Patents

Search tools Text Classification Chemistry Measure Numbers Full documents Title Abstract Claims All Any Exact Not Add AND condition These CPCs and their children These exact CPCs Add AND condition
Exact Exact Batch Similar Substructure Substructure (SMARTS) Full documents Claims only Add AND condition
Add AND condition
Application Numbers Publication Numbers Either Add AND condition

Způsob polymerace

Abstract

Kontinu ln zp sob polymerace olefinov ho monomeru zvolen ho ze skupiny zahrnuj c (a) ethylen, (b) propylen, (c) sm si propylenu a ethylenu a (d) sm si (a), (b) nebo (c) s jedn m nebo n kolika dal mi alfa-olefiny v plynn f zi prov d n² v reaktoru s fluidn m lo em, kter² je charakteristick² t m, e se plynn² proud zahrnuj c ethylen a/nebo propylen v p° tomnosti polymera n ho katalyz toru a za reak n ch podm nek kontinu ln recykluje fluidn m lo em reaktoru, p°i em alespo st plynn ho proudu odtahovan ho z reaktoru se chlad na teplotu, p°i kter kapalina kondenzuje, alespo st zkondenzovan kapaliny se z plynn ho proudu odd luje a alespo st odlou en kapaliny se zav d p° mo do fluidn ho lo e v m st , ve kter m plynn² proud proch zej c fluidn m lo em v podstat dosahuje teploty plynn ho proudu, kter² je z reaktoru odtahov n, nebo nad t mto m stem. Kapalina, kter je zav d na do lo e m e b²t zav d na skrze rozst°ikovac trysky s plynn²m rozpra ovac m m diem nebo pouze skrze\

Classifications

B01J8/1809 Controlling processes
View 16 more classifications

Landscapes

Show more

CZ289037B6

Czechia

Other languages
English
Inventor
Jean-Claude Chinh
Michel Ch. H. Filippelli
David Newton
Michael B. Power

Worldwide applications
1994 ZA IN DZ JP SK CZ EP WO EP ES AT SG EP RO CA NZ RU US KR HU DE BR PL AT UA CN EG HK DE MY TW 1995 BG NO FI 1996 US US US 1998 GR

