WO2021075075A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2021075075A1
WO2021075075A1 PCT/JP2020/015260 JP2020015260W WO2021075075A1 WO 2021075075 A1 WO2021075075 A1 WO 2021075075A1 JP 2020015260 W JP2020015260 W JP 2020015260W WO 2021075075 A1 WO2021075075 A1 WO 2021075075A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
refrigerant
point
hfo1123
heat exchanger
Prior art date
Application number
PCT/JP2020/015260
Other languages
English (en)
French (fr)
Inventor
拓未 西山
健太 村田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080071509.9A priority Critical patent/CN114556031B/zh
Priority to US17/634,151 priority patent/US20220290901A1/en
Priority to JP2021552092A priority patent/JP7354271B2/ja
Priority to EP20876645.1A priority patent/EP4047287A4/en
Priority to AU2020367564A priority patent/AU2020367564B2/en
Publication of WO2021075075A1 publication Critical patent/WO2021075075A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • chlorofluorocarbon CFC
  • hydrochlorofluorocarbon HCFC
  • chlorine-containing refrigerants such as CFC and HCFC is currently regulated because they have a large effect on the ozone layer in the stratosphere (effect on global warming).
  • HFC hydrofluorocarbon
  • HFC-based refrigerant examples include difluoromethane (also referred to as methylene fluoride, chlorofluorocarbon 32, HFC-32, R32, etc., hereinafter referred to as “R32”), tetrafluoroethane, R125 (1,1,1,2). , 2-Pentafluoroethane), R410A (pseudo-co-boiling mixed refrigerant of R32 and R125) and the like are known.
  • difluoromethane also referred to as methylene fluoride, chlorofluorocarbon 32, HFC-32, R32, etc., hereinafter referred to as “R32”
  • R125 tetrafluoroethane
  • R410A pseudo-co-boiling mixed refrigerant of R32 and R125
  • Hydrofluoroolefin (HFO) -based refrigerants are known as refrigerants having a smaller GWP than HFC-based refrigerants.
  • HFO-based refrigerant examples include trifluoroethylene (also referred to as 1,1,2-trifluoroethane, HFO1123, R1123, etc., hereinafter referred to as “HFO1123”.
  • GWP about 0.3
  • 3-Tetrafluoropropene also referred to as 2,3,3,3-tetrafluoro-1-propene, HFO-1234yf, R1234yf, etc., hereinafter referred to as "R1234yf
  • E -1,2-difluoro Ethylene
  • HFO-1132 (E) also referred to as HFO-1132 (E)
  • R1132 (E) -1,2-difluoro Ethylene
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2015-034296 discloses that a mixed refrigerant containing R32 and HFO1234yf is applied to a refrigeration cycle apparatus.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2004-198063 discloses a refrigeration cycle apparatus using a non-azeotropic mixed refrigerant containing R32 and carbon dioxide (R744).
  • the temperature gradient of the mixed refrigerant (the difference between the start temperature and the end temperature of evaporation or condensation in the heat exchanger. The temperature difference) may be up to about 25 ° C. Therefore, there is a high possibility that frost will occur in the refrigerant circuit during operation, and in particular, there is a high possibility that frost will occur during evaporation in an air conditioner or the like.
  • a mixed refrigerant containing R744 is used in a refrigeration cycle device such as an air conditioner, such a problem may occur.
  • the critical temperature of the mixed refrigerant (the maximum temperature at which the supercritical state does not occur) becomes lower.
  • the critical temperature becomes lower than the operating temperature of the refrigeration cycle device, the mixed refrigerant is used in the supercritical region during the operation of the refrigeration cycle device. Since it cannot be used, there is also a problem that the performance of the refrigeration cycle device is deteriorated.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a refrigeration cycle apparatus capable of suppressing frost formation, performance deterioration, etc. while reducing the influence of global warming.
  • the refrigeration cycle apparatus includes a refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an expansion valve, and a refrigerant is sealed in the refrigeration circuit.
  • the refrigerant contains three components, R32, HFO1123 and R744, and contains three components.
  • the mass ratio of the three components is Point A indicating that R32, HFO1123 and R744 are 46% by mass, 54% by mass and 0% by mass, respectively, and R32, HFO1123 and R744 are 46% by mass, 37.2% by mass and 16.8% by mass, respectively.
  • the first straight line connecting the point B indicating that there is
  • a second straight line connecting the point A with a point C indicating that R32, HFO1123 and R744 are 0% by mass, 100% by mass and 0% by mass, respectively.
  • a third straight line connecting the point C with a point D indicating that R32, HFO1123 and R744 are 0% by mass, 85.7% by mass and 14.3% by mass, respectively, and It is within the range surrounded by the first curve connecting the point B and the point D.
  • the mass ratio of all the three components is larger than 0% by mass.
  • FIG. 1 It is a schematic block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a triangular composition diagram which shows the composition range (R32 / HFO1123 / R744) of the refrigerant which concerns on Embodiment 1.
  • FIG. It is a triangular composition figure which shows the preferable composition range of the refrigerant which concerns on Embodiment 1.
  • FIG. It is a triangular composition figure which shows the more preferable composition range of the refrigerant which concerns on Embodiment 1.
  • FIG. It is a triangular composition figure which shows the more preferable composition range of the refrigerant which concerns on Embodiment 1.
  • FIG. 1 It is a triangular composition figure which shows the more preferable composition range of the refrigerant which concerns on Embodiment 1.
  • FIG. 2 is a triangular composition figure which shows the more preferable composition range of the refrigerant which concerns on Embodiment 1.
  • FIG. 2 is a triangular composition diagram which shows the composition range (R32 / HFO1123 / R744) of the refrigerant which concerns on Embodiment 2.
  • It is a triangular composition figure which shows the preferable composition range of the refrigerant which concerns on Embodiment 2.
  • FIG. 1 is a schematic configuration diagram showing a refrigeration cycle apparatus according to the first embodiment.
  • the refrigeration cycle device includes a compressor 1, a flow path switching valve (four-way valve) 2 for switching the flow direction during cooling and heating, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. Equipped with a refrigeration circuit including.
  • the flow path switching valve 2 is not required in the refrigeration cycle device that does not need to switch between cooling and heating.
  • the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 via the flow path switching valve 2 (flow path shown by the solid line) and condenses there.
  • the liquid refrigerant condensed in the outdoor heat exchanger 3 flows into the indoor heat exchanger 5 via the expansion valve 4 and evaporates (vaporizes) there.
  • the gaseous refrigerant evaporated in the indoor heat exchanger 5 returns to the compressor 1 via the flow path switching valve 2 (flow path shown by the solid line).
  • the refrigerant circulates in the refrigerating circuit of the refrigerating cycle device in the direction of the solid arrow shown in FIG.
  • the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 1 flows into the indoor heat exchanger 5 via the flow path switching valve 2 (flow path shown by the dotted line) and condenses there. To do.
  • the liquid refrigerant condensed in the indoor heat exchanger 5 flows into the outdoor heat exchanger 3 via the expansion valve 4 and evaporates (vaporizes) there.
  • the refrigerant evaporated in the outdoor heat exchanger 3 returns to the compressor 1 via the flow path switching valve 2 (flow path shown by the dotted line).
  • the refrigerant circulates in the refrigerating circuit of the refrigerating cycle device in the direction of the broken line arrow shown in FIG.
  • the above configuration is the minimum component of the refrigeration cycle device capable of performing cooling and heating operations.
  • the refrigeration cycle apparatus of the present embodiment may further include other equipment such as a gas-liquid branching device, a receiver, an accumulator, and a high / low pressure heat exchanger.
  • the refrigerant contains three components, R32, HFO1123 and R744, within a predetermined composition range.
  • FIG. 2 is a composition diagram (triangular composition diagram) represented by triangular coordinates showing the composition ratio (mass ratio) of the three components (R32, HFO1123 and R744) contained in the refrigerant.
  • the mass ratios of the three components are the first straight line connecting the points A and B, the second straight line connecting the points A and C, the third straight line connecting the points C and D, and the points. It is within the range (hatched portion in FIG. 2) surrounded by the first curve connecting B and the point D.
  • the above range includes the composition ratio on the first straight line (however, the point A is excluded) and the first curve, and does not include the composition ratio on the second straight line and the third straight line.
  • the first curve connecting the points B and D is as follows when the points B and D are connected, the component of R744 is the X-axis, and the direction perpendicular to the X-axis is the Y-axis. It is expressed by the formula (1) [boundary condition: 0 ⁇ Y ⁇ 39.84, 14.3 ⁇ X ⁇ 39.8].
  • the first curve is a line showing a composition in which the temperature gradient of the refrigerant is 7 ° C. (a boundary line for whether or not frost formation occurs during heating operation when the outside air temperature is 7 ° C.).
  • the temperature gradient of the refrigerant is less than 7 ° C., so that frost formation is suppressed even during the heating operation when the outside air temperature is 7 ° C. can do.
  • the composition of the refrigerant is within the range of the shaded area in FIG. 2 (the lower side of the first curve connecting the points C and A), the ratio of R32 in the refrigerant is less than 46% by mass. Therefore, the GWP of the refrigerant is 15% or less of the GWP (2090) of R410A. Therefore, the refrigeration cycle device of the present embodiment has little influence on global warming.
  • the critical temperature of the refrigerant can be 52 ° C. or higher, and the high pressure side. In, a two-phase region having a high heat transfer coefficient can be used. In a refrigeration cycle device such as an air conditioner, the upper limit of the usable outside air temperature is usually 52 ° C.
  • the pressure loss of the refrigerant used in this embodiment is smaller than the pressure loss of R410A.
  • a range surrounded by a straight line and a first curve connecting the points B2 and D2 (curve represented by the following equation (1-2) [boundary condition: 0 ⁇ Y ⁇ 39.84, 13.86 ⁇ X ⁇ 39.8]) ( It is preferably in the shaded area of FIG.
  • the temperature gradient of the refrigerant is less than 6 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • the second straight line connecting the point C and the point C, the third straight line connecting the point C and the point D3 (R32 / HFO1123 / R744 0/88.7 / 11.3% by mass), and the point B3 and the point D3. It must be within the range (hatched portion in FIG. 4) surrounded by the first curve to be connected (the curve represented by the following equation (1-3) [boundary condition: 0 ⁇ Y ⁇ 39.84, 11.31 ⁇ X ⁇ 33.79]). preferable.
  • Y -0.0000015304X 6 + 0.0002020386X 5 -0.0107078613X 4 + 0.2938468312X 3 -4.4132132218X 2 + 35.5395625683X-121.5449310970 ⁇ ⁇ ⁇ (1-3)
  • the temperature gradient of the refrigerant is less than 5 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • Y -0.0000012965X 6 + 0.0001480600X 5 -0.0067494894X 4 + 0.1592511164X 3 -2.0569218561X 2 + 15.0215083652X-48.3962777129 ⁇ ⁇ ⁇ (1-4)
  • the temperature gradient of the refrigerant is less than 4 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • the second straight line connecting the point C and the point C, the third straight line connecting the point C and the point D5 (R32 / HFO1123 / R744 0 / 93.3 / 6.7 mass%), and the point B5 and the point D5. It must be within the range (hatched portion in FIG. 6) surrounded by the first curve to be connected (the curve represented by the following equation (1-5) [boundary condition: 0 ⁇ Y ⁇ 39.84, 6.72 ⁇ X ⁇ 28.39]). preferable.
  • Y -0.0000011225X 6 + 0.0001099130X 5 -0.0042657843X 4 + 0.0860474269X 3 -0.9562929239X 2 +6.8790153675X-21.8643132039 ⁇ ⁇ ⁇ (1-5)
  • the temperature gradient of the refrigerant is less than 3 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • the second straight line connecting the point C and the point C, the third straight line connecting the point C and the point D6 (R32 / HFO1123 / R744 0 / 95.5 / 4.5% by mass), and the point B6 and the point D6. It must be within the range (shaded area in FIG. 7) surrounded by the first curve to be connected (curve represented by the following equation (1-6) [boundary condition: 0 ⁇ Y ⁇ 39.84, 4.5 ⁇ X ⁇ 25.7]). preferable.
  • Y -0.0000010154X 6 + 0.0000840028X 5 -0.0027360831X 4 + 0.0471715299X 3 -0.4587670880X 2 + 3.7993138372X-11.1892990965 (0 ⁇ Y ⁇ 39.84, 4.5 ⁇ X ⁇ 25.7) ... (1-6)
  • the temperature gradient of the refrigerant is less than 2 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • the refrigerant used in the present embodiment may be a three-component mixed refrigerant composed of only the above three components, or may further contain other components.
  • examples of other components include HFO1234yf, HFO1234ze, HFO1132 (E), R290, R1270, R134a, R125, and other HFC-based refrigerants.
  • the blending ratios of other components and the like are set within a range that does not interfere with the main effects of the present embodiment.
  • HFO1132 (E) has substantially the same characteristics such as boiling point as HFO1123, in the refrigerant according to the present embodiment, a three-component mixed refrigerant in which HFO1123 is replaced with HFO1132 (E) is used as the refrigerant according to the present embodiment. Can be used in the same manner as.
  • the refrigerant may further contain refrigerating machine oil.
  • refrigerating machine oil examples include commonly used refrigerating machine oils (ester-based lubricating oil, ether-based lubricating oil, fluorine-based lubricating oil, mineral-based lubricating oil, hydrocarbon-based lubricating oil, and the like). In that case, it is preferable to select a refrigerating machine oil which is excellent in terms of compatibility with the refrigerant and stability.
  • Specific examples of the refrigerating machine oil include, but are not limited to, polyalkylene glycol, polyol ester, polyvinyl ether, alkylbenzene, mineral oil and the like.
  • the refrigerant may further contain a stabilizer if necessary, for example, when a high degree of stability is required under harsh usage conditions.
  • Stabilizers are components that improve the stability of the refrigerant against heat and oxidation.
  • the stabilizer include known stabilizers conventionally used in refrigeration cycle devices, such as oxidation resistance improvers, heat resistance improvers, and metal deactivators.
  • the stabilizer examples include (i) aliphatic nitro compounds such as nitromethane and nitroethane, aromatic nitro compounds such as nitrobenzene and nitrostyrene, ethers such as 1,4-dioxane, and 2,2,3,3,3. -Amines such as pentafluoropropylamine and diphenylamine, butylhydroxyxylene, benzotriazole and the like can be mentioned.
  • the stabilizer may be used alone or in combination of two or more.
  • the blending amount of the stabilizer varies depending on the type, but it should not interfere with the properties of the refrigerant composition.
  • the mixing ratio of the stabilizer is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass, based on the total amount of the refrigerant (100% by mass).
  • the refrigerant may further contain a polymerization inhibitor.
  • the polymerization inhibitor include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, benzotriazole and the like.
  • the compounding ratio of the polymerization inhibitor is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass, based on the total amount of the refrigerant (100% by mass).
  • the refrigerating cycle device is not particularly limited, but a commercial or household air conditioner (air conditioner), a car air conditioner, a heat pump for a vending machine, a refrigerator, a refrigerator in a container for marine transportation, or a refrigerator is used.
  • air conditioner air conditioner
  • a heat pump for a vending machine a refrigerator
  • a refrigerator in a container for marine transportation or a refrigerator
  • examples include a refrigerator for cooling, a chiller unit, and a turbo chiller.
  • the refrigeration cycle device of the present embodiment can also be used for a dedicated heating cycle device such as a floor heating device and a snow melting device.
  • a dedicated heating cycle device such as a floor heating device and a snow melting device.
