pressure), B (after compression, high temperature and high pressure), C (after condensation, low temperature and high pressure), and D (after expansion, low temperature and low pressure).
  • A after evaporation, high temperature and low pressure
  • B after compression, high temperature and high pressure
  • C after condensation, low temperature and high pressure
  • D after expansion, low temperature and low pressure
  • Thermodynamic properties necessary for calculation of the refrigeration cycle performance were calculated based on a generalized equation of state (Soave-Redrich-Kwong equation) based on the corresponding state principle and thermodynamic relational equations. When characteristic values were not available, calculations were performed using an estimation method based on the group contribution method.
  • each thermal cycle working medium / R410A the relative performance (each thermal cycle working medium / R410A) of the refrigeration cycle performance (refrigeration capacity and coefficient of performance) of each thermal cycle working medium relative to R410A was determined.
  • the results are shown in Table 3 for each thermal cycle working medium of each composition.
  • the working medium for heat cycle of the present invention includes a refrigerant for a refrigerator, a refrigerant for an air conditioner, a working fluid for a power generation system (waste heat recovery power generation, etc.), a working medium for a latent heat transport device (heat pipe, etc.), a secondary cooling medium, etc. It is useful as a working medium. It should be noted that the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2014-038614 filed on February 28, 2014 are cited herein as disclosure of the specification of the present invention. Incorporated.

Abstract

 温度勾配が小さく、吐出温度が十分に低く、耐久性が高く、地球温暖化への影響が少なく、システムの管理性に優れ、かつサイクル性能(能力)に優れる熱サイクルシステムを与える熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステムを提供する。 トリフルオロエチレンとジフルオロメタンを含み、熱サイクル用作動媒体全量に対するトリフルオロエチレンとジフルオロメタンの合計量の割合が90質量%を超え、熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が41/59~59/41である熱サイクル用作動媒体並びに熱サイクルシステム用組成物、およびこれらを用いた熱サイクルシステム。

