BG100102A - Метод за полимеризация - Google Patents
Метод за полимеризация Download PDFInfo
- Publication number
- BG100102A BG100102A BG100102A BG10010295A BG100102A BG 100102 A BG100102 A BG 100102A BG 100102 A BG100102 A BG 100102A BG 10010295 A BG10010295 A BG 10010295A BG 100102 A BG100102 A BG 100102A
- Authority
- BG
- Bulgaria
- Prior art keywords
- liquid
- gas
- reactor
- fluidized bed
- fluid
- Prior art date
Links
- DEDZSLCZHWTGOR-UHFFFAOYSA-N CCCC1CCCCC1 Chemical compound CCCC1CCCCC1 DEDZSLCZHWTGOR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1809—Controlling processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/26—Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
- B01J8/1827—Feeding of the fluidising gas the fluidising gas being a reactant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1836—Heating and cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
- B05B7/0433—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of gas surrounded by an external conduit of liquid upstream the mixing chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/08—Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00026—Controlling or regulating the heat exchange system
- B01J2208/00035—Controlling or regulating the heat exchange system involving measured parameters
- B01J2208/00044—Temperature measurement
- B01J2208/00061—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00026—Controlling or regulating the heat exchange system
- B01J2208/00035—Controlling or regulating the heat exchange system involving measured parameters
- B01J2208/00088—Flow rate measurement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00256—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00265—Part of all of the reactants being heated or cooled outside the reactor while recycling
- B01J2208/00274—Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00327—Controlling the temperature by direct heat exchange
- B01J2208/00336—Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
- B01J2208/00353—Non-cryogenic fluids
- B01J2208/00362—Liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00539—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00548—Flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00119—Heat exchange inside a feeding nozzle or nozzle reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00121—Controlling the temperature by direct heating or cooling
- B01J2219/00128—Controlling the temperature by direct heating or cooling by evaporation of reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/901—Monomer polymerized in vapor state in presence of transition metal containing catalyst
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Polymerisation Methods In General (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- High-Pressure Fuel Injection Pump Control (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Glass Compositions (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Изобретението се отнася до непрекъсната полимеризация на олефини в кипящ слой при газова фаза, по-специално на етилен, пропилен или на техните смеси с други -олефини. Съдържащият мономери рециркулационен газ, използван за флуидизирането на слоя, сеохлажда, за да се кондензира поне известна част от течния въглеводород. Кондензираната течност, която може да бъде мономер или да е инертна, се сепарира от рециклирания газ и се подава направо в слоя, за да се получи охлаждане чрез скритата топлина от изпарението. Подаването се извършва чрез пулверизиращи дюзи, работещи с газ, или чрез дюзи, разпръскващи само течност. С метода значително се повишава производителността на полимеризацията на олефини в кипящ слой в газова фаза.
Description
МЕТОД ЗА ПОЛИМЕРИЗАЦИЯ
Настоящето изобретение се отнася до непрекъснат процес за полимеризация в газова фаза на олефини в реактор с кипящ слой, и по-специално до метод за увеличаване на производителността.
Методи за хомополимеризация и съполимеризация на олефини в газова фаза са добре известни в техниката. Такива процеси могат да се извършват, например, чрез въвеждането на газообразен мономер в разбъркван или кипящ слой, съдържащ предварително формиран полиолефин и катализатор за полимеризацията.
При полимеризацията на олефини в кипящ слой полимеризацията се извършва в реактор, при който слой от полимерни частици се поддържа в кипящо състояние с помощта на възходящ газов поток, съставен от газообразния мономер за реакцията. Стартирането на такава полимеризация обикновено изисква слой от предварително формирани полимерни частици, подобни на полимера който трябва да бъде произвеждан. По време на хода на полимеризацията с помощта на каталитична полимеризация на мономер се получава нов полимер, като полимерният продукт се извлича, за да може слоят да запазва приблизително еднакъв обем. Един от предпочитаните методи в промишлеността използва флуидизираща решетка за разпределянето на флуидизиращия газ в слоя, която действува още и като носеща основа за слоя, когато се прекъсне подаването на газ. Полученият полимер обикновено се извежда от реактора с помощта на отвеждащ тръбопровод, намиращ се в долната част на реактора, близо до флуидизиращата решетка. Кипящият слой се състои от слой растящи полимерни частици, частици от полимерния продукт и частици катализатор. Тази реактивна смес се поддържа в състояние на кипене с помощта на непрекъснат възходящ по
BG-PA-100102 ток от дъното на реактора съставен от флуидизиращ газ, който включва рециклиран газ от горната част на реактора, заедно с допълващо захранващо количество суровина.
флуидизиращият газ влиза през дъното на реактора и за предпочитане се прекарва през флуидизиращата решетка към кипящия слой.
Полимеризацията на олефини представлява екзотермична реакция и затова е необходимо да се осигури охлаждането на слоя, като се отстранява получаваната при полимеризацията топлина. Когато няма подобно охлаждане, слоят започва да се нагрява докато, например, катализаторът престане да действува или пък слоят започва да се топи. При полимеризацията на олефини в кипящ слой предпочитаният метод за отстраняването на топлината от полимеризацията се състои от подаването в реактора за полимеризация на газ, за предпочитане флуидизиращ газ, който има по-ниска температура от желаната температура за полимеризация, като газът се прекарва през кипящия слой, за да отведе топлината, отделена при полимеризацията, отвежда се след това от реактора и се охлажда, като се прекара през външен топлообменник, слея което се рециклира към слоя. Температурата на-рециклирания газ може да се _ коригира в топлообменника, за да може кипящият слой да се поддържа до желаната за полимеризация температура. При този метод на полимеризация на алфа олефини, обикновено рециклираният газ се състои от мономерен олефин, по желание придружен, например, с разреждащ газ или с газообразен преносител на веригата, като водород. По такъв начин рециклираният газ служи за подхранване на слоя с мономер, за флуидизиране на слоя или за поддържане на желаната температура в слоя. Изразходваните мономери при реакцията на полимеризация обикновено се допълват едновременно с прибавянето газ към рециклирания газов поток.
Известно е, че скоростта на производство (т.е. добивът за единица време, като тегло на получения полимер за единица обем на съдържанието на реактора и за единица време) при промишлените реактори с кипящ слой от гореспоменатия вид се ограничава от максималната скорост,с която може да се отвежда топлината от реактора. Скоростта на отвеждането на топлината може, например, да се увеличи като се увеличи скоростта на рециклиращия газ и/или се намали температурата на рецикли
PCT/GB94/01074
BG-PA-100102 ращия газ. Обаче съществува ограничение на скоростта на рециклиращия газ, която може да се използва при промишлени условия. Ако се надвиши тази граница, слоят става неустойчив и дори може да се вдигне нагоре в реактора заедно с газовия поток, което води до блокиране на линията на рециклиране и до повреда в компресора или вентилатора за рециклиращия газ. Също така има и ограничение за степента до която може да се охлажда на практика рециклирания газ. Това на първо място се определя от икономически съображения, а на практика обикновено се определя според температурата на разполагаемите промишлените води за охлаждане. При желание, може да се използва охлаждане с хладилна техника, но това води до увеличение на производствените разходи. По тази причина, използването на охлаждан рециркулационен газ в практиката за намаление на топлината при полимеризация от газовата полимеризация с кипящ слой за производството на олефини има недостатъка, че ограничава максимално възможната производителност.
Предшестващото ниво на техниката предлага известни методи за отстраняването на топлината от газовия кипящ слой при процеса на полимеризация.
GB 1415442 се отнася до полимеризация в газова фаза на винилхлорид-в реактор с разбъркване или с кипящ слой, като полимеризацията се извършва в присъствието на поне един газообразен разредител, който има точка на кипене под тази на винилхлорида. В пример 1 се описва контролиране на температурата на полимеризацията чрез междинно добавяне на течен винилхлорид към флуидизирания поливинилхлориден материал. Течният винилхлорид се изпарява незабавно в слоя, което води до отвеждане на топлина от полимеризацията.
US 3625932 описва процес за полимеризация на винилхлорид, при който слоеве от частици поливинилхлорид се държат в състояние на флуидизиране в един многостепенен реактор с кипящ слой чрез въвеждането на газообразен винилхлориден мономер през дъното на реактора. Охлаждането на всеки от слоевете за намаляването на топлината, образувана там поради полимеризацията, се извършва чрез впръскването на течен винилхлориден мономер във възходящия газов поток под ваните върху които слоевете флуидизират.
PCT/GB94/01074
BG-PA-100102
FR 2215802 се отнася до разпръсквателна дюза от тип, съдържащ възвратен клапан, подходящ за впръскване на течности в кипящи слоеве, като напр. при газова полимеризация в кипящ слой при етиленово ненаситени мономери. Течността, използвана за охлаждането на слоя може да бъде мономер за полимеризация. Ако трябва да се полимеризира етилен, той може да представлява течен наситен въглеводород. Разпръсквателната дюза е описана в литературата за полимеризация на винилхлорид в кипящ слой.
GB 1398965 описва полимеризация в кипящ слой на етиленово ненаситени мономери, и по-специално на винилхлорид, при което управлението на температурата на полимеризация се извършва чрез впръскване на течен мономер в слоя с помощта на една или повече разпръсквателни дюзи разположени на височина от 0 до 75 % от височината на слоя флуидизиран материал в реактора.
US 4390669 описва хомо- и съполимеризацията на олефини чрез един многостепенен процес в газова фаза, който може да се извършва в реактори с разбърквани слоеве, при реактори с кипящ слой, разбъркван кипящ слой, или при тръбни реактори. При този процес полученият от първата полимеризационна зона полимер се суспендира в една междинна зона в един лесно летлив течен въглеводород, и така получената суспензия се подава към втора полимеризационна зона, където течният въглеводород се изпарява. В посочените примери от 1 до 5 газът от втората полимеризационна зона се прекарва през хладилник (топлообменник), при което част от течният въглеводород се кондензира (със съполимер, ако се използва такъв). Кондензатът от летливата течност се отправя частично в течно състояние към полимеризационния съд където се изпарява, за да се използва за отвеждането на топлината на полимеризацията чрез скритата си топлина на изпарение. Това обяснение не посочва точно как течността се въвежда за полимеризация.
ЕР 89691 описва метод за увеличаване на добива за единица обем и време при непрекъснати процеси в кипящ слой за полимеризацията на течни мономери, като процесът включва охлаждаща част или всичките невлезли в реакция течности да образуват двуфазна смес от газ, а задържаната течност под точката на оросяване като тази двуфазна смес се връща отново в реактора. Този метод се нарича работа в кон
PCT/GB94/01074
BG-PA-100102 дензационен режим. Описанието на ЕР 89691 посочва, че основното ограничение за размера, до който рециклираният газов поток може да се охлажда до точката на оросяване е изискването, съотношението газ-течност да се поддържа на достатъчно ниво, за да се запази течната фаза на двуфазната флуидна смес в суспендирано състояние докато течността се изпари и посочва по-нататък, че количеството на течност в газовата фаза не трябва да превишава 20 т. %, като за предпочитане не трябва да превишава около 10 т. %, но винаги при условие, че скоростта на двуфазния рецикличен поток ще бъде достатъчно голяма, за да поддържа течната фаза в суспензия в газа и да поддържа кипящия слой в реактора. ЕР 89691 още посочва, че е възможно да се формира двуфазов флуиден поток в реактора в точката на впръскване като се впръскват по отделно газ и течност при условия, които ще създадат двуфазов поток, но че при работа по този начин не се получава особено предимство, поради ненужното усложняване и разходите за разделянето на газовата и течна фаза след охлаждането.
ЕР 173261 обръща особено внимание на усъвършенствуването на разпределението на въвеждания флуид в реакторите с кипящ слой и излага по-специално работата в режим на кондензация, който е описан в ЕР 89691 (посочен по-горе):-И по-специално, ЕР 173261 описва, че когато се използва входящ отвор към основата на реактора (под разделителната решетка) от типа вертикална тръба и конусен накрайник (което е показано в чертежите на ЕР 89691), не се получават задоволителни резултати при режима на кондензация поради заливането с течност или разпенването в долната глава, явление, което се среща при индустриалните реактори когато е сравнително ниско нивото на течност в рециклирания поток.
Вече е установено, че при охлаждането на рециклирания газов поток до температура, достатъчна за да се образува течност и с разделянето на течността от газа и след това с подаването на течността направо към кипящия слой, може да се стигне до увеличаване на общото количество течност, която да бъде върната обратно в реактора за полимеризация с кипящ слой и да послужи за охлаждане на слоя чрез изпарение на течността и по този начин да се повиши нивото на охлаждане, за да се получи по-голяма производителност.
PCI7GB94/01074
BG-PA-100102
И така, съгласно настоящето изобретение, се осигурява непрекъснат процес, използващ кипящ слой за полимеризацията на олефинов мономер подбран между: (а) етилен, (б) пропилен, (в) смес от етилен и пропилен и (г) смеси от а, б и в, с един или повече алфа-олефини в реактор с кипящ слой чрез непрекъснато рециклиране на газообразен поток съставен поне от част от етилена и/или пропилена преминаващ през кипящия слой в този реактор в присъствието на полимеризиращ катализатор при реактивни условия, като поне част от този газообразен поток се извежда от реактора, охлажда се до температура при която течността кондензира, отделя се поне част от кондензираната течност от газообразния поток и се въвежда най-малко част от отделената течност направо в кипящия слой в или над точката, при която газообразният поток, преминаващ през кипящия слой вече е достигнал до значителна степен температурата на газообразния поток, излизащ от реактора.
Газообразният рециркулационен поток, излизащ от реактора (който ще наричаме по-долу невлезли в реакция флуиди) се състои от невлезли в реакция газообразни мономери, и евентуално инертни въглеводороди, активатори или модератори на реакцията, както и задържани частици от катализатора или полимера.
Подаваният рециркулационен газообразен поток към реактора допълнително включва и достатъчно свежи мономери за подменянето на вече полимеризиралите в реактора мономери.
Методът, предмет на настоящето изобретение, е подходящ за производство на полиолефини в газова фаза чрез полимеризиране на един или повече олефини, при което най-малко един от тях е етилен или пропилен. Предпочитаните алфа-олефини, използвани при метода съгласно настоящето изобретение са такива, които притежават от 3 до 8 въглеродни атома. Но могат да се използват малки количества алфа олефини, които имат повече от 8 въглеродни атома, напр. от 9 до 18 въглеродни атома. По този начин става възможно да се получават хомополимери на етилена или пропилена, или съполимери на етилена или пропилена с един или повече С3-С8 алфа-олефини. Предпочитаните алфа- олефини са бут-1-ен, пент-1-ен, хекс-1-ен, 4-метилпент-1-ен, окт-1-ен и бутадиен. Примери на по-висши олефини, които могат да бъдат съполиме
PCT/GB94/01074
BG-PA-100102 ризирани c първичния етиленов или пропиленов мономер, или които могат да бъдат частична подмяна на С3-С8 мономера са дец-1-ен и етилиден норборен.
Когато методът се използва за съполимеризация на етилен или пропилен с апфа-олефини, етиленът или пропиленът съставляват главния компонент на съполимера, и за предпочитане е да бъдат в количество най-малко 70% от общото количество на мономерите.
Методът, предмет на настоящето изобретение, може да се използва за получаването на широка гама от полимерни продукти, например на линеен полиетилен с ниска плътност (ЛПЕНП), основаващ се на съполимери на етилена с бутена, 4-метилпент-1-ен или хексен и полиетилен с висока плътност (ПЕВП), който може, например, да бъде хомополиетилен или съполимер на етилена с малка част от по-висш алфа-олефин, например бутен, пент-1-ен, хекс-1-ен или 4-метилпент-1-ен.
Течността, която се кондензира от рециклирания газообразен поток може да представлява кондензируем мономер, като напр. бутен, хексен, октен, използвани като съмономер за получаването на ЛПЕНП, или може да бъде инертна кондензируема течност, като напр. бутан, пентан, хексан.
Важно е течността да може да се изпарява в слоя при условията на полимеризация, така че да може да се получи желания охлаждащ ефект и да се избегне значителното натрупване на течност в слоя. Добре е когато най-малко 95, за предпочитане най-малко 98 тегл. %, а най-добре е, когато почти цялото количество подавано към слоя, се изпарява там. При случая с течни съмономери, част от съмономера полимеризира в слоя, и такава полимеризация може да бъде и от течна и от газова фаза. Както е добре известно при традиционната полимеризация при газова фаза или при процесите на съполимеризация, малка част от мономера (и от съмономера, ако се използва такъв) показва склонност да остава свързан (абсорбиран или разтворен) в полимера на продукта, докато полимерът се подлага в последствие на дегазиране. Такива свързани количества или дори по-големи количества от абсорбиран или разтворен мономер/съмономер, могат да бъдат допускани в слоя, при условие че тези количества не оказват неблагоприятно влияние върху флуидизацията на слоя.
PCT/GB94/01074
BG-PA-100102
Методът е особено подходящ за полимеризация на олефини при налягане от 0,5 до 6 МРа и при температура между 30 °C и 130 °C. Например при производството на ЛПЕНП подходящо е да се поддържа температура около 80-90 °C, а при ПЕВП характерната температура е 85-105 °C, в зависимост от активността на използвания катализатор.
Реакцията за полимеризацията може да се извършва при наличието на каталитична система от типа Ziegler-Nata, съставена от твърд катализатор, включващ главно съединение на преходен метал и съкатализатор, съставен от органично съединение на метал (напр. органометално съединение, или алкилалуминиево съединение). От няколко години насам станаха известни катапитични системи с голяма активност, които могат да произвеждат големи количества полимери в сравнително кратко време, като по този начин става възможно да се прескочи фазата за отстраняването на остатъците от катализатора от полимера. Тези високо активни каталитични системи обикновено се състоят от твърд катализатор, включващ главно атоми на преходен метал, на магнезий и на халоген. Също така е възможно да се използва високо активен катализатор, съставен главно от_хромен оксид, активиран чрез термообработка и. свързан със зърнообразен носител, основаващ се на огнеупорен оксид. Методът е също така подходящ за използване с метапоценови катализатори и Ziegler - катализатори с носител силициев диоксид.
Предимство на метода, предмет на настоящето изобретение е, че повишеният охлаждащ ефект е благоприятен при процесите на полимеризация, използващи силно активни катализатори, като напр. метапоценови катализатори.
Катализаторите могат успешно да се използват във формата на преполимери във вид на прах, приготвени предварително по време на етапа на предварителна полимеризация с помощта на катализатор, както бе описано по-горе. Тази предварителна полимеризация може да се извършва по всякакъв подходящ метод, например, полимеризация в течен въглеводороден разредител или в газова фаза с помощта на периодичен процес, полунепрекъснат или непрекъснат процес.
PCT/GB94/01074
BG-PA-100102
Предпочитаният метод, съгласно настоящето изобретение, е почти целия рециркулационен газообразен поток да се охлажда и сепарира и почти цялата сепарирана течност да се въвежда в кипящия слой.
При един вариант на приложение на настоящето изобретение, рециклираният газообразен поток се разделя на първи поток и втори поток. Първият поток се вкарва пряко в реактора по традиционен начин чрез впръскване под флуидизационната решетка, а вторият поток се охлажда и потокът се разделя на газов и течен поток. Газовият поток може да се върне към първия поток и да се въведе отново в реактора под слоя, напр. под решетката на флуидизиране, ако се използва такава решетка. Сепарираната течност се въвежда в кипящия слой, съгласно настоящето изобретение.
Рециклираният газообразен поток се охлажда с помощта на топлообменник или топлообменници до температура, при която течността се кондензира в газовия поток. Подходящи за това топлообменници са известни в тази област.
Напускащият от горната страна на реактора газообразен поток може да задържи известно количество частици от катализатора и от полимера и ако е необходимо те могат да бъдат отстранени от рециклирания газов поток с помощта на циклон. Малка част от тези частици или ситнеж може да се задържи в рециклирания газообразен поток, и след охлаждане и сепариране на течността от газа, ситните частици, при желание, могат да бъдат въведени отново в кипящия слой заедно със сепарирания течен поток.