  • it is useful as an air conditioner (air conditioner) for business use or home use, which requires miniaturization of equipment.
  • the description is described in the case where the outdoor unit and the indoor unit are connected one-to-one, but there are a plurality of indoor units for one outdoor unit. Also, there may be a plurality of indoor units for a plurality of outdoor units.
  • the refrigerating cycle device of the present embodiment may be a room air conditioner or a packaged air conditioner capable of switching between cooling and heating, or may be a refrigerating cycle device for low temperature equipment such as a refrigerator.
  • the refrigeration cycle device of the present embodiment is preferably a refrigeration cycle device (air conditioner) for air conditioning.
  • refrigeration cycle device for air conditioning
  • examples of the refrigeration cycle device (air conditioner) for air conditioning include room air conditioners, package air conditioners, multi air conditioners for buildings, window type air conditioners, mobile air conditioners, and the like.
  • the flow direction of the refrigerant with respect to the air flow direction is set so as to maximize the period efficiency in consideration of the overall energy efficiency in a certain period such as APF (year-round energy consumption efficiency). It is preferable to be done. This makes it possible to improve the actual energy consumption efficiency (performance) of the refrigeration cycle device used for air conditioning. Specifically, a method of setting the flow direction of the refrigerant with respect to the flow direction of air so as to maximize the period efficiency will be described below.
  • the outdoor heat exchanger condenser
  • the indoor heat exchanger evaporator
  • the temperature changes even in the two-phase region, so that the evaporator is also countercurrent. It is preferable that it is designed to be.
  • the outdoor heat exchanger (evaporator) side is countercurrent
  • the indoor heat exchanger (condenser) side is countercurrent
  • the outdoor heat exchanger side is parallel during heating. It is preferable that the indoor heat exchanger side is designed to have a parallel flow.
  • the amount of heat exchanged by the indoor heat exchanger (during condensation) is the largest. Therefore, in order to maximize the period efficiency, the outdoor heat exchanger (during evaporation) side is countercurrent, the indoor heat exchanger (during condensation) side is countercurrent, and the outdoor heat exchanger side is parallel flow during cooling. It is preferable that the indoor heat exchanger side is designed to have a parallel flow.
  • the outdoor heat exchanger (during evaporation) side flows in parallel, similar to the air conditioner that mainly heats. It is preferable that the indoor heat exchanger (during condensation) side is designed to have a countercurrent flow.
  • the above design is for an air conditioner capable of reversible operation of cooling and heating as shown in FIG. Further, by combining a Lorentz cycle, a hexagonal valve, etc., countercurrent may be generated in either the outdoor heat exchanger or the indoor heat exchanger during both cooling and heating (indoor and indoor). Countercurrent cycle on one side outdoors).
  • the refrigeration cycle apparatus using the non-azeotropic mixed refrigerant is designed to have high energy efficiency.
  • the outdoor heat exchanger or indoor heat exchanger or indoor heat exchanger can be used both during cooling and heating. Both heat exchangers may be designed to be countercurrent (countercurrent cycles both indoors and outdoors). In this case, the refrigeration cycle apparatus using the non-azeotropic mixed refrigerant is designed to have the highest energy efficiency.
  • a part or all of the heat exchanger is always countercurrent. (Partially countercurrent: partially countercurrent cycle, all countercurrent: completely countercurrent cycle).
  • the indoor and outdoor heat exchangers may be divided into a plurality of parts and combined, and a switching mechanism may be provided to make a cooling / heating variable pass so that the flow velocity of the refrigerant is large at the time of condensation and the flow velocity is slowed at the time of evaporation.
  • Embodiment 2 (Refrigerant)
  • the composition ratio of the three components in the refrigerant is such that the pressure loss based on the saturated gas temperature of the refrigerant is equal to or less than the pressure loss of R32 widely used in air conditioners and the like. Is set, which is different from the first embodiment. Since the other basic configurations are the same as those in the first embodiment, overlapping description will be omitted.
  • the refrigerant used in this embodiment is In the composition diagram showing the mass ratio of the three components in triangular coordinates,
  • the mass ratio of the three components is A first straight line connecting a point E indicating that R32, HFO1123 and R744 are 46% by mass, 53.4% by mass and 0.6% by mass, respectively, and the point B.
  • the point E and the point F indicating that R32, HFO1123 and R744 are 1.65% by mass, 82.8% by mass and 15.55% by mass, respectively, are connected, and the component of R744 is defined as the X-axis, and the X is taken as the X-axis.
  • the second curve represented by the following equation (2) [boundary condition: 1.47 ⁇ Y ⁇ 39.84, 16.35 ⁇ X ⁇ 23.6] when the direction perpendicular to the axis is the Y axis, and When the point B and the point F are connected, the component of R744 is the X-axis, and the direction perpendicular to the X-axis is the Y-axis, the above equation (1) [boundary condition: 1.47 ⁇ Y ⁇ 39.84, 16.35 It is within the range surrounded by the first curve represented by ⁇ X ⁇ 39.8].
  • FIG. 8 is a triangular composition diagram showing the composition ratios of the three components (R32, HFO1123 and R744) in the refrigerant according to the present embodiment.
  • R32, HFO1123 and R744 the composition ratios of the three components in the refrigerant according to the present embodiment.
  • the mass ratio of the three components is surrounded by a first straight line connecting points E and B, a second curve connecting points E and F, and a first curve connecting points B and F. It is within the range (shaded area in FIG. 8).
  • the above range includes composition ratios on the first straight line, the first curve, and the second curve.
  • the second curve connecting the points E and F has the above equation (2) [boundary condition: 1.47 ⁇ Y ⁇ 39.84] when the component of R744 is the X axis and the direction perpendicular to the X axis is the Y axis. , 16.35 ⁇ X ⁇ 23.6].
  • the second curve is a curve shown in FIG. 14B in which the pressure loss ratio is R32 or less (the boundary line of the pressure loss of R32 or less).
  • the pressure loss of the refrigerant can be made equal to or less than R32. Therefore, the pressure loss in the pipe or the like can be reduced more reliably than in the first embodiment.
  • the first curve connecting the point B and the point F has the above equation (1) [boundary condition: 1.47 ⁇ Y ⁇ 39.84] when the component of R744 is the X axis and the direction perpendicular to the X axis is the Y axis. , 16.35 ⁇ X ⁇ 39.8] (the formula is the same as that of the first embodiment, and only the boundary conditions are different from the first embodiment).
  • Y -0.0000035504X 6 + 0.0005589786X 5 -0.0358319203X 4 + 1.2005487479X 3 -22.2016290444X 2 + 216.0131860167X-866.1843532277 ⁇ (1-7)
  • the temperature gradient of the refrigerant is less than 6 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • the second curve connecting the point F3 and the point F3 (the curve represented by the above equation (2) [boundary condition: 5.88 ⁇ Y ⁇ 39.84, 16.44 ⁇ X ⁇ 23.6]), and the point B3 and the point F3 (R32 / HFO1123 /).
  • the first curve connecting R744 6.8 / 80.2 / 13% by mass) (curve represented by the following equation (1-8) [boundary condition: 5.88 ⁇ Y ⁇ 39.84, 16.44 ⁇ X ⁇ 33.79]) It is preferably within the range surrounded by (the shaded area in FIG. 10).
  • Y -0.0000063811X 6 + 0.0009332843X 5 -0.0560517185X 4 + 1.7733026830X 3 -31.1858892719X 2 + 290.1995034461X-1115.9372084806 ⁇ (1-8)
  • the temperature gradient of the refrigerant is less than 5 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • the curve to be formed) and the first curve connecting the points B4 and F4 (curve represented by the following equation (1-9) [boundary condition: 9.66 ⁇ Y ⁇ 39.84, 16.65 ⁇ X ⁇ 31.05]). It is preferable that it is within the range (hatched portion in FIG. 11).
  • Y -0.0000063892X 6 + 0.0008593393X 5 -0.0476999288X 4 + 1.4030033773X 3 -23.0733208088X 2 + 202.3626203801X-736.7881385396 ⁇ (1-9)
  • the temperature gradient of the refrigerant is less than 4 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • the second curve connecting the point F5 (R32 / HFO1123 / R744 16.46 / 74.69 / 8.86 mass%) (the above equation (2) [boundary condition: 14.25 ⁇ Y ⁇ 39.84, 17.09 ⁇ X ⁇ 23.6] and the first curve connecting the points B5 and F5 (represented by the following equation (1-10) [boundary conditions: 14.25 ⁇ Y ⁇ 39.84, 17.09 ⁇ X ⁇ 28.39]. It is preferably within the range (hatched portion in FIG. 12) surrounded by the curved line.
  • Y -0.0000010569X 6 + 0.0000655262X 5 + 0.0001778327X 4 -0.1023748302X 3 + 3.0702677272X 2 -36.0180180702X + 159.7170512757 ⁇ (1-10)
  • the temperature gradient of the refrigerant is less than 3 ° C. Frost can be suppressed, and frost formation can be suppressed more reliably.
  • the curve represented by) and the first curve connecting the point B6 and the point F6 (the curve represented by the following equation (1-11) [boundary condition: 20.78 ⁇ Y ⁇ 39.84, 18.07 ⁇ X ⁇ 25.72]) It is preferably within the range surrounded by (the shaded area in FIG. 13).
  • FIG. 14 shows the characteristics of the refrigerant according to the first and second embodiments when 40% by mass of R32 is mixed and the mixing ratio of R744 is changed.
  • the pressure loss ratio is 100% or less as a ratio to R410A even if the R744 ratio is 0% by mass in the first embodiment.
  • FIG. 14A is a graph showing the value of the temperature gradient when the mixing ratio of R744 is changed.
  • the R744 ratio is 19% by mass (wt%) or less, and the temperature gradient is 7 ° C. or less.
  • FIG. 14B is a graph showing the value of the pressure loss ratio at the ratio of R32 to R32 when the mixing ratio of R744 is changed.
  • the R744 ratio is 1.65% by mass or more, and the pressure loss ratio is 100% or less.
  • FIG. 14 (c) is a graph showing the value of the critical temperature when the mixing ratio of R744 is changed.
  • the R744 ratio is 44.6% by mass or less, and the critical temperature is 52 ° C. or less.
  • the mixed refrigerant having a temperature gradient of 7 ° C. or lower, a pressure loss smaller than R32, and a critical temperature of 52 ° C. or higher is R32.
  • the ratio is 40% by mass, it is considered necessary that the ratio of R744 is 1.65 to 19% by mass.
  • the composition range of the mixed refrigerant satisfying each desired condition can be determined. This result is the composition range of the refrigerant shown in the above triangular composition diagram.
  • Embodiment 3 The refrigeration cycle apparatus according to the present embodiment is different from the first embodiment in that the refrigerant further contains CF3I (trifluoroiodomethane). Since the other basic configurations are the same as those in the first embodiment, overlapping description will be omitted.
  • CF3I trifluoroiodomethane
  • the refrigerant used in this embodiment is Contains four components, R32, HFO1123, CF3I and R744,
  • the total ratio of R32 and R744 to the total amount of the refrigerant is 8 to 20% by mass
  • the ratio of HFO1123 is 50 to 70% by mass
  • the ratio of CF3I is 10 to 30% by mass.
  • a mixed refrigerant of R32, HFO1123 and CF3I has been proposed in order to reduce GWP.
  • HFO1123 causes a disproportionation reaction and has a safety problem. Therefore, for the purpose of suppressing the disproportionation reaction of HFO1123, disproportionation is suppressed by mixing CF3I and R32 with HFO1123.
  • FIG. 15 shows the disproportionation pressure at the time of the disproportionation reaction when the composition of the HFO1123, R32 and CF3I mixed refrigerant is changed.
  • the points surrounded by the lines on the stars in FIG. 15 are the compositions in which the disproportionation reaction does not occur in the air conditioner. It is considered that the disproportionation reaction does not occur if the disproportionation pressure is equal to or higher than the point surrounded by the star-shaped line in FIG.
  • the first is a method of increasing the ratio of HFO1123. In this case, the disproportionation pressure decreases and the disproportionation reaction occurs.
  • the second method is to increase the ratio of CF3I.
  • the disproportionation pressure of the refrigerant is equal to or less than the disproportionation pressure of the points surrounded by the star-shaped lines in FIG. 15 up to the composition ratio of the points surrounded by the round lines in FIG. It is possible to do.
  • R32 / HFO1123 / CF3I 20 [%] / 60 [%] / 20 [%]
  • GWP 137. It cannot be less than 137. That is, there is a problem that the three-kind mixed refrigerant composed of R32, HFO1123 and CF3I cannot be reduced to GWP137 or less. In order to solve such a problem, it is considered necessary to use four or more kinds of mixed refrigerants.
  • Rule (1) is for avoiding frost formation at the heating rating (7 ° C. DB / 6 ° C. WB), and rule (2) is for preventing disproportionation reaction.
  • DB means dry-bulb temperature
  • WB means wet-bulb temperature.
  • the inhibitory effect of R32 on the disproportionation reaction of HFO1123 is due to "thermal dilution". That is, it is considered that the disproportionation reaction can be suppressed by the thermal dilution effect by mixing the refrigerant having a large specific heat.
  • the only refrigerant having a higher specific heat than R32 is R744 (CO 2 ). Therefore, by reducing R32 and mixing R744 (CO 2 ) in the refrigerant, the disproportionation reaction of HFO1123 can be suppressed, and there is a possibility that a mixed refrigerant capable of lowering GWP can be provided.
  • the present embodiment it is possible to reduce the GWP while suppressing the disproportionation reaction as compared with the three-kind mixed refrigerant of R32, CF3I and HFO1123. Further, since R744 is mixed with the refrigerant, it is possible to suppress the pressure loss as compared with the above-mentioned three-kind mixed refrigerant.
  • Table 2 lists specific examples of the refrigerant in this embodiment together with their characteristics.
  • the "total GWP” in the table is a weighted average value obtained from the GWP values of each of the refrigerants shown in Table 3. Further, “OK” in the table means that it is contained in the refrigerant according to the present embodiment, and “NG” means that it is not included in the refrigerant according to the present embodiment.
  • the refrigerant used in the present embodiment may be a four-component mixed refrigerant consisting of only the above four components, or may further contain other components.
  • examples of other components include HFO1234yf, HFO1234ze, HFO1132 (E), R290, R1270, R134a, R125, and other HFC-based refrigerants.
  • the blending ratios of other components and the like are set within a range that does not interfere with the main effects of the present embodiment.
  • HFO1132 (E) has substantially the same characteristics such as boiling point as HFO1123, in the refrigerant according to the present embodiment, a three-component mixed refrigerant in which HFO1123 is replaced with HFO1132 (E) is used as the refrigerant according to the present embodiment. Can be used in the same manner as.
  • Embodiment 4 The refrigeration cycle apparatus according to the present embodiment is different from the third embodiment in that the refrigerant further contains R1234yf. That is, the refrigerant used in this embodiment contains five components of R32, HFO1123, CF3I, R744 and R1234yf. Since the other basic configurations are the same as those in the third embodiment, overlapping description will be omitted.
  • the total ratio of R32, R744 and R1234yf to the total amount of the refrigerant is 8 to 20% by mass, the ratio of HFO1123 is 50 to 70% by mass, and the ratio of CF3I is 10 to 30% by mass. Moreover, it is preferable that R744 / R1234yf> 0.65.
  • the refrigerant of the third embodiment has a higher pressure than the three-kind mixed refrigerant of R32, HFO1123 and CF3I, it may be necessary to increase the wall thickness of the pipe.
  • the pressure of the refrigerant is lowered by using R1234yf, the operating pressure can be lowered, so that there is no need to increase the wall thickness of the pipe.
  • Tables 4 and 5 list specific examples of the refrigerant in this embodiment together with their characteristics.
  • GWP in the table is a weighted average value obtained from the GWP value of each refrigerant shown in Table 3.
  • OK means that it is contained in the refrigerant according to the present embodiment
  • NG means that it is not contained in the refrigerant according to the present embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