Application CZ19952940A events
First worldwide family litigation filed

Description

Způsob polymerace
Oblast techniky
Vynález se týká kontinuálního způsobu polymerace olefinů v plynné fázi v reaktoru s fluidním ložem a zejména způsobu, který zvyšuje stupeň produktivity.
Dosavadní stav techniky
Způsoby homopolymerace a kopolymerace olefinů v plynné fázi jsou v daném oboru velmi dobře známy. Tyto způsoby mohou například zahrnovat zavádění plynného monomeru do míchaného a/nebo fluidního lože zahrnujícího předběžně zpracovaný polyolefm a katalyzátor za účelem polymerace.
U polymerace olefinů ve fluidním loži probíhá polymerace v reaktoru s fluidním ložem a polymemí částice v tomto loži se udržují ve fluidním stavu pomocí zaváděného proudu plynu zahrnujícího plynný reakční monomer. K zahájení takové polymerace se zpravidla používá lože předběžně zpracovaných polymemích částic podobného polymeru, jehož výroba je žádoucí. V průběhu polymerace se katalytickou polymeraci uvedeného monomem produkuje čerstvý polymer, kteiý je odtahován za účelem udržení více či méně konstantního objemu lože. Průmyslově využitelný proces používá fluidizační rošt, který distribuuje fluidizační plyn do lože a působí jako podpěra pro lože, pokud se dodávka plynu přeruší. Vyrobený polymer je zpravidla odtahován z reaktoru výpustním potrubím uspořádaným ve spodní části reaktoru, v blízkosti fluidizačního roštu. Fluidizační lože zahrnuje lože narůstajících polymemích částic, částic polymemího produktu a částic katalyzátoru. Tato reakční směs se udržuje ve fluidizačních podmínkách kontinuálním proudem fluidizačního plynu, který proudí ze základny reaktora směrem nahoru, přičemž tento plyn je tvořen jednak recyklovaným plynem z horní části reaktora a jednak nově přiváděným plynem.
Fluidizující plyn vstupuje do dna reaktora a je veden výhodně skrze fluidní rošt do fluidního lože.
Polymerace olefinů je exotermní reakcí, a proto je nezbytné opatřit reaktor prostředkem pro chlazení lože za účelem odvádění tepla vznikajícího v důsledku polymerační reakce. Při nepřítomnosti takového chlazení by fluidní lože mohlo zvýšit svoji teplotu natolik, že by mohlo dojít například k inaktivaci katalyzátoru nebo by se lože mohlo začít tavit. U polymerace olefinů ve fluidním loži je výhodným způsobem odvádění polymeračního tepla způsob, při kterém je do reaktora přiváděn plyn, výhodně fluidizační plyn, jehož teplota je nižší než požadovaná polymerační teplota, a tento plyn je veden skrze fluidní lože za účelem odvodu polymeračního tepla, následně odváděn z reaktora, chlazen v externím tepelném výměníku a recyklován zpět do lože. Teplota recyklovaného plynu může být nastavena v tepelném výměníku za účelem udržení fluidizačního lože na požadované polymerační teplotě. U tohoto způsobu polymerace alfa-olefinů recyklační plyn zpravidla zahrnuje monomemí olefin» případně například společně s ředicím plynem nebo plynným přenašečem řetězce, jakým je například vodík. Takže recyklační plyn slouží k dodání monomeru do fluidního lože a k udržení tohoto fluidního lože na požadované teplotě. Monomery spotřebované polymerační reakcí jsou zpravidla nahrazeny přidáním čerstvého plynu do proudu recyklovaného plynu.
Je dobře známo, že výrobní rychlost (tj. měrný výkon neboli produktivita reaktora - hmotnost produktu za jednotku času a v jednotce objemu reaktora) v komerčních plynných reaktorech s fluidním ložem již zmíněného typuje omezena maximální rychlostí, kterou může být z reaktora odváděno polymerační teplo. Tuto rychlost odvádění tepla lze zvýšit například zvýšením rychlosti recyklovaného plynu a/nebo snížením jeho teploty. Avšak tato rychlost se omezuje na rychlost recyklovaného plynu, kterou lze použít v komerční praxi. Při překročení této limity se
-1 CZ 289037 B6 může lože stát nestabilním nebo může být dokonce vyneseno ven z reaktoru v proudu plynu, což by mohlo vést k zanesení recyklační linky a poruše kompresoru nebo ventilátoru recyklačního plynu. Dalším omezením je praktická možnost chlazení recyklovaného plynu. Toto omezení je zejména dáno ekonomickými požadavky a v praxi je zpravidla dáno teplotou průmyslové chladicí vody dostupné v uvedeném závodě. Pokud je to žádoucí, může být použito chlazení, ale to zvyšuje výrobní cenu. Takže v komerční praxi je nevýhodou použití chlazeného recyklovaného plynu, jako jediného prostředku pro odvádění polymeračního tepla z fluidního lože při polymeraci olefínů v plynné fázi, omezení maximální produkční rychlosti.
Známý stav techniky nabízí celou řadu způsobů odvádění polymeračního tepla vznikajícího při polymeraci v plynné fázi ve fluidním loži.
Patentový spis GB 1 415 442 se týká polymerace vinylchloridu v plynné fázi v reaktoru s míchaným nebo fluidním ložem, která se provádí v přítomnosti alespoň jednoho plynného ředidla majícího teplotu varu nižší, než je teplota varu vinylchloridu. Příklad 1 tohoto spisu popisuje regulaci teploty polymerace přerušovaným přidáváním kapalného vinylchloridu do fluidního polyvinylchloridového materiálu. Tento kapalný vinylchlorid se v fluidním loži okamžitě odpaří, což má za následek odvod polymeračního tepla.
Patentový spis US 3 625 932 popisuje způsob polymerace vinylchloridu, u kterého jsou lože polyvinylchloridových částic v reaktoru s několikastupňovým fluidním ložem udržovány ve zvířeném stavu zaváděním plynného vinylchloridového monomeru dnem reaktoru. Chlazení každého lože za účelem odvodu polymeračního tepla generovaného v tomto loži se provádí vstřikováním kapalného vinylchloridového monomeru do proudu zaváděného plynu pod fluidním patrem.
Patentový spis FR 22 155 802 se týká rozstřikovací trysky typu zpětný ventil, která je vhodná pro vstřikování kapalin do fluidních loží, například při plynné polymeraci ethylenicky nenasycených monomerů ve fluidním loži. Tekutinou, která se používá pro chlazení lože, může být monomer, který má být polymerován, nebo v případě, že má být polymerován ethylen, může být touto tekutinou kapalný nenasycený uhlovodík. Rozstřikovací tryska je popsána v souvislosti s polymeraci vinylchloridu ve fluidním loži.
Patentový spis GB 1 398 965 popisuje polymeraci ethylenicky nenasycených monomerů, zejména vinylchloridu, ve fluidním loži, u které je tepelná regulace polymerace zajišťována vstřikováním kapalného monomeru do lože za použití jedné nebo několika rozstřikovacích trysek umístěných ve výšce 0 % až 75 % výšky vířivého materiálu fluidního lože v reaktoru.
Patentový spis US 4 390 669 se týká homopolymerace nebo kopolymerace olefínů prováděné ve vícestupňovém polymeračním procesu probíhajícím v plynné fázi, který lze provádět v reaktorech s míchaným ložem, reaktorech s fluidním ložem, reaktorech s míchaným fluidním ložem nebo ve válcových reaktorech. U tohoto způsobu je polymer získaný z první polymerační zóny suspendován ve středové zóně, ve snadno těkavém kapalném uhlovodíku a takto získaná suspenze se zavádí do druhé polymerační zóny, ve které se kapalný .uhlovodík odpaří. V příkladech 1 až 5 se plyn z druhé polymerační zóny dopravuje skrze chladič (tepelný výměník), ve kterém část kapalného uhlovodíku zkondenzuje (s komonomerem, v případě že se použije). Těkavý kapalný kondenzát se částečně usadí v kapalném stavu v polymerační nádobě, ve které se odpařuje a odvádí tak teplo vznikající v důsledku polymerace latentním výpamým teplem. Tento spis se nezabývá specifickým způsobem zavádění kapaliny do uvedené polymerace.
Patentový spis EP 89 691 se týká způsobu zvýšení produktivity reaktoru u kontinuálních způsobů polymerace kapalných monomerů v plynné fázi ve fluidním loži, přičemž tento způsob zahrnuje chlazení, neboli všechny nezreagované tekutiny tvoří dvoufázovou směs plynu a zaváděné tekutiny pod rosným bodem, a opětné zavádění této dvoufázové směsi do reaktoru. Tato technika
-2CZ 289037 B6 je označována jako operace v „kondenzačním módu“. Tento patentový spis uvádí, že primárním omezením chlazení proudu recyklovaného plynu pod rosný bod je dostatečné zachování poměru plynu a kapaliny pro zachování kapalné fáze dvoufázové tekuté směsi při vstupních podmínkách až do okamžiku odpařování kapaliny. Tento spis rovněž uvádí, že množství kapaliny v plynné fázi by nemělo přesáhnout přibližně 20 % hmotn. a výhodně by nemělo přesáhnout přibližně 10% hmotn., vždy za předpokladu, že rychlost dvoufázového recyklovaného proudu je dostatečně vysoká pro udržení kapalné fáze v suspenzi v plynu a pro nesení fluidního lože v reaktoru. EP89 691 dále uvádí, že je možné vytvořit dvoufázový tekutinový proud uvnitř reaktoru, přičemž plyn a kapalina jsou do reaktoru v místě vstřikování vstřikovány odděleně za podmínek, které umožní vznik dvoufázového proudu, nicméně výhoda tohoto způsobu není příliš velká, vzhledem ktomu, že následná separace plynné a kapalné fáze po ochlazení zvyšuje finanční náklady vynaložené na tento způsob polymerace.
Patentový spis EP 173 261 se zejména týká zlepšení spočívajících v distribuci tekutiny zavedené do reaktorů s fluidním ložem, a zejména se týká provozu v kondenzačním režimu, který byl popsán v EP 89 691. V tomto patentovém spisu se uvádí, že provoz za použití vstupu v základně reaktoru (pod distribuční deskou nebo roštem) stojatého trubkovitého/kónického typu (znázorněného na obrázcích patentového spisu EP 89 691) není dostatečný pro provoz v kondenzačním módu, například vzhledem k zaplavení dna. S tímto jevem se lze setkat u komerčních reaktorů při použití relativně nízkých podílů kapalin v recyklovaném proudu.