Description

熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
 本発明は、トリフルオロエチレンとジフルオロメタンを含有する熱サイクル用作動媒体、および該作動媒体を用いた熱サイクルシステム用組成物並びに熱サイクルシステムに関する。
 従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動流体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(CFC)、クロロジフルオロメタン等のヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCおよびHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制対象となっている。なお、本明細書において、ハロゲン化炭化水素については化合物名の後の括弧内にその化合物の略称を記し、必要に応じて化合物名に代えてその略称を用いる。
 そこで、熱サイクル用作動媒体としては、オゾン層への影響が少ない、ジフルオロメタン(HFC-32)、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)等のヒドロフルオロカーボン(HFC)が用いられている。例えば、R410A(HFC-32とHFC-125の質量比1:1の擬似共沸混合物)等は従来から広く使用されてきた冷媒である。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。そのため、R410Aに代替可能な、オゾン層への影響が少なく、かつ地球温暖化係数の小さい熱サイクル用作動媒体の開発が急務となっている。
 例えば、自動車空調機器用冷媒として用いられている1,1,1,2-テトラフルオロエタン(HFC-134a)は、地球温暖化係数が1430と大きい。しかも、自動車空調機器においては、接続ホース、軸受け部等から冷媒が大気中へ漏洩する確率が高い。
 HFC-134aに代わる冷媒としては、二酸化炭素、HFC-134aに比べて地球温暖化係数が124と小さい1,1-ジフルオロエタン(HFC-152a)が検討されている。
 しかし、二酸化炭素は、HFC-134aに比べて機器圧力が極めて高くなるため、全ての自動車へ適用するためには、多くの解決すべき課題を有する。HFC-152aは、燃焼範囲を有しており、安全性を確保するための課題を有する。
 ここで、大気中のOHラジカルによって分解されやすいためにオゾン層への影響が少なく、かつ地球温暖化への影響が少ないため、熱サイクル用作動媒体として炭素-炭素二重結合を有するヒドロフルオロオレフィン(HFO)が用いられている
 熱サイクル用作動媒体に用いられるHFOとして、例えば、特許文献1には、3,3,3-トリフルオロプロペン(HFO-1243zf)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、2-フルオロプロペン(HFO-1261yf)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)が提案されている。
 また、熱サイクル用作動媒体として用いられるHFOとして、特許文献2には、1、2、3、3、3-ペンタフルオロプロペン(HFO-1225ye)、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、HFO-1234yf等が挙げられている。
 ここで、冷媒性能が優れた熱サイクル用作動媒体として、トリフルオロエチレン(HFO-1123)を含む組成物(例えば、特許文献3参照。)が知られている。特許文献3においては、さらに、該作動媒体の不燃性、サイクル性能等を高める目的で、HFO-1123に、各種HFCやHFOを組み合わせて作動媒体とする試みもされている。
 しかしながら、特許文献1および特許文献2に記載のHFOは、いずれもサイクル性能(能力)が不充分であり、これらのうちフッ素原子の割合が少ないものは、燃焼性を有する。また、特許文献2に記載のHFOも、サイクル性能(能力)が不充分である。
 また、特許文献3には、能力、効率、安全性および吐出温度とのバランスを総合的に勘案して実用に供せられる熱サイクル用作動媒体を得る観点から、HFO-1123とHFCや他のHFOを組み合わせて作動媒体とする知見や示唆は示されていない。例えば、HFO-1123は高温、高圧条件で自己分解反応を起こすことがあり、HFO-1123を含む組成物を実用に供する際には、HFO-1123を用いた熱サイクル用作動媒体の耐久性の向上に対する課題がある。また、熱サイクル用作動媒体を冷凍サイクルに適用した場合の圧縮機吐出ガス温度(以下、吐出温度ともいう。)が高いと、圧縮機を構成する材料、通常熱サイクルシステム用組成物に作動媒体以外に含有される冷凍機油、有機化合物等の耐熱性に影響するという課題がある。
 そこで、温度勾配が小さく、サイクル性能(能力)が充分に高いとともに、地球温暖化への影響が少ない組成による熱サイクル用作動媒体であって、吐出温度が十分に低く、耐久性のより高い熱サイクル用作動媒体が求められていた。
特開平04-110388号公報 特表2006-512426号公報 国際公開第2012/157764号
 本発明は、温度勾配が小さく、地球温暖化への影響が少なく、吐出温度が十分に低く、耐久性、サイクル性能(能力)が高い熱サイクル用作動媒体および熱サイクルシステム用組成物、及び、該組成物を用いた熱サイクルシステムを提供することを目的とする。
 本発明は、以下の構成を有する熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステムを提供する。
 [1]トリフルオロエチレンとジフルオロメタンを含む熱サイクル用作動媒体であって、前記熱サイクル用作動媒体全量に対する前記トリフルオロエチレンと前記ジフルオロメタンの合計量の割合が90質量%を超え100質量%以下であり、前記熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が41/59~59/41であることを特徴とする熱サイクル用作動媒体。
 [2]前記熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が43/57~59/41である[1]の熱サイクル用作動媒体。
 [3]前記熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が45/55~59/41である[1]の熱サイクル用作動媒体。
 [4]前記熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が45/55~55/45である[1]の熱サイクル用作動媒体。
 [5]前記熱サイクル用作動媒体全量に対する前記トリフルオロエチレンと前記ジフルオロメタンの合計量の割合が97質量%を超え100質量%以下である[1]~[4]のいずれかに記載の熱サイクル用作動媒体。
 [6][1]~[5]のいずれかに記載の熱サイクル用作動媒体と、冷凍機油とを含む熱サイクルシステム用組成物。
 [7][6]に記載の熱サイクルシステム用組成物を用いた、熱サイクルシステム。
 [8]冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である[7]の熱サイクルシステム。
 [9]ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機である[7]の熱サイクルシステム。
 本発明の熱サイクル用作動媒体および熱サイクルシステム用組成物は、温度勾配が小さく、吐出温度が十分に低く、耐久性が高い。さらに、地球温暖化への影響が少なく、かつサイクル性能(能力)に優れる。
 また、本発明の熱サイクルシステムは、本発明の熱サイクル用作動媒体を用いているため、耐久性が高く、地球温暖化の影響が少なく、かつ、サイクル性能(能力)、エネルギー効率に優れる。
冷凍サイクルシステムの一例を示す概略構成図である。 冷凍サイクルシステムにおける熱サイクル用作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。
 以下、本発明の実施の形態について説明する。
[熱サイクル用作動媒体]
 本発明の熱サイクル用作動媒体は、HFO-1123とHFC-32を含む熱サイクル用の作動媒体であり、熱サイクル用作動媒体全量に対するHFO-1123とHFC-32の合計量の割合が90質量%を超え100質量%以下である。また、熱サイクル用作動媒体におけるHFO-1123/HFC-32で示される質量比が41/59~59/41である。