Рециклираният газов поток може също така да е съставен от инертни въглеводороди, използвани за впръскване на катализатора, активатори или модератори на реакцията в реактора.
Добавъчно количество мономери, като напр. етилен, за подменяне на изразходваните мономери при полимеризацията може да се прибави към рециклирания газов поток на подходящо за това място.
Кондензируеми мономери, като напр. бутен, хексен, 4-метилпент-1-ен и октен, които, например, могат да се използват като съмономери за производството на ЛПЕНП, или инертни кондензируеми течности, като напр. пентан, изопентан, бутан и хексан могат да бъдат въвеждани в течна форма.
PCT/GB94/01074
BG-PA-100102
Инертни кондензируеми течности, например пентан, могат да се впръскват в рециклирания газообразен поток, напр. между топлообменника и сепаратора. За получаването на ЛПЕНП, съмономерът, напр. буген, може по желание да се впръсква в рециклирания газообразен поток преди да се подаде към топлообменника.
Подходящи средства за сепариране на течността, например, могат да бъдат циклонни сепаратори, големи съдове, които намаляват скоростта на газовия поток, за да се получи сепариране (изхвърлящи барабани), сепаратори за газ-течност от капкоотражателен тип и скрубери за течности, като напр. скрубери тип вентури. Такива сепаратори са добре известни в тази област на техниката.
Използването на капкоотражателен тип сепаратор за отделяне на газ-течност е особено благоприятно при метода на настоящето изобретение.
Използването на циклонен сепаратор в рециклирания газов поток преди сепаратора на газ-течност е за предпочитане. Той отстранява голямата част от ситните частици от газообразния поток, които напускат реактора, и по този начин се улеснява използването на капкоотражателния сепаратор, а също така се намалява възможността да се задръства сепаратора, което води до по-ефикасна работа.
Друго предимство на използването на сепаратор от капкоотражателен тип е, че падът на налягането в сепаратора може да бъде по-голям от пада при други видове сепаратори, като по този начин се увеличава ефективността на целия процес.
Особено подходящ сепаратор от капкоотражателен тип, използван при метода по настоящето изобретение е вертикален газов сепаратор известен като „Peerless“ (тип DPV Р8Х). Този вид сепаратор използва слепването на течните капчици върху едно лопатково устройство за отделянето на течността от газа. На дъното на сепаратора се намира голям резервоар за събирането на течността. Освен за събирането на течността в него, резервоарът спомага за осигуряването на контрол върху изпускането на течността от сепаратора. Този вид сепаратор е много ефикасен и осигурява почти 100% сепарация на кондензираната течност от газовия поток.
По желание може да се постави филтърна мрежа или друго подходящо устройство в резервоара за течности на сепаратора, за да се събират всякакви остатъчни дребни частици, намиращи се в сепарираната течност.
PCT/GB94/01074
BG-PA-100102
Сепарираната течност може по подходящ начин да се въведе в кипящия слой в или над точката, при която се подава рециклирания газообразен поток в реактора след като температурата е достигнала приблизително стойността на температурата на рециклирания газов поток, който се извлича от реактора. Въвеждането на сепарираната течност може да става в различни точки, намиращи се в тази зона на кипящия слой, като те могат и да се намират на различни височини в зоната. Точката или точките на въвеждането на течността се подреждат така, че локалната концентрация на течността да не оказва неблагоприятно влияние върху флуидизирането на слоя или на качеството на продукцията и да спомага за бързото разпръскване на течността от всяка точка и тя да се изпари в слоя, за да отнеме топлина от екзотермичната реакция на полимеризацията. По този начин количеството течност, въведена за охлаждане може да се доближи до максималното допустимо натоварване, без да се нарушават характеристиките на флуидизиране на слоя, като по този начин се създава възможност да се постигне по-висока производителност на реактора.
По желание теч носна може да се въвежда в кипящия слой на различни височини в слоя. Подобен метод може да улесни по-лесното контролиране на включването на съмономера. Контролираното измерване на течността в кипящия слой осигурява полезен допълнителен контрол върху температурния профил на слоя, а когато течността съдържа съмономер, се осигурява полезен контрол на включването на съмономера в съполимера.
За предпочитане е течността да се въвежда в долната част в зоната на кипящия слой, където рециклирания газообразен поток е достигнал до значителна степен температурата на изтегляния от реактора газообразен поток. При индустриалните методи за полимеризация в кипящ слой в газова фаза на олефини обикновено се работи до при почти изотермични условия при стационарно състояние. Обаче, макар и за значителна част от кипящия слой да се поддържа изотермична температура на полимеризацията, обикновено съществува температурен градиент в зоната на слоя, непосредствено над точката на въвеждането на охладения рециркулационен газообразен поток в слоя. По-ниската температурна граница на тази зона, при която съществува температурен градиент е температурата на входящия охладен рециркулационен
PCT/GB94/01074
BG-PA-100102 газов поток, а горната граница почти представлява изотермичната температура на слоя. При индустриалните реактори от този тип, използващи решетка за флуидизиране, този температурен градиент обикновено съществува в пласт с дебелина от около 15 до 30 см (6 до 12 цола) над решетката.
За да се получи максимална полза от охлаждането на сепарираната течност, важно е течността да се въвежда в слоя над зоната където има температурен градиент, т.е. в частта на слоя, която вече до голяма степен е достигнала температурата на напускащия реактора газообразен поток.
Точката или точките на въвеждането на течността в кипящия слой може да бъде, напр., с 50-70 см над флуидизиращата решетка.
На практика методът, съгласно настоящето изобретение, може да се осъществи, например, като най-напред се определи температурният профил вътре в кипящия слой по време на полимеризацията, като примерно се използват термодвойки, разположени по стените на реактора. Точката или точките на въвеждането на течността се подреждат така, че да осигурят влизането на течността в зоната на слоя, така че рециклираният газообразен поток да е достигнал до голяма степен температурата на газообразния поток, който се изтегля от реактора.
Фигура 1 представлява температурен профил на типичен реактор с кипящ слой, използван за полимеризация на олефини в газова фаза.
Температурният профил (фиг. 1А) е показан в кипящ слой, използван за получаването на ПЕВП с дебит от 23,7 тона/час. Температурите са измерени с помощта на термодвойки, разположени по стените на реактора, отговарящи на различни позиции (1-5) вътре в кипящия слой. Разположението на 1-5 в реактора с кипящ слой е показано на фиг. 1В.
Нивата на флуидизационната решетка (А) и горния край на кипящия слой (В) са показани на температурния профил и на диаграмата. Посоченият по-горе температурен градиент може да се види като зона, намираща се между поз. 1 и поз. 3. Зоната, при която рециклираният газов поток е достигнал до голяма степен температурата на невлезлите в реакция флуиди, напускащи реактора, е показана като зона между поз.
PCT/GB94/01074
BG-PA-100102 и поз. 5. Именно в тази зона сепарираната течност се въвежда в кипящия слой съгласно метода, предмет на настоящето изобретение.
За предпочитане е течността да се въвежда в кипящия слой в долната част на тази зона, т.е. малко над позиция 3 на температурния профил от фиг. 1А.
С увеличаването на количеството на течността, която може да бъде въвеждана в кипящия слой, може да се постигне по-голяма производителност поради подобреното охлаждане. Добивът за единица обем и време може по този начин да се увеличи в сравнение с други процеси на полимеризация в кипящ слой в газова фаза.
Друго предимство на метода съгласно настоящето изобретение е, че чрез отделното въвеждане на течността в кипящия слой може да се използват прецизни средства за измерване, за да се регулира подаването на течността към слоя. Този метод довежда до по-добър контрол на охлаждането и на подаваното количество течен мономер към слоя. И така, методът на настоящето изобретение може да работи по начин, при който да не се разчита, например, на необходимостта да се задържа течност в рециклирания газов поток. В резултат на това, количеството подавана течност към слоя може да варира в много по-широки граници отколкото до сега. Подобреният контрол на скоростта на прибавяне на съмономера или на инертни въглеводороди към слоя може, например, да се използва за регулиране на плътността на образувания полимер и на добива за единица обем и време.
Важно е, температурата вътре в кипящия слой да се поддържа на ниво, което се намира под температурата на синтероване на полиолефинът, съставляващ слоя.
Газът от сепаратора се рециклира към слоя, обикновено от към дъното на реактора. Ако се използва решетка за флуидизиране, подобна рециркулация обикновено става в зоната под решетката, а решетката улеснява равномерното разпределение на газа за флуидизиране на слоя. За предпочитане е използването на решетка за флуидизиране. Решетките за флуидизация, подходящи за ползване при метода на настоящето изобретение, могат да имат традиционна конструкция, например плоска или вдлъбната плоча, перфорирана с множество отвори, разпределени повече или помалко равномерно по повърхността. Отворите могат да имат диаметър около 5 мм.
PCT/GB94/01074
BG-PA-100102
Методът съгласно настоящето изобретение работи със скорост на газа в кипящия слой по-голяма или равна на тази, която е необходима за флуидизирането на слоя. Минималната скорост на газа обикновено възлиза на около 6 см/сек., но за предпочитане е при метода на настоящето изобретение той да се извършва със скорост на газа в границите между 40 до 100, и най-добре, между 50 - 70 см/сек.
В процеса, съгласно настоящето изобретение, катализаторът или преполимерът, по желание могат да бъдат пряко въведени в кипящия слой със сепариран течен поток. Този метод може да доведе до подобрена дисперсия на катализатора или на преполимера в слоя.
По желание в слоя могат да се въведат течни или течноразтворими добавки, като напр. активатори, съкатализатори и др. п. заедно с кондензиралата течност по метода, предмет на настоящето изобретение.
В случай, че методът съгласно настоящето изобретение се използва, за получаването на етиленови хомо- или съполимери, добавъчният етилен, например за подменяне на изразходвания етилен по време на полимеризацята, може успешно да се въвежда в сепарирания газов поток преди неговото повторно въвеждане в. слоя (напр. под решетката за флуидизиране, ако се използва такава). Чрез прибавянето на добавъчен етилен към сепарирания газов поток вместо към рециклирания газообразен поток преди сепарацията, количеството течност, която може да бъде възстановено от сепаратора може да се увеличи и да се повиши производителността.
Сепарираният течен поток може да бъде подложен на допълнително охлаждане (напр. като се използват хладилни съоръжения), преди да се въведе в кипящия слой. Това позволява още по-добър охлаждащ ефект в слоя, отколкото би могъл да бъде получен само чрез ефекта на изпаряване на течността (скрита топлина на изпарението), като по този начин се осигури допълнително увеличаване на производителността на метода. Охлаждането на сепарирания течен поток може да се постигне с помощта на подходящо охлаждащо средство, напр. чрез прост топлообменник или хладилник, разположен между сепаратора и реактора. Друго предимство на този конкретен аспект на настоящето изобретение е това, че чрез охлаждането на течността преди въвеждането й в кипящия слой, ще доведе до намаляването на всяка тенденция на катализато
PCT/GB94/01074
BG-PA-100102 pa или на преполимера, съдържащ се в течния поток, да се получи полимеризация преди въвеждането в кипящия слой
Течността може да се въвежда в кипящия слой чрез подходящо устройство за впръскване. Може да се използва едно единствено такова устройство, както и повече, които да се подредят в границите на кипящия слой.
Едно от предпочитаните решения е осигуряването на множество устройства за впръскване, които да са равномерно разположени в кипящия слой в зоната на въвеждането на течността. Броят на използваните устройства за впръскване трябва да е достатъчен, за да се осигури достатъчно проникване и разпръскване на течността в слоя при всяко от тях. Предпочитания брой на устройствата за впръскване е четири.
Всяко от устройствата за впръскване може, по желание, да приеме сепарирана течност с помощта на обща свързваща тръба, поставена в реактора. Това може да се осъществи, например, с помощта на захранваща тръба, минаваща през центъра на реактора. Предпочита се устройствата за впръскване да са наредени по такъв начин, че да се издават навън предимно във вертикална посока в кипящия слой, но могат да се подредят и така, че да се издават навън от стените на реактора предимно в хоризонтална посока. Скоростта с която може да се подава течността в слоя зависи главно от желаната степен на охлаждане в слоя, а това на свой ред зависи от желаната скорост и производителност. Скоростта на производство, която може да се получи при индустриалните процеси за полимеризацията на олефини зависи между другото и от активността на използвания катализатор и от кинетиката на катализаторите. Така, например, когато се използват катализатори с много голяма активност и се желае голяма производителност, скоростта на подаване на течността ще е голяма. Характерните скорости на въвеждане на течността могат, например, да бъдат в границите между 0,3 и 4,9 м3 течност на кубичен метър от материала на слоя, на час, или дори повече. При традиционните катализатори Ziegler от свръхактивен тип (като тези основаващи се на преходен метал, магнезиев халид и органометален съкатализатор), скоростта на подаваната течност може, например, да се намира в границите между 0,5 до 1,5 м3 течност на кубичен метър от материала на слоя на час.
PCI7GB94/01074
BG-PA-100102
По метода на настоящето изобретение, тегловното съотношение между течност и всичкия газ, който се въвежда в слоя, може примерно да се намира в границите между 1:100 до 2:1, за предпочитане в границите между 5:100 и 85:100, а най-добре, между 6:100 и 25:100. Под всичкия газ се разбира връщания към кипящия слой в реактора газ, заедно с всякакъв друг газ, използван допълнително за работата на устройството за впръскване.
По този начин, чрез впръскване на течността в кипящия слой се помага на катализатора, намиращ се в течността, да локализира охлаждащия ефект на проникването на течността, която обгражда всяко устройство за впръскване, а така се избягва появяването на горещи точки и последваща агломерация.
Може да се използва всякакво друго средство за впръскване, при условие, че ще се получи достатъчно проникване и дисперсия на течността в слоя.
Предпочитаното средство за впръскване представлява дюза или множество дюзи, които включват пулверизиращи дюзи, работещи с газ, или дюзи, работещи само с течност.
Съгласно друг аспект на настоящето изобретение, се осигурява непрекъснат процес в кипящ слой в газова среда за полимеризацията на олефинов мономер избран от: (а) етилен, (б) пропилен, (в) смеси на етилен и пропилен и (г) смеси на а, б или в с един или повече алфа-олефини в реактор с кипящ слой чрез непрекъснато рециркулиране на газов поток, съдържащ най-малко част от етилена и/или пропилена през кипящия слой на реактора, в присъствието на полимеризационен катализатор при реактивни условия, като поне част от този газообразен поток се отвежда от реактора и се охлажда до температура, при която течността се кондензира, като се сепарира част от кондензираната течност от газообразния поток и се въвежда течността направо в кипящия слой чрез една или повече дюзи, пулверизиращи само с течност, или и с помощта на газ. За предпочитане кипящият слой трябва да лежи върху флуидизационна решетка.
Най-добре е устройствата за впръскване да представляват дюзи, които се издават към слоя през стената на реактора (или през носещата слоя решетка ) и които съдържат един или повече струйни отвори за подаване на течността към слоя.
PCT/GB94/01074
BG-PA-100102
В метода съгласно настоящето изобретение е от значение да се постигне добра дисперсия и проникване на течността в слоя. Важните фактори за постигането на доброто проникване и дисперсия са енергията и посоката на навлизащата в слоя течност, броят на точките на въвеждането на течността на единица напречно сечение на слоя и разположението в пространството на точките на въвеждане на течността.
Друг аспект на настоящето изобретение осигурява метод за полимеризация на олефинов мономер, като олефиновият мономер за предпочитане се избира между (а) етилен, (б) пропилен, (в) смес от етилен и пропилен и (г) смеси от а, б и в, с един или повече други алфа-олефинови олефини в реактор с кипящ слой чрез непрекъснато рециркулиране на газообразен поток, съставен от мономер, за предпочитане включващ най-малко етилен и/или пропилен, през кипящ слой в реактора при наличието на полимеризиращ катализатор при условия на реакция, като най-малко част от изваждания от реактора газообразен поток се охлажда до температура, при която течността се кондензира, като се сепарира поне част от кондензираната течност от газообразния поток и се въвежда най-малко част от сепарираната течност директно в кипящия слой в или над точката, при която преминаващият през кипящия слой газообразен поток е достигнал до голяма степен температурата на газообразния поток, който излиза от реактора, като течността се въвежда в реактора във формата на една или повече струи само от течност или една или повече струи от течност и газ, от едно или повече струйни отверстия, като всяка струя притежава хоризонтална кинетична енергия при струите, които изхвърлят само течност при най-малко ЮОхЮ3 кг. сек1 м'2 х м сек1, а при струите с газ и течност от 200x103 кг сек'1 м-2 м сек1, при което хоризонталната кинетична енергия се определя като скорост на протичане на масата на течността (в килограми за секунда) в хоризонтална посока, за единица напречно сечение (квадратни метри) на изхода на струята, от която излиза, умножено по хоризонталния компонент на скоростта (метри за секунда) на струята.
За предпочитане кинетичната енергия на всяка от струите с течност или течност и газ е да възлиза най-малко на 250x103, и най- добре.поне на 300x103 кг сек’1 м'2 х м сек1. Особено за предпочитане е, да се използва хоризонтална кинетична енергия между 300x103 и 500x103 кг сек'1 м-2 х м сек'1 В случаите, когато течната струя излиза
PCT/GB94/01074
BG-PA-100102 от струен отвор в посока, която не е хоризонтална, тогава хоризонталния компонент на скоростта на струята се изчислява от cos Q° х скорост на струята, където Q° представлява ъгълът, под който излиза струята по отношение на хоризонталата.
Предпочита се посоката на движение на една или повече струи от течност или от течност и газ в слоя да бъде до голяма степен хоризонтална. Когато един или повече струйни отвори изпускат течността или течност и газ в струи в нехоризонтална посока, за предпочитане е те да се насочват към ъгъл не по-голям от 45°, а най-добре не повече от 20° спрямо хоризонталата.
Дюзата или повечето дюзи могат да бъдат изработени така, че да съдържат един или повече струйни отвори. Броят на дюзите и разпределението и броя на струйните отвори представляват важен фактор за получаването на добро разпределение на течността вътре в слоя. Когато се използва множество дюзи, за предпочитане е те да бъдат разположени вертикално и да бъдат поставени на хоризонтални интервали на еднакво разстояние една от друга. В този случай също се предпочита те да бъдат разположени на равни разстояния една от друга и от вертикалната стена на кипящия слой. Броят на дюзите на 10 квадратни метра от хоризонталната напречна площ на слоя се предпочита да възлиза от 1 до 4, като се предпочита да бъде от 2 до 3. Когато пресметнатият брой не възлиза на цяло число, той се закръгля на цяло число. За предпочитане е броят на струйните отвори във всяка дюза да бъде между 1 и 40, като най-добре е, той да бъде от 3 до 16. Когато дюзата съдържа повече от един струен отвор, предпочита се струйните отвори да бъдат разположени по нейната периферия, на равни разстояния един от друг.
Както бе посочено по-горе, струите течност могат да бъдат съставени или само от течност или от смес от течност и газ. Такъв газ може да бъде пренасян с течността или пък може да се използва за много ситно пулверизиране на течността, или да се използва за задвижването на течността.
Подходящата разпръскваща дюза, работеща с газ, използвана при метода, съгласно настоящето изобретение, се състои от:
а) най-малко един входящ отвор за течност под налягане,
б) най-малко един входящ отвор за разпръскващ газ,
PCT/GB94/01074
BG-PA-100102
в) смесителна камера за смесването на течността и газа, и
г) най-малко един изходящ отвор, през който се разпръсква сместа.
Разпръскващият газ може да бъде инертен газ, като напр. азот, но за предпочитане е да бъде добавъчен етилен.