本開示に係る冷凍サイクル装置は、圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、冷凍回路内に冷媒が封入されている。冷媒は、R32、HFO1123およびR744の三成分を含有し、三成分の質量比率を三角座標で表した組成図において、三成分の質量比率が、R32、HFO1123およびR744がそれぞれ46質量%、54質量%および0質量%であることを示す点Aと、R32、HFO1123およびR744がそれぞれ46質量%、37.2質量%および16.8質量%であることを示す点Bとを結ぶ第1直線、前記点Aと、R32、HFO1123およびR744がそれぞれ0質量%、100質量%および0質量%であることを示す点Cとを結ぶ第2直線、前記点Cと、R32、HFO1123およびR744がそれぞれ0質量%、85.7質量%および14.3質量%であることを示す点Dとを結ぶ第3直線、および、前記点Bと前記点Dとを結ぶ第1曲線によって囲まれる範囲内にあり、前記三成分の全ての質量比率が0質量%より大きい。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 従来、空気調和機、冷凍機などの冷凍サイクル装置に用いられる冷媒としては、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)などが用いられていた。しかし、CFC、HCFCなどの塩素を含む冷媒は、成層圏のオゾン層への影響(地球温暖化への影響)が大きいため、現在、使用が規制されている。
 このため、冷媒として、塩素を含まずオゾン層への影響が少ない、すなわち地球温暖化係数(GWP)が小さい、ハイドロフルオロカーボン(HFC)系冷媒を用いるようになっている。
 HFC系冷媒としては、例えば、ジフルオロメタン(フッ化メチレン、フロン32、HFC-32、R32などとも呼ばれる。以下、「R32」と呼ぶ。)、テトラフルオロエタン、R125(1,1,1,2,2-ペンタフルオロエタン)、R410A(R32とR125の擬似共沸混合冷媒)などが知られている。
 しかし、HFC系冷媒でも、GWPについて、例えば、モントリオール議定書の規制(R410AのGWPの15%以下、R32のGWPの46%以下)、京都議定書のFガス規制などに適合することができないという問題がある。このため、さらにGWPの小さい冷媒が求められている。
 HFC系冷媒よりもGWPが小さい冷媒としては、ハイドロフルオロオレフィン(HFO)系冷媒が知られている。
 HFO系冷媒としては、例えば、トリフルオロエチレン(1,1,2-トリフルオロエテン、HFO1123、R1123などとも呼ばれる。以下、「HFO1123」と呼ぶ。GWP:約0.3)、2,3,3,3-テトラフルオロプロペン(2,3,3,3-テトラフルオロ-1-プロペン、HFO-1234yf、R1234yfなどとも呼ばれる。以下、「R1234yf」と呼ぶ。)、(E)-1,2-ジフルオロエチレン(HFO-1132(E)、「R1132(E)」とも呼ばれる。)等が挙げられる。
 そして、HFC系冷媒およびHFO系冷媒を含む混合冷媒を冷凍サイクル装置に用いることも検討されている。一例として、特許文献1(特開2015-034296号公報)には、R32およびHFO1234yfを含む混合冷媒を冷凍サイクル装置に適用することが開示されている。
 ただし、HFO系冷媒は、圧力損失が比較的大きいため、冷凍サイクル装置の性能の低下が生じる可能性があり、特に室内機と室外機が離れて設置される直膨式の冷凍サイクル装置において性能の低下が生じる可能性が高いという問題がある。なお、配管の径を大きくして圧力損失を低減することで性能の低下を抑制することも考えらえるが、既存の配管を使用することができず、新たな配管のためのコストが必要になる。
 そこで、GWPを低減しつつ、圧力損失の増大を抑制することを目的として、二酸化炭素(R744)を含む混合冷媒も検討されている。例えば、特許文献2(特開2004-198063号公報)には、R32および二酸化炭素(R744)を含む非共沸混合冷媒を用いた冷凍サイクル装置が開示される。
特開2015-034296号公報 特開2004-198063号公報
 しかし、このようなR744を含む混合冷媒において、R744の混合比率が増えると、混合冷媒の温度勾配(熱交換器での蒸発または凝縮の開始温度と終了温度との差。飽和液と飽和蒸気との温度差。)が、最大で25℃程度になる可能性がある。このため、運転時に冷媒回路内に着霜が生じる可能性が高くなり、特に空気調和機等における蒸発時に着霜が生じる可能性が高くなる。R744を含む混合冷媒を空気調和機等の冷凍サイクル装置に使用した場合には、このような問題が生じる虞がある。
 また、R744の混合比率が増えることで、混合冷媒の臨界温度(超臨界状態とならない最高温度)が低くなる。臨界温度が冷凍サイクル装置の運転温度より低くなると、冷凍サイクル装置の運転中に混合冷媒を超臨界領域で使用することになるため、混合冷媒を熱伝達率の高い気液二相冷媒の状態で利用できないため、冷凍サイクル装置の性能が低下してしまうという問題もある。
 本開示は、上記課題に鑑みてなされたものであり、地球温暖化の影響を低減しつつ、着霜、性能低下などを抑制することのできる、冷凍サイクル装置を提供することを目的とする。
 本開示に係る冷凍サイクル装置は、圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、冷凍回路内に冷媒が封入されている。
 冷媒は、R32、HFO1123およびR744の三成分を含有し、
 三成分の質量比率を三角座標で表した組成図において、
 三成分の質量比率が、
 R32、HFO1123およびR744がそれぞれ46質量%、54質量%および0質量%であることを示す点Aと、R32、HFO1123およびR744がそれぞれ46質量%、37.2質量%および16.8質量%であることを示す点Bとを結ぶ第1直線、
 前記点Aと、R32、HFO1123およびR744がそれぞれ0質量%、100質量%および0質量%であることを示す点Cとを結ぶ第2直線、
 前記点Cと、R32、HFO1123およびR744がそれぞれ0質量%、85.7質量%および14.3質量%であることを示す点Dとを結ぶ第3直線、および、
 前記点Bと前記点Dとを結ぶ第1曲線によって囲まれる範囲内にあり、
 前記三成分の全ての質量比率が0質量%より大きい。
 本開示によれば、地球温暖化の影響を低減しつつ、着霜、性能低下などを抑制することのできる、冷凍サイクル装置を提供することができる。
実施の形態1に係る冷凍サイクル装置を示す概略構成図である。 実施の形態1に係る冷媒の組成範囲(R32/HFO1123/R744)を示す三角組成図である。 実施の形態1に係る冷媒の好ましい組成範囲を示す三角組成図である。 実施の形態1に係る冷媒のより好ましい組成範囲を示す三角組成図である。 実施の形態1に係る冷媒のより好ましい組成範囲を示す三角組成図である。 実施の形態1に係る冷媒のより好ましい組成範囲を示す三角組成図である。 実施の形態1に係る冷媒のより好ましい組成範囲を示す三角組成図である。 実施の形態2に係る冷媒の組成範囲(R32/HFO1123/R744)を示す三角組成図である。 実施の形態2に係る冷媒の好ましい組成範囲を示す三角組成図である。 実施の形態2に係る冷媒のより好ましい組成範囲を示す三角組成図である。 実施の形態2に係る冷媒のより好ましい組成範囲を示す三角組成図である。 実施の形態2に係る冷媒のより好ましい組成範囲を示す三角組成図である。 実施の形態2に係る冷媒のより好ましい組成範囲を示す三角組成図である。 実施の形態1および2に係る冷媒の特性を示すグラフである。 実施の形態3に係る冷媒の特性を説明するためのグラフである。 実施の形態3に係る冷媒の特性を説明するための別のグラフである。
 以下、本開示の実施の形態を図面に基づいて説明する。
 実施の形態1.
 まず、本実施の形態の冷凍サイクル装置の概要について簡単に説明する。図1は、実施の形態1に係る冷凍サイクル装置を示す概略構成図である。冷凍サイクル装置は、圧縮機1と、冷房時と暖房時の流れ方向を切替える流路切替弁(四方弁)2と、室外熱交換器3と、膨張弁4と、室内熱交換器5とを含む冷凍回路を備える。なお、冷房と暖房を切替える必要のない冷凍サイクル装置においては、流路切替弁2は必要ない。
 冷房時において、圧縮機1で圧縮された高温高圧のガス状冷媒は、流路切替弁2(実線で示す流路)を経由して室外熱交換器3へと流入し、そこで凝縮する。室外熱交換器3で凝縮した液状冷媒は、膨張弁4を経由して室内熱交換器5に流入し、そこで蒸発(気化)する。最後に、室内熱交換器5にて蒸発したガス状冷媒は、流路切替弁2(実線で示す流路)を経由して圧縮機1へ戻る。このように、冷房時において、冷媒は、冷凍サイクル装置の冷凍回路内を図1に示す実線矢印の方向に循環する。
 一方、暖房時においては、圧縮機1で圧縮された高温高圧のガス状冷媒は、流路切替弁2(点線で示す流路)を経由して室内熱交換器5へと流入し、そこで凝縮する。室内熱交換器5で凝縮した液状冷媒は、膨張弁4を経由して室外熱交換器3へと流入し、そこで蒸発(気化)する。室外熱交換器3で蒸発した冷媒は、流路切替弁2(点線で示す流路)を経由して圧縮機1へ戻る。このように、暖房時において、冷媒は、冷凍サイクル装置の冷凍回路内を図1に示す破線矢印の方向に循環する。
 なお、上記構成は、冷房および暖房運転を実施可能な冷凍サイクル装置の最小構成要素である。本実施の形態の冷凍サイクル装置は、さらに、気液分岐器、レシーバー、アキュームレータ、高低圧熱交換器等の他の機器を備えていてもよい。
 (冷媒)
 次に、本実施の形態において、冷凍回路内に封入される冷媒について説明する。該冷媒は、R32、HFO1123およびR744の三成分を所定の組成範囲内で含んでいる。
 図2は、冷媒中に含まれる三成分(R32、HFO1123およびR744)の組成比率(質量比率)を示す三角座標で表された組成図(三角組成図)である。該三成分の質量比率は、図2において、点Aと点Bを結ぶ第1直線、点Aと点Cとを結ぶ第2直線、点Cと点Dとを結ぶ第3直線、および、点Bと点Dとを結ぶ第1曲線によって囲まれる範囲(図2の斜線部)内にある。なお、上記範囲は、第1直線(ただし、点Aは除く)および第1曲線上の組成比率を含み、第2直線および第3直線上の組成比率は含まない。
 点Aは、R32、HFO1123およびR744がそれぞれ46質量%、54質量%および0質量%であること(以下、このような組成比率を「R32/HFO1123/R744=46/54/0質量%」と記載する)を示す。
 点Bは、組成比率が「R32/HFO1123/R744=46/37.2/16.8質量%」であることを示す。
 点Cは、組成比率が、「R32/HFO1123/R744=0/100/0質量%」であることを示す。
 点Dは、組成比率が、「R32/HFO1123/R744=0/85.7/14.3質量%」であることを示す。
 図2において、点Bと点Dとを結ぶ第1曲線は、点Bと点Dとを結び、R744の成分をX軸とし、該X軸に対して垂直方向をY軸としたときに下記式(1)[境界条件:0≦Y≦39.84、14.3≦X≦39.8]で表される。
 