 本発明の熱サイクル用作動媒体に用いられるHFO-1123は、単独で用いた場合に、高温または高圧下で着火源があると、急激な温度、圧力上昇を伴う連鎖的な自己分解反応をおこすことが知られている。本発明の熱サイクル用作動媒体においては、HFO-1123を、HFC-32と混合してHFO-1123の含有量を抑えた混合物とすることで自己分解反応を抑えることができる。ここで、本発明の熱サイクル用作動媒体を、熱サイクルシステムに適用する場合の圧力条件は、通常、5.0MPa以下程度である。そのため、HFO-1123とHFC-32からなる熱サイクル用作動媒体が、5.0MPaの圧力条件下で自己分解性を有しないことで、熱サイクルシステムに適用する場合の一般的な温度条件下において耐久性の高い熱サイクル用作動媒体を得ることができる。
 また、熱サイクルシステム機器の故障等、不測の事態が生じた場合を考慮しても、7.0MPa程度において自己分解性を有しない組成とすることで、より耐久性の高い熱サイクル用作動媒体を得ることができる。
 なお、本発明の熱サイクル用作動媒体においては、自己分解性を有する組成であっても使用条件によっては取り扱いを十分に注意することで熱サイクルシステムに使用することが可能である。
 熱サイクル用作動媒体において、圧縮機吐出ガス温度(吐出温度)は、冷凍サイクルにおける最高温度である。吐出温度は、圧縮機を構成する材料、熱サイクルシステム用組成物が作動媒体以外に通常含有する冷凍機油、高分子材料の耐熱性に影響する。そのため、吐出温度は低い方が好ましい。例えば、R410Aに代替するためには、吐出温度はR410Aの吐出温度より低いか高くても、R410Aにより稼働していた熱サイクルシステム機器が許容できる温度である必要がある。
 吐出温度は、例えば、図1に示す冷凍サイクルシステムにおいて、平均蒸発温度を0℃、平均凝集温度を40℃、過熱度を5℃、過冷却度を5℃とした温度条件に本発明の作動体を適用した際の吐出温度Tを用いて評価することができる。例えば、上記温度条件の冷凍サイクルシステムに適用した際の、R410Aの吐出温度TR410Aは、73.4℃である。吐出温度Tは、TR410Aとの差(ΔT=T-TR410A)が15℃以下程度であることが好ましい。
 また、本発明の熱サイクル用作動媒体は、地球温暖化に対する影響の観点から、気候変動に関する政府間パネル(IPCC)第4次報告書(2007年)による地球温暖化係数(100年)が400以下であることが好ましく、385以下がより好ましい。
 HFC-32の地球温暖化係数(100年)は、気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)による値で675であり、HFO-1123の地球温暖化係数(100年)は、IPCC第4次評価報告書に準じて測定された値として、0.3である。本明細書において地球温暖化係数(GWP)は、特に断りのない限りIPCC第4次評価報告書の100年の値である。また、混合物におけるGWPは、組成質量による加重平均として示す。例えば、HFO-1123とHFC-32の質量比1:1の混合物におけるGWPは、(0.3+675)/2=338と算出できる。
 なお、本発明の熱サイクル用作動媒体が、HFO-1123とHFC-32以外に、後述するような任意成分を含有する場合には、当該任意成分の単位質量あたりのGWPをさらに、組成物中の各成分の質量により加重平均することで、熱サイクル用作動媒体のGWPを求めることができる。
 上記した自己分解性、吐出温度T及びGWPを勘案して、本発明の熱サイクル用作動媒体においてはHFO-1123/HFC-32が41/59~59/41(GWP:398~277)の組成物を選択した。HFO-1123/HFC-32が41/59以上であることで、温度勾配が小さく、吐出温度Tが十分に低く、かつ、地球温暖化への影響が少なく、サイクル性能(能力)に優れる熱サイクル用作動媒体を得ることができる。また、HFO-1123/HFC-32が59/41以下であることで、熱サイクルシステムに適用する場合の温度条件下で自己分解性がなく、耐久性に優れた熱サイクル用作動媒体を得ることができる。
 HFO-1123/HFC-32は43/57以上であることが好ましく、45/55以上であることがより好ましい。この範囲では、吐出温度T、GWP、温度勾配をより一層低く抑えられる。HFO-1123/HFC-32は55/45以下が好ましく、この範囲では、高圧下でも自己分解性がなく、極めて安定な熱サイクル用作動媒体が得られる。したがって、本発明の熱サイクル用作動媒体において、43/57~59/41であることが好ましく、HFO-1123/HFC-32は45/55~59/41であることがより好ましく、45/55~55/45であることがより一層好ましい。
 HFO-1123およびHFC-32は、本発明の質量比の範囲において、擬似共沸混合物を形成する。したがって、本発明の熱サイクル用作動媒体は、温度勾配が極めて小さい。ここで、温度勾配は、混合物の作動媒体における液相、気相での組成の差異をはかる指標である。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、または凝縮器における凝縮の、開始温度と終了温度が異なる性質、と定義される。共沸混合物においては、温度勾配は0であり、擬似共沸混合物では温度勾配は極めて0に近い。
 温度勾配が大きいと、例えば、蒸発器における入口温度が低下することで着霜の可能性が大きくなり問題である。さらに、熱サイクルシステムにおいては、熱交換効率の向上をはかるために熱交換器を流れる熱サイクル用作動媒体と水や空気等の熱源流体を対向流にすることが一般的であり、安定運転状態においては該熱源流体の温度差が小さいことから、温度勾配の大きい非共沸混合物の場合、エネルギー効率のよい熱サイクルシステムを得ることが困難である。このため、混合物を作動媒体として使用する場合は適切な温度勾配を有する作動媒体が望まれる。
 さらに、非共沸混合物は、圧力容器から冷凍空調機器へ充てんされる際に組成変化を生じる問題点を有している。さらに、冷凍空調機器からの冷媒漏えいが生じた場合、冷凍空調機器内の冷媒組成が変化する可能が極めて大きく、初期状態への冷媒組成の復元が困難である。これに対し、本発明の熱サイクル用作動媒体は、擬似共沸混合物であるため、上記問題が回避できる。
 本発明の熱サイクル用作動媒体において、熱サイクル用作動媒体の全量に対するHFO-1123とHFC-32の合計量の割合が90質量%を超え、100質量%以下である。HFO-1123とHFC-32の合計量の割合が90質量%を超えることで、組成変化が極めて小さく、したがって温度勾配が小さく、吐出温度、GWP等各種特性のバランスに優れた熱サイクル用作動媒体を得ることができる。本発明の熱サイクル用作動媒体において、温度勾配が小さい点、吐出温度、GWP等各種特性のバランスを保つ点から、HFO-1123とHFC-32の合計量の割合は、97質量%を超えることが好ましく、100質量%であることが特に好ましい。
(冷凍サイクルシステム)
 ここで、熱サイクルシステムの一例である冷凍サイクルシステムについて説明する。冷凍サイクルシステムは、蒸発器において熱サイクル用作動媒体が負荷流体より熱エネルギーを除去することにより、負荷流体を冷却し、より低い温度に冷却するシステムである。
 図1は、本発明の冷凍サイクルシステムの一例を示す概略構成図である。冷凍サイクルシステム10は、熱サイクル用作動媒体蒸気Aを圧縮して高温高圧の熱サイクル用作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された熱サイクル用作動媒体蒸気Bを冷却し、液化して低温高圧の熱サイクル用作動媒体Cとする凝縮器12と、凝縮器12から排出された熱サイクル用作動媒体Cを膨張させて低温低圧の熱サイクル用作動媒体Dとする膨張弁13と、膨張弁13から排出された熱サイクル用作動媒体Dを加熱して高温低圧の熱サイクル用作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。
 冷凍サイクルシステム10においては、以下のサイクルが繰り返される。
 (i)蒸発器14から排出された熱サイクル用作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の熱サイクル用作動媒体蒸気Bとする。
 (ii)圧縮機11から排出された熱サイクル用作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の熱サイクル用作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される。
 (iii)凝縮器12から排出された熱サイクル用作動媒体Cを膨張弁13にて膨張させて低温低圧の熱サイクル用作動媒体Dとする。
 (iv)膨張弁13から排出された熱サイクル用作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の熱サイクル用作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される。
 冷凍サイクルシステム10は、断熱・等エントロピ変化、等エンタルピ変化および等圧変化からなるサイクルシステムである。熱サイクル用作動媒体の状態変化を圧力-エンタルピ線図上に記載すると図2のように、A,B、C、Dを頂点とする台形として表すことができる。