Всяка дюза- може да се изработи с множество изходящи «твори с подходяща конфигурация. Отворите, например, може да имат кръгла форма, да бъдат като процепи, елипсовидни или с друга подходяща форма. Всяка дюза може да съдържа множество изходящи отвори с различна конфигурация.
Размерът на изходящите отвори се предпочита да бъде такъв, че да осигурява малък пад на налягането през отворите.
Предпочита се изходящите отвори да бъдат подредени симетрично около периферията на всяка дюза, но могат да бъдат разположени и несиметрично.
Подаването на разпръскващия газ към всяка дюза се поддържа при достатъчно налягане, за да може да се разбива течността на ситни капчици и да не се допуска навлизането на частици от кипящия слой, както и да не става задръстване на отвори- те на дюзата.
Относителният размер на смесителната камера се проектира така, че да може да осигурява оптимално диспергиране. Обемът на смесителната камера, по отношение на обема на преминаващата течност през камерата се изразява така: обем на смесителната камера (в см3) / скорост на протичане на течността (см3/сек.) се предпочита да се намира в границите между 5 х 10'3 до 5 х 10‘1 секунди.
Предпочита се скоростта на течността да се поддържа такава, че да бъде достатъчна, за да не допуска сепарирането на никакви частици, като напр. ситнеж от потока на течността.
Тегловното съотношение между диспергиращия газ и течността, подавани към всяка дюза, обикновено е в границите от 5 : 95 до 25 : 75.
На фиг 2 е показана подходяща дюза за използване при метода, съгласно настоящето изобретение.
Дюзата е съставена от кожух 7, състоящ се от горна зона 8 и долна зона 9. Горната зона е снабдена с голям брой изходящи отвори 10, подредени по периферията и
PCT/GB94/01074
BG-PA-100102 в нея се намира смесителната камера 11. Долната зона има централно разположена тръба 12, която достига до смесителната камера и външна тръба 13, разположена около вътрешната тръба. Тръба 13 има връзка със смесителната камера чрез подходящи отвори 14. Към дюзата се подава течност под налягане с помощта на тръба 13, а газът се подава през тръба 12. Долната зона на дюза 9 е свързана чрез традиционно устройство за подаване на течност под налягане и газ. След смесването на течността с газ в камера 11, тя се изхвърля от дюзата през изходящите отвори 10 във формата на пулверизирана струя.
Предпочитана е дюза, на която изходящите отвори са съставени от група в основни линии хоризонтално изработени процепи, наредени по периферията на дюзата. Дюзата също може да има вертикално ориентиран отвор или отвори разположени така, че да осигурят отстраняването на частици, полепнали от горната страна на дюзата, с помощта на сместа от газ и течност под налягане.
Процепите обикновено могат да имат размер равен на отвор с диаметър от около 6,5 мм и могат, като пример, да бъдат с размери 0,75 х 3,5 мм.
Устройството за впръскване може като вариант да представлява дюза или дюзи разпръскващи течността без да се използва газ.
Подходяща безгазова дюза за използване по метода на настоящето изобретение, се състои от най-малко един входящ отвор за течността под налягане и най-малко един изходящ отвор за течността под налягане, като вътре в дюзата се поддържа достатъчно високо налягане на течността, за да се осигури излизащата течност през изходящия отвор да има желаната кинетична енергия.
Падът на налягането във всяка дюза може по желание да се регулира например чрез използването на ограничаващи устройства, като напр. клапани.
Изходите могат да имат конструкция, подобна на описаната по-горе за разпръсквателните дюзи, работещи с газ. Предпочитаната конфигурация за изходящите отвори на разпръсквателните дюзи, работещи без газ е, да бъдат с кръгли отвори.
Размерът на капчиците течност се влияе от голям брой фактори, и по-специално при газовите разьпръсквателни дюзи, от съотношението на подаваните течност и газ към дюзата и размера и конфигурацията на диспергиращата камера. Благоприят
PCT/GB94/01074
BG-PA-100102 ният размер на течните капчици при газовата разпръсквателна дюза се намира между 50 до около 1000 микрона. При разпръскващите дюзи без газ, размерът на капчиците на течността се влияе главно от пада на налягането в дюзата и размера и конфигурацията на изходящите отвори. Размерът на капчиците течност при дюза без газ варира между около 2000 микрона и около 4000 микрона. Такива капчици могат да се образуват, например, чрез разпрашаването на течната струя от движението на частиците от твърдо вещество, образуващи слоя.
Падът на налягането и при двата вида дюзи трябва да бъде достатъчен, за да не допусне навлизането на частици от кипящия слой. При газовите дюзи имаме подходящ пад на налягането между 2 и 7, за предпочитане 3 до 5 бара, а при дюзите за пръскане на течности падът в налягането трябва да бъде в границите между 2 и 4, за предпочитане 4-5 бара.
В случай на авария при подаването на течност или диспергиращ газ, към двата вида дюзи, са осигурени подходящи средства за осигуряването на аварийно продухване на газа, за да не се допусне блокирането на дюзата поради навлизането на частици от кипящия слой. Подходящ газ за продухване е азотът.
Важно е изходящите отвори на газовите дюзи или на дюзите изхвърлящи само течност да имат достатъчно голям размер, за да позволяват преминаването на всякакъв ситнеж, който може да се намира в сепарирания течен поток.
И при двата вида дюзи изходящите отвори трябва да бъдат поставени на различни нива вътре в дюзата. Например изходящите отвори могат да бъдат подредени на групи редове.
На дюза от вида, показан на фиг. 2, броят на изходящите отвори на всяка дюза се предпочита да бъдат между 4 и 40, например между 20 и 40, и най-добре от 4 до
16. Диаметърът на такава дюза се предпочита да бъде между 4 до 30 см, напр. от 10 до 30 см, и най-добре, от 7 до 12 см.
И други видове дюзи могат да се окажат подходящи за използване при метода на настоящото изобретение, като напр. ултразвуковите дюзи. Преди да се започне подаването на течност при използване на метода, предмет на настоящето изобретение, полимеризацията с кипящ слой при газова фаза може да се стартира по традици
PCT/GB94/01074
BG-PA-100102 онния начин, например като се зареди слоя със частици полимер, след което се пропуска газ през слоя. Ако е подходящо, течността може да се въведе в слоя, например, чрез средството за впръскване, описано по-горе. По време на пуска подаването на разпръскващ газ към газовите дюзи или продухващият газов поток към дюзите за разпръскване без газ трябва да се поддържа достатъчна скорост, за да не се допусне навлизането на частици в изходящите отвори на дюзите.
Методите, съгласно настоящето изобретение са пояснени с помощта на приложените фигури.
На фиг 3-5 са илюстрирани схематично процесите, предмет на настоящето изобретение.
фиг. 3 показва реактор с кипящ слой в газова фаза, който в основни линии се състои от тяло на реактор 15, което в основата си представлява изправен нагоре цилиндър с флуидизационна решетка 16, разположена в долната му част. Тялото на реактора съдържа кипящ слой 17 и зона за намаление на скоростта 18, която общо взето има увеличен напречен разрез в сравнение с кипящия слой.
Газообразната реакционна смес, която излиза от горната-страна на реактора с кипящ слой е съставена от рециркулационен газообразен поток и се прекарва през тръбопровод 19 до циклон 20 за сепариране на по-голямата част от ситните частици. Отстранените ситни частици могат лесно да се върнат в кипящия слой. Рециркулационният газообразен поток, който напуска циклона, преминава към първи топлообменник 21 и компресор 22.
Има и втори топлообменник 23 за отстраняване на топлината от компресията, след като рециклираният газообразен поток е преминал през компресор 22.
Топлообменникът или топлообменниците могат да бъдат подредени пред или след компресора 22.
След охлаждане и компресия до температура, при която ще се образува кондензат, получената смес от газ и течност се прекарва към сепаратор 24, където се отстранява течността.
PCT/GB94/01074
BG-PA-100102
Напускащият сепаратора газ се рециклира през тръбопровод 25 към дъното на реактора 15. Газът се прекарва през решетката за флуидизиране 16 към слоя, като по този начин се осигурява поддържането на слоя във флуидизирано състояние.
Сепарираната течност от сепаратор 24 се прекарва през тръбопровод 15 към реактора 15. Ако е необходимо, може да се постави и помпа 26 на тръбопровод 25'.
Към реактора се подават катализатор и преполимер в сепарирания течен поток през тръбопровода 27. Частиците на полимерния продукт могат по-лесно да се извадят от реактора чрез тръбопровод 28.
Разположението, показано на фиг. 3 е особено подходящо за използване при преустройване на съществуващите реактори за полимеризация в газова фаза в такива с кипящ слой.
На фиг. 4 е показана алтернативна схема за осъществяване на метода, предмет на настоящето изобретение. При тази схема компресорът 22 е разположен на тръбопровод 25 след сепарирането на газообразния рециркулационен поток с помощта на сепаратор 24. Това има предимство, че компресорът трябва да компресира намалено количество-газ и следователно може да има по-малък размер и да се гтос- _ тигне по-добро оптимизиране на процеса и на разходите.
На фиг. 5 е показана схема за осъществяване на метода съгласно настоящето изобретение, при което компресорът 22 отново е разположен на тръбопровод 25 след сепаратор 24, но преди втория топлообменник 23, който е разположен в сепарирания газов поток, вместо да е разположен пред сепаратора, и това разположение дава по-добра оптимизация на метода.
По-долу метода, съгласно настоящето изобретение е пояснен с помощта на примери.
Примери 1 до 11
Създадени са с помощта на компютър примери, симулиращи полимеризация на олефини в реактор с кипящ слой при газова фаза при условията на настоящето изобретение (примери 1 до 5,9 и 10) и за сравнение, при традиционни условия без сепарирана течност в рециклирания поток (примери 6 до 8 и 11).
PCT/GB94/01074
BG-PA-100102
Примери от 1 до 8 представляват съполимеризация на етилен с най-различни апфа-олефини с помощта на традиционен Ziegler-катализатор, а примери от 9 до 11 представляват хомополимеризация на етилен с помощта на традиционен хромоксиден катализатор с носител силициев диоксид.
Добивът за единица обем и време и температурата на входа в реактора бяха изчислени с помощта на компютърна програма за термичен баланс с точност ±15 %. Температурата на оросяване и скоростта на потока на рециркулационната течност бяха изчислени за полимеризационната система с помощта на традиционна софтуерна програма с точност около ±10 %.
Примери 1, 3,4 и 10 най-точно представляват типични условия за изпълнение на метода съгласно настоящето изобретение. Резултатите са дадени на Таблица 1 и Таблица 2 и ясно показват повишен добив за единица обем и време, който може да се получи с помощта на метода на настоящето изобретение.
Показателят % на течност в рециклирания поток в таблици 1 и 2 представлява в проценти общото тегло на рециркулационната течност, преминаваща през средството за-впръскване, разделено на общото тегло на газа (рециркулационен газ плюс какъвто и да е газ за пулверизиране).
Примери 12 до 15
Използвана бе експериментална апаратура за тестване въвеждането на течност в кипящ слой с помощта на устройство за впръскване, както бе описано по-горе. Схемата на експерименталната апаратура е показана на фиг. 6. Апаратурата за тестване се състои от алуминиев съд за флуидизиране 50, със зона за намаление на скоростта 56, съдържаща слой 51 от полиетилен на прах (висока плътност или линеен полиетилен ниска плътност), изготвен предварително чрез полимеризация на етилен в кипящ слой при газова фаза в инсталация за кипящ слой при газова фаза от промишлен размер. Слоят 51 бе флуидизиран чрез прекарване на непрекъснат поток от сух газообразен азот през тръбопровод 52 и през нагревател за предварително нагряване 53 в долна камера 54 на съд 50, и от там - към слоя през решетка 55. Азотът в газова форма бе подаван от един захранващ резервоар за течен азот в промишлено из
PCT/GB94/01074
BG-PA-100102 пълнение, а подаденото количество азот за флуидизиране и налягането на газа в системата бе контролирано с помощта на клапани 57 и 69, като обемната скорост на потока се определяше с помощта на традиционен разходомер с турбинно колело (непоказан). Устройството за предварително загряване има номинална топлопроизводителност от 72 квт и може да контролира затоплянето на азота до желаната температура. В кипящия слой 51 се въвежда летлив течен въглеводород 58 (1-хексен или п-пентан) от резервоар- охладител 59 с помощта на помпа 60 и тръбопровод 61. Летливият течен въглеводород навлиза в слоя през дюза 62, като прониква в слоя. Изпробвани бяха различни устройства на дюзи, като някои бяха от видът, при който се течността се разпръсква без газ, а други от видът, работещ с газ. При втория случай бе въведен газ през тръбопровод 63 (този вид дюза е показана на фиг. 2). Навлизащите в кипящия слой летливи течни въглеводороди през дюзите 62 се изпаряват в слоя, като причиняват охлаждане чрез поглъщане на скритата температура за изпаряването. Азотът, като флуидизиращ газ и придружаващият го доведен до летливост течен въглеводород излизат от горната страна на слоя към зоната за намаляване на скоростта 56, при което голямата част от всякакъв полиетилен на прах, задържан в газовия поток,-падаобратно в слоя. След това газът преминава през тръбопровод 64, филтърно устройство 65 и през възвратния клапан 66 към охладителния резервоар 59. Този резервоар 59 съдържа два топлообменника 67 и 68. Топлообменник 67 се охлажда от преминаващата през него студена вода, а 68 се охлажда от рециркулацията на охладен разтвор от гликол/вода. Преминаването на газа през топлообменници 67, 68 охлажда газа и предизвиква кондензацията на течния въглеводород (хексен или пентан). Събрания на дъното на резервоар 59 кондензиран въглеводород се рециркулира обратно от там към слоя. Освободеният до голяма степен газообразен азот от въглеводорода след това преминава през обратен регулиращ вентил 69 към атмосферата, флуидизирането и изпаряването на течния въглеводород в слоя се контролира с помощта на рентгенов апарат, състоящ се от източник на рентгенови лъчи 70, усилвател на изображението 71 и видеокамера 72, чийто образи се регистрират непрекъснато върху видеомагнетофон (непоказан). Източникът на рентгенови лъчи, усилвателят на изображения и виде
PCT/GB94/01074
BG-PA-100102 окамерата бяха монтирани на подвижна греда 73, което позволява по желание да се избира контролираната част от слоя.
Методът на настоящето изобретение осигурява значително повишение на производителността на процесите на полимеризация в кипящ слой с газова фаза в сравнение със съществуващите процеси.
Методът на настоящето изобретение може да се използва при нови инсталации или да се осъществява в съществуващи инсталации, за да се получи значително увеличение на производителността и по-добро управление на прибавянето на течност към слоя. В случаите, когато се монтира нова инсталация, може да се осъществи значително намаление на капиталните разходи, като се използват по-малки реактивни съдове, компресори и други помощни съоръжения, които биха били достатъчни, за да се получи сравнима производителност с тази при традиционните инсталации. А при случаите на съществуващи инсталации, модификацията на инсталациите съгласно настоящето изобретение осигурява значително увеличение на производителността и подобрено управление на технологичния процес.
- Резултатите от изпитанията са показани на таблица 3, където Примери 12,14 и 15 са съгласно настоящето изобретение, а Пример 13 е даден за сравнение. Пример 12 и Сравнителен пример 13 показват използването на същото дюзово устройство, но при сравнителния пример прибавянето на течност в студената зона на полимеризацията с кипящ слой в газова фаза е моделирано като се работи с температура на слоя от 45 °C в сравнение с използваните 98 °C при Пример 12. При тези обстоятелства, около дюзата се образуваха бучки от полимер, омокрени от течен въглеводород.
Примери 12,14 и Сравнителен пример 13 използваха дюзи за пулверизиране с газ, а при Пример 15 има дюза, работеща само с течност. При всички примери 12,14 и 15 се получи добро проникване и дисперсия на течния въглеводород, като проникването на течността може да бъде спряно единствено от стената на съда. При Сравнителен пример 12 проникването на течността бе задържано от образуването на агломерирани бучки от полимер/течен въглеводород.
PCT/GB94/01074
BG-PA-100102
Ю_ | CO | CO | co | co | |
Ο | м7 | σ> | xf | T— | 1— |
co | sf | co | C\j |
CD | 00 | LO | co |
4— | oo | σί | 1-- |
co |
24 | 82 | ι-_ σ> σ> τ-_ CD LO CD* C\J t— co | - | co < CM* | 09 | 14,5 | 105 | 53,4 | 67,7 | ΣΖ |
LO CD CM CM | d- | Ю | co | CM | CD | LO | |
CO CD CO 00 O | s | σ> | co | 00 | 4— | ||
1- CM V- | co | h- | CM |
CO | LO CO CM co CM тГ N- CD CD Ο O | CD -Γ- O | Ю | § | Ю cd | CD o' | |
σ> | CO -r- CM 1- | CD | Γ'- | 1“ |
Таблица 1
PCT/GB94/01074
BG-PA-100102
co | T- Ю | co | co | IQ | co | co | |||
vt | o | cd <o ом | co | St | o | vf | cr> | co | CM |
C\J | C\J T- T- C\J | CO | co | <o |
ю Is- ю σ> t— | CM | LO | in | ||||||
CO | S N r- C\1 | T~ | o | Ю | σ> | co | o | ||
cxj | co co T- | co | Ю | CM |
Таблица 2
СЙ | cd | cd | |||||||||||||
Q. | ΖΓ | Φ | |||||||||||||
O | X | Q_ | |||||||||||||
cd | Φ | ||||||||||||||
cd | Φ | X | X | ||||||||||||
Φ | co cd 1— | σ; | \o | cd | |||||||||||
CL co | X Q_ Φ | cd co cd | O c; o | Ό X | c£ O X | co σ; O | |||||||||
cd | X | S | U_ | cd | X | CO | O | ||||||||
Q. | Φ IT x | o I— X | cd X | X cd | Ct Φ | cd X | Q_ O | ||||||||
СЙ | L_ | C[ | c; | 1— | X | cd | cd | ||||||||
Q- | CJ r— | O | X | X | O | o | X | co | d. | X | |||||
Φ c | ‘--I o X | Φ | X | Ql O | Ι- | X Φ | ί | Φ o | 5Z | X 1_______ | o CL | ΣΓ O | CQ X | Φ c | cd |
φ | X Φ | X f— | cd 1- | c[ O | Ο co | X Φ | X Φ | X Q_ | o | o X | \o o | S CD | :r o | ||
H | H | LLJ | LU | CO | < | LO | tz | X | 4- | a: | o | CQ | ci | H | H |
PCT/GB94/01074
BG-PA-100102
Таблица 3
Пример | 12 | 13 | 14 | 15 |
Тип дюза | С пулвериз. газ | С пулвериз. газ | С пулвериз. газ | Без пулвериз. газ |
Изходящи отвори | 4 хоризонтални процепа | 4 хоризонтални процепа | 4 хоризонтални процепа | 2 кръгли отвора с диам. 1,75 мм |
Разположение над решетката (см) | 52 | 52 | 10 | 52 |
Скорост на флуидизиращия газ (см/сек) | 45 | 42 | 52 | 38 |
Температура на слоя (°C) | 98 | 45 | 78 | 97 |
Налягане (МРа) | 1,01 | 0,97 | 0,78 | 0,75 |
Материал на слоя | ПЕВП В Р-качество 6070 | ПЕВП В Р-качество 6070 | ЛПЕНП В Р-качество 0209 | ПЕВП В Р-качество 6070 |
Зареждане на слоя (кг) | 60 | 58,5 | 61,2 | 58,0 |
Течност | хексен | хексен | п-пентен | хексен |
Течен поток (м7ч) | 1,65 | 1,48 | 1,78 | 0,69 |
Налягане при дюзата (МРа) | 0,33 | 0,32 | 0,38 | 0,54 |
Налягане на N2 за пулверизация (МРа) | 0,42 | 0,40 | 045 | няма |
Пулверизиращ газ :течност тегловни % | 5,4 | 5,3 | 5,6 | няма |
м° течност за м“ от слоя | 11,38 | 10,61 | 12,80 | 4,95 |
Хоризонтално проникване на течността (см) | над 21 | под 15 | над 21 | над 21 |
%на кондензирана течност (% всичко течност : всичко газ) | 105,5 | 94,6 | 121,2 | 46,6 |
PCT/GB94/01074
Claims (33)
- ПАТЕНТНИ ПРЕТЕНЦИИ1. Непрекъснат метод за полимеризация в газова фаза в кипящ слой на олефинов мономер подбран измежду а) етилен, б) пропилен, в) смес от етилен и пропилен, и г) смеси от а, б или в, с един или повече други алфа олефини в реактор с кипящ слой, чрез непрекъснато рециклиране на газов поток, съставен най-малко от част от етилена и/или пропилена, преминаващ през кипящия слой в реактора в присъствието на полимеризиращ катализатор при реактивни условия, като най-малко част от газообразния поток се извежда от реактора, охлажда се до температура, при която течността се кондензира, като се отдели поне част от кондензираната течност от газообразния поток и се въвежда поне част от сепарираната течност в кипящия слой в или над точката, при която преминаващият през кипящия слой газообразен поток достига до значителна степен температурата на газообразния поток, който се извежда от реактора.