Nyní bylo zjištěno, že chlazením recyklovaného plynného proudu na teplotu dostatečnou pro vytvoření kapaliny a plynu a oddělením kapaliny od plynu a následným zaváděním kapaliny přímo do fluidního lože se může celkové množství kapaliny, které může být zavedeno do fluidního lože polymeračního reaktoru pro účely chlazení lože v důsledku odpařování kapaliny, zvýšit a tím se zvýší úroveň chlazení a dosáhne se tak vyšší produktivity.
Podstata vynálezu
Vynález se tedy týká kontinuálního způsobu polymerace olefinového monomeru zvoleného ze skupiny zahrnující (a) ethylen, (b) propylen, (c) směsi propylenu a ethylenu a (d) směsi (a), (b) nebo (c) s jedním nebo několika dalšími alfa-olefíny v plynné fázi v reaktoru s fluidním ložem, který je charakteristický tím, že se plynný proud zahrnující ethylen a/nebo propylen v přítomnosti polymeračního katalyzátoru a za reakčních podmínek kontinuálně recykluje fluidním ložem reaktoru, přičemž alespoň část plynného proudu odtahovaného z reaktoru se chladí na teplotu, při které kapalina kondenzuje, alespoň část zkondenzované kapaliny se z plynného proudu odděluje a alespoň část odloučené kapaliny se zavádí přímo do fluidního lože v místě, ve kterém plynný proud procházející fluidním ložem v podstatě dosahuje teploty plynného proudu, který je z reaktoru odtahován, nebo nad tímto místem.
Proud recyklovaného plynu odtahovaný z reaktoru (dále označovaný jako „nezreagované tekutiny“) zahrnuje nezreagované plynné monomeiy a případně inertní uhlovodíky, reakční aktivátory nebo moderátory, stejně jako zaváděný katalyzátor a polymemí částice.
Proud recyklovaného plynu dodávaný do reaktoru dále obsahuje dostatečné množství čerstvých monomerů, které nahradí v reaktoru zpolymerované monomery.
Způsob podle vynálezu je vhodný pro výrobu polyolefínů v plynné fázi, při které polymeruje jeden nebo více olefinů, přičemž alespoň jedním z nich je ethylen nebo propylen. Výhodně použitelnými alfa-olefíny pro způsob podle vynálezu jsou alfa-olefíny mající 3 až 8 atomů uhlíku. Nicméně, v případě že je to žádoucí, lze použít i menší množství alfa-oleflnů majících více než 8 atomů uhlíku, například 9 až 18 atomů uhlíku. Je tedy možné vyrábět homopolymery ethylenu nebo propylenu nebo kopolymery ethylenu nebo propylenu s jedním nebo několika alfa-olefíny majícími 3 až 8 atomů uhlíku. Výhodnými alfa-olefíny jsou but-l-en, pent-l-en,
-3CZ 289037 B6 hex-l-en, 4-methylpent-l-en, okt-l-en a butadien. Příklady vyšších olefinů, které mohou zkopolymerovat s primárním ethylenovým nebo propylenovým monomerem a mohou vystupovat jako částečná náhrada C3 až Cg monomeru, jsou dec-l-en a ethilidennorbomen.
Pokud se uvedený způsob použije pro kopolymerací ethylenu nebo propylenu s alfa-olefiny, je ethylen nebo propylen přítomen jako hlavní složka kopolymerů a výhodně je přítomen v množství představujícím alespoň 70 % všech monomerů.
Způsob podle vynálezu lze použít k výrobě celé řady polymemích produktů, například lineárního nízkohustotního polyethylenu (LLDPE), jehož základ tvoří kopolymery ethylenu s butanem, 4-methylpent-l-enem nebo hexenem, a vysokohustotního polyethylenu (HDPE), kterým může být například homopolyethylen nebo kopolymery ethylenu s malou částí vyššího alfa-olefinu, například butenu, pent-l-enu, hex-l-enu nebo 4-methylpent-l-enu.
Kapalinou, která vykondenzuje z recyklovaného plynného proudu, může být zkapalnitelný monomer, například buten, hexen a okten, použitý jako komonomer při výrobě LLDPE, nebo může být touto kapalinou inertní zkapalnitelná kapalina, například butan, pentan a hexan.
Je důležité použít tekutinu, která se bude ve fluidním loži za polymeračních podmínek odpařovat a poskytne tak požadovaný chladící efekt a v podstatě vyloučí hromadění kapaliny uvnitř lože. Vhodně se ve fluidním loži odpařuje alespoň 95 % hmotn., výhodně alespoň 98 % hmotn. A nejvýhodněji v podstatě veškerá kapalina, která je do lože dodávána. V případě kapalných komonomerů část komonomeru polymeruje v loži, přičemž k polymeraci lze použít jak kapalnou, tak plynnou fázi. Je známo, že u konvenčních polymeračních nebo nepolymeračních způsobů prováděných v plynné fázi má malá část monomeru (a komonomeru, pokud je nějaký použit) tendenci zůstávat (absorbovaný nebo rozpuštěný) v polymemím produktu až do okamžiku, kdy se polymer podrobí následnému odplynění. Toto množství nebo dokonce i vyšší množství absorbovaného nebo rozpuštěného monomeru/komonomeru lze v loži tolerovat za předpokladu, že nežádoucím způsobem neovlivní fluidizační vlastnosti lože.
Uvedený způsob je zejména vhodný pro provádění polymerace olefinů při tlaku 0,5 MPa až 6 MPa a teplotě 30 °C až 130 °C. Například při výrobě LLDPE se teplota vhodně pohybuje v rozmezí od 80 °C do 90 °C a při výrobě HDPE se teplota zpravidla pohybuje v rozmezí od 85 °C do 105 °C, v závislosti na účinnosti použitého katalyzátoru.
Polymerační reakci lze provádět v přítomnosti katalytického systému Ziegler-Nattova typu obsahujícího pevný katalyzátor, který je v podstatě tvořen sloučeninou přechodného kovu a kokatalyzátorem tvořeným organickou sloučeninou kovu (tj. organokovovou sloučeninou, například alkylaluminiovou sloučeninou). Vysoce účinné katalytické systémy, které jsou již dlouho známy, jsou schopny v relativně krátkém čase produkovat velké množství polymeru, což umožňuje vypustit krok, ve kterém se z polymeru odstraňují katalytické zbytky. Tyto vysoce účinné katalytické systémy zpravidla zahrnují pevný katalyzátor tvořený v podstatě atomy přechodného kovu, hořčíku a halogenu. Rovněž je možné použít vysoce aktivní katalyzátor tvořený v podstatě oxidem chromitým aktivovaným teplem a granulovým nosičem , na bázi žáruvzdorného oxidu. Použití způsobu podle vynálezu je rovněž vhodné při použití metallocenových katalyzátorů a Zieglerových katalyzátorů nesených oxidem křemičitým.
Výhodou způsobu podle vynálezu je zlepšený chladicí účinek, který je velkým přínosem, zejména pro polymeraci procesy používající vysoce aktivní katalyzátory, jakými jsou například metallocenové katalyzátory.
Katalyzátor může být vhodně použit ve formě předpolymerovaného prášku připraveného v průběhu předpolymeračního stadia pomocí výše uvedeného katalyzátoru. Tuto předpolymeraci lze provést některým vhodným způsobem, například polymeraci v kapalném uhlovodíkovém
-4CZ 289037 B6 ředidle nebo v plynné fázi, a to vsádkovým způsobem, polokontinuálním způsobem nebo kontinuálním způsobem.
U výhodného provedení způsobu podle vynálezu je v podstatě veškerý recyklovaný plynný proud chlazen a separován a veškerá separovaná kapalina je zavedena do fluidního lože.
U alternativního provedení podle vynálezu je proud recyklovaného plynu rozdělen do prvního proudu a druhého proudu. První proud je veden přímo do reaktoru konvenčním způsobem, vstřikováním pod fluidizační rošt, a druhý proud je chlazen a rozdělen na proud plynu a proud kapaliny. Proud plynu lze vrátit do prvního proudu a opět zavést do reaktoru pod ložem, například pod fluidizačním roštem, pokud se tento rošt použije. Separovaná kapalina je zavedena do fluidního lože způsobem podle vynálezu.
Proud recyklovaného materiálu je vhodně chlazen pomocí tepelného výměníku nebo výměníků na teplotu, při které kapalina zkapalní v plynném proudu. Vhodné tepelné výměníky jsou v daném oboru dobře známy.
Plynný proud opouštějící reaktor jeho horní částí může unášet množství katalyzátoru a polymemích částic a ty mohou být v případě, že je to žádoucí, z recyklovaného plynného proudu odstraněny pomocí cyklónu. Malá část těchto částic nebo jemnozmného podílu může zůstat v recyklovaném plynném proudu a po chlazení a separaci kapaliny z plynu může být jemný podíl v případě, že je to žádoucí, opět zaveden společně s odděleným proudem kapaliny do fluidního lože.
Recyklovaný proud plynu může rovněž obsahovat inertní uhlovodíky použité pro vstřikování katalyzátoru, reakčních aktivátorů a moderátorů do reaktoru.
Čerstvé monomery, například ethylen, které mají nahradit monomery spotřebované polymerační reakcí, mohou být přidány do recyklovaného proudu plynu v jakémkoliv vhodném místě.
Zkapalnitelné monomery, například buten, hexen, 4-methylpent-l-en a okten, které mohou být například použity jak komonomery pro výrobu LLDPE, nebo inertní zkapalnitelné kapaliny, například pentan, isopentan, butan a hexan, mohou být zaváděny jako kapaliny.
Inertní zkapalnitelné tekutiny, například pentan, mohou být například vstřikovány do recyklovaného proudu plynu mezi tepelným výměníkem a odlučovačem. Při výrobě LLDPE může být, v případě že je to žádoucí, komonomer, například buten, vstřikován do recyklovaného proudu plynu před tím, než vstoupí do tepelného výměníku.
Vhodnými prostředky pro separování uvedené kapaliny jsou například cyklónový odlučovač, velké nádoby, které snižují lychlost proudu plynu za účelem účinného odloučení (vyrážecí válce), odlučovač plynu a kapaliny typu odmlžovač a kapalinové skrubry, například Venturiho skrubry. Tyto odlučovače jsou v dané oblasti všeobecně známé.