 Y=0.0000010672X-0.0001465588X+0.0082178036X-0.2396523289X+3.8262954499X-31.0173735188X+96.765465851   ・・・(1)
 
 なお、第1曲線は、冷媒の温度勾配が7℃になる組成を示す線(外気温が7℃の場合の暖房運転時に着霜が生じるか否かの境界線)である。
 図2中の点Bと点Dとを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が7℃未満であるため、外気温が7℃の場合の暖房運転時でも着霜を抑制することができる。
 なお、冷媒の組成が図2の斜線部の範囲内(点Cと点Aとを結ぶ第1曲線の下側)であるとき、冷媒中のR32の比率が46質量%未満となっている。このため、該冷媒のGWPは、R410AのGWP(2090)に対して15%以下となっている。したがって、本実施の形態の冷凍サイクル装置は、地球温暖化への影響が少ない。
 本実施の形態における点A、点B、点Cおよび点Dを結ぶ上記の直線および曲線によって規定される上記の全ての組成において、冷媒の臨界温度を52℃以上とすることができ、高圧側において熱伝達率の高い二相領域を利用することができる。なお、空気調和機等の冷凍サイクル装置において、通常、使用可能な外気温度の上限は52℃である。
 また、本実施の形態に用いられる冷媒の圧力損失は、R410Aの圧力損失より小さい。
 さらに、冷媒中に含まれる三成分(R32、HFO1123およびR744)の組成比率(質量比率)は、図3において、点Aと点B2(R32/HFO1123/R744=46/40.3/13.7質量%)を結ぶ第1直線、点Aと点Cとを結ぶ第2直線、点Cと点D2(R32/HFO1123/R744=0/86.1/13.9質量%)とを結ぶ第3直線、および、点B2と点D2とを結ぶ第1曲線(下記式(1-2)[境界条件:0≦Y≦39.84、13.86≦X≦39.8]で表される曲線)によって囲まれる範囲(図3の斜線部)内にあることが好ましい。
 