- 2. Непрекъснат метод за полимеризация в газова фаза в кипящ слой на олефинов мономер, подбран измежду а) етилен, б) пропилен, в) смеси от етилен и пропилен, и г) смеси от а, б или г, с един или повече други алфа-олефини в реактор с кипящ слой чрез непрекъснато рециркулиране на газообразен поток, състоящ се най-малко от част от етилена и/или пропилена преминаващ през кипящ слой в реактора в присъствието на полимеризиращ катализатор при реактивни условия, като най-малко част от този изведен от реактора газообразен поток се охлажда до температура, при която течността се кондензира, като се сепарира поне част от кондензираната течност от газообразния поток като тази течност се подава направо към кипящия слой с помощта на една или повече дюзи подаващи само течност или дюзи, работещи с помощта на газ.PCT/GB94/01074BG-PA-100102
- 3. Метод съгласно претенции 1 или 2, при който кипящият слой се носи върху флуидизираща решетка.
- 4. Метод съгласно всяка от предходните претенции, при който един или повече от алфа-олефините притежават от 4 до 8 въглеродни атома.
- 5. Метод съгласно всяка от предходните претенции, при който съдържанието на етилена или пропилена е в количество най-малко 70% от всичките мономери.
- 6. Метод съгласно всяка от предходните претенции, при който почти целия рециркулационен газообразен поток се охлажда и сепарира на течен и газов компонент, като почти цялото количество сепарирана течност се въвежда в реактора.
- 7. Метод съгласно всяка от предходните претенции, при който течността се въвежда направо в кипящия слой чрез множество отвори вътре в самия слой.
- 8. Метод съгласно всяка от предходните претенции, при който скоростта на газа в кипящия слой е в границите между 50-70 см/сек.
- 9. Метод съгласно всяка от предходните претенции, при който катализаторът или преполимерът се въвеждат в кипящия слой в кондензираната течност.
- 10. Метод съгласно всяка от предходните претенции, при който потокът от сепарираната течност се охлажда чрез охладителна техника преди да се въведе в кипящия слой.
- 11. Метод съгласно всяка от предходните претенции, при който добавъчният етилен се въвежда в сепарирания рециркулационен газов поток преди повторното му въвеждане в реактора.PCT/GB94/01074BG-PA-100102
- 12. Метод съгласно всяка от предходните претенции, при който течността се въвежда в кипящия слой със скорост между 0,3 и 4,9 кубични метра течност на кубичен метър материал от слоя на час.
- 13. Метод съгласно всяка от предходните претенции, при който тегловното съотношение течност: всичкия газ, въведен в слоя се намира в границите между 5:100 и 85:100.
- 14. Метод съгласно претенция 2, при който всяка дюза е разположена почти вертикално в кипящия слой.
- 15. Метод съгласно претенция 2, при който пулверизиращата дюза, работеща с газ се състои от:а) най-малко един входящ отвор за течността под налягане,б) най-малко един входящ отвор за газ,в) смесителна камера за смесването на горната течност под налягане и горния газ, иг) най-малко един изходящ отвор, през който се разпръсква сместа от газ и течност.
- 16. Метод съгласно претенция 15, при който пулверизиращият газ е добавъчен етилен.
- 17. Метод съгласно претенции 15 или 16, при който дюзата има множество изходящи отвори.
- 18. Метод съгласно претенция 17, при който почти всички изходящи отвори имат форма на процепи.
- 19. Метод съгласно всяка от претенции 15-18, при който обемът на смесителната (пулверизационна) камера отнесен към обема на преминаващата през камерата течност, изразен като: обем на смесителната камера (в кубически см) :PCT/GB94/01074BG-PA-100102 скорост на протичане на течността (кубически см за секунда), се намира в границите между 5 х 10'3 и 5 х 10'1 секунди.
- 20. Метод съгласно всяка от претенции 14-18, при който тегловното съотношение на пулверизиращия газ и течността под налягане се намира в границите между 5:95 и 25:75.
- 21. Метод съгласно всяка от претенции 14 до 20, при който размерът на капчиците течност на изходния отвор на дюзата е между 50 и 4000 микрона.
- 22. Метод съгласно всяка от претенции 14 до 21, при който падът на налягането в разпръскващата дюза, работеща с газ се намира в границите между 3 и 5 бара, а в дюзата, работеща само с течност - между 4 и 5 бара.
- 23. Метод съгласно всяка от претенции 14 до 22, при който дюзата е снабдена със средство за осигуряване на аварийно продухване с-газ през гореспоменатата дюза.
- 24. Метод за полимеризация на олефинов мономер в реактор с кипящ слой чрез непрекъснато рециркулиране на газообразен поток включващ мономера, през кипящия слой в.реактора в присъствието на полимеризиращ катализатор при реактивни условия, като най-малко част от този газообразен поток, извеждан от реактора се охлажда до температура, при която течността кондензира, като се сепарира поне част от кондензираната течност от газообразния поток и се въвежда най-малко част от сепарираната течност направо в кипящия слой в или над точката, при която минаващият през кипящия слой газообразен поток е достигнал до голяма степен температурата на извеждания от реактора газообразен поток, като тази течност се въвежда в реактора във формата на една или повече струи само от течност, или една или повече струи от течност и газ, от един или повече изходящи струйни отвора, като всяка струя има хоризонтална кинетична енергия възлизащо на най-малко на ЮОхЮ3 кг.сек1.м’2хPCT/GB94/01074BG-PA-100102м.с'1 за струите, образувани само от течност и най-малко 200x103 кг.секЛм'2 х м.с'1 за струите от течност и газ, при което хоризонталната кинетична енергия се определя като скорост на протичане на масата течност (кг/сек.) в хоризонтална посока за единица време (секунди) на единица площ напречно сечение (м2) от изходния отвор за струята, от който излиза, умножено по хоризонталния компонент на скоростта (м/сек) на струята.
- 25. Метод съгласно претенция 24, при който олефиновият мономер се избира между: а) етилен, б) пропилен, в) етилен и пропилен, и г) смеси от а, б или в, с един или повече алфа-олефини.
- 26. Метод съгласно претенции 24 или 25, при който хоризонталната кинетична енергия на всяка от струите от течност или от течност/газ възлиза най-малко на 250x103 кг.сек‘1.м‘2х м.с'1.
- 27. Метод съгласно всяка от претенции 24 до 26, при който една или повече струи от течност или течност/газ се насочва в значителна степен в хоризонтално направление към слоя.
- 28. Метод съгласно всяка от претенции 24 до 27, при който една или повече струи от течност или от течност/газ излизат от изходящите отвори, които се намират в една или повече дюзи.
- 29. Метод съгласно претенция 28, при който се използват множество дюзи, разположени на равни разстояния помежду си и от вертикалната стена на реактора с кипящ слой.
- 30. Метод съгласно претенция 28 или 29, при който броят на дюзите на 10 квадратни метра от площта на хоризонталното напречно сечение на слоя е в границите между 1 и 4 броя.PCT/GB94/01074BG-PA-100102
- 31. Метод съгласно всяка от претенции от 28 до 30, при който броят на струйните изходящи отвори на всяка дюза се намира в границите между 3 и 16 броя.5
- 32. Метод съгласно всяка от претенции от 27 до 30, при който всяка дюза има множество струйни изходящи отвори разположени по периферията на дюзата.
- 33. Метод съгласно всяка от претенции от 28 до 32, при който изходните отвори за струята имат до значителна степен формата на процепи.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB939310388A GB9310388D0 (en) | 1993-05-20 | 1993-05-20 | Polymerization process |
GB939310387A GB9310387D0 (en) | 1993-05-20 | 1993-05-20 | Polymerization process |
GB939310390A GB9310390D0 (en) | 1993-05-20 | 1993-05-20 | Polymerization process |
PCT/GB1994/001074 WO1994028032A1 (en) | 1993-05-20 | 1994-05-19 | Polymerisation process |
Publications (2)
Publication Number | Publication Date |
---|---|
BG100102A true BG100102A (bg) | 1996-11-29 |
BG62854B1 BG62854B1 (bg) | 2000-09-29 |
Family
ID=27266692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BG100102A BG62854B1 (bg) | 1993-05-20 | 1995-10-27 | Метод за полимеризация |
Country Status (31)
Country | Link |
---|---|
US (4) | US5541270A (bg) |
EP (3) | EP0926163A3 (bg) |
JP (1) | JPH08510497A (bg) |
KR (1) | KR100300468B1 (bg) |
CN (1) | CN1077111C (bg) |
AT (2) | ATE163017T1 (bg) |
BG (1) | BG62854B1 (bg) |
BR (1) | BR9406535A (bg) |
CA (1) | CA2161432C (bg) |
CZ (1) | CZ289037B6 (bg) |
DE (2) | DE69408450T2 (bg) |
DZ (1) | DZ1782A1 (bg) |
EG (1) | EG20361A (bg) |
ES (1) | ES2113104T3 (bg) |
FI (1) | FI112230B (bg) |
GR (1) | GR3025973T3 (bg) |
HK (1) | HK1008963A1 (bg) |
HU (1) | HU214842B (bg) |
IN (1) | IN190621B (bg) |
MY (1) | MY121539A (bg) |
NO (1) | NO309327B1 (bg) |
NZ (1) | NZ266173A (bg) |
PL (1) | PL177865B1 (bg) |
RO (1) | RO116551B1 (bg) |
RU (1) | RU2144042C1 (bg) |
SG (1) | SG49037A1 (bg) |
SK (1) | SK281033B6 (bg) |
TW (1) | TW347397B (bg) |
UA (1) | UA40615C2 (bg) |
WO (1) | WO1994028032A1 (bg) |
ZA (1) | ZA943399B (bg) |
Families Citing this family (695)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6538080B1 (en) * | 1990-07-03 | 2003-03-25 | Bp Chemicals Limited | Gas phase polymerization of olefins |
GB9500226D0 (en) * | 1995-01-06 | 1995-03-01 | Bp Chem Int Ltd | Nozzle |
IT1275573B (it) * | 1995-07-20 | 1997-08-07 | Spherilene Spa | Processo ed apparecchiatura per la pomimerizzazione in fase gas delle alfa-olefine |
ES2178712T3 (es) | 1995-08-10 | 2003-01-01 | Exxonmobil Chem Patents Inc | Alumoxano estabilizado por metalocenos. |
GB9524038D0 (en) * | 1995-11-23 | 1996-01-24 | Bp Chem Int Ltd | Nozzle |
FR2741549B1 (fr) | 1995-11-29 | 1998-01-02 | Bp Chemicals Snc | Procede d'introduction d'un catalyseur dans un reacteur de polymerisation d'olefine en phase gazeuse |
CZ290641B6 (cs) | 1995-12-18 | 2002-09-11 | Univation Technologies Llc | Způsob kontinuální výroby polymeru v plynné fázi reaktoru s fluidním ložem |
EP0814100A1 (en) * | 1996-06-21 | 1997-12-29 | Bp Chemicals S.N.C. | Polymerisation process |
ATE190324T1 (de) * | 1996-01-05 | 2000-03-15 | Bp Chem Int Ltd | Polymerisationsverfahren |
US6015779A (en) | 1996-03-19 | 2000-01-18 | Energy & Environmental International, L.C. | Methods for forming amorphous ultra-high molecular weight polyalphaolefin drag reducing agents |
EP0803519A1 (en) | 1996-04-26 | 1997-10-29 | Bp Chemicals S.N.C. | Polymerisation process |
JPH10152509A (ja) * | 1996-05-14 | 1998-06-09 | Mitsui Chem Inc | 気相重合方法及びそのための気相重合装置ならびにブロワー |
US6759499B1 (en) | 1996-07-16 | 2004-07-06 | Exxonmobil Chemical Patents Inc. | Olefin polymerization process with alkyl-substituted metallocenes |
EP0824116A1 (en) * | 1996-08-13 | 1998-02-18 | Bp Chemicals S.N.C. | Polymerisation process |
EP0824115A1 (en) * | 1996-08-13 | 1998-02-18 | Bp Chemicals S.N.C. | Polymerisation process |
EP0824114A1 (en) * | 1996-08-13 | 1998-02-18 | Bp Chemicals S.N.C. | Polymerisation process |
EP0825204B1 (en) * | 1996-08-13 | 2002-06-05 | BP Chemicals Limited | Polymerisation process |
EP0824118B1 (en) * | 1996-08-13 | 2003-01-08 | BP Chemicals Limited | Polymerisation process |
US6069212A (en) * | 1996-08-20 | 2000-05-30 | Bp Amoco Corporation | Transfer of polymer particles between vapor phase polymerization reactors containing quench-cooled subfluidized particulate beds of polymerized monomer |
US6111036A (en) * | 1996-10-17 | 2000-08-29 | Eastman Chemical Company | Method for improving cooling of fluid bed polymer reactor |
GB9622715D0 (en) * | 1996-10-31 | 1997-01-08 | Bp Chem Int Ltd | Nozzle |
DE19645939A1 (de) * | 1996-11-07 | 1998-05-14 | Buna Sow Leuna Olefinverb Gmbh | Verfahren zur Herstellung von ultrahochmolekularem Polyethylen und Methode zur Aktivierung des Katalysatorträgers |
EP0853091A1 (en) * | 1997-01-13 | 1998-07-15 | Bp Chemicals S.N.C. | Polymerisation process |
FR2758823B1 (fr) * | 1997-01-24 | 1999-06-04 | Bp Chemicals Snc | Procede de polymerisation en phase gazeuse |
US6075101A (en) * | 1997-02-19 | 2000-06-13 | Union Carbide Chemicals & Plastics Technology Corporation | Control of solution catalyst droplet size with a perpendicular spray nozzle |
US5962606A (en) * | 1997-02-19 | 1999-10-05 | Union Carbide Chemicals & Plastics Technology Corporation | Control of solution catalyst droplet size with an effervescent spray nozzle |
US6451938B1 (en) | 1997-02-25 | 2002-09-17 | Exxon Mobil Chemical Patents Inc. | Polymerization catalyst system comprising heterocyclic fused cyclopentadienide ligands |
CN1255928A (zh) | 1997-04-04 | 2000-06-07 | 陶氏化学公司 | 高收率合成聚烯烃的催化剂体系 |
US5990250A (en) * | 1997-05-30 | 1999-11-23 | Union Carbide Chemicals & Plastics Technology Corporation | Method of fluidized bed temperature control |
FI111846B (fi) | 1997-06-24 | 2003-09-30 | Borealis Tech Oy | Menetelmä ja laitteisto polypropeeniseosten valmistamiseksi |
ID23510A (id) | 1997-06-27 | 2000-04-27 | Bp Chem Int Ltd | Proses polimerisasi |
US6063877A (en) * | 1997-07-31 | 2000-05-16 | Union Carbide Chemicals & Plastics Technology Corporation | Control of gas phase polymerization reactions |
US6150297A (en) | 1997-09-15 | 2000-11-21 | The Dow Chemical Company | Cyclopentaphenanthrenyl metal complexes and polymerization process |
US6630545B2 (en) | 1997-09-15 | 2003-10-07 | The Dow Chemical Company | Polymerization process |
US6076810A (en) | 1997-10-21 | 2000-06-20 | Exxon Research And Engineering Co. | Throat and cone gas injector and gas distribution grid for slurry reactor |
US6677265B1 (en) | 1997-12-08 | 2004-01-13 | Albemarle Corporation | Process of producing self-supported catalysts |
DE19801859A1 (de) | 1998-01-20 | 1999-07-22 | Bayer Ag | Verfahren zur Vermeidung von Instabilitäten bei der Gasphasenpolymerisation von Kautschuk |
JPH11209414A (ja) * | 1998-01-29 | 1999-08-03 | Idemitsu Petrochem Co Ltd | オレフィンの重合方法 |
US6191239B1 (en) | 1998-02-18 | 2001-02-20 | Eastman Chemical Company | Process for producing polyethylene |
US6271321B1 (en) | 1998-02-18 | 2001-08-07 | Eastman Chemical Company | Process for producing polyethylene |
US6534613B2 (en) | 1998-02-18 | 2003-03-18 | Eastman Chemical Company | Process for producing polyethylene |
US6228957B1 (en) | 1998-02-18 | 2001-05-08 | Eastman Chemical Company | Process for producing polyethlene |
US6716786B1 (en) | 1998-02-20 | 2004-04-06 | The Dow Chemical Company | Supported catalyst comprising expanded anions |
EP1418186B1 (en) | 1998-03-23 | 2011-05-18 | Basell Poliolefine Italia S.r.l. | Prepolymerized catalyst components for the polymerization of olefins |
GB9809207D0 (en) | 1998-04-29 | 1998-07-01 | Bp Chem Int Ltd | Novel catalysts for olefin polymerisation |
US6245868B1 (en) | 1998-05-29 | 2001-06-12 | Univation Technologies | Catalyst delivery method, a catalyst feeder and their use in a polymerization process |
DE69935815T2 (de) | 1998-07-01 | 2007-12-27 | Exxonmobil Chemical Patents Inc., Baytown | Elastische Mischung mit Kristallpolymeren und kristallisierbaren Polymeren des Propens |
IT1301990B1 (it) | 1998-08-03 | 2000-07-20 | Licio Zambon | Catalizzatori per la polimerizzazione delle olefine. |
ATE528327T1 (de) | 1998-10-27 | 2011-10-15 | Westlake Longview Corp | Verfahren zur polymerisierung von olefine. |
US6291613B1 (en) | 1998-10-27 | 2001-09-18 | Eastman Chemical Company | Process for the polymerization of olefins |
CN1134467C (zh) | 1998-11-02 | 2004-01-14 | 杜邦唐弹性体公司 | 剪切稀化的乙烯/α-烯烃共聚体及它们的制备 |
US6189236B1 (en) * | 1998-11-05 | 2001-02-20 | Union Carbide Chemicals & Plastics Technology Corporation | Process for drying a reactor system employing a fixed bed adsorbent |
WO2000032651A1 (en) * | 1998-11-30 | 2000-06-08 | Bp Chemicals Limited | Polymerisation control process |
US6143843A (en) * | 1999-01-22 | 2000-11-07 | Union Carbide Chemicals & Plastics Technology Corporation | Simulated condensing mode |
US6218484B1 (en) * | 1999-01-29 | 2001-04-17 | Union Carbide Chemicals & Plastics Technology Corporation | Fluidized bed reactor and polymerization process |
EP1165634B1 (en) | 1999-03-30 | 2004-08-11 | Eastman Chemical Company | Process for producing polyolefins |
US6313236B1 (en) | 1999-03-30 | 2001-11-06 | Eastman Chemical Company | Process for producing polyolefins |