Pro účely způsobu podle vynálezu je zvláště výhodné použití odlučovače kapalin a plynů odmlžovacího typu.
'1
Výhodné je u recyklovaného proudu plynu předřadit před uvedený odlučovač plynu a kapaliny cyklónový odlučovač. Ten odloučí z plynného proudu opouštějícího reaktor hlavní část jemného podílu, čímž usnadní práci odmlžovacímu odlučovači a rovněž sníží možnost zanášení separátoru, což má za následek mnohem účinnější provoz.
Další výhodou použití odlučovače odmlžovacího typu je to, že tlakový spád uvnitř odlučovače může být nižší než ve druhých typech odlučovače, což zvyšuje účinnost celkového procesu.
-5CZ 289037 B6
Zejména vhodným odmlžovacím odlučovačem pro použití při způsobu podle vynálezu je komerčně dostupný vertikální plynový odlučovač známý jako „Peerless“ (typ DPV P8X). Tento typ odlučovače pracuje na principu slučování kapek kapaliny na lopatkovém uspořádání za účelem odloučení kapaliny z plynu. Dno odlučovače je opatřeno velkým kapalinovým rezervoárem určeným ke shromažďování kapaliny. Uvedený kapalinový rezervoár umožňuje kapalině skladování a tím poskytuje kontrolu nad vypouštěním kapaliny z odlučovače. Tento typ odlučovače je velmi účinný a poskytuje v podstatě 100 % odloučení zkondenzované kapaliny z proudu plynu.
Pokud je to žádoucí, může být kapalinový rezervoár výše zmíněného odlučovače opatřen filtračním sítem nebo jiným vhodným prostředkem, jehož úkolem je zachycovat veškerý jemný podíl, který ještě zbyl v odloučené kapalině.
Odloučená kapalina je vhodně zaváděna do fluidního lože v místě, ve kterém uvedený recyklovaný plynný proud zaváděný do reaktoru v podstatě dosáhne teploty recyklovaného plynného proudu, který je odtahován z reaktoru nebo nad tímto místem. Zavádění odloučené kapaliny do reaktoru lze provádět v několika místech v prostoru fluidního lože, přičemž tato místa se mohou nacházet v různé výšce tohoto fluidního lože. Místo nebo místa, kterými se kapalina zavádí, jsou uspořádána tak, aby lokální koncentrace zaváděné kapaliny neovlivňovala nežádoucím způsobem víření fluidního lože nebo kvalitu produktu a aby tak umožnila rychlou dispergaci kapaliny z každého místa a její odpaření v loži za účelem odvodu polymeračního tepla vznikajícího v důsledku externí reakce. U tohoto způsobu zavádění množství kapaliny pro účely chlazení se lze mnohem těsněji přiblížit k maximálnímu plnění, které lze tolerovat bez narušení vířivých vlastností lože a nabízí tedy možnost dosáhnout zvýšené produktivity reaktoru.
Kapalina může být v případě, že je to žádoucí, zaváděna do fluidního lože v různých výškách tohoto lože. Tato technika může usnadnit zvýšenou kontrolu nad začleněním komonomerů. Regulované zavádění do fluidního lože poskytuje další užitečnou kontrolu nad teplotním profilem lože a v případě, že kapalina obsahuje komonomer, poskytuje užitečnou kontrolu nad zabudováním tohoto komonomerů do kopolymeru.
Kapalina je výhodně zaváděná do spodní části oblasti fluidního lože, ve které recyklovaný plynný proud v podstatě dosáhne teploty plynného proudu odtahovaného z reaktoru. Komerční způsoby polymerace olefínů v plynem zvířeném fluidním loži se zpravidla provádí za v podstatě izotermních ustálených podmínek. Nicméně i když je alespoň hlavní část fluidního lože udržována na požadované v podstatě izotermní polymerační teplotě, přičemž v oblasti lože, která se nachází bezprostředně nad místem zavádění chlazeného recyklovaného plynného proudu do tohoto lože, zpravidla existuje teplotní gradient. Spodní teplotní mez v oblasti teplotního gradientu je teplota vstupujícího chladného recyklovaného plynného proudu a homí mez je v podstatě izotermní teplotou lože. V komerčních reaktorech typu, který používá fluidní rošt, se tento teplotní gradient normálně nachází ve vrstvě přibližně 115 cm až 30 cm nad roštem.
Za účelem dosažení maximálně úspěšného chlazení odloučené kapaliny je důležité, aby byla kapalina zaváděna do lože nad oblastí teplotního gradientu, tj. v části lože, která v podstatě dosahuje teploty plynného proudu opouštějícího reaktor.
Místo nebo místa zavádění kapaliny do fluidního lože mohou být například přibližně 50 cm až 70 cm nad fluidním roštem.
V praxi může být způsob podle vynálezu prováděn například tak, že se nejprve určí teplotní profil uvnitř fluidního lože v průběhu polymerace, například za použití termočlánků umístěných ve stěnách reaktoru nebo na těchto stěnách. Bod nebo body zavádění kapaliny je/jsou následně uspořádány tak, aby se zajistilo, že kapalina vstupuje do oblasti lože, ve které recyklovaný plynný proud v podstatě dosáhne teploty plynného proudu, který je odtahován z reaktoru.
-6CZ 289037 B6
Přehled obrázků na výkresech
Obr. 1A a 1B znázorňují teplotní profil uvnitř typického reaktoru s fluidním ložem vhodným pro polymeraci olefinů v plynné fázi;
obr. 2 znázorňuje trysku, kterou lze vhodně použít u způsobu podle vynálezu;
obr. 3 schematicky znázorňuje způsob podle vynálezu;
obr. 4 znázorňuje alternativní uspořádání pro provádění způsobu podle vynálezu;
obr. 5 znázorňuje další uspořádání pro provádění způsobu podle vynálezu;
obr. 6 znázorňuje zkušební zařízení pro zavádění kapaliny do fluidního lože.
Způsoby podle vynálezu budou nyní popsány s odkazem na doprovodné obrázky.
Teplotní profil (obrázek 1A) je charakteristický pro fluidní lože použité k přípravě HDPE, u něhož výtěžek činí 23,7 t/h. Výše zmíněné teploty se měřily pomocí termočlánků, které byly umístěny na stěnách reaktoru, v místech odpovídajících různým pozicím (1 až 5) uvnitř fluidního lože. Tyto pozice 1 až 5 uvnitř fluidního lože jsou znázorněny na obrázku 1B.
Na teplotním profilu a na grafu jsou vyznačeny úroveň fluidizačního roštu (A) a vrchol fluidního lože (B). Výše uvedený teplotní gradient je patrný v oblasti mezi polohou 1 a polohou 3. Oblast, ve které recyklovaný plynný proud v podstatě dosáhne teploty nezreagovaných tekutin opouštějících reaktor, je znázorněná jako oblast mezi pozicí 3 a pozicí 5. Právě toto je oblast vhodná pro zavádění odloučené kapaliny do fluidního lože při použití způsobu podle vynálezu.
Kapalina je výhodně zaváděna do fluidního lože v jeho spodní části, tj. právě nad pozicí 3 teplotního profilu na obrázku 1 A.
Zvýšením množství kapaliny, které může být zavedeno do fluidního lože a kterým se zvýší chladicí kapacita systému, lze dosáhnout vyšší produktivity polymeračního reaktoru. V porovnání s jinými polymeračními procesy prováděnými ve fluidním loži v plynné fázi lze tímto zvýšit měrný výkon reaktoru.
Další výhodou způsobu podle vynálezu je to, že díky oddělenému zavádění kapaliny do fluidního lože může být k regulování dodávky této kapaliny do lože použit přesný měřicí prostředek. Tato technika usnadňuje zlepšenou regulaci chlazení a poskytuje zlepšenou kontrolu nad dopravou jakéhokoliv kapalného komonomeru dodávaného tímto způsobem do lože. Takže způsob podle vynálezu může pracovat takovým způsobem, který není odkázán například na jakoukoliv potřebu udržet kapalinu unášenou recyklovaným proudem plynu. V důsledku toho, lze množství kapaliny dodávané do lože měnit v mnohem širším rozmezí než doposud. Zlepšená regulace přítoku komonomeru nebo inertních plynů přidávaných do lože může být například použita za účelem regulace hustoty vyrobeného polymeru a měrného výkonu polymeračního reaktoru.
Je důležité zajistit, aby se teplota ve fluidním loži udržovala na úrovni teploty nižší než je teplota slinutí polyolefinu tvořícího lože.
Plyn odváděný z odlučovače je recyklován do lože, a to zpravidla dnem reaktoru. Pokud se použije fluidizační rošt, zavádí se tento recyklovaný plyn zpravidla do oblasti pod roštem, a rošt usnadňuje rovnoměrnou distribuci plynu za účelem zvíření fluidního lože. Použití fluidizačního roštu je výhodné. Fluidizačními rošty, které jsou vhodné pro účely způsobu podle vynálezu, mohou být běžné, například ploché nebo talířovité, desky perforované množinou otvorů
-7CZ 289037 B6 rozmístěných více či méně rovnoměrně po jejich povrchu. Otvory mohou mít například průměr přibližně 5 mm.
Způsob podle vynálezu pracuje s rychlostí plynu ve fluidním loži, která musí být větší než rychlost potřebná pro zvíření lože nebo je této rychlosti rovna. Minimální rychlost plynu je zpravidla přibližně 6 cm/s, ale způsob podle vynálezu se výhodně provádí za použití rychlosti 40 cm/s až 100 cm/s, výhodně 50 cm/s až 70 cm/s.
U způsobu podle vynálezu může být, v případě že je to žádoucí, katalyzátor nebo předpolymer zaváděn do fluidního lože přímo s proudem odloučené kapaliny. Tato technika může vést ke zlepšení dispergace katalyzátoru nebo předpolymeru v loži.
Pokud je to žádoucí, mohou být kapalina nebo v kapalině rozpustná aditiva, například aktivátory, kokatalyzátory apod., zaváděny do lože spolu se zkapalněnou tekutinou způsobem podle vynálezu.
V případě, že se použije způsob podle vynálezu pro výrobu homopolymerů nebo kopolymerů ethylenu, může se výhodně čerstvý ethylen, například ethylen, který má nahradit ethylen spotřebovaný v průběhu polymerace, zavádět do proudu odloučeného plynu před jeho zavedením do lože (například pod fluidizačním roštem, pokud se použije). Přidáním čerstvého ethylenu do proudu odloučeného plynu a nikoliv do recyklovaného plynného proudu před odloučením se může zvýšit množství kapaliny, kterou lze izolovat z odlučovače, a v důsledku toho i produktivita polymerace.