Y=-0.0000016567X+0.0002536428X-0.0156242136X+0.4985214814X-8.7105880053X+80.1336472203X-306.1133650192   ・・・(1-2)
 
 この場合、図3中の点B2と点D2とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が6℃未満であるため、外気温が6℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 さらに、冷媒中に含まれる三成分の組成比率は、図4において、点Aと点B3(R32/HFO1123/R744=46/43.2/10.8質量%)を結ぶ第1直線、点Aと点Cとを結ぶ第2直線、点Cと点D3(R32/HFO1123/R744=0/88.7/11.3質量%)とを結ぶ第3直線、および、点B3と点D3とを結ぶ第1曲線(下記式(1-3)[境界条件:0≦Y≦39.84、11.31≦X≦33.79]で表される曲線)によって囲まれる範囲(図4の斜線部)内にあることが好ましい。
 
 Y=-0.0000015304X+0.0002020386X-0.0107078613X+0.2938468312X-4.4132132218X+35.5395625683X-121.5449310970   ・・・(1-3)
 
 この場合、図4中の点B3と点D3とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が5℃未満であるため、外気温が5℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 さらに、冷媒中に含まれる三成分の組成比率は、図5において、点Aと点B4(R32/HFO1123/R744=46/46/8質量%)を結ぶ第1直線、点Aと点Cとを結ぶ第2直線、点Cと点D4(R32/HFO1123/R744=0/91/9質量%)とを結ぶ第3直線、および、点B4と点D4とを結ぶ第1曲線(下記式(1-4)[境界条件:0≦Y≦39.84、8.95≦X≦31.05]で表される曲線)によって囲まれる範囲(図5の斜線部)内にあることが好ましい。
 
 Y=-0.0000012965X+0.0001480600X-0.0067494894X+0.1592511164X-2.0569218561X+15.0215083652X-48.3962777129   ・・・(1-4)
 
 この場合、図5中の点B4と点D4とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が4℃未満であるため、外気温が4℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 さらに、冷媒中に含まれる三成分の組成比率は、図6において、点Aと点B5(R32/HFO1123/R744=46/48.6/5.4質量%)を結ぶ第1直線、点Aと点Cとを結ぶ第2直線、点Cと点D5(R32/HFO1123/R744=0/93.3/6.7質量%)とを結ぶ第3直線、および、点B5と点D5とを結ぶ第1曲線(下記式(1-5)[境界条件:0≦Y≦39.84、6.72≦X≦28.39]で表される曲線)によって囲まれる範囲(図6の斜線部)内にあることが好ましい。
 
 Y=-0.0000011225X+0.0001099130X-0.0042657843X+0.0860474269X-0.9562929239X+6.8790153675X-21.8643132039   ・・・(1-5)
 
 この場合、図6中の点B5と点D5とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が3℃未満であるため、外気温が3℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 さらに、冷媒中に含まれる三成分の組成比率は、図7において、点Aと点B6(R32/HFO1123/R744=46/51.3/2.7質量%)を結ぶ第1直線、点Aと点Cとを結ぶ第2直線、点Cと点D6(R32/HFO1123/R744=0/95.5/4.5質量%)とを結ぶ第3直線、および、点B6と点D6とを結ぶ第1曲線(下記式(1-6)[境界条件:0≦Y≦39.84、4.5≦X≦25.7]で表される曲線)によって囲まれる範囲(図7の斜線部)内にあることが好ましい。
 
 Y=-0.0000010154X+0.0000840028X-0.0027360831X+0.0471715299X-0.4587670880X+3.7993138372X-11.1892990965(0≦Y≦39.84、4.5≦X≦25.7)   ・・・(1-6)
 