US6288181B1 (en) | 1999-03-30 | 2001-09-11 | Eastman Chemical Company | Process for producing polyolefins |
US6300432B1 (en) | 1999-03-30 | 2001-10-09 | Eastman Chemical Company | Process for producing polyolefins |
US6306981B1 (en) * | 1999-04-02 | 2001-10-23 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization process |
FR2792852B1 (fr) | 1999-04-30 | 2002-03-29 | Bp Chemicals Snc | Buse a ressort avec orifices |
FR2792853B1 (fr) | 1999-04-30 | 2001-07-06 | Bp Chemicals Snc | Buse a ressort avec fente de 360 degres, pour l'injection de liquide dans un reacteur a lit fluidise |
NL1012082C2 (nl) * | 1999-05-18 | 2000-11-21 | Dsm Nv | Wervelbedreactor. |
NL1015200C2 (nl) * | 2000-05-15 | 2001-11-19 | Dsm Nv | Werkwijze voor het in de gasfase polymeriseren van olefine monomeren. |
US6150478A (en) | 1999-06-04 | 2000-11-21 | Union Carbide Chemicals & Plastics Technology Corporation | Ultrasonic catalyst feed for fluid bed olefin polymerization |
US6417298B1 (en) | 1999-06-07 | 2002-07-09 | Eastman Chemical Company | Process for producing ethylene/olefin interpolymers |
US6417299B1 (en) | 1999-06-07 | 2002-07-09 | Eastman Chemical Company | Process for producing ethylene/olefin interpolymers |
DE69919412T2 (de) | 1999-08-31 | 2005-01-13 | Eastman Chemical Co., Kingsport | Verfahren zur herstellung von polyolefine |
US6191238B1 (en) | 1999-08-31 | 2001-02-20 | Eastman Chemical Company | Process for producing polyolefins |
US6187879B1 (en) | 1999-08-31 | 2001-02-13 | Eastman Chemical Company | Process for producing polyolefins |
US6391985B1 (en) | 1999-10-21 | 2002-05-21 | Union Carbide Chemicals & Plastics Technology Corporation | High condensing mode polyolefin production under turbulent conditions in a fluidized bed |
DE19960415C1 (de) * | 1999-12-15 | 2001-08-16 | Anton More | Verfahren und Vorrichtung zur Herstellung von Silanen |
US6281306B1 (en) | 1999-12-16 | 2001-08-28 | Univation Technologies, Llc | Method of polymerization |
US6465383B2 (en) | 2000-01-12 | 2002-10-15 | Eastman Chemical Company | Procatalysts, catalyst systems, and use in olefin polymerization |
CN1196719C (zh) | 2000-01-12 | 2005-04-13 | 伊斯曼化学公司 | 包括二齿配体的前催化剂、催化剂体系及其在烯烃聚合中的用途 |
US6696380B2 (en) | 2000-01-12 | 2004-02-24 | Darryl Stephen Williams | Procatalysts, catalyst systems, and use in olefin polymerization |
FI108001B (fi) * | 2000-01-28 | 2001-11-15 | Borealis Polymers Oy | Nesteen syöttö |
US6455644B1 (en) | 2000-02-28 | 2002-09-24 | Union Carbide Chemicals & Plastics Technology Corporation | Polyolefin production using condensing mode in fluidized beds, with liquid phase enrichment and bed injection |
US6815512B2 (en) * | 2000-02-28 | 2004-11-09 | Union Carbide Chemicals & Plastics Technology Corporation | Polyolefin production using condensing mode in fluidized beds, with liquid phase enrichment and bed injection |
FR2806327B1 (fr) | 2000-03-17 | 2002-06-14 | Bp Chemicals Snc | Buse a niveau de liquide variable |
DE10016625A1 (de) | 2000-04-04 | 2001-10-11 | Basell Polyolefine Gmbh | Gasphasenpolymerisationsverfahren mit Direktkühlsystem |
US6359083B1 (en) * | 2000-05-02 | 2002-03-19 | Eastman Chemical Company | Olefin polymerization process |
AU782724B2 (en) | 2000-05-12 | 2005-08-25 | Basell Technology Company B.V. | Pre-polymerized catalyst components for the polymerization of olefins |
GB0014584D0 (en) * | 2000-06-14 | 2000-08-09 | Bp Chem Int Ltd | Apparatus and process |
US6660812B2 (en) * | 2000-07-13 | 2003-12-09 | Exxonmobil Chemical Patents Inc. | Production of olefin derivatives |
WO2002008303A1 (en) | 2000-07-20 | 2002-01-31 | The Dow Chemical Company | Expanded anionic compounds comprising hydroxyl or quiescent reactive functionality and catalyst activators therefrom |
US6548610B2 (en) * | 2000-10-06 | 2003-04-15 | Univation Technologies, Llc | Method and apparatus for reducing static charges during polymerization of olefin polymers |
US6905654B2 (en) | 2000-10-06 | 2005-06-14 | Univation Technologies, Llc | Method and apparatus for reducing static charges during polymerization of olefin polymers |
US6815011B2 (en) | 2000-11-27 | 2004-11-09 | Energy & Environmental International, L.C. | Alpha olefin monomer partitioning agents for drag reducing agents and methods of forming drag reducing agents using alpha olefin monomer partitioning agents |
US6489408B2 (en) * | 2000-11-30 | 2002-12-03 | Univation Technologies, Llc | Polymerization process |
ATE458758T1 (de) | 2001-01-16 | 2010-03-15 | Beta Technologie Ag | Verfahren zur herstellung von amorphen polyolefinen mit ultrahohem molekulargewicht zur strömungbeschleunigung |
JP5156167B2 (ja) | 2001-04-12 | 2013-03-06 | エクソンモービル・ケミカル・パテンツ・インク | プロピレン−エチレンポリマー及び製造法 |
US7012046B2 (en) * | 2001-06-08 | 2006-03-14 | Eaton Gerald B | Drag reducing agent slurries having alfol alcohols and processes for forming drag reducing agent slurries having alfol alcohols |
EP1927617A1 (en) | 2001-07-19 | 2008-06-04 | Univation Technologies, LLC | Polyethylene films with improved physical properties. |
US6635726B2 (en) | 2001-07-24 | 2003-10-21 | Eastman Chemical Company | Process for the polymerization of ethylene and interpolymers thereof |
US6660817B2 (en) | 2001-07-24 | 2003-12-09 | Eastman Chemical Company | Process for the polymerization of ethylene and interpolymers thereof |
US6759492B2 (en) | 2001-07-24 | 2004-07-06 | Eastman Chemical Company | Process for the polymerization of ethylene and interpolymers thereof |
US6646073B2 (en) | 2001-07-24 | 2003-11-11 | Eastman Chemical Company | Process for the polymerization of ethylene and interpolymers thereof |
GB0118609D0 (en) * | 2001-07-31 | 2001-09-19 | Bp Chem Int Ltd | Degassing process |
DE10139477A1 (de) * | 2001-08-10 | 2003-02-20 | Basell Polyolefine Gmbh | Optimierung der Wärmeabfuhr im Gasphasenwirbelschichtverfahren |
CN1266170C (zh) | 2001-10-17 | 2006-07-26 | 英国石油化学品有限公司 | 烯烃(共)聚合的控制方法 |
WO2003037937A1 (en) | 2001-10-18 | 2003-05-08 | The Dow Chemical Company | Diene functionalized catalyst supports and supported catalyst compositions |
US6927256B2 (en) | 2001-11-06 | 2005-08-09 | Dow Global Technologies Inc. | Crystallization of polypropylene using a semi-crystalline, branched or coupled nucleating agent |
SG147306A1 (en) | 2001-11-06 | 2008-11-28 | Dow Global Technologies Inc | Isotactic propylene copolymers, their preparation and use |
US6703338B2 (en) | 2002-06-28 | 2004-03-09 | Univation Technologies, Llc | Polymerization catalyst activators, method of preparing, and their use in polymerization processes |
US20050232995A1 (en) | 2002-07-29 | 2005-10-20 | Yam Nyomi V | Methods and dosage forms for controlled delivery of paliperidone and risperidone |
US20050208132A1 (en) * | 2002-07-29 | 2005-09-22 | Gayatri Sathyan | Methods and dosage forms for reducing side effects of benzisozazole derivatives |
US7179426B2 (en) * | 2002-09-12 | 2007-02-20 | Chevron Phillips Chemical Company, Lp | Large catalyst activator |
AU2003271645A1 (en) * | 2002-09-25 | 2004-04-19 | Shell Internationale Research Maatschappij B.V. | Process for making a linear alpha-olefin oligomer using a heat exchanger |
WO2004029011A1 (en) * | 2002-09-25 | 2004-04-08 | Shell Internationale Research Maatschappij B.V. | Process for making a linear alpha-olefin oligomer using a heat exchanger |
US7943700B2 (en) * | 2002-10-01 | 2011-05-17 | Exxonmobil Chemical Patents Inc. | Enhanced ESCR of HDPE resins |
US7414098B2 (en) | 2002-10-09 | 2008-08-19 | Basell Polioefine Italia S.P.A. | Gas-phase catalytic polymerization of olefins |
US7223822B2 (en) | 2002-10-15 | 2007-05-29 | Exxonmobil Chemical Patents Inc. | Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom |
EP2261292B1 (en) | 2002-10-15 | 2014-07-23 | ExxonMobil Chemical Patents Inc. | Polyolefin adhesive compositions |
US6958376B2 (en) * | 2002-10-24 | 2005-10-25 | Exxonmobil Chemical Patents Inc. | Inlet distribution device for upflow polymerization reactors |
US6630548B1 (en) | 2002-11-01 | 2003-10-07 | Equistar Chemicals, Lp | Static reduction |
US7459500B2 (en) * | 2002-11-05 | 2008-12-02 | Dow Global Technologies Inc. | Thermoplastic elastomer compositions |
US7579407B2 (en) * | 2002-11-05 | 2009-08-25 | Dow Global Technologies Inc. | Thermoplastic elastomer compositions |
US20100291334A1 (en) * | 2002-12-27 | 2010-11-18 | Univation Technologies, Llc | Broad Molecular Weight Polyethylene Having Improved Properties |
US6989344B2 (en) * | 2002-12-27 | 2006-01-24 | Univation Technologies, Llc | Supported chromium oxide catalyst for the production of broad molecular weight polyethylene |
US6841498B2 (en) * | 2003-02-12 | 2005-01-11 | Formosa Plastic Corporation, U.S.A. | Catalyst system for ethylene (co)polymerization |
WO2004094487A1 (en) | 2003-03-21 | 2004-11-04 | Dow Global Technologies, Inc. | Morphology controlled olefin polymerization process |
KR101060984B1 (ko) | 2003-04-17 | 2011-08-31 | 바셀 폴리올레핀 이탈리아 에스.알.엘 | 기상 올레핀 중합 공정 |
US6759489B1 (en) | 2003-05-20 | 2004-07-06 | Eastern Petrochemical Co. | Fluidized bed methods for making polymers |
US7625987B2 (en) * | 2003-05-30 | 2009-12-01 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization and method of controlling same |
CN1878799B (zh) | 2003-11-14 | 2011-02-09 | 埃克森美孚化学专利公司 | 透明及半透明的交联的基于丙烯的弹性体及它们的制备和用途 |
US6870010B1 (en) | 2003-12-01 | 2005-03-22 | Univation Technologies, Llc | Low haze high strength polyethylene compositions |
US7410926B2 (en) * | 2003-12-30 | 2008-08-12 | Univation Technologies, Llc | Polymerization process using a supported, treated catalyst system |
US20050182210A1 (en) | 2004-02-17 | 2005-08-18 | Natarajan Muruganandam | De-foaming spray dried catalyst slurries |
BRPI0507523A (pt) * | 2004-03-16 | 2007-07-03 | Union Carbide Chem Plastic | composição de catalisador e processo para a preparação de derivados oligoméricos de monÈmeros olefìnicos e processos para a oligomerização catalìtica de etileno e para preparar copolìmeros e etileno e uma ou mais a-olefinas c4-8 |
RU2359979C2 (ru) | 2004-03-17 | 2009-06-27 | Дау Глобал Текнолоджиз Инк. | Композиция катализатора, содержащая агент челночного переноса цепи для образования сополимера этилена |
RU2375381C2 (ru) | 2004-03-17 | 2009-12-10 | Дау Глобал Текнолоджиз Инк. | Состав катализатора, содержащий челночный агент, для формирования мульти-блок-сополимера высшего олефина |
NZ549262A (en) | 2004-03-17 | 2010-08-27 | Dow Global Technologies Inc | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
US7531606B2 (en) | 2004-05-26 | 2009-05-12 | Chevron Phillips Chemical Company Lp | Method for operating a gas phase polymerization reactor |
GB0411742D0 (en) | 2004-05-26 | 2004-06-30 | Exxonmobil Chem Patents Inc | Transition metal compounds for olefin polymerization and oligomerization |
CN101001885B (zh) * | 2004-08-09 | 2011-05-25 | 陶氏环球技术公司 | 用于制备聚合物的负载型双(羟基芳基芳氧基)催化剂 |
US7193017B2 (en) * | 2004-08-13 | 2007-03-20 | Univation Technologies, Llc | High strength biomodal polyethylene compositions |
JP2008516068A (ja) * | 2004-10-13 | 2008-05-15 | エクソンモービル・ケミカル・パテンツ・インク | エラストマー性反応ブレンド組成物 |
US7253239B2 (en) * | 2004-10-29 | 2007-08-07 | Westlake Longview Corporation | Method for preventing or inhibiting fouling in a gas-phase polyolefin polymerization process |
EP1805226A1 (en) | 2004-10-29 | 2007-07-11 | Exxonmobil Chemical Patents Inc. | Catalyst compound containing divalent tridentate ligand |
US7829623B2 (en) | 2004-11-05 | 2010-11-09 | Exxonmobil Chemical Patents Inc. | Thermoplastic vulcanizates having improved fabricability |
US7745526B2 (en) | 2004-11-05 | 2010-06-29 | Exxonmobil Chemical Patents Inc. | Transparent polyolefin compositions |
US7598327B2 (en) * | 2004-11-10 | 2009-10-06 | Chevron Phillips Chemical Company Lp | Method for polymerizing olefins in a gas phase reactor using a seedbed during start-up |
US7473750B2 (en) | 2004-12-07 | 2009-01-06 | Fina Technology, Inc. | Random copolymers and formulations useful for thermoforming and blow molding applications |
CN101107310A (zh) | 2004-12-16 | 2008-01-16 | 埃克森美孚化学专利公司 | 聚合物组合物、包括其用途和制备方法 |
US7803876B2 (en) | 2005-01-31 | 2010-09-28 | Exxonmobil Chemical Patent Inc. | Processes for producing polymer blends and polymer blend pellets |
US7312279B2 (en) | 2005-02-07 | 2007-12-25 | Univation Technologies, Llc | Polyethylene blend compositions |
AU2006227977A1 (en) | 2005-03-17 | 2006-09-28 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
US9410009B2 (en) | 2005-03-17 | 2016-08-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
JP5623699B2 (ja) | 2005-03-17 | 2014-11-12 | ダウ グローバル テクノロジーズ エルエルシー | レジオイレギュラーなマルチブロックコポリマーを形成するための可逆的移動剤を含む触媒組成物 |
US7081285B1 (en) | 2005-04-29 | 2006-07-25 | Fina Technology, Inc. | Polyethylene useful for blown films and blow molding |
US20060247394A1 (en) * | 2005-04-29 | 2006-11-02 | Fina Technology, Inc. | Process for increasing ethylene incorporation into random copolymers |
US7220806B2 (en) | 2005-04-29 | 2007-05-22 | Fina Technology, Inc. | Process for increasing ethylene incorporation into random copolymers |
US7645834B2 (en) * | 2005-04-29 | 2010-01-12 | Fina Technologies, Inc. | Catalyst system for production of polyolefins |
US6995235B1 (en) | 2005-05-02 | 2006-02-07 | Univation Technologies, Llc | Methods of producing polyolefins and films therefrom |
WO2006120418A1 (en) * | 2005-05-10 | 2006-11-16 | Ineos Europe Limited | Novel copolymers |
EP1731536A1 (en) | 2005-06-09 | 2006-12-13 | Innovene Manufacturing France SAS | Supported polymerisation catalysts |
US20070004875A1 (en) * | 2005-06-22 | 2007-01-04 | Fina Technology, Inc. | Cocatalysts useful for improving polyethylene film properties |
US20070004876A1 (en) * | 2005-06-22 | 2007-01-04 | Fina Technology, Inc. | Cocatalysts for olefin polymerizations |
US20070003720A1 (en) * | 2005-06-22 | 2007-01-04 | Fina Technology, Inc. | Cocatalysts useful for preparing polyethylene pipe |
US7282546B2 (en) | 2005-06-22 | 2007-10-16 | Fina Technology, Inc. | Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations |
US7634937B2 (en) | 2005-07-01 | 2009-12-22 | Symyx Solutions, Inc. | Systems and methods for monitoring solids using mechanical resonator |
CN1923861B (zh) | 2005-09-02 | 2012-01-18 | 北方技术股份有限公司 | 在烯烃聚合催化剂存在下的烯烃聚合方法 |
WO2007035492A1 (en) * | 2005-09-15 | 2007-03-29 | Dow Global Technologies Inc. | Catalytic olefin block copolymers via polymerizable shuttling agent |
TWI417304B (zh) * | 2005-09-15 | 2013-12-01 | Dow Global Technologies Llc | 藉由多中心穿梭劑來控制聚合物之架構及分子量分佈 |
US7737206B2 (en) | 2005-11-18 | 2010-06-15 | Exxonmobil Chemical Patents Inc. | Polyolefin composition with high filler loading capacity |
EP1963347B1 (en) | 2005-12-14 | 2011-10-19 | ExxonMobil Chemical Patents Inc. | Halogen substituted metallocene compounds for olefin polymerization |
DE102006004429A1 (de) * | 2006-01-31 | 2007-08-02 | Advanced Micro Devices, Inc., Sunnyvale | Halbleiterbauelement mit einem Metallisierungsschichtstapel mit einem porösen Material mit kleinem ε mit einer erhöhten Integrität |
WO2007092136A2 (en) * | 2006-02-03 | 2007-08-16 | Exxonmobil Chemical Patents, Inc. | Process for generating alpha olefin comonomers |
US7982085B2 (en) * | 2006-02-03 | 2011-07-19 | Exxonmobil Chemical Patents Inc. | In-line process for generating comonomer |
US7858833B2 (en) * | 2006-02-03 | 2010-12-28 | Exxonmobil Chemical Patents Inc. | Process for generating linear alpha olefin comonomers |
US8003839B2 (en) * | 2006-02-03 | 2011-08-23 | Exxonmobil Chemical Patents Inc. | Process for generating linear apha olefin comonomers |
US7687672B2 (en) * | 2006-02-03 | 2010-03-30 | Exxonmobil Chemical Patents Inc. | In-line process for generating comonomer |
US7714083B2 (en) * | 2006-03-08 | 2010-05-11 | Exxonmobil Chemical Patents Inc. | Recycle of hydrocarbon gases from the product tanks to a reactor through the use of ejectors |
US7683002B2 (en) | 2006-04-04 | 2010-03-23 | Fina Technology, Inc. | Transition metal catalyst and formation thereof |
US20070299222A1 (en) | 2006-04-04 | 2007-12-27 | Fina Technology, Inc. | Transition metal catalysts and formation thereof |
US20070235896A1 (en) * | 2006-04-06 | 2007-10-11 | Fina Technology, Inc. | High shrink high modulus biaxially oriented films |