Proud odloučené kapaliny lze vystavit dalšímu chlazení (například za použití známých chladicích technik) před jeho zavedením do fluidního lože. Toto přídavné chlazení umožní dosáhnout ještě vyššího chladicího účinku v fluidním loži, než v případě, kdy chlazení zajišťuje pouze samotné odpařování (latentní odpařovací teplo), a tedy další potenciální zvýšení produktivity polymerace prováděné způsobem podle vynálezu. Chlazení proudu odloučené kapaliny lze dosáhnout použitím vhodných chladicích prostředků, například jednoduchého tepelného výměníku nebo chladiče umístěného mezi odlučovačem a reaktorem. Další výhodou tohoto znaku vynálezu je to, že chlazením kapaliny před jejím zavedením do fluidního lože se sníží i možnost, že by katalyzátor nebo předpolymer, které mohou být přítomny v proudu kapaliny, nezpolymerují před zavedením do fluidního lože.
Kapalina může být zaváděna do fluidního lože vhodně uspořádanými vstřikovacími prostředky. Pro vstřikování kapaliny do fluidního lože lze použít buď pouze jediný vstřikovací prostředek, nebo množinu vstřikovacích prostředků vhodně uspořádaných ve fluidním loži.
U výhodného uspořádání je množina vstřikovacích prostředků, která je vymezena pro zavádění kapaliny, v podstatě rovnoměrně rozmístěna v oblasti fluidního lože. Počet použitých vstřikovacích prostředků je takový počet, který je potřebný pro poskytnutí dostatečné penetrace a dispergace kapaliny v každém vstřikovacím prostředku za účelem dosažení dobré dispergace kapaliny v loži. Výhodným počtem vstřikovacích prostředků jsou čtyři.
Do každého vstřikovacího prostředku může být v případě, že je to žádoucí, dodávána odlučovací kapalina pomocí společného potrubí vhodně uspořádaného v reaktoru. Takovým potrubím, může být například potrubí procházející směrem nahoru středem reaktoru.
Vstřikovací prostředky jsou výhodně uspořádány tak, že vystupují v podstatě vertikálně do lože, ale mohou být uspořádány i tak, že vyčnívají ze stěn reaktoru v podstatě horizontálním směrem.
Rychlost, kterou může být kapalina zaváděna do lože, závisí zejména na požadovaném stupni chlazení v loži, a to zase závisí na požadované rychlosti produkce v loži. Rychlost výroby polymerů, dosažitelná při použití komerčních způsobů polymerace olefínů prováděných ve
-8CZ 289037 B6 fluidním loži, závisí mimo jiné na účinnosti použitých katalyzátorů a na kinetice těchto katalyzátorů. Takže například v případě, že se použijí katalyzátory s velmi vysokou účinností a požadují se velmi vysoké výrobní rychlosti, bude vysoká i rychlost přidávané kapaliny. Typické rychlosti pro zavádění kapaliny mohou být například 0,3 až 4,9 m3 kapaliny/m3 materiálu lože/h nebo i vyšší. Pro běžné Zieglerovy katalyzátory „superúčinného“ typu (tj. ty, jejichž bázi tvoří přechodný kov, halogen id hořečnatý a organokovový kokatalyzátor) může být kapalina do lože zaváděna rychlostí 0,5 až 1,5 m3 kapaliny/m3 materiálu lože/h.
U způsobu podle vynálezu se může hmotnostní poměr kapaliny ku celkovému plynu, který může být zaveden do lože, pohybovat například v rozsahu 1:100 až 2:1, výhodně v rozsahu 5:100 až 85:100 a nejvýhodněji v rozmezí od 6:100 do 25:100. Pojmem „celkový plyn“ se rozumí plyn, který se vrátí do reaktoru za účelem zvíření fluidního lože spolu s jakýmkoliv plynem, který lze použít jako pomocný plyn pro činnost vstřikovacího prostředku, například rozprašovací plyn.
Vstřikování kapaliny do fluidního lože u tohoto způsobu může být pro katalyzátor přítomný v kapalině užitečný vzhledem k lokalizovanému chladicímu účinku pronikající kapaliny obklopujícímu jednotlivé vstřikovací prostředky, který může zabránit vzniku horkých míst a následné aglomeraci.
Pro penetraci a dispergaci kapaliny do fluidního lože lze použít jakýkoliv další vhodný vstřikovací prostředek, který umožňuje dosáhnout dobré dispergace kapaliny v loži.
Výhodným vstřikovacím prostředkem je tryska nebo množina trysek, které zahrnují rozprašovací trysky s plynným rozprašovacím médiem, v nichž se používá jako pomocný prostředek pro rozstřikování kapaliny plyn, nebo pouze kapalinové rozstřikovací trysky.
Vynález dále poskytuje kontinuální způsob polymerace olefinového monomeru zvoleného ze skupiny zahrnující (a) ethylen, (b) propylen, (c) směsi ethylenu a propylenu a (d) směsi (a), (b) nebo (c) s jedním nebo několika dalšími alfa-olefmy prováděný v reaktoru s fluidním ložem, který je charakteristický tím, že se plynný proud zahrnující ethylen a/nebo propylen v přítomnosti polymeračního katalyzátoru a za reakčních podmínek kontinuálně recykluje fluidním ložem reaktoru, přičemž alespoň část plynného proudu odtahovaného z reaktoru se chladí na teplotu, při které kapalina kondenzuje, alespoň část zkondenzované kapaliny se z plynného proudu odděluje a kapalina se pomocí jedné nebo několika kapalinových trysek nebo rozstříkovacích trysek s plynným rozprašovacím médiem zavádí přímo do fluidního lože. Fluidní lože je výhodně neseno nad fluidizačním roštem.
Vstřikovacími prostředky jsou vhodně trysky, které jsou zavedeny do fluidního lože skrze stěny reaktoru (nebo skrze nosný rošt) a které mají jeden nebo více tryskových výpustních otvorů sloužících k dopravě kapaliny do fluidního lože.
U způsobu podle vynálezu je důležité dosažení dobré dispergace a penetrace kapaliny v loži. Důležitými faktory pro dosažení dobré penetrace a dispergace jsou hybná síla a směr, kterým je kapalina zaváděná do lože, počet míst, kterými se do tohoto lože zavádí kapalina a které jsou vztaženy na jednotku řezné plochy lože, a prostorové uspořádání těchto zaváděcích míst.
Podle dalšího rysu vynález dále poskytuje způsob polymerace olefinového monomeru, který je výhodně zvolen ze skupiny zahrnující (a) ethylen, (b) propylen, (c) směsi propylenu a ethylenu a(d) směsi (a), (b) nebo (c) s jedním nebo několika dalšími alfa-olefiny prováděný v reaktoru s fluidním ložem, který je charakteristický tím, že se plynný proud obsahující monomer v přítomnosti polymeračního katalyzátoru a za reakčních podmínek kontinuálně recykluje fluidním ložem reaktoru, přičemž alespoň část plynného proudu odtahovaného z reaktoru se chladí na teplotu, při které kapalina kondenzuje, alespoň část zkondenzované kapaliny se z plynného proudu odděluje a alespoň část této odloučené kapaliny se zavádí přímo do fluidního lože v místě, ve kterém plynný proud procházející fluidním ložem v podstatě dosáhne teploty
-9CZ 289037 B6 plynného proudu, který se odtahuje z reaktoru, nebo nad tímto místem, přičemž kapalina se do reaktoru zavádí jako jeden nebo více proudů samotné kapaliny nebo jeden, popř. více proudů kapaliny a plynu jedním nebo několika výpustními otvory trysek a jednotlivé proudy mají v případě pouze kapalinové trysky horizontální přítokovou hybnost alespoň 100 x 103 kg s'1 m-2 xm s_1 a v případě kapalino-plynových trysek mají přítokovou hybnost 200 kg s'1 m-2 x m s_1, přičemž horizontální přítoková hybnost je definována jako přítok kapaliny (kg/s) v horizontálním směru na jednotku řezné plochy (m2) výstupního otvoru trysky, ze které je kapalina vystřikována, vynásobený horizontální složkou rychlosti (m/s) této trysky.
Výhodně je přítoková hybnost jednotlivých kapalinových nebo kapalino-plynových proudů alespoň 250 xlO3 a nejvýhodněji alespoň 300 χ 103 kg s_l m-2 xm s_I. Zejména výhodné je použití horizontální přítokové hybnosti v rozmezí od 300 χ 103 do 500 χ 103 kg s-1 m'2 x m s_1. V případě, že je proud kapaliny vystřikovaný z výstupního otvoru trysky v jiném směru než je směr horizontální, se vypočte horizontální složka rychlosti proudu z kosinu Q° x aktuální rychlost proudu, přičemž Q° je úhel, který proud svírá s horizontálou.
Směr pohybu jednoho nebo několika kapalinových proudů nebo kapalino-plynných proudů zaváděných do fluidního lože je výhodně v podstatě horizontální. V případě, že jeden nebo několik výstupních otvorů trysek dopravuje kapalinové nebo kapalino-plynné proudy ve směru jiném, než je směr horizontální, svírají tyto proudy s horizontálou výhodně úhel menší než je 45°, nej výhodněji menší než 20°.
Jedna nebo několik trysek je opatřeno jedním nebo několika výpustními otvory trysek. Počet trysek a počet a distribuce tryskových výpustních otvorů představují důležité faktory pro dosažení dobré distribuce kapaliny ve fluidním loži. V případě, že se použije množina trysek, jsou tyto trysky výhodně vertikálně rozmístěny a horizontálně vzájemně v podstatě rovnoměrně odsazeny. V tomto případě jsou otvory rovněž výhodně vzájemně rovnoměrně odsazeny a o stejnou vzdálenost jsou odsazeny i od vertikální stěny fluidního lože. Počet trysek na 10 m2 horizontálního průřezu lože je výhodně 1 až 4, nejvýhodněji 2 až 3. Pokud výpočet netvoří celé číslo, potom je výhodné jej na celé číslo zaokrouhlit. Počet tiyskových výpustních otvorů u každé trysky je výhodně 1 až 40, nejvýhodněji 3 až 16. V případě, že tryska obsahuje více než jeden tryskový výpustní otvor, jsou výpustní otvory výhodně uspořádány obvodově okolo trysky v pravidelných rozestupech.
Jak již bylo uvedeno výše, proudy kapaliny mohou být tvořeny zcela kapalinou nebo se může jednat o proud směsi kapaliny a plynu. Takový plyn může být pouze unášen v kapalině nebo může být použit k rozprašování kapaliny nebo jako hnací síla pro pohon tekutiny.