 この場合、図7中の点B6と点D6とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が2℃未満であるため、外気温が2℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 なお、本実施の形態において用いられる冷媒は、上記三成分のみからなる三成分混合冷媒であってもよく、さらに他の成分を含んでいてもよい。他の成分としては、例えば、HFO1234yf、HFO1234ze、HFO1132(E)、R290、R1270、R134a、R125等または他のHFC系冷媒が挙げられる。他の成分の配合比率等は、本実施の形態の主要な効果を妨げない範囲内において設定される。なお、HFO1132(E)は沸点等の特性がHFO1123と概ね同等のため、本実施の形態に係る冷媒において、HFO1123をHFO1132(E)に置き換えてなる三成分混合冷媒を本実施の形態に係る冷媒と同様に用いることができる。
 また、冷媒は、さらに冷凍機油を含有してもよい。冷凍機油としては、例えば、一般に用いられる冷凍機油(エステル系潤滑油、エーテル系潤滑油、フッ素系潤滑油、鉱物系潤滑油、炭化水素系潤滑油等)が挙げられる。その場合、冷媒との相溶性および安定性等の面で優れている冷凍機油を選択することが好ましい。具体的な冷凍機油としては、例えば、ポリアルキレングリコール、ポリオールエステル、ポリビニルエーテル、アルキルベンゼン、鉱油等が利用できるが、これらに限定されない。
 また、冷媒は、例えば過酷な使用条件において高度の安定性を要求される場合などには、必要に応じて安定剤をさらに含有してもよい。安定剤は熱および酸化に対する冷媒の安定性を向上させる成分である。安定剤としては、従来から冷凍サイクル装置に用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。
 安定剤としては、例えば、(i)ニトロメタン、ニトロエタン等の脂肪族ニトロ化合物、ニトロベンゼン、ニトロスチレン等の芳香族ニトロ化合物、1,4-ジオキサン等のエーテル類、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等のアミン類、ブチルヒドロキシキシレン、ベンゾトリアゾールなどが挙げられる。安定剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 安定剤の配合量は、その種類により異なるが、冷媒組成物の性質に支障ない程度とする。安定剤の配合率は、冷媒の総量(100質量%)に対して、0.01~5質量%が好ましく、0.05~2質量%がより好ましい。
 また、冷媒は、さらに重合禁止剤を含んでいてもよい。重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
 重合禁止剤の配合率は、冷媒の総量(100質量%)に対して、0.01~5質量%が好ましく、0.05~2質量%がより好ましい。
 (冷凍サイクル装置)
 本実施の形態において、冷凍サイクル装置としては、特に限定されないが、業務用または家庭用の空気調和機(エアコン)、カーエアコン、自動販売機用ヒートポンプ、冷蔵庫、海上輸送等のコンテナ内や冷蔵庫を冷却する冷凍機、チラーユニット、ターボ冷凍機等が挙げられる。
 なお、本実施の形態の冷凍サイクル装置は、床暖房装置、融雪装置等の暖房サイクル専用機にも使用できる。特に、機器の小型化が要求される業務用または家庭用の空気調和機(エアコン)として有用である。
 なお、本実施の形態の冷凍サイクル装置では、室外機と室内機とが一対一で接続される場合で説明を記載しているが、1つの室外機に対して室内機が複数台であってもよく、複数台の室外機に対して室内機が複数台であってもよい。
 また、本実施の形態の冷凍サイクル装置は、冷房と暖房を切換え可能なルームエアコンやパッケージエアコン等であってもよく、冷凍機等の低温機器向けの冷凍サイクル装置であってもよい。
 本実施の形態の冷凍サイクル装置は、空気調和用の冷凍サイクル装置(空気調和機)であることが好ましい。
 空気調和用の冷凍サイクル装置(空気調和機)としては、例えば、ルームエアコン、パッケージエアコン、ビル用マルチエアコン、ウィンドウ型エアコンおよびモバイルエアコン等が挙げられる。
 空気調和用の冷凍サイクル装置においては、APF(通年エネルギー消費効率)などの一定期間における総合的なエネルギー効率を考慮した期間効率が最大となるように、空気の流れ方向に対する冷媒の流れ方向が設定されることが好ましい。これにより、空気調和用に用いられる冷凍サイクル装置の実際の消費エネルギー効率(性能)を向上させることができる。具体的に、期間効率が最大となるように、空気の流れ方向に対する冷媒の流れ方向を設定する方法について、以下に説明する。
 まず、空気の流れ方向に対する冷媒の流れ方向が反対方向である場合(以下、このような流れ方向を「対向流」と呼ぶ。)は、空気の流れ方向に対する冷媒の流れ方向が同じ方向である場合(以下、このような流れ方向を「並行流」と呼ぶ。)に比べて、性能が高くなる。したがって、一定期間のうち使用比率が高く、熱交換量が最も多い部分が対向流となるように、空気の流れ方向に対する冷媒の流れ方向を設定すれば、冷凍サイクル装置の期間効率を高めることができる。
 一般的に、ガス相、二相、液相の3つの相変化が生じる冷媒凝縮過程では相変化に伴い温度変化が大きく生じるため、対向流となるよう形成し、ほぼ二相のみとなる冷媒蒸発過程では温度変化が小さいまたは生じないため、対向流であっても並行流であっても対数平均温度に大きな差が生じにくい。そのため冷暖房の使用比率が大きく変わらない場合、冷房時は、室外熱交換器(凝縮器)で対向流、室内熱交換器(蒸発器)で並行流となるように設計されていることが好ましい。
 しかし、本実施の形態に係る冷媒のように、複数種の冷媒を含む混合冷媒であり温度勾配が生じる冷媒においては、二相領域であっても温度変化が生じるため、蒸発器も対向流となるように設計されていることが好ましい。
 また、冷房が主体である空気調和機(ビル用マルチエアコン等)かつ非共沸混合冷媒の場合、室外熱交換器(蒸発器)での熱交換量が最も多くなる。このため、期間効率が最大となるようにするためには、室外熱交換器(蒸発器)側が対向流、室内熱交換器(凝縮器)側が対向流、暖房時に室外熱交換器側が並行流、室内熱交換器側が並行流となるように設計されていることが好ましい。
 また、暖房主体の空気調和機(ルームエアコン、パッケージエアコン等)かつ非共沸混合冷媒の場合、室内熱交換器(凝縮時)での熱交換量が最も多くなる。このため、期間効率が最大となるようにするためには、室外熱交換器(蒸発時)側が対向流、室内熱交換器(凝縮時)側が対向流、冷房時に室外熱交換器側が並行流、室内熱交換器側が並行流となるように設計されていることが好ましい。
 また、冷房および暖房の可逆運転が可能な空気調和機(ルームエアコン等)の場合は、例えば、一般に年間を通して暖房の消費エネルギーは冷房より多いと考えられている。なお、このため、APFの係数は、年間を通して使用エネルギー量が多い暖房について、大きい値に設定されている。このように、暖房の消費エネルギーが冷房より多い場合は、期間効率が最大となるようにするためには、暖房主体の空気調和機と同様に、室外熱交換器(蒸発時)側が並行流、室内熱交換器(凝縮時)側が対向流となるように設計されていることが好ましい。
 なお、上記の設計は、図1に示すような冷房および暖房の可逆運転が可能な空気調和機に関する設計である。さらに、ローレンツサイクル、六方弁等を組み合わせることで、冷房時および暖房時の両方の場合に、室外熱交換器または室内熱交換器のいずれか一方において対向流となるようにしてもよい(室内および室外の一方での対向流化サイクル)。この場合、非共沸混合冷媒を用いた冷凍サイクル装置においてエネルギー効率の高い設計となる。
 また、室内および室外の熱交換器に、それぞれローレンツサイクルを設けるか、または、六方以上の多方弁等を組み合わせて用いることで、冷房時および暖房時の両方の場合に、室外熱交換器または室内熱交換器の両方において対向流となるよう設計してもよい(室内および室外の両方での対向流化サイクル)。この場合、非共沸混合冷媒を用いた冷凍サイクル装置において最もエネルギー効率の高い設計となる。
 なお、逆止弁や三方弁等を組み合わせることで、例えば、冷暖時に、室外熱交換器および室内熱交換器のいずれか一方または両方において、熱交換器の一部または全部で常に対向流となるよう設計してもよい(一部対向流時:部分対向流化サイクル、全部対向流時:完全対向流化サイクル)。
 また、室内外の熱交換器は複数に分割して組合わせてもよく、凝縮時に冷媒の流速が大きく、蒸発時に流速が遅くなるように冷暖可変パス化させる切換え機構を設ける構成としてもよい。
 また、高低圧熱交換機やバイパス回路を設ける構成としてもよい。
 実施の形態2.
 (冷媒)
 本実施の形態に係る冷凍サイクル装置は、冷媒の飽和ガス温度基準の圧力損失が、空気調和機等に広く利用されているR32の圧力損失以下となるように、冷媒中の三成分の組成比率が設定されている点で、実施の形態1とは異なる。それ以外の基本構成は実施の形態1と同じであるため、重複する説明については省略する。
 すなわち、本実施の形態に用いられる冷媒は、
 前記三成分の質量比率を三角座標で表した組成図において、
 前記三成分の質量比率が、
 R32、HFO1123およびR744がそれぞれ46質量%、53.4質量%および0.6質量%であることを示す点Eと、前記点Bとを結ぶ第1直線、
 前記点Eと、R32、HFO1123およびR744がそれぞれ1.65質量%、82.8質量%および15.55質量%であることを示す点Fとを結び、R744の成分をX軸とし、該X軸に対して垂直方向をY軸としたときに下記式(2)[境界条件:1.47≦Y≦39.84、16.35≦X≦23.6]で表される第2曲線、および、
 前記点Bと前記点Fとを結び、R744の成分をX軸とし、該X軸に対して垂直方向をY軸としたときに前記式(1)[境界条件:1.47≦Y≦39.84、16.35≦X≦39.8]で表される第1曲線
 によって囲まれる範囲内にある。
 
 Y=6.2229811918E-0810-6.1417665837E-06+0.0002122018X-0.0025390680X+0.0005289805X-0.2205484505X-6.6805986428X+984.2366988008X-24963.7886980727X+258533.891864178X-993240.057394683   ・・・(2)
 
 図8は、本実施の形態に係る冷媒中の三成分(R32、HFO1123およびR744)の組成比率を示す三角組成図である。該三成分の質量比率は、図8において、点Eと点Bを結ぶ第1直線、点Eと点Fとを結ぶ第2曲線、および、点Bと点Fとを結ぶ第1曲線によって囲まれる範囲(図8の斜線部)内にある。なお、上記範囲は、第一直線、第1曲線および第2曲線上の組成比率を含む。
 点Eは、組成比率が「R32/HFO1123/R744=46/53.4/0.6質量%」であることを示す。
 点Bは、組成比率が「R32/HFO1123/R744=46/37.2/16.8質量%」であることを示す(実施の形態1と同様)。
 点Fは、組成比率が、「R32/HFO1123/R744=1.65/82.8/15.55質量%」であることを示す。
 点Eと点Fとを結ぶ第2曲線は、R744の成分をX軸とし、該X軸に対して垂直方向をY軸としたときに上記式(2)[境界条件:1.47≦Y≦39.84、16.35≦X≦23.6]で表される。なお、第2曲線は、図14(b)記載の圧力損失比がR32以下となる曲線(R32以下となる圧力損失の境界線)である。
 本実施の形態においては、この第2曲線によって囲まれる範囲内の組成を有する冷媒を使用することで、冷媒の圧力損失をR32と同等以下にすることができる。したがって、実施の形態1よりも配管内等における圧力損失をより確実に低減することができる。
 点Bと点Fとを結ぶ第1曲線は、R744の成分をX軸とし、該X軸に対して垂直方向をY軸としたときに上記式(1)[境界条件:1.47≦Y≦39.84、16.35≦X≦39.8]で表される(実施の形態1と同様の式であり、境界条件のみ実施の形態1と異なる)。
 さらに、冷媒中に含まれる三成分(R32、HFO1123およびR744)の組成比率(質量比率)は、図9において、点Eと点B2(R32/HFO1123/R744=46/40.3/13.7質量%)を結ぶ第1直線、点Eと点F2(R32/HFO1123/R744=3/82.1/14.9質量%)とを結ぶ第2曲線(上記式(2)[境界条件:2.6≦Y≦39.84、16.35≦X≦23.6]で表される曲線)、および、点B2と点F2とを結ぶ第1曲線(下記式(1-7)[境界条件:2.6≦Y≦39.84、16.35≦X≦36.71]で表される曲線)によって囲まれる範囲(図9の斜線部)内にあることが好ましい。
 
 Y=-0.0000035504X+0.0005589786X-0.0358319203X+1.2005487479X-22.2016290444X+216.0131860167X-866.1843532277   ・・・(1-7)
 
 この場合、図9中の点B2と点F2とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が6℃未満であるため、外気温が6℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 さらに、冷媒中に含まれる三成分の組成比率は、図10において、点Eと点B3(R32/HFO1123/R744=46/43.2/10.8質量%)を結ぶ第1直線、点Eと点F3とを結ぶ第2曲線(上記式(2)[境界条件:5.88≦Y≦39.84、16.44≦X≦23.6]で表される曲線)、および、点B3と点F3(R32/HFO1123/R744=6.8/80.2/13質量%)とを結ぶ第1曲線(下記式(1-8)[境界条件:5.88≦Y≦39.84、16.44≦X≦33.79]で表される曲線)によって囲まれる範囲(図10の斜線部)内にあることが好ましい。
 
 Y=-0.0000063811X+0.0009332843X-0.0560517185X+1.7733026830X-31.1858892719X+290.1995034461X-1115.9372084806   ・・・(1-8)
 
 この場合、図10中の点B3と点F3とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が5℃未満であるため、外気温が5℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 さらに、冷媒中に含まれる三成分の組成比率は、図11において、点Eと点B4(R32/HFO1123/R744=46/46/8質量%)を結ぶ第1直線、点Eと点F4(R32/HFO1123/R744=11.15/77.77/11.08質量%)とを結ぶ第2曲線(上記式(2)[境界条件:9.66≦Y≦39.84、16.65≦X≦23.60]で表される曲線)、および、点B4と点F4とを結ぶ第1曲線(下記式(1-9)[境界条件:9.66≦Y≦39.84、16.65≦X≦31.05]で表される曲線)によって囲まれる範囲(図11の斜線部)内にあることが好ましい。
 
 Y=-0.0000063892X+0.0008593393X-0.0476999288X+1.4030033773X-23.0733208088X+202.3626203801X-736.7881385396   ・・・(1-9)
 
 この場合、図11中の点B4と点F4とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が4℃未満であるため、外気温が4℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 さらに、冷媒中に含まれる三成分の組成比率は、図12において、点Eと点B5(R32/HFO1123/R744=46/48.6/5.4質量%)を結ぶ第1直線、点Eと点F5(R32/HFO1123/R744=16.46/74.69/8.86質量%)とを結ぶ第2曲線(上記式(2)[境界条件:14.25≦Y≦39.84、17.09≦X≦23.6]で表される曲線)、および、点B5と点F5とを結ぶ第1曲線(下記式(1-10)[境界条件:14.25≦Y≦39.84、17.09≦X≦28.39]で表される曲線)によって囲まれる範囲(図12の斜線部)内にあることが好ましい。
 