 図2中、AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の熱サイクル用作動媒体蒸気Aを高温高圧の熱サイクル用作動媒体蒸気Bとする過程である。熱サイクル用作動媒体蒸気Aは過熱状態で圧縮機11に導入され、得られる熱サイクル用作動媒体蒸気Bも過熱状態の蒸気である。BC過程は、凝縮器12で等圧冷却を行い、高温高圧の熱サイクル用作動媒体蒸気Bを低温高圧の熱サイクル用作動媒体Cとする過程である。CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の熱サイクル用作動媒体Cを低温低圧の熱サイクル用作動媒体Dとする過程である。DA過程は、蒸発器14で等圧加熱を行い、低温低圧の熱サイクル用作動媒体Dを高温低圧の熱サイクル用作動媒体蒸気Aに戻す過程である。
 ここで、熱サイクル用作動媒体のサイクル性能は、例えば、熱サイクル用作動媒体の冷凍能力(以下、必要に応じて「Q」で示す。)と成績係数(以下、必要に応じて「COP」で示す。)で評価できる。熱サイクル用作動媒体のQとCOPは、熱サイクル用作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態における各エンタルピ、hA、hB、hC、hDを用いると、下式(1)、(2)からそれぞれ求められる。
 Q=hA-hD  …(1)
 COP=Q/圧縮仕事=(hA-hD)/(hB-hA)  …(2)
 なお、COPは冷凍サイクルシステムにおける効率を意味しており、COPの値が高いほど少ない入力、例えば圧縮機を運転するために必要とされる電力量、により大きな出力、例えば、Qを得ることができることを表している。
 一方、Qは負荷流体を冷凍する能力を意味しており、Qが高いほど同一のシステムにおいて、多くの仕事ができることを意味している。言い換えると、大きなQを有する場合は、少量の熱サイクル用作動媒体で目的とする性能が得られることを表しており、システムの小型化が可能となる。
(任意成分)
 本発明の熱サイクル用作動媒体は、本発明の効果を損なわない範囲でHFO-1123およびHFC-32以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。
 本発明の熱サイクル用作動媒体が、HFO-1123およびHFC-32以外に任意に含有してもよい化合物(以下、任意成分という。)としては、HFC-1123以外のHFO、HFC-32以外の炭素-炭素二重結合を有するHFC、炭化水素、HCFOおよびCFOが挙げられる。
 本発明の熱サイクル用作動媒体において、任意成分の含有量は合量で、熱サイクル用作動媒体(100質量%)中、10質量%未満であり、3質量%未満が好ましい。任意成分の含有量が10質量%を超えると、冷媒等の用途において、熱サイクル機器からの漏えいが生じた場合、熱サイクル用作動媒体の温度勾配が大きくなるおそれがある他、吐出温度、GWPのバランスが崩れることがある。
(HFO-1123以外のHFO)
 本発明の熱サイクル用作動媒体が含んでもよいHFO-1123以外のHFOとしては、1,2-ジフルオロエチレン(HFO-1132)、HFO-1261yf、HFO-1243yc、トランス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、シス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)、HFO-1243zf等が挙げられる。HFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の熱サイクル用作動媒体が、HFO-1123以外のHFOを含む場合には、その含有量は熱サイクル用作動媒体(100質量%)中、1~9質量%が好ましく、1~2質量%がより好ましい。
(HFC-32以外のHFC)
 HFCは、熱サイクルシステムのサイクル性能(能力)を向上させる成分である。本発明の熱サイクル用作動媒体が含んでもよいHFC-32以外のHFCとしては、HFC-152a、ジフルオロエタン、トリフルオロエタン、HFC-134a、HFC-125、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 HFCとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さい点から、HFC-134、HFC-152aが特に好ましい。
 本発明の熱サイクル用作動媒体が、HFC-32以外のHFCを含む場合には、その含有量は熱サイクル用作動媒体(100質量%)中、1~9質量%が好ましく、1~2質量%がより好ましい。これらHFCの含有量は、熱サイクル用作動媒体の要求特性に応じて制御を行うことができる。
(炭化水素)
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。
 炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の熱サイクル用作動媒体が、炭化水素を含む場合には、その含有量は熱サイクル用作動媒体(100質量%)中、1~9質量%が好ましく、1~2質量%がより好ましい。炭化水素が1質量%以上であれば、熱サイクル用作動媒体への冷凍機油の溶解性が充分に向上する。炭化水素が9質量%以下であれば、熱サイクル用作動媒体の燃焼性を抑制するのに効果がある。
(HCFO、CFO)
 HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレン等が挙げられ、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、熱サイクル用作動媒体の燃焼性を充分に抑える点から、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)が特に好ましい。
 HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられ、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、熱サイクル用作動媒体の燃焼性を充分に抑える点から、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が特に好ましい。
 本発明の熱サイクル用作動媒体が、HCFOおよび/またはCFOを含有する場合には、それの含有量は合計で、熱サイクル用作動媒体(100質量%)中、1~9質量%が好ましい。塩素原子は燃焼性を抑制する効果を有しており、HCFOとCFOの含有量がこの範囲にあると、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、熱サイクル用作動媒体の燃焼性を充分に抑えることができる。また、熱サイクル用作動媒体への冷凍機油の溶解性を向上させる成分である。HCFO、CFOとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHCFOが好ましい。
[熱サイクルシステムへの適用]
 本発明の熱サイクル用作動媒体は、熱サイクルシステムへの適用に際して、通常、冷凍機油と混合して本発明の熱サイクルシステム用組成物として使用することができる。また、本発明の熱サイクルシステム用組成物は、これら以外にさらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
(冷凍機油)
 冷凍機油としては、熱サイクルシステム用組成物に用いられる公知の冷凍機油が用いられる。
 冷凍機油としては、含酸素系合成油(エステル系冷凍機油、エーテル系冷凍機油、ポリグリコール油等)、フッ素系冷凍機油、鉱物油、炭化水素系合成油等が挙げられる。
 エステル系冷凍機油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。
 二塩基酸エステル油としては、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖または分枝アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール等)とのエステルが好ましい。具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3-エチルヘキシル)等が挙げられる。
 ポリオールエステル油としては、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,5-ペンタジオール、ネオペンチルグリコール、1,7-ヘプタンジオール、1,12-ドデカンジオール等)または水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、グリセリン、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物等)と、炭素数6~20の脂肪酸(ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、エイコサン酸、オレイン酸等の直鎖または分枝の脂肪酸、もしくはα炭素原子が4級であるいわゆるネオ酸等)とのエステルが好ましい。