US20070249793A1 (en) * | 2006-04-19 | 2007-10-25 | Vanderbilt Jeffrey J | Simplified process to prepare polyolefins from saturated hydrocarbons |
US7696289B2 (en) * | 2006-05-12 | 2010-04-13 | Exxonmobil Chemical Patents Inc. | Low molecular weight induced condensing agents |
EP2024399B1 (en) | 2006-05-17 | 2014-04-09 | Dow Global Technologies LLC | Ethylene/ alpha-olefin/ diene solution polymerization process |
GB0610667D0 (en) | 2006-05-30 | 2006-07-05 | Nova Chem Int Sa | Supported polymerization catalysts |
US20080051538A1 (en) * | 2006-07-11 | 2008-02-28 | Fina Technology, Inc. | Bimodal pipe resin and products made therefrom |
US7893181B2 (en) * | 2006-07-11 | 2011-02-22 | Fina Technology, Inc. | Bimodal film resin and products made therefrom |
US7449529B2 (en) * | 2006-07-11 | 2008-11-11 | Fina Technology, Inc. | Bimodal blow molding resin and products made therefrom |
US7514510B2 (en) | 2006-07-25 | 2009-04-07 | Fina Technology, Inc. | Fluorenyl catalyst compositions and olefin polymerization process |
US7470759B2 (en) * | 2006-07-31 | 2008-12-30 | Fina Technology, Inc. | Isotactic-atactic polypropylene and methods of making same |
US8198373B2 (en) * | 2006-10-02 | 2012-06-12 | Exxonmobil Chemical Patents Inc. | Plastic toughened plastics |
WO2008042182A1 (en) * | 2006-10-03 | 2008-04-10 | Univation Technologies, Llc | Method for preventing catalyst agglomeration based on production rate changes |
US7538167B2 (en) * | 2006-10-23 | 2009-05-26 | Fina Technology, Inc. | Syndiotactic polypropylene and methods of preparing same |
US20080114130A1 (en) * | 2006-11-10 | 2008-05-15 | John Ashbaugh | Resin composition for production of high tenacity slit film, monofilaments and fibers |
MX2009003414A (es) | 2006-12-15 | 2009-04-09 | Fina Technology | Pelicula soplada de polipropileno. |
CA2665244A1 (en) * | 2006-12-29 | 2008-07-10 | Fina Technology, Inc. | Succinate-containing polymerization catalyst system using n-butylmethyldimethoxysilane for preparation of polypropylene film grade resins |
KR101057854B1 (ko) * | 2007-01-22 | 2011-08-19 | 주식회사 엘지화학 | 폴리올레핀의 입도 조절 방법 |
CN103159872B (zh) | 2007-03-06 | 2015-08-19 | 尤尼威蒂恩技术有限责任公司 | 溶液催化剂涂布反应器表面的方法 |
CN101646694B (zh) * | 2007-03-30 | 2012-06-20 | 尤尼威蒂恩技术有限公司 | 用于制造聚烯烃的系统和方法 |
US7754834B2 (en) * | 2007-04-12 | 2010-07-13 | Univation Technologies, Llc | Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density |
CN101821296B (zh) | 2007-10-11 | 2015-12-02 | 尤尼威蒂恩技术有限公司 | 连续性添加剂及其在聚合工艺中的应用 |
TW200932762A (en) | 2007-10-22 | 2009-08-01 | Univation Tech Llc | Polyethylene compositions having improved properties |
EP2112175A1 (en) | 2008-04-16 | 2009-10-28 | ExxonMobil Chemical Patents Inc. | Activator for metallocenes comprising one or more halogen substituted heterocyclic heteroatom containing ligand coordinated to an alumoxane |
EP2219756B1 (en) | 2007-11-27 | 2017-03-15 | Univation Technologies, LLC | Method of using an integrated hydrocarbons feed stripper |
CN101903420B (zh) | 2007-12-18 | 2012-09-19 | 巴塞尔聚烯烃股份有限公司 | α-烯烃聚合的气相方法 |
PL2072587T3 (pl) | 2007-12-20 | 2020-11-02 | Borealis Technology Oy | Powlekane rury o ulepszonych właściwościach mechanicznych w wysokich temperaturach i sposób ich wytwarzania |
PL2072586T3 (pl) | 2007-12-20 | 2021-05-31 | Borealis Technology Oy | Powlekane rury o ulepszonych właściwościach mechanicznych i sposób ich wytwarzania |
EP2072589A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof |
EP2072588B1 (en) | 2007-12-20 | 2012-10-10 | Borealis Technology Oy | Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof |
EP2112173A1 (en) | 2008-04-16 | 2009-10-28 | ExxonMobil Chemical Patents Inc. | Catalyst compounds and use thereof |
EP2090356A1 (en) | 2007-12-24 | 2009-08-19 | Borealis Technology OY | Reactor systems and process for the catalytic polymerization of olefins, and the use of such reactor system in catalytic polymeration of olefins |
ES2666896T3 (es) | 2007-12-24 | 2018-05-08 | Borealis Technology Oy | Sistema reactor y proceso para la polimerización catalítica de olefinas y el uso de tal sistema reactor en la polimerización catalítica de olefinas |
EP2082797A1 (en) | 2007-12-24 | 2009-07-29 | Borealis Technology OY | Reactor system for the catalytic polymerization of olefins comprising shielding means and a process and use thereof |
EP2222725B1 (en) * | 2007-12-27 | 2019-06-19 | Univation Technologies, LLC | Systems and methods for removing entrained particulates from gas streams |
CN101977676B (zh) * | 2008-01-24 | 2014-10-15 | 陶氏环球技术有限责任公司 | 气相聚合的方法 |
US8859084B2 (en) * | 2008-01-29 | 2014-10-14 | Fina Technology, Inc. | Modifiers for oriented polypropylene |
US8003741B2 (en) | 2008-02-07 | 2011-08-23 | Fina Technology, Inc. | Ziegler-Natta catalyst |
US20090202770A1 (en) * | 2008-02-08 | 2009-08-13 | Fengkui Li | Polypropylene/polyisobutylene blends and films prepared from same |
WO2009108685A1 (en) * | 2008-02-26 | 2009-09-03 | Liquamelt Corp. | Energy-activated room temperature-pumpable polymer compositions and devices for activating and dispensing the same |
EP2103632A1 (en) | 2008-03-20 | 2009-09-23 | Ineos Europe Limited | Polymerisation process |
RU2486953C2 (ru) * | 2008-04-22 | 2013-07-10 | Юнивейшн Текнолоджиз, Ллк | Реакторная система и способ ее использования |
KR101546735B1 (ko) | 2008-05-27 | 2015-08-24 | 바셀 폴리올레핀 이탈리아 에스.알.엘 | 올레핀의 기상 중합 방법 |
EP2130862A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | Polymer compositions and pressure-resistant pipes made thereof |
EP2130859A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | Polymer compositions having improved homogeneity and odour, a method for making them and pipes made thereof |
EP2130863A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | High density polymer compositions, a method for their preparation and pressure-resistant pipes made therefrom |
EP2133367A1 (en) | 2008-06-09 | 2009-12-16 | INEOS Manufacturing Belgium NV | Novel Copolymers |
US8268913B2 (en) * | 2008-06-30 | 2012-09-18 | Fina Technology, Inc. | Polymeric blends and methods of using same |
US8545971B2 (en) * | 2008-06-30 | 2013-10-01 | Fina Technology, Inc. | Polymeric compositions comprising polylactic acid and methods of making and using same |
US8759446B2 (en) | 2008-06-30 | 2014-06-24 | Fina Technology, Inc. | Compatibilized polypropylene and polylactic acid blends and methods of making and using same |
US8580902B2 (en) * | 2008-08-01 | 2013-11-12 | Exxonmobil Chemical Patents Inc. | Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom |
SG195587A1 (en) | 2008-08-01 | 2013-12-30 | Exxonmobil Chem Patents Inc | Catalyst system and process for olefin polymerization |
WO2010036446A1 (en) | 2008-09-24 | 2010-04-01 | Univation Technologies, Llc | Methods for cleaning the distributor plate in a fluidized bed reactor system |
US8957158B2 (en) | 2008-09-25 | 2015-02-17 | Basell Polyolefine Gmbh | Impact resistant LLDPE composition and films made thereof |
RU2509782C2 (ru) | 2008-09-25 | 2014-03-20 | Базелль Полиолефине Гмбх | Ударопрочная композиция лпэнп и полученные из нее пленки |
US9334342B2 (en) | 2008-10-01 | 2016-05-10 | Fina Technology, Inc. | Polypropylene for reduced plate out in polymer article production processes |
EP2177548A1 (en) | 2008-10-14 | 2010-04-21 | Ineos Europe Limited | Copolymers and films thereof |
EP2346598B1 (en) * | 2008-10-15 | 2020-07-29 | Univation Technologies, LLC | Circulating fluidized bed reactor |
EP2182525A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and polymer composition comprising a multimodal ethylene copolymer |
EP2182524A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and Polymer composition comprising a multimodal ethylene copolymer |
EP2182526A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and polymer composition comprising an multimodal ethylene copolymer |
US20100119855A1 (en) * | 2008-11-10 | 2010-05-13 | Trazollah Ouhadi | Thermoplastic Elastomer with Excellent Adhesion to EPDM Thermoset Rubber and Low Coefficient of Friction |
ES2381849T3 (es) | 2008-11-17 | 2012-06-01 | Borealis Ag | Procedimiento multietapa para producir polietileno con formación de gel reducida |
RU2533488C2 (ru) | 2008-12-22 | 2014-11-20 | Юнивейшн Текнолоджиз, Ллк | Системы и способы производства полимеров |
CN102264769A (zh) | 2008-12-22 | 2011-11-30 | 尤尼威蒂恩技术有限公司 | 用于制造聚合物的系统和方法 |
US20110256632A1 (en) | 2009-01-08 | 2011-10-20 | Univation Technologies, Llc | Additive for Polyolefin Polymerization Processes |
WO2010080871A1 (en) | 2009-01-08 | 2010-07-15 | Univation Technologies, Llc | Additive for gas phase polymerization processes |
ATE529450T1 (de) | 2009-02-25 | 2011-11-15 | Borealis Ag | Multimodales polymer aus propylen, zusammensetzung damit und verfahren zur herstellung davon |
EP2223944A1 (en) | 2009-02-26 | 2010-09-01 | Borealis AG | Process for producing semicrystalline propylene polymers |
US20100247887A1 (en) | 2009-03-26 | 2010-09-30 | Fina Technology, Inc. | Polyolefin films for in-mold labels |
US8653198B2 (en) | 2009-03-26 | 2014-02-18 | Fina Technology, Inc. | Method for the preparation of a heterophasic copolymer and uses thereof |
US9090000B2 (en) | 2009-03-26 | 2015-07-28 | Fina Technology, Inc. | Injection stretch blow molded articles and random copolymers for use therein |
CN101927141B (zh) * | 2009-06-19 | 2012-07-04 | 中国石油化工股份有限公司 | 聚合物颗粒在气相聚合反应器之间的转移方法 |
CN102482372B (zh) | 2009-07-23 | 2013-09-04 | 尤尼威蒂恩技术有限公司 | 聚合反应系统 |
US8957167B2 (en) | 2009-07-28 | 2015-02-17 | Univation Technologies, Llc | Polymerization process using a supported constrained geometry catalyst |
EP2459598B1 (en) | 2009-07-29 | 2017-10-18 | Dow Global Technologies LLC | Dual- or multi-headed chain shuttling agents and their use for the preparation of block copolymers |
US9174384B2 (en) | 2009-09-01 | 2015-11-03 | Fina Technology, Inc. | Multilayer polypropylene films and methods of making and using same |
EP2322568B1 (en) | 2009-11-13 | 2013-05-15 | Borealis AG | Process for producing an olefin polymerization catalyst |
US8603933B2 (en) | 2009-11-13 | 2013-12-10 | Borealis Ag | Process for recovering a transition metal compound |
EP2499168B1 (en) | 2009-11-13 | 2017-05-10 | Borealis AG | Process for recovering a transition metal compound |
WO2011058091A1 (en) | 2009-11-13 | 2011-05-19 | Borealis Ag | Process for olefin polymerization |
US8425924B2 (en) | 2009-11-24 | 2013-04-23 | Exxonmobil Chemical Patents Inc. | Propylene compositions containing a pyrethroid and products made therefrom |
CN102712701A (zh) | 2009-12-07 | 2012-10-03 | 尤尼威蒂恩技术有限责任公司 | 减少催化剂的静电荷的方法和使用该催化剂生产聚烯烃的方法 |
US8637615B2 (en) | 2009-12-18 | 2014-01-28 | Univation Technologies, Llc | Methods for making polyolefin products having different shear thinning properties and haze |
WO2011078923A1 (en) | 2009-12-23 | 2011-06-30 | Univation Technologies, Llc | Methods for producing catalyst systems |
US8592535B2 (en) | 2010-01-11 | 2013-11-26 | Fina Technology, Inc. | Ziegler-natta catalyst systems and polymers formed therefrom |
EP2348056A1 (en) | 2010-01-26 | 2011-07-27 | Ineos Europe Limited | Process for the gas phase polymerisation of olefins |
CN102803308B (zh) | 2010-02-18 | 2015-04-01 | 尤尼威蒂恩技术有限公司 | 用于操作聚合反应器的方法 |
EP2539123A1 (en) | 2010-02-22 | 2013-01-02 | Ineos Commercial Services UK Limited | Improved polyolefin manufacturing process |
KR102009103B1 (ko) | 2010-02-22 | 2019-08-08 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리올레핀 생산물을 생산하기 위한 촉매 시스템 및 이의 사용 방법 |
US8058461B2 (en) | 2010-03-01 | 2011-11-15 | Exxonmobil Chemical Patents Inc. | Mono-indenyl transition metal compounds and polymerization therewith |
WO2011129956A1 (en) | 2010-04-13 | 2011-10-20 | Univation Technologies, Llc | Polymer blends and films made therefrom |
US10351640B2 (en) | 2010-04-22 | 2019-07-16 | Fina Technology, Inc. | Formation of Ziegler-Natta catalyst using non-blended components |
EP2428524A4 (en) | 2010-04-30 | 2018-01-03 | Daelim Industrial Co., Ltd. | Gas-phase polymerization of alpha-olefins |
ES2624858T3 (es) | 2010-06-17 | 2017-07-17 | Borealis Ag | Sistema de control para un reactor en fase gaseosa, un reactor en fase gaseosa para la producción catalítica de poliolefinas, un método para producciones catalíticas de poliolefinas y un uso del sistema de control |
US8278403B2 (en) | 2010-07-08 | 2012-10-02 | Fina Technology, Inc. | Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers |
WO2012009215A1 (en) | 2010-07-16 | 2012-01-19 | Univation Technologies, Llc | Systems and methods for measuring static charge on particulates |
CN103097015B (zh) | 2010-07-16 | 2015-11-25 | 尤尼威蒂恩技术有限责任公司 | 测量反应器表面上颗粒积聚的系统与方法 |
GB201012273D0 (en) | 2010-07-22 | 2010-09-08 | Ineos Mfg Belguim Nv | Polymer compositon |
WO2012015898A1 (en) | 2010-07-28 | 2012-02-02 | Univation Technologies, Llc | Systems and methods for measuring velocity of a particle/fluid mixture |
US20120046429A1 (en) | 2010-08-23 | 2012-02-23 | Fina Technology, Inc. | Sequential Formation of Ziegler-Natta Catalyst Using Non-blended Components |
US8557906B2 (en) | 2010-09-03 | 2013-10-15 | Exxonmobil Chemical Patents Inc. | Flame resistant polyolefin compositions and methods for making the same |
KR101821026B1 (ko) | 2010-10-21 | 2018-01-22 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리에틸렌 및 그의 제조 방법 |
EP2452960B1 (en) | 2010-11-12 | 2015-01-07 | Borealis AG | Process for preparing propylene polymers with an ultra high melt flow rate |
EP2452976A1 (en) | 2010-11-12 | 2012-05-16 | Borealis AG | Heterophasic propylene copolymers with improved stiffness/impact/flowability balance |
EP2452957A1 (en) | 2010-11-12 | 2012-05-16 | Borealis AG | Improved process for producing heterophasic propylene copolymers |
EP2452959B1 (en) | 2010-11-12 | 2015-01-21 | Borealis AG | Process for producing propylene random copolymers and their use |
CN103298876B (zh) | 2010-11-24 | 2016-12-07 | 埃克森美孚化学专利公司 | 高填料加载的聚合物组合物 |
US9394381B2 (en) | 2010-11-29 | 2016-07-19 | Ineos Sales (Uk) Limited | Polymerisation control process |
EP2457647A1 (en) | 2010-11-29 | 2012-05-30 | Ineos Commercial Services UK Limited | Apparatus and process |
CN103298843B (zh) | 2010-11-30 | 2015-08-19 | 尤尼威蒂恩技术有限责任公司 | 具有改进的流动特征的催化剂组合物及其制造和使用方法 |
RU2587080C2 (ru) | 2010-11-30 | 2016-06-10 | Юнивейшн Текнолоджиз, Ллк | Способы полимеризации олефинов с использованием экстрагированных карбоксилатов металлов |
EP2465876A1 (en) | 2010-12-15 | 2012-06-20 | INEOS Manufacturing Belgium NV | Activating supports |
MX337727B (es) | 2010-12-17 | 2016-03-16 | Univation Tech Llc | Sistemas y metodos para recuperar hidrocarburos a partir de un producto de gas de purga de poliolefinas. |
EP2465877A1 (en) | 2010-12-20 | 2012-06-20 | Ineos Commercial Services UK Limited | Process |
ES2640318T3 (es) | 2010-12-22 | 2017-11-02 | Univation Technologies, Llc | Aditivo para procedimientos de polimerización de olefinas |
WO2012098045A1 (en) | 2011-01-20 | 2012-07-26 | Ineos Commercial Services Uk Limited | Activating supports |
US10711077B2 (en) | 2011-02-07 | 2020-07-14 | Fina Technology, Inc. | Ziegler-natta catalyst composition with controlled morphology |
US8586192B2 (en) | 2011-02-15 | 2013-11-19 | Fina Technology, Inc. | Compatibilized polymeric compositions comprising polyolefin-polylactic acid copolymers and methods of making the same |
US9382347B2 (en) | 2011-02-16 | 2016-07-05 | Fina Technology Inc | Ziegler-Natta catalysts doped with non-group IV metal chlorides |
EP2495037B1 (en) | 2011-03-02 | 2020-08-19 | Borealis AG | High throughput reactor assembly for polymerization of olefins |
ES2817776T3 (es) | 2011-03-02 | 2021-04-08 | Borealis Ag | Un procedimiento para la producción de polímeros |
CA2734167C (en) | 2011-03-15 | 2018-03-27 | Nova Chemicals Corporation | Polyethylene film |
CA2739969C (en) | 2011-05-11 | 2018-08-21 | Nova Chemicals Corporation | Improving reactor operability in a gas phase polymerization process |
BR112013029135B1 (pt) | 2011-05-13 | 2020-12-15 | Univation Technologies, Llc | Composição e processo de polimerização |
CA2740755C (en) | 2011-05-25 | 2019-01-15 | Nova Chemicals Corporation | Chromium catalysts for olefin polymerization |