 Y=-0.0000010569X+0.0000655262X+0.0001778327X-0.1023748302X+3.0702677272X-36.0180180702X+159.7170512757   ・・・(1-10)
 
 この場合、図12中の点B5と点F5とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が3℃未満であるため、外気温が3℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 さらに、冷媒中に含まれる三成分の組成比率は、図13において、点Eと点B6(R32/HFO1123/R744=46/51.3/2.7質量%)を結ぶ第1直線、点Eと点F6(R32/HFO1123/R744=24/69.9/6.1質量%)とを結ぶ第2曲線(上記式(2)[境界条件:20.78≦Y≦39.84、18.07≦X≦23.60]で表される曲線)、および、点B6と点F6とを結ぶ第1曲線(下記式(1-11)[境界条件:20.78≦Y≦39.84、18.07≦X≦25.72]で表される曲線)によって囲まれる範囲(図13の斜線部)内にあることが好ましい。
 
 Y=-0.0000524007X+0.0047461037X-0.1677724456X+2.9582326141X-24.7570597636X+87.0409148360   ・・・(1-11)
 
 この場合、図13中の点B6と点F6とを結ぶ第1曲線の左側の組成範囲では、冷媒の温度勾配が2℃未満であるため、外気温が2℃の場合の暖房運転時でも着霜を抑制することができ、より確実に着霜を抑制することができる。
 なお、図14は、R32を40質量%混合し、R744の混合比率を変化させた際の実施の形態1および2に係る冷媒の特性を示している。
 なお、圧力損失比は、実施の形態1でR744比が0質量%であっても、対R410A比で100%以下となる。
 図14(a)は、R744の混合比率を変化させた際の温度勾配の値を示すグラフである。R744比が19質量%(wt%)以下で、温度勾配が7℃以下となる。
 図14(b)は、R744の混合比率を変化させた際の対R32比での圧力損失比の値を示すグラフである。R744比が1.65質量%以上で、圧力損失比が100%以下となる。
 図14(c)は、R744の混合比率を変化させた際の臨界温度の値を示すグラフである。R744比が44.6質量%以下で、臨界温度が52℃以下となる。
 図14(a)~(c)に示されるR744の比率範囲から、温度勾配が7℃以下であり、圧力損失がR32より小さく、かつ、臨界温度が52℃以上である混合冷媒は、R32の比率が40質量%である場合、R744の比率が1.65~19質量%であることが必要であると考えられる。同様にして、R32の比率を変化させてR744の比率範囲を決定することで、所望の各条件を満たす混合冷媒の組成範囲を決定することができる。この結果が、上記の三角組成図で示される冷媒の組成範囲である。
 実施の形態3.
 (冷媒)
 本実施の形態に係る冷凍サイクル装置は、冷媒がさらにCF3I(トリフルオロヨードメタン)を含有する点で、実施の形態1とは異なる。それ以外の基本構成は実施の形態1と同じであるため、重複する説明については省略する。
 すなわち、本実施の形態に用いられる冷媒は、
 R32、HFO1123、CF3IおよびR744の四成分を含有し、
 前記冷媒の総量に対して、R32およびR744の合計の比率が8~20質量%であり、HFO1123の比率が50~70質量%であり、CF3Iの比率が10~30質量%である。
 なお、低GWP化のために、R32、HFO1123およびCF3Iの混合冷媒が提案されている。
 HFO1123は不均化反応を起こし、安全性に問題がある。そこで、HFO1123の不均化反応抑制を目的に、CF3IおよびR32をHFO1123に混合することで、不均化を抑制している。
 図15に、HFO1123、R32およびCF3I混合冷媒の組成を変化させた場合における、不均化反応の際の不均化圧力を示す。図15中の星上の線で囲まれた点が、空調機で不均化反応が起きない組成である。図15中の星状の線で囲まれた点以上の不均化圧力であれば、不均化反応が起きないと考えられている。
 そのため、R32、HFO1123およびCF3Iからなる3種混合冷媒の場合、低GWP化のためにR32を減らす方法としては、下記の2通りの方法が挙げられる。
 1つ目は、HFO1123の比率を増大する方法である。この場合、不均化圧力が低下し、不均化反応が起きてしまう。
 2つ目は、CF3Iの比率を増大する方法である。図15中の丸状の線で囲まれた点の組成比率までであれば、冷媒の不均化圧力を図15中の星状の線で囲まれた点の不均化圧力と同等以下とすることが可能である。しかし、図15の丸状の線で囲まれた点の組成では、R32/HFO1123/CF3I=20[%]/60[%]/20[%]であり、GWP=137であるため、GWPを137以下にすることはできない。つまり、R32、HFO1123およびCF3Iからなる3種混合冷媒はGWP137以下まで低減することができないという課題を有している。このような課題を解決するためには、4種以上の混合冷媒を用いる必要があると考えられる。
 そこで、本発明者らは、下記組成比を固定して、組成比の検討を行った。
  HFO1123=60.0[%]
  CF3I=20[%]
 ここで、R32を減らして、CF3Iを増やすと、不均化反応が起こるため、CF3Iを増やすことは検討しなかった。
 基本的には、R32を減らした分だけ、R744(およびR1234yf)を冷媒中に混合することが検討された。
 なお、下記の規則(1)および(2)に基づいて、組成比が調整された。規則(1)は、暖房定格(7℃DB/6℃WB)時の着霜回避のためであり、規則(2)は、不均化反応防止のためである。なお、DBは乾球温度を意味し、WBは湿球温度を意味する。
 (1) 温度勾配<7[K]  (表2等の「温度勾配」の行を参照)
 (2) [低圧側の「飽和ガス比熱×飽和ガス密度」]>[R32/HFO1123/CF3I=20%/60%/20%の場合における「飽和ガス比熱×飽和ガス密度」]
   (表2等の「ρ×cp」の行を参照)
 ここで、混合冷媒の構成成分となり得る単一冷媒の特性を表1に示す。なお、表1に示される特性は、吸入飽和温度=10℃、吸入SH(吸入温度-吸入飽和温度)=1Kの場合における吸入時における単一冷媒の物性である。
Figure JPOXMLDOC01-appb-T000001
 R32によるHFO1123の不均化反応の抑制効果は「熱希釈」によるものである。つまり、比熱の大きい冷媒を混合させることで、熱希釈効果によって、不均化反応を抑制することができると考えられる。下記単位冷媒の組成の内、R32より比熱の大きい冷媒はR744(CO)のみである。よって、R32を減らして、冷媒中にR744(CO)を混合することで、HFO1123の不均化反応を抑えることができ、低GWP化が可能な混合冷媒を提供できる可能性がある。
 本実施の形態によれば、R32、CF3IおよびHFO1123の3種混合冷媒よりも不均化反応を抑えつつ、低GWP化が可能である。また、R744を冷媒に混合するため、上記3種混合冷媒よりも圧力損失を抑制することが可能である。
 なお、図16を参照して、R32/HFO1123/CF3I三種混合冷媒では、GWPを下げるためにR32の比率を小さくした場合、HFO1123またはCF3Iの比率を増やす必要がある。しかし、HFO1123を増やすと、不均化圧力が低下する。また、CF3Iを増やすと、R32の比率が低下するため、不均化圧力が低下する(図16の右下側にグラフが移動する。)。よって、不均化圧力を低減するためには、R32のような熱希釈が可能な冷媒を使用せずに、GWPを137以下に低減することはできない。
 表2に本実施の形態における冷媒の具体例をその特性と共に列記する。なお、表中の「トータルGWP」は、表3に示される各々の冷媒のGWP値から求めた加重平均値である。また、表中の「OK」は本実施の形態に係る冷媒に含まれることを意味し、「NG」は本実施の形態に係る冷媒に含まれないことを意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、本実施の形態において用いられる冷媒は、上記四成分のみからなる四成分混合冷媒であってもよく、さらに他の成分を含んでいてもよい。他の成分としては、例えば、HFO1234yf、HFO1234ze、HFO1132(E)、R290、R1270、R134a、R125等または他のHFC系冷媒が挙げられる。他の成分の配合比率等は、本実施の形態の主要な効果を妨げない範囲内において設定される。なお、HFO1132(E)は沸点等の特性がHFO1123と概ね同等のため、本実施の形態に係る冷媒において、HFO1123をHFO1132(E)に置き換えてなる三成分混合冷媒を本実施の形態に係る冷媒と同様に用いることができる。
 実施の形態4.
 本実施の形態に係る冷凍サイクル装置は、冷媒がさらにR1234yfを含有する点で、実施の形態3とは異なる。すなわち、本実施の形態に用いられる冷媒は、R32、HFO1123、CF3I、R744およびR1234yfの五成分を含有する。それ以外の基本構成は実施の形態3と同じであるため、重複する説明については省略する。
 前記冷媒の総量に対して、R32、R744およびR1234yfの合計の比率が8~20質量%であり、HFO1123の比率が50~70質量%であり、CF3Iの比率が10~30質量%であり、かつ、R744/R1234yf>0.65であることが好ましい。
 実施の形態3の冷媒は、R32、HFO1123およびCF3Iの3種混合冷媒より、高圧になるため、配管の肉厚を厚くすること等が必要になる可能性がある。本実施の形態においては、R1234yfを用いることにより冷媒の圧力が低下するため、動作圧を下げることができるので、配管の肉厚を厚くする必要性は生じない。
 表4および表5に本実施の形態における冷媒の具体例をその特性と共に列記する。なお、表中の「GWP」は、表3に示される各々の冷媒のGWP値から求めた加重平均値である。表中の「OK」は本実施の形態に係る冷媒に含まれることを意味し、「NG」は本実施の形態に係る冷媒に含まれないことを意味する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 1 圧縮機、2 流路切替弁、3 室外熱交換器、4 膨張弁、5 室内熱交換器。

Claims (11)