 ポリオールエステル油は、遊離の水酸基を有していてもよい。
 ポリオールエステル油としては、ヒンダードアルコール(ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスルトール等)のエステル(トリメチロールプロパントリペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールテトラペラルゴネート等)が好ましい。
 コンプレックスエステル油とは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、上述と同様のものを用いることができる。
 ポリオール炭酸エステル油とは、炭酸とポリオールとのエステルである。
 ポリオールとしては、ジオール(上述と同様のもの)を単独重合または共重合したポリグリコール(ポリアルキレングリコール、そのエーテル化合物、それらの変性化合物等)、ポリオール(上述と同様のもの)、ポリオールにポリグリコールを付加したもの等が挙げられる。
 ポリアルキレングリコールとしては、炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を、水や水酸化アルカリを開始剤として重合させる方法等により得られたものが挙げられる。また、ポリアルキレングリコールの水酸基をエーテル化したものであってもよい。ポリアルキレングリコール中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。
 エーテル系冷凍機油としては、ポリビニルエーテルが挙げられる。
 ポリビニルエーテルとしては、ビニルエーテルモノマーを重合して得られたもの、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとを共重合して得られたもの、およびポリビニルエーテルと、アルキレングリコールもしくはポリアルキレングリコール、またはそれらのモノエーテルとの共重合体がある。
 ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、各種アルキル置換スチレン等が挙げられる。オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。
 ポリビニルエーテルは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリグリコール油としては、ポリアルキレングリコールをベースとするポリアルキレングリコール油が好ましい。ポリアルキレングリコールとしては、1価または多価アルコール(メタノール、ブタノール、ペンタエリスリトール、グリセロール等)に炭素数2~4のアルキレンオキシドが付加した化合物等、ヒドロキシ基開始ポリアルキレングリコールが挙げられる。また、該ヒドロキシ基開始ポリアルキレングリコールの末端が、メチル基等のアルキル基でキャップされたものも挙げられる。
 フッ素系冷凍機油としては、合成油(後述する鉱物油、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。
 鉱物油としては、原油を常圧蒸留または減圧蒸留して得られた冷凍機油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。
 炭化水素系合成油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。
 冷凍機油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 冷凍機油としては、熱サイクル用作動媒体との相溶性の点から、ポリオールエステル油および/またはポリグリコール油が好ましく、安定化剤によって顕著な酸化防止効果が得られる点から、ポリアルキレングリコール油が特に好ましい。
 熱サイクルシステム用組成物中の冷凍機油の含有量は、本発明の効果を著しく低下させない範囲であればよく、用途、圧縮機の形式等によっても異なるが、熱サイクル用作動媒体(100質量部)に対して、通常10~100質量部であり、20~50質量部が好ましい。
(安定剤)
 安定剤は、熱および酸化に対する熱サイクル用作動媒体の安定性を向上させる成分である。安定剤としては、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。
 耐酸化性向上剤および耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2-メチルベンズイミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。
 安定剤の含有量は、本発明の効果を著しく低下させない範囲であればよく、熱サイクルシステム用組成物(100質量%)中、通常5質量%以下であり、1質量%以下が好ましい。
(漏れ検出物質)
 漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、公知の紫外線蛍光染料が挙げられる。
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、公知の香料が挙げられる。
 漏れ検出物質を用いる場合には、熱サイクル用作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
 可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。
 漏れ検出物質の含有量は、本発明の効果を著しく低下させない範囲であればよく、熱サイクルシステム用組成物(100質量%)中、通常2質量%以下であり、0.5質量%以下が好ましい。
(他の化合物)
 本発明の熱サイクルシステム用組成物は、炭素数1~4のアルコール、または、従来の熱サイクル用作動媒体、冷媒、熱伝達媒体として用いられている化合物(以下、該アルコールおよび化合物をまとめて、他の化合物と記す。)を含んでいてもよい。
 他の化合物としては、下記の化合物が挙げられる。
 含フッ素エーテル:ペルフルオロプロピルメチルエーテル(COCH)、ペルフルオロブチルメチルエーテル(COCH)、ペルフルオロブチルエチルエーテル(COC)、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(CFHCFOCHCF、旭硝子社製、AE-3000)等。
 他の化合物の含有量は、本発明の効果を著しく低下させない範囲であればよく、熱サイクルシステム用組成物(100質量%)中、通常30質量%以下であり、20質量%以下が好ましく、15質量%以下がより好ましい。
(作用効果)
 本発明の熱サイクル用作動媒体および熱サイクルシステム用組成物は、HFO-1123とHFC-32を所定の割合で含有することで、温度勾配が小さく、吐出温度が低く、さらに、自己分解性を抑えることができるため耐久性に優れ、かつ地球温暖化への影響が少ない。さらに、サイクル性能に優れる熱サイクルシステムを与えることができる。
[熱サイクルシステム]
 本発明の熱サイクルシステムは、本発明の熱サイクル用作動媒体を用いたシステムである。本発明の熱サイクル用作動媒体を熱サイクルシステムに適用するにあたっては、通常、上記熱サイクルシステム用組成物に熱サイクル用作動媒体を含有させるかたちで適用する。
 熱サイクルシステムとしては、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機等が挙げられる。熱サイクルシステムとして、具体的には、ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機等が挙げられる。
(水分濃度)
 熱サイクルシステム内に水分が混入する問題がある。水分の混入は、キャピラリーチューブ内での氷結、熱サイクル用作動媒体や冷凍機油の加水分解、熱サイクル内で発生した酸成分による材料劣化、コンタミナンツの発生等により発生する。特に、上述したポリアルキレングリコール油、ポリオールエステル油等は、吸湿性が極めて高く、また、加水分解反応を生じやすく、冷凍機油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。また、自動車空調機器においては、振動を吸収する目的で使用されている冷媒ホースや圧縮機の軸受け部から水分が混入しやすい傾向にある。したがって、冷凍機油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を抑制する必要がある。熱サイクルシステム内の水分濃度は、熱サイクル用作動媒体に対する質量割合で、10000ppm未満が好ましく、1000ppm未満がさらに好ましく、100ppm未満が特に好ましい。
 熱サイクルシステム内の水分濃度を抑制する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)を用いる方法が挙げられる。乾燥剤としては、乾燥剤と熱サイクル用作動媒体との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