CA2742454C (en) | 2011-06-09 | 2018-06-12 | Nova Chemicals Corporation | Methods for controlling ethylene copolymer properties |
US9127094B2 (en) | 2011-06-09 | 2015-09-08 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
US9315591B2 (en) | 2011-06-09 | 2016-04-19 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
US9321859B2 (en) | 2011-06-09 | 2016-04-26 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
CA2742461C (en) | 2011-06-09 | 2018-06-12 | Nova Chemicals Corporation | Modified phosphinimine catalysts for olefin polymerization |
US9221935B2 (en) | 2011-06-09 | 2015-12-29 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
US9127106B2 (en) | 2011-06-09 | 2015-09-08 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
US9243092B2 (en) | 2011-06-09 | 2016-01-26 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
ES2605429T3 (es) | 2011-06-15 | 2017-03-14 | Borealis Ag | Mezcla del reactor in situ de un polipropileno nucleado catalizado por Ziegler-Natta y un polipropileno catalizado por metaloceno |
WO2013028283A1 (en) | 2011-08-19 | 2013-02-28 | Univation Technologies, Llc | Catalyst systems and methods for using same to produce polyolefin products |
CA2749835C (en) | 2011-08-23 | 2018-08-21 | Nova Chemicals Corporation | Feeding highly active phosphinimine catalysts to a gas phase reactor |
EP2570455A1 (en) | 2011-09-16 | 2013-03-20 | Borealis AG | Polyethylene composition with broad molecular weight distribution and improved homogeneity |
EP2750797B1 (en) | 2011-11-08 | 2020-04-01 | Univation Technologies, LLC | Methods of preparing a catalyst system |
ES2729280T3 (es) | 2011-11-08 | 2019-10-31 | Univation Tech Llc | Métodos para producir poliolefinas con sistemas catalíticos |
SG11201402166RA (en) | 2011-11-15 | 2014-06-27 | Grace W R & Co | Method for polymerizing polypropylene |
EP2594333B1 (en) | 2011-11-21 | 2014-07-30 | Borealis AG | Method for recovering polymer and apparatus therefor |
RU2612555C2 (ru) | 2011-11-30 | 2017-03-09 | Юнивейшн Текнолоджиз, Ллк | Способы и системы доставки катализатора |
EP2785786B1 (en) | 2011-12-01 | 2018-05-30 | Ineos Europe AG | Polymer blends |
EP2599828A1 (en) | 2011-12-01 | 2013-06-05 | Borealis AG | Multimodal polyethylene composition for the production of pipes with improved slow crack growth resistance |
CA2760264C (en) | 2011-12-05 | 2018-08-21 | Nova Chemicals Corporation | Passivated supports for use with olefin polymerization catalysts |
ES2682252T3 (es) | 2011-12-14 | 2018-09-19 | Ineos Europe Ag | Nuevos polímeros |
US8580893B2 (en) | 2011-12-22 | 2013-11-12 | Fina Technology, Inc. | Methods for improving multimodal polyethylene and films produced therefrom |
EP2617741B1 (en) | 2012-01-18 | 2016-01-13 | Borealis AG | Process for polymerizing olefin polymers in the presence of a catalyst system and a method of controlling the process |
EP2807655B1 (en) | 2012-01-26 | 2018-03-07 | Ineos Europe AG | Copolymers for wire and cable applications |
WO2013133956A2 (en) | 2012-03-05 | 2013-09-12 | Univation Technologies, Llc | Methods for making catalyst compositions and polymer products produced therefrom |
WO2013135564A1 (en) * | 2012-03-16 | 2013-09-19 | Ineos Europe Ag | Process |
WO2013156491A1 (en) | 2012-04-19 | 2013-10-24 | Ineos Europe Ag | Catalyst for the polymerisation of olefins, process for its production and use |
CA2798855C (en) | 2012-06-21 | 2021-01-26 | Nova Chemicals Corporation | Ethylene copolymers having reverse comonomer incorporation |
US9115233B2 (en) | 2012-06-21 | 2015-08-25 | Nova Chemicals (International) S.A. | Ethylene copolymer compositions, film and polymerization processes |
WO2014023637A1 (en) | 2012-08-06 | 2014-02-13 | Ineos Europe Ag | Polymerisation process |
WO2014032794A1 (en) | 2012-08-29 | 2014-03-06 | Borealis Ag | Reactor assembly and method for polymerization of olefins |
WO2014065989A1 (en) | 2012-10-26 | 2014-05-01 | Exxonmobil Chemical Patents Inc. | Polymer blends and articles made therefrom |
IN2015DN02467A (bg) | 2012-11-01 | 2015-09-04 | Univation Tech Llc | |
US9587993B2 (en) * | 2012-11-06 | 2017-03-07 | Rec Silicon Inc | Probe assembly for a fluid bed reactor |
ES2604934T3 (es) | 2012-11-09 | 2017-03-10 | Abu Dhabi Polymers Company Limited (Borouge) | Composición polimérica que comprende una mezcla de un polietileno multimodal y un polímero de etileno adicional adecuado para la fabricación de un tubo de riego por goteo |
ES2613070T3 (es) | 2012-11-09 | 2017-05-22 | Abu Dhabi Polymers Company Limited (Borouge) | Tubería de riego por goteo que comprende una composición polimérica que comprende una resina base de polietileno multimodal |
CN104781628B (zh) | 2012-11-12 | 2017-07-07 | 尤尼威蒂恩技术有限责任公司 | 用于气相聚合方法的再循环气体冷却器系统 |
BR112015011528A2 (pt) | 2012-11-21 | 2017-07-11 | Exxonmobil Chemical Patents Inc | películas que compreendem polímeros à base de etileno e métodos para produzir as mesmas |
CA2797620C (en) | 2012-12-03 | 2019-08-27 | Nova Chemicals Corporation | Controlling resin properties in a gas phase polymerization process |
WO2014088791A1 (en) | 2012-12-05 | 2014-06-12 | Exxonmobile Chemical Patents Inc. | Ethylene-based polymers and articles made therefrom |
EP2740761B1 (en) | 2012-12-05 | 2016-10-19 | Borealis AG | Polyethylene composition with improved balance of slow crack growth resistance, impact performance and pipe pressure resistance for pipe applications |
EP2743278A1 (en) * | 2012-12-11 | 2014-06-18 | Basell Polyolefine GmbH | Process for degassing and buffering polyolefin particles obtained by olefin polymerization |
CN104903100B (zh) | 2012-12-18 | 2017-11-14 | 埃克森美孚化学专利公司 | 聚乙烯膜及其制造方法 |
EP2745927A1 (en) | 2012-12-21 | 2014-06-25 | Borealis AG | Fluidized bed reactor with internal moving bed reaction unit |
EP2745926A1 (en) | 2012-12-21 | 2014-06-25 | Borealis AG | Gas phase polymerization and reactor assembly comprising a fluidized bed reactor and an external moving bed reactor |
CA2800056A1 (en) | 2012-12-24 | 2014-06-24 | Nova Chemicals Corporation | Polyethylene blend compositions |
WO2014105614A1 (en) | 2012-12-28 | 2014-07-03 | Univation Technologies, Llc | Methods of integrating aluminoxane production into catalyst production |
US10280283B2 (en) | 2012-12-28 | 2019-05-07 | Univation Technologies, Llc | Supported catalyst with improved flowability |
EP2749580B1 (en) | 2012-12-28 | 2016-09-14 | Borealis AG | Process for producing copolymers of propylene |
CN105121015A (zh) | 2013-01-14 | 2015-12-02 | 尤尼威蒂恩技术有限责任公司 | 制备高产率催化剂系统的方法 |
BR112015018250B1 (pt) | 2013-01-30 | 2021-02-23 | Univation Technologies, Llc | processo para produzir uma composição catalisadora e processo de polimerização |
RU2654061C2 (ru) | 2013-02-07 | 2018-05-16 | ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи | Получение полиолефина |
MX2015012371A (es) * | 2013-03-14 | 2016-02-03 | Grace W R & Co | Sistema y metodo de produccion de interpolimero de propileno/buteno. |
EP2970526B1 (en) | 2013-03-15 | 2017-08-09 | Univation Technologies, LLC | Ligands for catalysts |
WO2014143421A1 (en) | 2013-03-15 | 2014-09-18 | Univation Technologies, Llc | Tridentate nitrogen based ligands for olefin polymerisation catalysts |
PL2796498T3 (pl) | 2013-04-22 | 2019-03-29 | Abu Dhabi Polymers Company Limited (Borouge) | Multimodalna kompozycja polipropylenowa do zastosowania w rurach |
EP2796474B1 (en) | 2013-04-22 | 2018-01-10 | Borealis AG | Multistage process for producing polypropylene compositions |
PL2796501T3 (pl) | 2013-04-22 | 2017-01-31 | Abu Dhabi Polymers Company Limited (Borouge) | Wielomodalna polipropylenowa kompozycja do zastosowań do rur |
EP2796500B1 (en) | 2013-04-22 | 2018-04-18 | Abu Dhabi Polymers Company Limited (Borouge) | Propylene random copolymer composition for pipe applications |
ES2628082T3 (es) | 2013-04-22 | 2017-08-01 | Borealis Ag | Procedimiento con múltiples etapas para producir composiciones de polipropileno resistentes a baja temperatura |
ES2632593T3 (es) | 2013-04-22 | 2017-09-14 | Borealis Ag | Procedimiento de dos fases de producción de composiciones de polipropileno |
EP2796499B1 (en) | 2013-04-22 | 2018-05-30 | Abu Dhabi Polymers Company Limited (Borouge) | Polypropylene composition with improved impact resistance for pipe applications |
CN105209505B (zh) | 2013-05-14 | 2017-04-19 | 埃克森美孚化学专利公司 | 基于乙烯的聚合物和由其制得的制品 |
EP3004032B1 (en) | 2013-06-05 | 2017-12-13 | Univation Technologies, LLC | Protecting phenol groups |
US20160102429A1 (en) | 2013-07-02 | 2016-04-14 | Exxonmobil Chemical Patents Inc. | Carpet Backing Compositions and Carpet Backing Comprising the Same |
US9540467B2 (en) | 2013-08-14 | 2017-01-10 | Ineos Europe Ag | Polymerization process |
SG11201601426UA (en) | 2013-09-10 | 2016-03-30 | Ineos Europe Ag | Process for the (co-)polymerisation of olefins |
RU2652805C2 (ru) * | 2013-09-12 | 2018-05-03 | У. Р. Грейс Энд Ко.- Конн. | Способ газофазной полимеризации с влажной зоной |
EP2848635A1 (en) | 2013-09-16 | 2015-03-18 | Ineos Europe AG | Polymerization process |
EP2853562A1 (en) | 2013-09-27 | 2015-04-01 | Borealis AG | Two-stage process for producing polypropylene compositions |
EP2860204B1 (en) | 2013-10-10 | 2018-08-01 | Borealis AG | Polyethylene composition for pipe applications |
EP2860200B1 (en) | 2013-10-10 | 2017-08-02 | Borealis AG | Polyethylene composition for pipe and pipe coating applications |
EP2860203B1 (en) | 2013-10-10 | 2016-12-14 | Borealis AG | Multistage process for producing polyethylene compositions |
PL2860202T3 (pl) | 2013-10-10 | 2018-11-30 | Borealis Ag | Polietylen odporny na wysoką temperaturę i sposób jego wytwarzania |
EP2860201A1 (en) | 2013-10-10 | 2015-04-15 | Borealis AG | High temperature resistant polyethylene and process for the production thereof |
WO2015088624A1 (en) | 2013-12-09 | 2015-06-18 | Univation Technologies, Llc | Feeding polymerization additives to polymerization processes |
EP2883887A1 (en) | 2013-12-13 | 2015-06-17 | Borealis AG | Multistage process for producing polyethylene compositions |
EP2883885A1 (en) | 2013-12-13 | 2015-06-17 | Borealis AG | Multistage process for producing polyethylene compositions |
KR20160103039A (ko) * | 2013-12-23 | 2016-08-31 | 이네오스 유럽 아게 | 스캐빈저 주입 |
US9683063B2 (en) | 2013-12-23 | 2017-06-20 | Ineos Europe Ag | Process |
US9206293B2 (en) | 2014-01-31 | 2015-12-08 | Fina Technology, Inc. | Polyethyene and articles produced therefrom |
CN105980424B (zh) | 2014-02-11 | 2019-05-21 | 尤尼威蒂恩技术有限责任公司 | 制造聚烯烃产物 |
EP3747913B1 (en) | 2014-04-02 | 2024-04-17 | Univation Technologies, LLC | Continuity compositions and olefin polymerisation method using the same |
FR3020578B1 (fr) * | 2014-05-05 | 2021-05-14 | Total Raffinage Chimie | Dispositif d'injection, notamment pour injecter une charge d'hydrocarbures dans une unite de raffinage. |
US10584823B2 (en) | 2014-06-11 | 2020-03-10 | Fina Technology, Inc. | Chlorine-resistant polyethylene compound and articles made therefrom |
US9624321B2 (en) | 2014-06-13 | 2017-04-18 | Fina Technology, Inc. | Formation of a Ziegler-Natta catalyst |
US9650448B2 (en) | 2014-06-13 | 2017-05-16 | Fina Technology, Inc. | Formation of a Ziegler-Natta catalyst |
CN113321757B (zh) | 2014-06-16 | 2023-05-05 | 尤尼威蒂恩技术有限责任公司 | 修改聚乙烯树脂的熔体流动比率和/或溶胀的方法 |
CA2951113C (en) | 2014-06-16 | 2023-09-19 | Univation Technologies, Llc | Polyethylene resins |
CN106714967B (zh) | 2014-08-19 | 2020-07-17 | 尤尼威蒂恩技术有限责任公司 | 氟化催化剂载体和催化剂系统 |
EP3183059A1 (en) | 2014-08-19 | 2017-06-28 | Univation Technologies, LLC | Fluorinated catalyst supports and catalyst systems |
CN107148316B (zh) | 2014-08-19 | 2020-10-09 | 尤尼威蒂恩技术有限责任公司 | 氟化催化剂载体和催化剂系统 |
EP2995631A1 (en) | 2014-09-12 | 2016-03-16 | Borealis AG | Process for producing graft copolymers on polyolefin backbone |
US10196508B2 (en) | 2014-10-24 | 2019-02-05 | Exxonmobil Chemical Patents Inc. | Thermoplastic vulcanizate compositions |
CA2870027C (en) | 2014-11-07 | 2022-04-26 | Matthew Zaki Botros | Blow molding composition and process |
CA2871463A1 (en) | 2014-11-19 | 2016-05-19 | Nova Chemicals Corporation | Passivated supports: catalyst, process and product |
EP3224303B1 (en) | 2014-11-26 | 2022-09-21 | Borealis AG | Film layer |
ES2788424T3 (es) | 2014-11-26 | 2020-10-21 | Borealis Ag | Composición de polietileno para una capa de película |
CN106715067A (zh) | 2014-12-08 | 2017-05-24 | 博里利斯股份公司 | 丙烯共聚物粒料的制备方法 |
KR102403464B1 (ko) * | 2014-12-09 | 2022-05-27 | 차이나 페트로리움 앤드 케미컬 코포레이션 | 올레핀 중합 장치 및 올레핀 중합 방법 |
WO2016094843A2 (en) | 2014-12-12 | 2016-06-16 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalyst system comprising mesoporous organosilica support |
WO2016094861A1 (en) | 2014-12-12 | 2016-06-16 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalyst system comprising mesoporous organosilica support |
WO2016094870A1 (en) | 2014-12-12 | 2016-06-16 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalyst system comprising mesoporous organosilica support |
CA2964969C (en) | 2014-12-12 | 2022-11-15 | Exxonmobil Research And Engineering Company | Membrane fabrication methods using organosilica materials and uses thereof |
CA2874344C (en) | 2014-12-15 | 2021-08-31 | Nova Chemicals Corporation | Spheroidal catalyst for olefin polymerization |
BR112017013299A2 (pt) | 2014-12-22 | 2018-01-02 | Sabic Global Technologies Bv | processo de transição entre catalisadores incompatíveis |
EA032875B1 (ru) | 2014-12-22 | 2019-07-31 | Сабик Глоубл Текнолоджиз Б.В. | Способ перехода между несовместимыми катализаторами |
WO2016171807A1 (en) | 2015-04-20 | 2016-10-27 | Exxonmobil Chemical Patents Inc. | Catalyst composition comprising fluorided support and processes for use thereof |
SG11201705607QA (en) | 2015-01-21 | 2017-08-30 | Univation Tech Llc | Methods for controlling polymer chain scission |
CN107107433B (zh) | 2015-01-21 | 2019-09-13 | 尤尼威蒂恩技术有限责任公司 | 用于聚烯烃中的凝胶减少的方法 |
EP3253807B1 (en) | 2015-02-05 | 2023-04-26 | Borealis AG | Process for producing polyethylene |
EP3053936A1 (en) | 2015-02-06 | 2016-08-10 | Borealis AG | Process for producing copolymers of ethylene with alpha-olefins |
EP3053976A1 (en) | 2015-02-09 | 2016-08-10 | Borealis AG | Adhesive composition |
CN107406645A (zh) | 2015-02-20 | 2017-11-28 | 北欧化工股份公司 | 制备多相丙烯共聚物的方法 |
CN107428875B (zh) | 2015-03-10 | 2021-02-26 | 尤尼威蒂恩技术有限责任公司 | 喷雾干燥催化剂组合物、制备方法以及在烯烃聚合工艺中的用途 |
WO2016151098A1 (en) | 2015-03-24 | 2016-09-29 | Sabic Global Technologies B.V. | Process for transitioning between incompatible catalysts |
US10618989B2 (en) | 2015-04-20 | 2020-04-14 | Exxonmobil Chemical Patents Inc. | Polyethylene composition |
US10252967B2 (en) | 2015-04-20 | 2019-04-09 | Univation Technologies, Llc | Bridged bi-aromatic ligands and transition metal compounds prepared therefrom |
WO2016171810A1 (en) | 2015-04-20 | 2016-10-27 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
SG11201708410UA (en) | 2015-04-20 | 2017-11-29 | Univation Tech Llc | Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom |
SG11201708487RA (en) | 2015-04-24 | 2017-11-29 | Univation Tech Llc | Methods for operating a polymerization reactor |
US10519256B2 (en) | 2015-04-27 | 2019-12-31 | Univation Technologies, Llc | Supported catalyst compositions having improved flow properties and preparation thereof |
CA2890606C (en) | 2015-05-07 | 2022-07-19 | Nova Chemicals Corporation | Process for polymerization using dense and spherical ziegler-natta type catalyst |
CN107660216B (zh) | 2015-05-08 | 2021-05-14 | 埃克森美孚化学专利公司 | 聚合方法 |
CN104815779B (zh) * | 2015-05-14 | 2017-10-27 | 神华集团有限责任公司 | 气相聚合系统及其喷嘴装置 |
CA2891693C (en) | 2015-05-21 | 2022-01-11 | Nova Chemicals Corporation | Controlling the placement of comonomer in an ethylene copolymer |
CA2892552C (en) | 2015-05-26 | 2022-02-15 | Victoria Ker | Process for polymerization in a fluidized bed reactor |
CA2892882C (en) | 2015-05-27 | 2022-03-22 | Nova Chemicals Corporation | Ethylene/1-butene copolymers with enhanced resin processability |
US10351647B2 (en) | 2015-05-29 | 2019-07-16 | Exxonmobil Chemical Patents Inc. | Polymerization process using bridged metallocene compounds supported on organoaluminum treated layered silicate supports |