  1.  圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
     前記冷凍回路内に冷媒が封入されており、
     前記冷媒は、R32、HFO1123およびR744の三成分を含有し、
     前記三成分の質量比率を三角座標で表した組成図において、
     前記三成分の質量比率が、
     R32、HFO1123およびR744がそれぞれ46質量%、54質量%および0質量%であることを示す点Aと、R32、HFO1123およびR744がそれぞれ46質量%、37.2質量%および16.8質量%であることを示す点Bとを結ぶ第1直線、
     前記点Aと、R32、HFO1123およびR744がそれぞれ0質量%、100質量%および0質量%であることを示す点Cとを結ぶ第2直線、
     前記点Cと、R32、HFO1123およびR744がそれぞれ0質量%、85.7質量%および14.3質量%であることを示す点Dとを結ぶ第3直線、および、
     前記点Bと前記点Dとを結ぶ第1曲線
     によって囲まれる範囲内にあり、
     前記三成分の全ての質量比率が0質量%より大きい、冷凍サイクル装置。
  2.  前記第1曲線は、R744の成分をX軸とし、該X軸に対して垂直方向をY軸としたときに下記式(1)[境界条件:0≦Y≦39.84、14.3≦X≦39.8]で表される、請求項1に記載の冷凍サイクル装置。
     
     Y=0.0000010672X-0.0001465588X+0.0082178036X-0.2396523289X+3.8262954499X-31.0173735188X+96.765465851   ・・・(1)
     
  3.  前記三成分の質量比率を三角座標で表した組成図において、
     前記三成分の質量比率が、
     R32、HFO1123およびR744がそれぞれ46質量%、53.4質量%および0.6質量%であることを示す点Eと、前記点Bとを結ぶ第1直線、
     前記点Eと、R32、HFO1123およびR744がそれぞれ1.65質量%、82.8質量%および15.55質量%であることを示す点Fとを結び、R744の成分をX軸とし、該X軸に対して垂直方向をY軸としたときに下記式(2)[境界条件:1.47≦Y≦39.84、16.35≦X≦23.6]で表される第2曲線、および、
     前記点Bと前記点Eとを結び、R744の成分をX軸とし、該X軸に対して垂直方向をY軸としたときに前記式(1)[境界条件:1.47≦Y≦39.84、16.35≦X≦39.8]で表される第1曲線
     によって囲まれる範囲内にある、請求項2に記載の冷凍サイクル装置。
     
     Y=6.2229811918E-0810-6.1417665837E-06+0.0002122018X-0.0025390680X+0.0005289805X-0.2205484505X-6.6805986428X+984.2366988008X-24963.7886980727X+258533.891864178X-993240.057394683   ・・・(2)
     
  4.  空気調和用である、請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5.  前記室外熱交換器および前記室内熱交換器のいずれか一方において、それらが凝縮器であっても蒸発器であっても、空気の流れに対する前記冷媒の流れが反対方向となる、請求項4に記載の冷凍サイクル装置。
  6.  前記室外熱交換器および前記室内熱交換器の両方において、それらが凝縮器であっても蒸発器であっても、空気の流れに対する前記冷媒の流れが反対方向となる、請求項4に記載の冷凍サイクル装置。
  7.  前記室外熱交換器および前記室内熱交換器のいずれか一方または両方において、それらの熱交換器の一部が凝縮器であっても蒸発器であっても、空気の流れに対する前記冷媒の流れが反対方向となる、請求項4に記載の冷凍サイクル装置。
  8.  前記冷凍サイクル装置に封入された前記冷媒は、HFO1123がHFO1132(E)に置き換えられてなる冷媒である、請求項1~7のいずれか1項に記載の冷凍サイクル装置。
  9.  圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
     前記冷凍回路内に冷媒が封入されており、
     前記冷媒は、R32、HFO1123、CF3IおよびR744の四成分を含有し、
     前記冷媒の総量に対して、R32およびR744の合計の比率が8~20質量%であり、HFO1123の比率が50~70質量%であり、CF3Iの比率が10~30質量%である、冷凍サイクル装置。
  10.  前記冷媒は、R1234yfをさらに含み、
     R32、R744およびR1234yfの合計の比率が8~20質量%であり、
     R744/R1234yf>0.65である、
     請求項9に記載の冷凍サイクル装置。
  11.  前記冷凍サイクル装置に封入された前記冷媒は、HFO1123がHFO1132(E)に置き換えられてなる冷媒である、請求項9または10に記載の冷凍サイクル装置。
PCT/JP2020/015260 2019-10-18 2020-04-03 冷凍サイクル装置 WO2021075075A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080071509.9A CN114556031B (zh) 2019-10-18 2020-04-03 冷冻循环装置
US17/634,151 US20220290901A1 (en) 2019-10-18 2020-04-03 Refrigeration Cycle Apparatus
JP2021552092A JP7354271B2 (ja) 2019-10-18 2020-04-03 冷凍サイクル装置
EP20876645.1A EP4047287A4 (en) 2019-10-18 2020-04-03 REFRIGERATION CYCLE DEVICE
AU2020367564A AU2020367564B2 (en) 2019-10-18 2020-04-03 Refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019041225 2019-10-18
JPPCT/JP2019/041225 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075075A1 true WO2021075075A1 (ja) 2021-04-22

Family

ID=75537360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015260 WO2021075075A1 (ja) 2019-10-18 2020-04-03 冷凍サイクル装置

Country Status (6)

Country Link
US (1) US20220290901A1 (ja)
EP (1) EP4047287A4 (ja)
JP (1) JP7354271B2 (ja)
CN (1) CN114556031B (ja)
AU (1) AU2020367564B2 (ja)
WO (1) WO2021075075A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050685A (ja) * 1999-08-06 2001-02-23 Sanyo Electric Co Ltd 熱交換器
JP2004198063A (ja) 2002-12-20 2004-07-15 Sanyo Electric Co Ltd 非共沸混合冷媒および冷凍サイクル、並びに冷凍装置
JP2005015633A (ja) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2009024152A (ja) * 2007-06-20 2009-02-05 Daikin Ind Ltd 温暖化係数が低いトリフルオロヨードメタンとジフルオロメタンの不燃性組成物
JP2015034296A (ja) 2010-01-27 2015-02-19 ダイキン工業株式会社 ジフルオロメタン(HFC32)と2,3,3,3−テトラフルオロプロペン(HFO1234yf)を含む冷媒組成物
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015125884A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2018040517A (ja) * 2016-09-06 2018-03-15 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2018104565A (ja) * 2016-12-27 2018-07-05 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP2019504175A (ja) * 2015-12-07 2019-02-14 メキシケム フロー エセ・ア・デ・セ・ヴェ 伝熱組成物
JP2019512031A (ja) * 2016-02-29 2019-05-09 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ジフルオロメタン、ペンタフルオロエタン、テトラフルオロエタン、テトラフルオロプロペン、及び二酸化炭素を含む冷媒混合物、並びにその使用
JP2019214720A (ja) * 2018-06-12 2019-12-19 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
JP2020002380A (ja) * 2018-06-22 2020-01-09 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155545A1 (ja) * 2013-03-27 2014-10-02 日立アプライアンス株式会社 空気調和機
US10393391B2 (en) * 2014-10-16 2019-08-27 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP4098714A1 (en) * 2015-06-01 2022-12-07 Agc Inc. Working fluid for heat cycle, composition for heat cycle system and heat cycle system
JP2017145975A (ja) * 2016-02-15 2017-08-24 三菱電機株式会社 冷凍サイクル装置、冷凍サイクル装置の製造方法、冷凍サイクル装置のドロップイン方法、及び、冷凍サイクル装置のリプレース方法
EP4122996A1 (en) * 2016-09-07 2023-01-25 Agc Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP6884572B2 (ja) * 2016-12-27 2021-06-09 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP6841066B2 (ja) * 2017-02-03 2021-03-10 ダイキン工業株式会社 フッ素化炭化水素の混合物を冷媒として使用する方法、及び当該混合物を冷媒として使用した冷凍装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050685A (ja) * 1999-08-06 2001-02-23 Sanyo Electric Co Ltd 熱交換器
JP2004198063A (ja) 2002-12-20 2004-07-15 Sanyo Electric Co Ltd 非共沸混合冷媒および冷凍サイクル、並びに冷凍装置
JP2005015633A (ja) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2009024152A (ja) * 2007-06-20 2009-02-05 Daikin Ind Ltd 温暖化係数が低いトリフルオロヨードメタンとジフルオロメタンの不燃性組成物
JP2015034296A (ja) 2010-01-27 2015-02-19 ダイキン工業株式会社 ジフルオロメタン(HFC32)と2,3,3,3−テトラフルオロプロペン(HFO1234yf)を含む冷媒組成物
WO2015115252A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015125884A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2019504175A (ja) * 2015-12-07 2019-02-14 メキシケム フロー エセ・ア・デ・セ・ヴェ 伝熱組成物
JP2019512031A (ja) * 2016-02-29 2019-05-09 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ジフルオロメタン、ペンタフルオロエタン、テトラフルオロエタン、テトラフルオロプロペン、及び二酸化炭素を含む冷媒混合物、並びにその使用
JP2018040517A (ja) * 2016-09-06 2018-03-15 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2018104565A (ja) * 2016-12-27 2018-07-05 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP2019214720A (ja) * 2018-06-12 2019-12-19 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
JP2020002380A (ja) * 2018-06-22 2020-01-09 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Also Published As

Publication number Publication date
AU2020367564B2 (en) 2023-08-03
EP4047287A1 (en) 2022-08-24
EP4047287A4 (en) 2023-03-08
CN114556031B (zh) 2024-06-04
US20220290901A1 (en) 2022-09-15
CN114556031A (zh) 2022-05-27
AU2020367564A1 (en) 2022-03-10
JP7354271B2 (ja) 2023-10-02
JPWO2021075075A1 (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
JP7284405B2 (ja) 冷凍サイクル装置
US20200393178A1 (en) Refrigeration cycle apparatus
US11435118B2 (en) Heat source unit and refrigeration cycle apparatus
US11820933B2 (en) Refrigeration cycle apparatus
WO2019124328A1 (ja) 熱源ユニットおよび冷凍サイクル装置
JP6065429B2 (ja) 空気調和機
WO2019124329A1 (ja) 冷凍サイクル装置
JP2017145975A (ja) 冷凍サイクル装置、冷凍サイクル装置の製造方法、冷凍サイクル装置のドロップイン方法、及び、冷凍サイクル装置のリプレース方法
US10294400B2 (en) Composition including difluoromethane (HFC-32), pentafluoroethane (HFC-125), and 1,1,1,2-tetrafluoroethane (HFC-134A)
WO2017145244A1 (ja) 冷凍サイクル装置
WO2021075075A1 (ja) 冷凍サイクル装置
JP2020073640A (ja) 冷凍サイクル装置
WO2023047440A1 (ja) 空気調和装置
US20190031933A1 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552092

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020367564

Country of ref document: AU

Date of ref document: 20200403

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020876645

Country of ref document: EP

Effective date: 20220518