 ゼオライト系乾燥剤としては、従来の鉱物系冷凍機油に比べて吸湿量の高い冷凍機油を用いる場合には、吸湿能力に優れる点から、下式(3)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
 M2/nO・Al・xSiO・yHO ・・・(3)。
 ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
 乾燥剤の選定においては、細孔径および破壊強度が特に重要である。
 熱サイクル用作動媒体の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、熱サイクル用作動媒体が乾燥剤中に吸着され、その結果、熱サイクル用作動媒体と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。
 したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5Å以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。熱サイクル用作動媒体の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、熱サイクル用作動媒体を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、熱サイクル用作動媒体の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。
 ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、約0.5~5mmが好ましい。形状としては、粒状または円筒状が好ましい。
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等)を併用してもよい。
 熱サイクル用作動媒体に対するゼオライト系乾燥剤の使用割合は、特に限定されない。
(酸素濃度)
 熱サイクルシステム内には酸素が混入することもある。酸素の混入は、熱サイクル用作動媒体等の劣化の原因にもなるので、熱サイクルシステム内の酸素濃度を抑制する必要がある。熱サイクルシステム内の酸素濃度は、熱サイクル用作動媒体に対する質量割合で、10000ppm未満が好ましく、1000ppm未満がさらに好ましく、100ppm未満が特に好ましい。
(塩素濃度)
 熱サイクルシステム内に塩素が存在すると、金属との反応による堆積物の生成、軸受け部の磨耗、熱サイクル用作動媒体や冷凍機油の分解等、好ましくない影響をおよぼす。
 熱サイクルシステム内の塩素濃度は、熱サイクル用作動媒体に対する質量割合で100ppm以下が好ましく、50ppm以下が特に好ましい。
(不凝縮性気体濃度)
 熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、熱サイクル用作動媒体や冷凍機油と反応し、分解を促進する。
 不凝縮性気体濃度は、熱サイクル用作動媒体の気相部において、熱サイクル用作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。
(作用効果)
 以上説明した熱サイクルシステムにあっては、本発明の熱サイクル用作動媒体を用いているため、耐久性が高く、地球温暖化の影響が少なく、かつ、サイクル性能(能力)、エネルギー効率に優れる。また、能力が優れていることから、システムを小型化できる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[例1]
(自己分解性の評価)
 7.0MPaまでの圧力条件で、HFO-1123とHFC-32からなる熱サイクル用作動媒体について、自己分解性の評価を行った。自己分解性の評価は、高圧ガス保安法における個別通達においてハロゲンを含むガスを混合したガスにおける燃焼範囲を測定する設備として推奨されているA法に準拠した設備を用いて行った。
 外部からのヒーター加熱によって反応器内部の温度を190℃~210℃の範囲に制御した内容積650cmの球形耐圧容器内に、HFO-1123とHFC-32を表1に示す割合で混合した熱サイクル用作動媒体を、表1に示す圧力まで封入した。その後、球形耐圧容器内部に設置された白金線(外径0.5mm、長さ25mm)を10V、50Aの電圧、電流で溶断した(ホットワイヤー法)。溶断後に発生する耐圧容器内の温度と圧力変化を測定した。また、試験後のガス組成を分析した。試験後に、球形耐圧容器内の圧力上昇並びに温度上昇が認められ、試験後のガス分析で仕込んだHFO-1123の100モル%に対して20モル%以上の自己分解反応生成物(CF、HF、コーク)が検出された場合に自己分解反応ありと判断した。結果を、圧力条件および熱サイクル用作動媒体の組成とともに表1に示す。なお表1中の圧力はゲージ圧である。
Figure JPOXMLDOC01-appb-T000001
 表1より、熱サイクル用作動媒体におけるHFO-1123とHFC-32の質量比(以下、HFO-1123/HFC-32と示す。)が60/40未満の組成からなる熱サイクル用作動媒体では、圧力が5.0MPa以上であっても自己分解性を有さず、さらに7.0MPaであっても自己分解性を有しないことが確認された。
[例2]
(吐出温度、GWP、温度勾配の評価)
 表2に示す各組成の熱サイクル用作動媒体について、前述した方法により吐出温度Tを求め、ΔTを算出した。また、地球温暖化係数(GWP)を算出した。結果を表2に示した。また、上記吐出温度を求めた条件における温度勾配を、表2にあわせて示した。さらに、上記自己分解性の評価において、自己分解性を有しない組成範囲を表中に実線の矢印で、自己分解性を有する範囲を破線の矢印で示した。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、本発明の熱サイクル用作動媒体は、GWP、温度勾配が低く、かつ、自己分解性を有さないことが確認された。また、ΔTが15℃以下であり、吐出温度Tが低いことが確認された。
[例3]
(冷凍サイクル性能の評価)
 図1の冷凍サイクルシステム10に、表3に示す割合のHFO-1123およびHFC-32からなる熱サイクル用作動媒体を適用して、図2に示す熱サイクル、すなわちAB過程で圧縮機11による断熱圧縮、BC過程で凝縮器12による等圧冷却、CD過程で膨張弁13による等エンタルピ膨張、DA過程で蒸発器14による等圧加熱を実施した場合のサイクル性能(能力および効率)として冷凍サイクル性能(冷凍能力および成績係数)を評価した。
 評価は、上述した吐出温度Tを求めた際と同様の温度条件にて行った。すなわち、蒸発器14における熱サイクル用作動媒体の平均蒸発温度を0℃、凝縮器12における熱サイクル用作動媒体の平均凝縮温度を40℃、凝縮器12における熱サイクル用作動媒体の過冷却度を5℃、蒸発器14における熱サイクル用作動媒体の過熱度を5℃として実施した。また、機器効率および配管、熱交換器における圧力損失はないものとした。
 冷凍能力および成績係数は、熱サイクル用作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態のエンタルピhを用いて、上記式(1)、(2)から求めた。
 冷凍サイクル性能の算出に必要となる熱力学性質は、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、および熱力学諸関係式に基づき算出した。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用い算出を行った。
 R410Aの冷凍サイクル性能を基準にし、R410Aに対する各熱サイクル用作動媒体の冷凍サイクル性能(冷凍能力および成績係数)の相対性能(各熱サイクル用作動媒体/R410A)を求めた。結果を、各組成の熱サイクル用作動媒体ごとに表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、本発明の熱サイクル用作動媒体では、R410Aと同等かそれ以上の成績係数、冷凍能力が得られたことが分かる。また、HFO-1123とHFC-32を含むことで、HFO-1123のみに比べて、成績係数、冷凍能力のいずれも向上したことが確認された。
 本発明の熱サイクル用作動媒体は、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動流体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の作動媒体として有用である。
 なお、2014年2月28日に出願された日本特許出願2014-038614号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ、A,B…熱サイクル用作動媒体蒸気、C,D…熱サイクル用作動媒体、E,E‘…負荷流体,F…流体。