Vhodná rozprašovací tryska s rozprašovacím plynným médiem, kterou lze použít pro účely způsobu podle vynálezu obsahuje:
(a) alespoň jeden vstupní otvor pro natankovanou kapalinu;
(b) alespoňjeden vstupní otvor pro rozprašovací plyn;
(c) směšovací komoru pro směšování kapaliny a plynu; a (d) alespoň jeden výpustní otvor, kterým se směs vypouští.
Rozprašovacím plynem může vhodně být například inertní plyn, například dusík, ale výhodně čerstvý ethylen.
Každá tryska může být opatřena množinou výpustních otvorů vhodné konfigurace. Výpustními otvory mohou být například kruhové otvory, štěrbiny, elipsoidy nebo jiné vhodné konfigurace. Každá tryska může zahrnovat množinu výpustních otvorů různých konfigurací.
-10CZ 289037 B6
Velikost výpustních otvorů je výhodně taková velikost, která na těchto výpustních otvorech zajišťuje malý tlakový spád.
Výpustní otvory jsou výhodně uspořádány symetricky okolo obvodu každé trysky, ale mohou být uspořádány rovněž asymetricky.
Rozprašovací plyn dodávaný do jednotlivých trysek se udržuje při tlaku, který je dostatečný pro dispergaci kapaliny do malých kapiček a který je dostatečný, aby zabránil vstupu částic z fluidního lože do výpustních otvorů trysek a jejich zanesení.
Relativní velikost směšovací komory je zvolena tak, aby zajišťovala optimální rozprašování. Objem směšovací (rozstřikovací) komory vzhledem k objemu kapaliny procházející komorou, který je vyjádřen jako: objem směšovací komory (cm3)/průtok kapaliny (cm3/s), se výhodně pohybuje v rozmezí od 5 x 103 s do 5 x ΚΓ1 s.
Rychlost kapaliny se výhodně udržuje na hodnotě dostatečné, aby se z kapalinového proudu neodloučily žádné částice, například jemný podíl.
Hmotnostní podíl rozprašovacího plynu ku kapalině dodávané do každé trysky se zpravidla pohybuje v rozmezí od 5:95 do 25:75.
Tryska, znázorněná na obrázku 2, zahrnuje kryt 7 mající horní část 8 a spodní část 9. Horní část 8 je opatřena počtem výpustních otvorů 10 uspořádaných na jejím obvodu a směšovací komorou 11 provedenou uvnitř této části. Spodní část 9 je opatřena středově umístěným vnitřním potrubím 12 ústícím do směšovací komory 11 a vnějším potrubím 13 uspořádaným okolo vnitřního potrubí 12. Vnější potrubí 13 je propojeno se směšovací komorou 11 vhodně uspořádanými otvory 14. Natlakovaná kapalina je zaváděna do trysky vnějším potrubím 13 a rozprašovací plyn je do trysky zaváděn výše zmíněným vnitřním potrubím j2. Spodní část 9 trysky je spojena konvenčními prostředky s dodávkou natlakované kapaliny a rozprašovacího plynu. Po smísení s plynem ve směšovací komoře 11 se kapalina vypouští z trysky výpustními otvory JO jako spray.
Výhodnou rozprašovací tryskou s plynným rozprašovacím médiem je tryska, jejíž výpustní otvory jsou tvořeny řadou v podstatě horizontálních štěrbin uspořádaných po obvodu trysky. Tato tryska může rovněž zahrnovat vertikálně orientovaný otvor nebo otvory umístěné tak, aby natlakovaná směs kapaliny a plynu mohla odstranit veškeré částice, které přilnou k vrcholu trysky.
Štěrbiny mají zpravidla velikost shodnou s průměrem otvoru, který činí přibližně 6,5 mm a mohou mít například průměr 0,75 mm x 3,5 mm.
Vstřikovací prostředky mohou alternativně zahrnovat pouze kapalinovou rozstřikovací trysku nebo trysky.
Vhodná pouze kapalinová rozstřikovací tryska, kterou lze použít u způsobu podle vynálezu, zahrnuje alespoň jeden vstupní otvor pro natlakovanou kapalinu a alespoň jeden výpustní otvor pro tuto natlakovanou kapalinu, přičemž uvnitř trysky se udržuje kapalina při tlaku, který je dostatečný pro zajištění požadované přítokové hybnosti kapaliny vytékající z výpustního otvoru.
Tlakový spád v každé tiysce může být v případě potřeby regulován, například pomocí restriktivních zařízení, jakými jsou například ventily.
Výpustní otvory mohou mít podobnou konfiguraci jako výpustní otvory již definované pro rozstřikovací trysky s rozprašovacím plynem. Výhodnou konfigurací pro výpustní otvory
-11 CZ 289037 B6 u kapalinové rozstřikovací trysky je kruhový otvor nebo otvory. Průměr otvorů se výhodně pohybuje v rozmezí od 0,5 mm do 5,0 mm, nejvýhodněji v rozmezí od 0,5 mm do 2,5 mm.
Velikost kapiček kapaliny je ovlivněna určitým počtem faktorů, zejména u rozprašovacích trysek s plynným rozprašovacím médiem, jakými jsou poměr kapaliny ku rozprašujícímu plynu dodávanému do trysky a velikost a konfigurace rozprašovací komory. Požadovanou velikostí kapiček kapaliny pro rozprašovací trysku s plynným rozprašovacím médiem je přibližně 50 pm až 1000 pm. V případě kapalinových rozstřikovacích trysek je velikost kapiček kapaliny ovlivněna zejména tlakovým spádem v trysce a velikostí a konfigurací výpustních otvorů. Požadovaná velikost kapiček kapaliny pro kapalinovou rozstřikovací trysku je přibližně 2000 pm až 4000 pm. Takové kapičky lze generovat například rozrušením proudu kapaliny pohybem pevných částic ve fluidním loži.
Tlakový spád u obou typů trysek musí být dostatečný, aby zabránil vnikání částic z fluidního lože do trysky. V rozstřikovací trysce s plynným rozstřikovacím médiem má tlakový spád vhodně hodnotu 0,2 MPa až 0,7 MPa, výhodně 0,3 MPa až 0,5 MPa, a v kapalinových rozstřikovacích tryskách má hodnotu 0,2 MPa až 0,7 MPa, a výhodně 0,4 MPa až 0,5 MPa.
Pokud by došlo k přerušení dodávky kapaliny a/nebo rozprašovacího plynu do obou typů trysek, zabrání vhodné nouzové prostředky pro zavádění promývacího plynu zacpání trysky, ke kterému by mohlo dojít v důsledku vnikání pevných částic z fluidního lože do trysky, přičemž vhodným čistícím plynem je dusík. Je důležité, aby byla velikost výpustních otvorů rozprašovacích trysek s plynným rozprašovacím médiem nebo pouze kapalinových trysek dostatečná, aby umožnila průchod veškerým jemným částicím, které mohou být přítomny v proudu odloučené kapaliny.
U obou typů trysek mohou být výpustní otvory uspořádány v různých výškách každé trysky. Tyto výpustní otvory mohou být například uspořádány v sériích řad.
U typu trysky znázorněné na obrázku 2, je výhodně na každé trysce 4 až 40 výpustních otvorů, například 20 až 40, nejvýhodněji 4 až 16. Průměr takové trysky je výhodně 4 cm až 30 cm, například 10 cm až 30 cm, a nejvýhodněji přibližně 7 cm až 12 cm.
U způsobu podle vynálezu mohou být rovněž použity i další typy trysek, například nadzvukové trysky.
Předtím, než se kapalina začne zavádět do polymeračního reaktoru za použití způsobu polymerace podle vynálezu prováděného v plynné fázi ve fluidním loži, může být polymerační proces zahájen běžným způsobem, například nadávkováním lože částicemi příslušného polymeru a následnou iniciací proudění plynu tímto fluidním ložem.
Pokud je to vhodné, může být kapalina zaváděna do lože, například pomocí výše zmíněných vstřikovacích prostředků.
Obrázek 3 znázorňuje reaktor s fluidním ložem pro plynnou fázi zahrnující v podstatě tělo 15 reaktoru, kterým je zpravidla stojatý válec mající fluidizační rošt 16 umístěný v jeho základně. Tělo 15 reaktoru zahrnuje fluidní lože 17 a rychlost zpomalující zónu 18, která má zpravidla větší průřez ve srovnání s fluidním ložem Γ7.
Plynná reakční směs opouštějící vrchol fluidního lože reaktoru představuje recyklovaný plynný proud a prochází potrubím 19 do cyklónu 20 za účelem odloučení většiny jemných částic. Odloučené jemné částice mohou být vhodně vráceny do fluidního lože 17. Recyklovaný plynný proud opouštějící cyklón 20 vstupuje do prvního tepelného výměníku 21 a kompresoru 22. Cílem druhého tepelného výměníku 23 je odvést teplo vznikající v důsledku stlačení potom, co recyklovaný plynný proud projde kompresorem 22.
-12CZ 289037 B6
Tepelný výměník nebo výměníky mohou být uspořádány buď před kompresorem 22, nebo za ním.
Po ochlazení a stlačení na teplotu, při které vzniká kondenzát, projde výsledná směs plynu a kapaliny do odlučovače 24, ve kterém dojde k odloučení kapaliny.
Plyn opouštějící odlučovač 24 se recykluje potrubím 25 do těla 15 reaktoru. Plyn je veden fluidizačním roštem 16 do lože 17, čímž se zajistí, že lože 17 zůstane po celou dobu zvířené.
Odloučená kapalina je z odlučovače 24 vedena přes potrubí 25 do těla 15 reaktoru. Pokud je to nezbytné, může se do potrubí 25' vhodně umístit čerpadlo 26.
Katalyzátor nebo předpolymer jsou potrubím 27 zaváděny do proudu odloučené kapaliny a do reaktoru.
Vyrobené polymery mohou být z reaktoru vhodně odváděny potrubím 28.
Uspořádání znázorněné na obrázku 3 je zejména vhodné pro použití na již existujících polymeračních reaktorech pro provádění polymerace v plynné fázi ve fluidním loži.
Obrázek 4 znázorňuje alternativní uspořádání pro provádění způsobu podle vynálezu. U tohoto provedení je kompresor 22 umístěn v potrubí 25 a ke stlačení dochází po odloučení recyklovaného plynného proudu v odlučovači 24. Výhoda tohoto uspořádání spočívá v tom, že objem plynu pro stlačení v kompresoru 22 je menší a kompresor 22 může být tudíž menší, čímž se optimalizuje proces a snižují výrobní náklady.
Obrázek 5 znázorňuje další uspořádání pro provádění způsobu podle vynálezu, ve kterém je kompresor 22 opět uspořádán v potrubí 25 za odlučovačem 24 ale před druhým tepelným výměníkem 23, který je umístěn na dráze odloučeného plynného proudu a nikoliv před odlučovačem 24. Toto uspořádání poskytuje rovněž lepší optimalizaci procesu.