Claims (9)

  1.  トリフルオロエチレンとジフルオロメタンを含む熱サイクル用作動媒体であって、
     前記熱サイクル用作動媒体全量に対する前記トリフルオロエチレンと前記ジフルオロメタンの合計量の割合が90質量%を超え100質量%以下であり、
     前記熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が41/59~59/41であることを特徴とする熱サイクル用作動媒体。
  2.  前記熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が43/57~59/41である請求項1記載の熱サイクル用作動媒体。
  3.  前記熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が45/55~59/41である請求項1記載の熱サイクル用作動媒体。
  4.  前記熱サイクル用作動媒体における前記トリフルオロエチレン/前記ジフルオロメタンで示される質量比が45/55~55/45である請求項1記載の熱サイクル用作動媒体。
  5.  前記熱サイクル用作動媒体全量に対する前記トリフルオロエチレンと前記ジフルオロメタンの合計量の割合が97質量%を超え100質量%以下である請求項1~4のいずれか1項に記載の熱サイクル用作動媒体。
  6.  請求項1~5のいずれか1項に記載の熱サイクル用作動媒体と、冷凍機油とを含む熱サイクルシステム用組成物。
  7.  請求項6に記載の熱サイクルシステム用組成物を用いた、熱サイクルシステム。
  8.  冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である請求項7記載の熱サイクルシステム。
  9.  ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機である請求項7記載の熱サイクルシステム。
PCT/JP2015/054661 2014-02-28 2015-02-19 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム WO2015129548A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016505167A JP6540685B2 (ja) 2014-02-28 2015-02-19 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
US15/232,167 US10131828B2 (en) 2014-02-28 2016-08-09 Working fluid for heat cycle, composition for heat cycle system, and heat cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014038614 2014-02-28
JP2014-038614 2014-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/232,167 Continuation US10131828B2 (en) 2014-02-28 2016-08-09 Working fluid for heat cycle, composition for heat cycle system, and heat cycle system

Publications (1)

Publication Number Publication Date
WO2015129548A1 true WO2015129548A1 (ja) 2015-09-03

Family

ID=54008869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054661 WO2015129548A1 (ja) 2014-02-28 2015-02-19 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Country Status (3)

Country Link
US (1) US10131828B2 (ja)
JP (1) JP6540685B2 (ja)
WO (1) WO2015129548A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
BR112016018711B1 (pt) * 2014-02-20 2021-02-17 AGC Inc. composição para sistema de ciclo térmico e sistema de ciclo térmico
EP3109302B1 (en) 2014-02-20 2020-08-05 AGC Inc. Composition for heat cycle system, and heat cycle system
CN110079276B (zh) 2014-02-20 2022-01-14 Agc株式会社 热循环系统用组合物以及热循环系统
WO2015125878A1 (ja) 2014-02-24 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
BR112016020985B1 (pt) * 2014-03-18 2022-09-20 Agc Inc Composição para sistema de ciclo de calor e sistema de ciclo de calor
CN107532074A (zh) 2015-05-14 2018-01-02 旭硝子株式会社 流体组合物、制冷剂组合物和空调机
DE202017107917U1 (de) * 2016-12-30 2018-03-14 Trane International Inc. Kältemittel-Leckagedetektion durch Verwendung eines Fluidadditivs
CN108050607A (zh) * 2018-01-11 2018-05-18 山东荣安电子科技有限公司 移动式冷热一体设备
CN113604201A (zh) * 2021-09-15 2021-11-05 珠海格力电器股份有限公司 一种混合制冷剂和空调系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042781A2 (en) * 2008-10-10 2010-04-15 E. I. Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene, 2-chloro-2,3,3,3-tetrafluoropropanol, 2-chloro-2,3,3,3-tetrafluoro-propyl acetate or zinc (2-chloro-2,3,3,3-tetrafluoropropoxy) chloride
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110388A (ja) 1990-08-31 1992-04-10 Daikin Ind Ltd 熱伝達用流体
DK2258404T3 (da) 2002-10-25 2017-11-13 Honeywell Int Inc Fremgangsmåde til sterilisering ved anvendelse af sammensætninger, der indeholder fluorsubstituerede olefiner
US8058488B2 (en) 2007-11-20 2011-11-15 E. I. Du Pont De Nemours And Company Synthesis of hydrofluoroalkanols and hydrofluoroalkenes
CN105164228B (zh) * 2013-04-30 2019-06-11 Agc株式会社 热循环用工作介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042781A2 (en) * 2008-10-10 2010-04-15 E. I. Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene, 2-chloro-2,3,3,3-tetrafluoropropanol, 2-chloro-2,3,3,3-tetrafluoro-propyl acetate or zinc (2-chloro-2,3,3,3-tetrafluoropropoxy) chloride
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム

Also Published As

Publication number Publication date
JPWO2015129548A1 (ja) 2017-03-30
JP6540685B2 (ja) 2019-07-10
US20160347979A1 (en) 2016-12-01
US10131828B2 (en) 2018-11-20

Similar Documents

Publication Publication Date Title
JP7173214B2 (ja) 作動媒体および熱サイクルシステム
JP7167975B2 (ja) 組成物
JP6330794B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6477679B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6493388B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2016194847A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186558A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015115252A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015115550A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157765A1 (ja) 作動媒体および熱サイクルシステム
JP6540685B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157762A1 (ja) 作動媒体および熱サイクルシステム
WO2013015201A1 (ja) 熱サイクル用作動媒体および熱サイクルシステム
JP2015145452A (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157761A1 (ja) 作動媒体および熱サイクルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755683

Country of ref document: EP

Kind code of ref document: A1