Pro testování zavádění kapaliny do fluidního lože pomocí výše popsaných vstřikovacích prostředků se použilo testovací zařízení, jehož uspořádání je znázorněno na obrázku 6. Testovací zařízení zahrnuje hliníkovou fluidní nádobu 50, která má zpomalující zónu 56 obsahující lože 51 polyethylenového prášku (vysokohustotního nebo lineárního nízkohustotního polyethylenu), předem připraveného polymerací polyethylenu v plynné fázi ve fluidním loži v průmyslovém měřítku. Lože 51 je zvířeno kontinuálně procházejícím proudem suchého plynného dusíku, který je přiváděn potrubím 52 skrze předehřívač 53 do základní komory 54 nádoby 50 a skrze rošt 55 do lože 51. Plynný dusík je dodáván z komerčního zásobníku kapalného dusíku, množství dusíku dodávaného za účelem zvíření lože 51 a tlak plynu v systému jsou řízeny pomocí ventilů 57 a 69, přičemž průtok je určen za použití konvenčního turbínového měřicího prostředku (není znázorněn). Předehřívací jednotka má nominální výhřevnou kapacitu 72 kW regulovatelnou za účelem ohřívání plynného dusíku na požadovanou teplotu. Těkavý kapalný uhlovodík 58 (1-hexen nebo n-pentan) se zavádí do fluidního lože 51 ze zásobníku 59 chladiče/odmlžovače pomocí čerpadla 60 a potrubí 6L Těkavý kapalný uhlovodík je do lože 51 zaváděn tryskovým výpustním uspořádáním 62, které vniká do lože. Testovala se různá trysková výpustní uspořádání, z nichž některá jsou pouze kapalinového typu a další jsou typu s plynovým rozprašovacím médiem. U posledního jmenovaného typuje rozprašovací plyn zaváděn potrubím 63 (například tryska znázorněná na obrázku 2). Těkavý kapalný uhlovodík, který vstoupí do fluidního lože tryskovým výpustním uspořádáním 62, se odpaří v loži, přičemž absorbováním latentního odpařovacího tepla způsobí ochlazení. Dusíkový fluidizační plyn a doprovázející odpařený kapalný uhlovodík vstoupí z vrcholu fluidního lože do zpomalovací zóny 56, přičemž veškerý polyethylenový prášek unášený plynným proudem spadne zpět do lože. Plyn následně projde do potrubí 64, filtrační jednotky 65 a zpětným ventilem 66 do zásobníku 59 chladiče aodmlžovače. Zásobník 59 chladiče a odmlžovače obsahuje dva tepelné výměníky 67, 68.
-13CZ 289037 B6
Tepelný výměník 67 je chlazen průchodem studené vody a tepelný výměník 68 je chlazen cirkulací ochlazeného ethylenglykolu a vodného nemrznoucího roztoku. Průchod plynu tepelnými výměníky 67, 68 ochladí plyn a způsobí kondenzaci kapalného uhlovodíku (hexenu nebo pentanu). Zkapalnělý uhlovodík se shromáždí v zásobníku 59 chladiče, odkud je recyklován zpět do fluidního lože. Plynný dusík, takto v podstatě uvolněn z uhlovodíku, je následně zaveden skrze regulační zpětný ventil 69 do atmosféry. Zvíření a odpaření kapalného uhlovodíku v loži je snímáno pomocí běžně dostupného rentgenového zobrazovacího zařízení zahrnujícího zdroj 70 rentgenového záření, zesilovač 71 obrazu a CCD videokameru 72, jejíž výstup je kontinuálně nahráván na videorekordér (není znázorněn). Zdroj rentgenových paprsků, zesilovač obrazu a videokamera jsou přimontovány na pohyblivý portál 73, který v budoucnu umožní podle potřeby měnit úhel záběru.
Způsob podle vynálezu bude nyní dále podrobněji ilustrován na následujících příkladech, které mají pouze ilustrativní charakter a nikterak neomezují rozsah vynálezu, který je jednoznačně vymezen přiloženými patentovými nároky.
Příklady provedení vynálezu
Příklady 1 až 11
Provedly se počítačem simulované příklady polymerace olefinů v plynné fázi v reaktoru s fluidním ložem za podmínek podle vynálezu (příklad 1 až 5, 9 a 10), a referenční příklady polymerace olefinů prováděné za konvenčních podmínek bez odloučení kapaliny v recyklovaném proudu (příklady 6 až 8 a 11).
Příklady 1 až 8 reprezentují kopolymerace ethylenu s různými alfa-olefiny za použití konvenčního Zieglerova katalyzátoru a příklady 9 až 11 reprezentují homopolymeraci ethylenu prováděnou za použití konvenčního katalyzátoru na bázi oxidu chromitého neseného oxidem křemičitým.
Měrný výkon reaktoru a vstupní teplota reaktoru byly vypočteny za použití tepelného bilančního programu počítače s přesností ±15%. Pro polymerační systém byla za použití konvenčního softwarového programu vypočtena teplota rosného bodu a přítok recyklované kapaliny, a to s přesností ±10 %.
Pro provádění způsobu podle vynálezu nejpřesněji reprezentují typické provozní podmínky příklady 1, 3,4 a 10.
Výsledky testů, které jsou shrnuty v tabulce 1 a v tabulce 2, jasně ukazují zvýšený měrný výkon dosažitelný způsobem podle vynálezu.
Pojem „% kapaliny v recyklovaném proudu“ v tabulkách 1 a 2 reprezentuje procentickou hodnotu celkové hmotnosti kapaliny recyklované vstřikovacími prostředky vydělené celkovou hmotností plynu (recyklovaný plyn plus veškerý rozprašovací plyn).
Příklady 12 až 15
Způsob podle vynálezu poskytuje podstatná zlepšení týkající se produktivity polymeračních procesů prováděných v plynné fázi ve fluidním loži oproti již existujícím způsobům. Způsob podle vynálezu lze použít v nových zařízeních nebo v již existujících zařízeních za účelem dosažení podstatného zvýšení produktivity a zlepšení kontroly přidávané kapaliny do lože. V případě instalace nového zařízení může být dosaženo značného snížení pořizovacích nákladů
-14CZ 289037 B6 použitím menších reakčních nádob, kompresorů a dalšího pomocného vybavení pro dosažení srovnatelné produktivity vzhledem k produktivitě běžného zařízení. V případě existujícího zařízení přinese modifikace takového zařízení podle vynálezu podstatné zvýšení produktivity a zlepšenou kontrolu procesu.
Výsledky testů jsou shrnuty v tabulce 3, přičemž příklady 12, 14 a 15 reprezentují způsoby podle vynálezu a příklad 13 je srovnávacím příkladem. Příklad 12 a srovnávací příklad 13 ilustrují použití shodného tryskového uspořádání, ale ve srovnávacím příkladu je přidání kapaliny do „chladné“ zóny fluidního lože polymerace v plynné fázi simulováno provozem lože při 45 °C 10 použitými v příkladu 12. Za těchto podmínek se okolo trysky tvoří kusy polymeru zvlhčené kapalným uhlovodíkem. Příklady 12, 14 a srovnávací příklad 13 používají pro zavádění kapaliny rozstřikovací trysky s plynným rozprašovacím médiem a příklad 15 používá pouze kapalinovou trysku. Ve všech příkladech 12, 14 a 15 bylo dosaženo dobré dispergace a penetrace kapalného uhlovodíku, přičemž jeho penetrace je zastavena pouze stěnou nádoby. U srovnávacího 15 příkladu 13 je penetrace kapaliny přerušena tvorbou shluklých kusů polymeru zvlhčeného kapalným uhlovodíkem.
-15CZ 289037 B6
Tabulka
kO C2/C4 kopolymer m <\i σι co κο m r-i - cr · % ι-l o\ o * oj co in o * kp r* σι ° CM CM r-í CM CO r-l «Η ^· ΤΓ
iH C2/C4 kopolymer JO ® -A t- ΓΊ o “1 °° 2 2 o « f 2 ’ £ £
C2/C6 kopolymer ’ ΛΙ °t o cn m o T w “ “1 c « Μ Μ n “'S-SSS
cn C2/C6 kopolymer ’ CM 1 2 T c- O 2. cm 00 2 í 2 r~' <n 2 co
04 C2/C4 kopolymer io M 'Ί cm o -o· ca cj σ> <n N <r> N (O Ol ω ' Π H S V 2 JO CD rA Η N ” cd rM^Mr-CM
t-H C2/C4 kopolymer ’η “ N. c> n ’ co o o 10 σ\ t * n Z S ° 2 - ’ £ 2 f
Příklad Produkt - — e □ u o Moc O — fl — — — 4J > O —l Λ 3 jx 3 o C®2 VjMíÚO^ * E S O ω o λ: °· O JJ M O >, S 5 <* —Ji O “ m >, conjocu _ o M 3 — Φ 4J x: M SťS. Φ C E Μ O -Φ μ A4 > E >>— -A C > O J 7! o r-c C o. S m <u a » a. ® o <u o > ·* M . ·Η *Ν -X _. Μ 1A C S 'd - Η -Ρ Ό >? -H Φ fl C C OCO-A^^-HflrH M 4J N φ c o n C ™ fl 3 O Oi-iCJdXCCflCrHvH^H fl 'Sh E Q, O O. TJ -X »-A > >i fl Ή Ή Φ -p O a Id X A C \ 3 < fl 3 fl a. o xi jc Ό m 4J c x s <-a um moimju a ai o ΉΦΜΡΡ035ΦΦΙ fl >1 'Sa >Φ X <n o Φ M HHtKMH>QoaaXxrQÓí>S*> — h <* a
- 16CZ 289037 B6
Produkt C2/C4 C2/C4 C2 C2 C2 kopolymer kopolymer homopolymer homopolymer homopolymer Tlak reaktoru (MPa) 2,4 2,4 2,4 2,4 2,0
Teplota reaktoru (°C) 74 76 103 103 103
LC t—I
U) χ LO x ťo r* i-η co
1-» CN r-4 ď)S0 ** Γ* xx
O r-1 CNU)
CN r-tCN
CN
1-4 CO
X X X X
cn KO CN CO
OJ t—| r-4 CN iH
IA
ΓCO r*·
X σ»
m rH x
CN
m CN O * kD
σ>
x co
O k0
r-4 Λ
o
fa ε
o
3
G a> c ε
ε
•Ή o .1-4
CL tP a φ
•H >N
Ή i—4 4-> o
C c o «
N 0) G o
O r-4 c -X Λ1 c <0 c »-4 Ή
> >1 W m4 Ή Φ fa Φ 04 »w x:
O Λ JS o 9) •P G X Σ υ XT)
M P •U o 5 5 Φ ω 1 <Q
CU ω ω > a O) cu X Q a: >
Měrný výkon reaktoru (Kg/m9 h) 55 55 193 178 7! Vstupní tep|ota reaktoru (’C) 50,1 49,7 36,4 36,1 5' Teplota rosného bodu (°C) 38,2 23,5 62,3 56,3 -44 % kapaliny v recyklovaném 0 0 21 15,7 0 proudu
- 17CZ 289037 B6
Tabulka 3
Přiklad 12 13 14 15
Typ trysky kapalino-plynová kapalino-plynová kapalino-plynová kapalinová
Typ výpustního otvoru 4 horizontální štěrbiny 4 horizontální štěrbiny 4 horÍ20Ttáln i štěrbiny 2 otvory s průměrem 1,75 nm
Oblast nad roštem (cm) 52 52 10 52
Rychlost rozprašovacího plynu (cm/s) 45 42 52 38
Teplota lože (eC) 98 45 78 97
Tlak (MPa) 1,01 0,97 0,78 0,75
Materiál lože HDPE BP 6070 HDPE BP 6070 HDPE BP 0209 HDPE BP 6070
Náplň lože (kg) 60 58,5 61,2 58,0
Kapalina hexen hexen n-pentan hexen
Průtok kapaliny (m3/h) 1,65 1,48 1,78 0,69
Tlak kapaliny v trysce (MPa) 0,33 0,32 0,38 0,54
Tlak rozprašovacího N2 plynu (MPa) 0,42 0,40 0,45 není
Rozprašovací plyn:kapalina (% hmotn.) 5,4 5,3 5,6 není
m3 kapaliny na m3 lože/h 11,38 10,61 12,80 4,95
Horizontální penetrace kapaliny (cm) >21 <15 >21 >21
% Zkondenzované kapaliny (% celkové kapaliny ku celkovému plynu) 105,5 94,6 121,2 46,6

Claims (29)
Hide Dependent

1. Kontinuální způsob polymerace olefmového monomeru zvoleného ze skupiny zahrnující (a) ethylen, (b) propylen, (c) směsi propylenu a ethylenu a (d) směsi (a), (b) nebo (c) s jedním nebo několika dalšími alfa-olefiny v plynné fázi v reaktoru s fluidním ložem, vyznačený tím, že se plynný proud zahrnující ethylen a/nebo propylen v přítomnosti polymeračního katalyzátoru a za reakčních podmínek kontinuálně recykluje fluidním ložem reaktoru, přičemž alespoň část plynného proudu odtahovaného z reaktoru se chladí na teplotu, při které kapalina kondenzuje, alespoň část zkondenzované kapaliny se z plynného proudu odděluje a alespoň část odloučené kapaliny se zavádí přímo do fluidního lože v místě, ve kterém plynný proud procházející fluidním ložem v podstatě dosahuje teploty plynného proudu, který je z reaktoru odtahován, nebo nad tímto místem.
2. Kontinuální způsob polymerace olefinového monomeru zvoleného ze skupiny zahrnující (a) ethylen, (b) propylen, (c) směsi propylenu a ethylenu a (d) směsi (a), (b) nebo (c) s jedním nebo několika dalšími alfa-olefiny v plynné fázi v reaktoru s fluidním ložem, vyznačený tím, že se plynný proud zahrnující ethylen a/nebo propylen v přítomnosti polymeračního katalyzátoru a za reakčních podmínek kontinuálně recykluje fluidním ložem reaktoru, přičemž alespoň část plynného proudu odtahovaného z reaktoru se chladí na teplotu, při které kapalina kondenzuje, alespoň část zkondenzované kapaliny se z plynného proudu odděluje a kapalina se pomocí jedné nebo několika kapalinových trysek nebo rozstřikovacích trysek s plynným rozprašovacím médiem zavádí přímo do fluidního lože.
3. Způsob podle nároku 1 nebo 2, vyznačený tím, že se plynný proud v prostoru pod fluidním ložem rovnoměrně distribuuje do množiny dílčích proudů.
4. Způsob podle některého z předcházejících nároků, vyznačený tím, že se použije jeden nebo několik dalších alfa-olefinů, které mají 4 až 8 atomů uhlíku.
5. Způsob podle některého z předcházejících nároků, vyznačený tím, že se použije ethylen nebo propylen v množství alespoň 70 % všech monomerů.
6. Způsob podle některého z předcházejících nároků, vyznačený tím, že se v podstatě celý recyklovaný plynný proud chladí a rozděluje na plynné a kapalné složky, přičemž v podstatě veškerá odloučená kapalina se zavádí do reaktoru.
7. Způsob podle některého z předcházejících nároků, vyznačený tím, že se kapalina zavádí přímo do fluidního lože množinou míst v tomto fluidním loži.
8. Způsob podle některého z předcházejících nároků, vyznačený tím, že se rychlost plynu ve fluidním loži nastaví na 50 až 70 cm/s.
9. Způsob podle některého z předcházejících nároků, vyznačený tím, že se katalyzátor nebo předpolymer zavádí do fluidního lože ve zkapalnělé tekutině.
10. Způsob podle některého z předcházejících nároků, vyznačený tím, že se proud odloučené kapaliny před zavedením do fluidního lože ochladí.
11. Způsob podle některého z předcházejících nároků, vyznačený tím, že se do odloučeného recyklovaného plynného proudu před zavedením do reaktoru zavede čerstvý ethylen.
-19CZ 289037 B6
12. Způsob podle některého z předcházejících nároků, vyznačený tím, že se průtok kapaliny zaváděné do fluidního lože nastaví na 0,3 až 4,9 m3 kapaliny/m3 materiálu fluidního lože/h.
13. Způsob podle některého z předcházejících nároků, vyznačený tím, že hmotnostní poměr kapaliny ku celkovému plynu zaváděnému do fluidního lože se rovná 5:100 až 85:100.
14. Způsob podle nároku2, vyznačený tím, že se kapalina zavádí přímo do fluidního lože ve směru v podstatě vertikálním ke směru fluidního lože.
15. Způsob podle nároku2, vyznačený tím, že se jednotlivé kapalinové proudy zaváděné do fluidního lože zavádí rozstřikovací tryskou s plynným rozprašovacím médiem.
16. Způsob podle nároku 15, vyznačený tím, že rozprašovacím plynem je čerstvý ethylen.
17. Způsob podle nároku 15, vyznačený tím, že se jednotlivé proudy zaváděné do fluidního lože rozdělí do dílčích proudů.
18. Způsob podle některého z nároků 15 až 17, vyznačený tím, že se objem směšovací (rozprašovací) komory rozstřikovací trysky s plynným médiem vzhledem k objemu kapaliny procházející komorou, který je vyjádřen jako: objem směšovací komory (cm3)/průtokem kapaliny (cm3/s), nastaví na 5 χ 103 až 5 χ 10_l sekund.
19. Způsob podle některého z nároků 14 až 17, vyznačený tím, že hmotnostní poměr rozprašovacího plynu ku natlakované tekutině se pohybuje od 5:95 do 25:75.
20. Způsob podle některého z nároků 14 až 19, vyznačený tím, že velikost kapek kapaliny ve výpustním otvoru trysky se pohybuje v rozmezí od 50 pm do 4000 pm.
21. Způsob podle některého z nároků 14 až 20, vyznačený tím, že tlakový spád rozstřikovací trysky s plynným rozprašovacím médiem se pohybuje v rozmezí od 0,3 MPa do 0,5 MPa a u pouze kapalinové trysky v rozmezí od 0,4 MPa až 0,5 MPa.
22. Způsob podle některého z nároků 14 až 21, vyznačený tím, že se použije tryska, která je opatřena prostředkem umožňujícím provádět nouzové plynové promývaní trysky.
23. Způsob polymerace olefinového monomeru zvoleného ze skupiny zahrnující (a) ethylen, (b) propylen, (c) směsi propylenu a ethylenu a (d) směsi (a), (b) nebo (c) s jedním nebo několika dalšími alfa-olefmy v reaktoru s fluidním ložem, vyznačený tím, že se plynný proud obsahující monomer v přítomnosti polymeračního katalyzátoru a za reakčních podmínek kontinuálně recykluje fluidním ložem reaktoru, přičemž alespoň část plynného proudu odtahovaného z reaktoru se chladí na teplotu, při které kapalina kondenzuje, alespoň část zkondenzované kapaliny se z plynného proudu odděluje a alespoň část této odloučené kapaliny se zavádí přímo do fluidního lože v místě, ve kterém plynný proud procházející fluidním ložem v podstatě dosáhne teploty plynného proudu, který se odtahuje z reaktoru, nebo nad tímto místem, přičemž kapalina se do reaktoru zavádí jako jeden nebo více proudů samotné kapaliny nebo jeden, popř. více, proudů kapaliny a plynu jedním nebo několika výpustními otvory trysek a jednotlivé proudy mají v případě pouze kapalinové trysky horizontální přítokovou hybnost alespoň 100 x 103kgs~* m_2xms_1 a v případě plyno-kapalinových trysek mají přítokovou hybnost 200 kg s’1 m~2 xms'1, přičemž horizontální přítoková hybnost je definována jako přítok kapaliny (kg/s) v horizontálním směru na jednotku řezné plochy (m2) výstupního otvoru trysky, ze které je kapalina vystřikována, vynásobený horizontální složkou rychlosti (m/s) této trysky.
-20CZ 289037 B6
24. Způsob podle nároku 23, v y z n a č e n ý t í m, že se každý kapalinový nebo kapalinoplynový proud zavádí horizontálně při přítokové hybnosti alespoň 250 x 103 kg s_1 m-2 xms'1.
25. Způsob podle nároku 23 nebo 24, vyznačený tím, že se jeden nebo několik kapalinových nebo kapalino-plynových proudů zavádí do lože v podstatě horizontálně.
26. Způsob podle některého z nároků 23 až 25, v y z n a č e n ý t í m , že se jeden nebo několik proudů kapaliny nebo kapaliny a plynu vypouští výpustními tryskovými otvory jedné nebo více trysek.
27. Způsob podle nároku 26, vyznačený tím, že se kapalinové proudy zavádí do fluidního lože v místech, která jsou rovnoměrně odsazená od sebe navzájem a od vertikální stěny reaktoru s fluidním ložem.
28. Způsob podle nároku 26 nebo 27, v y z n a č e n ý t í m, že se do fluidního lože zavádí 1 až 4 kapalinové proudy na 10 m2 horizontální řezné plochy lože.
29. Způsob podle některého z nároků 26 až 28, v y z n a č e n ý t í m , že se každý kapalinový proud přiváděný do fluidního lože rozdělí do 3 až 16 dílčích proudů.