EP3303675A4 (en) | 2015-06-05 | 2019-01-09 | ExxonMobil Chemical Patents Inc. | FILES-BONDED FABRICS COMPRISING PROPYLENE-BASED ELASTOMERIC COMPOSITIONS, AND METHODS THEREOF |
ES2707391T3 (es) | 2015-06-23 | 2019-04-03 | Borealis Ag | Procedimiento para la producción de resinas de LLDPE |
EP3320003B1 (en) | 2015-07-09 | 2024-01-10 | Ineos Europe AG | Copolymers and films thereof |
CA2900772C (en) | 2015-08-20 | 2022-07-12 | Nova Chemicals Corporation | Method for altering melt flow ratio of ethylene polymers |
WO2017032535A1 (en) | 2015-08-26 | 2017-03-02 | Sabic Global Technologies B.V. | Ethylene gas phase polymerisation process |
EP3135694A1 (en) * | 2015-08-27 | 2017-03-01 | SABIC Global Technologies B.V. | Process for continuous polymerization of olefin monomers in a reactor |
KR101749542B1 (ko) | 2015-09-03 | 2017-06-21 | 한택규 | 에틸렌의 선택적 올리고머화 반응 공정 |
WO2017048392A1 (en) | 2015-09-17 | 2017-03-23 | Exxonmobil Chemical Patents Inc. | Polyethylene polymers and articles made therefrom |
EP3353217A4 (en) | 2015-09-24 | 2018-11-07 | ExxonMobil Chemical Patents Inc. | Polymerization process using pyridyldiamido compounds supported on organoaluminum treated layered silicate supports |
WO2017058910A1 (en) | 2015-09-30 | 2017-04-06 | Dow Global Technologies Llc | Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same |
EP3394111B1 (en) | 2015-12-22 | 2019-08-28 | SABIC Global Technologies B.V. | Process for transitioning between incompatible catalysts |
CN108473693A (zh) | 2016-02-10 | 2018-08-31 | 埃克森美孚化学专利公司 | 聚乙烯收缩膜及其制备方法 |
RU2747481C2 (ru) | 2016-03-29 | 2021-05-05 | ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи | Комплексные соединения металлов |
JP2019513307A (ja) | 2016-03-30 | 2019-05-23 | エクソンモービル・ケミカル・パテンツ・インク | 太陽電池用途向けの熱可塑性加硫物組成物 |
CN108779205B (zh) | 2016-03-31 | 2022-01-07 | 陶氏环球技术有限责任公司 | 烯烃聚合催化剂 |
CN108779204B (zh) | 2016-03-31 | 2021-06-18 | 陶氏环球技术有限责任公司 | 烯烃聚合催化剂体系和其使用方法 |
SG11201808185XA (en) | 2016-03-31 | 2018-10-30 | Dow Global Technologies Llc | Olefin polymerization catalyst systems and methods of use thereof |
CN109071844A (zh) | 2016-04-22 | 2018-12-21 | 埃克森美孚化学专利公司 | 聚乙烯片材 |
EP3238938A1 (en) | 2016-04-29 | 2017-11-01 | Borealis AG | Machine direction oriented films comprising multimodal copolymer of ethylene and at least two alpha-olefin comonomers |
US10844529B2 (en) | 2016-05-02 | 2020-11-24 | Exxonmobil Chemicals Patents Inc. | Spunbond fabrics comprising propylene-based elastomer compositions and methods for making the same |
CN109312015B (zh) | 2016-05-03 | 2021-10-26 | 埃克森美孚化学专利公司 | 四氢引达省基催化剂组合物、催化剂体系及其使用方法 |
US9803037B1 (en) | 2016-05-03 | 2017-10-31 | Exxonmobil Chemical Patents Inc. | Tetrahydro-as-indacenyl catalyst composition, catalyst system, and processes for use thereof |
US11059918B2 (en) | 2016-05-27 | 2021-07-13 | Exxonmobil Chemical Patents Inc. | Metallocene catalyst compositions and polymerization process therewith |
EP3252085B1 (en) | 2016-05-31 | 2022-11-09 | Borealis AG | Jacket with improved properties |
EP3464457B1 (en) | 2016-05-31 | 2021-09-01 | Borealis AG | Polymer composition and a process for production of the polymer composition |
US20190330397A1 (en) | 2016-06-17 | 2019-10-31 | Borealis Ag | Bi- or multimodal polyethylene with low unsaturation level |
EP3257895A1 (en) | 2016-06-17 | 2017-12-20 | Borealis AG | Bi- or multimodal polyethylene terpolymer with enhanced rheological properties |
EP3257879A1 (en) | 2016-06-17 | 2017-12-20 | Borealis AG | Bi- or multimodal polyethylene with low unsaturation level |
EP3472240B1 (en) | 2016-06-17 | 2020-04-01 | Borealis AG | Bi- or multimodal polyethylene terpolymer with enhanced rheological properties |
KR20190020327A (ko) | 2016-06-17 | 2019-02-28 | 보레알리스 아게 | 향상된 유동학적 특성을 갖는 바이모달 또는 멀티모달 폴리에틸렌 |
EP3475313B1 (en) | 2016-06-22 | 2024-03-20 | Borealis AG | Composition comprising three polyethylenes and a process for production of the polymer composition |
CN109328200B (zh) | 2016-06-23 | 2022-08-19 | 博里利斯股份公司 | 催化剂失活的方法 |
WO2018017180A1 (en) | 2016-07-21 | 2018-01-25 | Exxonmobil Chemical Patents Inc. | Rotomolded compositions, articles, and processes for making the same |
US10975183B2 (en) | 2016-09-09 | 2021-04-13 | Exxonmobil Chemical Patents Inc. | Pilot plant scale semi-condensing operation |
WO2018063767A1 (en) | 2016-09-27 | 2018-04-05 | Exxonmobil Chemical Patents Inc. | Polymerization process |
WO2018063765A1 (en) | 2016-09-27 | 2018-04-05 | Exxonmobil Chemical Patents Inc. | Polymerization process |
RU2720999C1 (ru) | 2016-09-27 | 2020-05-15 | Эксонмобил Кемикэл Пейтентс Инк. | Способ полимеризации |
EP3519445B1 (en) | 2016-09-27 | 2021-06-23 | ExxonMobil Chemical Patents Inc. | Polymerization process |
WO2018063764A1 (en) | 2016-09-27 | 2018-04-05 | Exxonmobil Chemical Patents Inc. | Polymerization process |
BR112019005989B1 (pt) | 2016-09-27 | 2023-05-02 | Exxonmobil Chemical Patents Inc | Processo de polimerização |
CA3038149C (en) | 2016-09-27 | 2023-08-22 | Univation Technologies, Llc | Method for long chain branching control in polyethylene production |
CN109803986B (zh) | 2016-09-28 | 2020-04-14 | 博里利斯股份公司 | 用于制备涂覆管道的方法 |
US11214632B2 (en) | 2016-09-30 | 2022-01-04 | Dow Global Technologies Llc | Bis-ligated phosphaguanidine group IV metal complexes and olefin polymerization catalysts produced therefrom |
CN109963886B (zh) | 2016-09-30 | 2023-01-06 | 陶氏环球技术有限责任公司 | 磷杂胍iv族金属烯烃聚合催化剂 |
ES2866909T3 (es) | 2016-09-30 | 2021-10-20 | Dow Global Technologies Llc | Ligandos de bis-fosfaguanidina y poli-fosfaguanidina con metales del grupo IV y catalizadores producidos a partir de los mismos |
EP3519474B1 (en) | 2016-09-30 | 2024-09-25 | Dow Global Technologies LLC | Process for preparing multi- or dual-headed compositions useful for chain shuttling |
TWI756272B (zh) | 2016-09-30 | 2022-03-01 | 美商陶氏全球科技有限責任公司 | 適用於鏈梭移之封端多頭或雙頭組合物及其製備方法 |
WO2018063799A1 (en) | 2016-09-30 | 2018-04-05 | Dow Global Technologies Llc | Thiourea group iv transition metal catalysts and polymerization systems |
TW201840572A (zh) | 2016-09-30 | 2018-11-16 | 美商陶氏全球科技有限責任公司 | 適用於鏈梭移之多頭或雙頭組合物及其製備方法 |
JP7051827B2 (ja) | 2016-09-30 | 2022-04-11 | ダウ グローバル テクノロジーズ エルエルシー | チオグアニジン第iv族遷移金属触媒および重合系 |
WO2018067289A1 (en) | 2016-10-05 | 2018-04-12 | Exxonmobil Chemical Patents Inc. | Sterically hindered metallocenes, synthesis and use |
SG11201903060XA (en) | 2016-10-05 | 2019-05-30 | Exxonmobil Chemical Patents Inc | Metallocene catalysts, catalyst systems, and methods for using the same |
WO2018071250A1 (en) | 2016-10-14 | 2018-04-19 | Exxonmobil Chemical Patents Inc. | Oriented films comprising ethylene-based and methods of making same |
WO2018075243A1 (en) | 2016-10-19 | 2018-04-26 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and methods of using same |
WO2018075245A1 (en) | 2016-10-19 | 2018-04-26 | Exxonmobil Chemical Patents Inc. | Mixed catalyst systems and methods of using the same |
WO2018081630A1 (en) | 2016-10-28 | 2018-05-03 | Fina Technology, Inc. | Use of agents to reduce crystallinity in polypropylene for bopp applications |
CN109890855B (zh) | 2016-11-08 | 2022-08-09 | 尤尼威蒂恩技术有限责任公司 | 聚乙烯组合物 |
SG11201903393RA (en) | 2016-11-08 | 2019-05-30 | Univation Tech Llc | Bimodal polyethylene |
WO2018089194A1 (en) | 2016-11-08 | 2018-05-17 | Univation Technologies, Llc | Polyethylene composition |
CN109891221B (zh) | 2016-11-17 | 2023-01-24 | 尤尼威蒂恩技术有限责任公司 | 测量浆料催化剂组合物中的固体含量的方法 |
EP3541858B1 (en) | 2016-11-18 | 2022-11-09 | ExxonMobil Chemical Patents Inc. | Polymerization processes utilizing chromium-containing catalysts |
EP3544815B1 (en) | 2016-11-25 | 2020-12-30 | Borealis AG | A process for producing polyolefin film composition and films prepared thereof |
CA3036991C (en) | 2016-11-25 | 2021-01-12 | Borealis Ag | Polymer composition comprising very high molecular weight, low molecularweight, and high molecular weight polyethylene fractions |
WO2018098425A1 (en) | 2016-11-28 | 2018-05-31 | Univation Technologies, Llc | Producing a polyethylene polymer |
WO2018102091A1 (en) | 2016-12-02 | 2018-06-07 | Exxonmobil Chemical Patents Inc. | Polyethylene films |
WO2018102080A1 (en) | 2016-12-02 | 2018-06-07 | Exxonmobil Chemical Patens Inc. | Olefin polymerization catalyst systems and methods for making the same |
US10023666B2 (en) * | 2016-12-13 | 2018-07-17 | Chevron Phillips Chemical Company Lp | Process for transitioning between low percentage chrome and high percentage chrome catalysts |
US11142591B2 (en) | 2016-12-20 | 2021-10-12 | Exxonmobil Chemical Patents Inc. | Polymerization process |
US11186654B2 (en) | 2016-12-20 | 2021-11-30 | Exxonmobil Chemical Patents Inc. | Methods for controlling start up conditions in polymerization processes |
WO2018118155A1 (en) | 2016-12-20 | 2018-06-28 | Exxonmobil Chemical Patents Inc. | Polymerization process |
US10563055B2 (en) | 2016-12-20 | 2020-02-18 | Exxonmobil Chemical Patents Inc. | Carpet compositions and methods of making the same |
EP3559058A1 (en) | 2016-12-22 | 2019-10-30 | ExxonMobil Chemical Patents Inc. | Spray-dried olefin polymerization catalyst compositions and polymerization processes for using the same |
US11306163B2 (en) | 2017-01-11 | 2022-04-19 | Sabic Global Technologies B.V. | Chromium oxide catalyst for ethylene polymerization |
WO2018130539A1 (en) | 2017-01-11 | 2018-07-19 | Sabic Global Technologies B.V. | Chromium oxide catalyst for ethylene polymerization |
US10792637B2 (en) | 2017-01-20 | 2020-10-06 | Basell Poliolefine Italia S.R.L. | Method for feeding a fluid to a gas phase polymerization reactor |
CN110461882B (zh) | 2017-02-03 | 2021-12-14 | 埃克森美孚化学专利公司 | 制备聚乙烯聚合物的方法 |
CA3052770C (en) | 2017-02-07 | 2021-09-07 | Exxonmobil Chemical Patents Inc. | Processes for reducing the loss of catalyst activity of a ziegler-natta catalyst |
CN110191902B (zh) | 2017-02-13 | 2022-08-09 | 尤尼威蒂恩技术有限责任公司 | 双峰聚乙烯树脂 |
WO2018151903A1 (en) | 2017-02-20 | 2018-08-23 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
WO2018151790A1 (en) | 2017-02-20 | 2018-08-23 | Exxonmobil Chemical Patents Inc. | Hafnocene catalyst compounds and process for use thereof |
KR20190112293A (ko) | 2017-02-20 | 2019-10-04 | 엑손모빌 케미칼 패턴츠 인코포레이티드 | 4족 촉매 화합물 및 이의 사용 방법 |
WO2018151904A1 (en) | 2017-02-20 | 2018-08-23 | Exxonmobil Chemical Patents Inc. | Group 4 catalyst compounds and process for use thereof |
SG11201908307XA (en) | 2017-03-15 | 2019-10-30 | Dow Global Technologies Llc | Catalyst system for multi-block copolymer formation |
US20200247918A1 (en) | 2017-03-15 | 2020-08-06 | Dow Global Technologies Llc | Catalyst system for multi-block copolymer formation |
ES2946762T3 (es) | 2017-03-15 | 2023-07-25 | Dow Global Technologies Llc | Sistema de catalizador para la formación de copolímero multibloque |
CN110582518B (zh) | 2017-03-15 | 2022-08-09 | 陶氏环球技术有限责任公司 | 用于形成多嵌段共聚物的催化剂体系 |
KR102711048B1 (ko) | 2017-03-15 | 2024-09-27 | 다우 글로벌 테크놀로지스 엘엘씨 | 다중-블록 공중합체 형성을 위한 촉매 시스템 |
CN110637049B (zh) | 2017-04-06 | 2022-04-05 | 埃克森美孚化学专利公司 | 流延膜及其制造方法 |
WO2018191000A1 (en) | 2017-04-10 | 2018-10-18 | Exxonmobil Chemicl Patents Inc. | Methods for making polyolefin polymer compositions |
US10947329B2 (en) | 2017-05-10 | 2021-03-16 | Univation Technologies, Llc | Catalyst systems and processes for using the same |
CA2969627C (en) | 2017-05-30 | 2024-01-16 | Nova Chemicals Corporation | Ethylene copolymer having enhanced film properties |
WO2018226311A1 (en) | 2017-06-08 | 2018-12-13 | Exxonmobil Chemical Patents Inc. | Polyethylene blends and extrudates and methods of making the same |
ES2786756T3 (es) | 2017-06-20 | 2020-10-13 | Borealis Ag | Un método, una disposición y uso de una disposición para la polimerización de olefinas |
EP3418330B2 (en) | 2017-06-21 | 2023-07-19 | Borealis AG | Polymer composition and a process for production of the polymer composition |
CN109135067A (zh) | 2017-06-27 | 2019-01-04 | 阿布扎比聚合物有限责任公司(博禄) | 用于制造高压管的聚丙烯组合物 |
WO2019022801A1 (en) | 2017-07-24 | 2019-01-31 | Exxonmobil Chemical Patents Inc. | POLYETHYLENE FILMS AND METHODS OF PRODUCING THE SAME |
WO2019027605A1 (en) | 2017-08-04 | 2019-02-07 | Exxonmobil Chemical Patents Inc. | FILMS MANUFACTURED FROM POLYETHYLENE COMPOSITIONS AND METHODS OF MAKING THE SAME |
WO2019027586A1 (en) | 2017-08-04 | 2019-02-07 | Exxonmobil Chemical Patents Inc. | MIXED CATALYSTS COMPRISING 2,6-BIS (IMINO) PYRIDYL-IRON COMPLEXES AND BRONZED HAFNOCENES |
SG11202000942TA (en) | 2017-08-04 | 2020-02-27 | Exxonmobil Chemical Patents Inc | Mixed catalysts with unbridged hafnocenes with -ch2-sime3 moieties |
CN111094366B (zh) | 2017-08-04 | 2022-06-24 | 埃克森美孚化学专利公司 | 聚乙烯组合物和由其制备的膜 |
CN111051353B (zh) | 2017-08-28 | 2022-09-09 | 尤尼威蒂恩技术有限责任公司 | 双峰聚乙烯 |
SG11202002090SA (en) | 2017-09-11 | 2020-04-29 | Univation Tech Llc | Carbon black-containing bimodal polyethylene composition |
EP3700944A1 (en) | 2017-10-23 | 2020-09-02 | ExxonMobil Chemical Patents Inc. | Catalyst systems and polymerization processes for using the same |
CN111315567B (zh) | 2017-10-24 | 2022-02-25 | 博里利斯股份公司 | 多层聚合物膜 |
US11161924B2 (en) | 2017-10-27 | 2021-11-02 | Univation Technologies, Llc | Polyethylene copolymer resins and films |
CA3079202A1 (en) | 2017-10-27 | 2019-05-02 | Univation Technologies, Llc | Selectively transitioning polymerization processes |
US11021552B2 (en) | 2017-10-31 | 2021-06-01 | Exxonmobil Chemical Patents Inc. | Toluene free silica supported single-site metallocene catalysts from in-situ supported alumoxane formation in aliphatic solvents |
WO2019094131A1 (en) | 2017-11-13 | 2019-05-16 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions and articles made therefrom |
WO2019094132A1 (en) | 2017-11-13 | 2019-05-16 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions and articles made therefrom |
WO2019099589A1 (en) | 2017-11-15 | 2019-05-23 | Exxonmobil Chemical Patents Inc. | Polymerization processes |
EP3710500A1 (en) | 2017-11-15 | 2020-09-23 | ExxonMobil Chemical Patents Inc. | Polymerization processes |
EP3710501A2 (en) | 2017-11-15 | 2020-09-23 | ExxonMobil Chemical Patents Inc. | Polymerization processes |
EP3710734A1 (en) | 2017-11-17 | 2020-09-23 | ExxonMobil Chemical Patents Inc. | Pe-rt pipes and processes for making the same |
US10934376B2 (en) | 2017-11-28 | 2021-03-02 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions and films made therefrom |
WO2019108315A1 (en) | 2017-11-28 | 2019-06-06 | Exxonmobil Chemical Patents Inc. | Catalyst systems and polymerization processes for using the same |
CN111433229B (zh) | 2017-12-01 | 2022-12-13 | 埃克森美孚化学专利公司 | 催化剂体系和使用其的聚合方法 |
WO2019108327A1 (en) | 2017-12-01 | 2019-06-06 | Exxonmobil Chemical Patents Inc. | Films comprising polyethylene composition |
US11325928B2 (en) | 2017-12-05 | 2022-05-10 | Univation Technologies, Llc | Modified spray-dried Ziegler-Natta (pro)catalyst systems |
ES2970016T3 (es) | 2017-12-05 | 2024-05-23 | Univation Tech Llc | Sistema catalizador de ziegler-natta activado secado mediante pulverización |
WO2019118073A1 (en) | 2017-12-13 | 2019-06-20 | Exxonmobil Chemical Patents Inc. | Deactivation methods for active components from gas phase polyolefin polymerization process |
CN111372958B (zh) | 2017-12-18 | 2023-06-30 | 陶氏环球技术有限责任公司 | 二茂锆-二茂钛催化剂体系 |
KR20200099540A (ko) | 2017-12-18 | 2020-08-24 | 다우 글로벌 테크놀로지스 엘엘씨 | 하프노센-티타노센 촉매 시스템 |
WO2019162760A1 (en) | 2018-02-05 | 2019-08-29 | Exxonmobil Chemical Patents Inc. A Corporation Of State Of Delaware | Enhanced processability of lldpe by addition of ultra-high molecular weight high density polyethylene |
US11440979B2 (en) | 2018-02-19 | 2022-09-13 | Exxonmobil Chemical Patents Inc. | Catalysts, catalyst systems, and methods for using the same |
EP3759147A1 (en) | 2018-03-02 | 2021-01-06 | Borealis AG | Process |
CN108593318B (zh) * | 2018-03-05 | 2024-04-12 | 深圳万知达企业管理有限公司 | 一种流化除雾器性能检测装置 |
WO2019173030A1 (en) | 2018-03-08 | 2019-09-12 | Exxonmobil Chemical Patents Inc. | Methods of preparing and monitoring a seed bed for polymerization reactor startup |
WO2019182779A1 (en) | 2018-03-19 | 2019-09-26 | Univation Technologies, Llc | Ethylene/1-hexene copolymer |
SG11202009191RA (en) | 2018-03-19 | 2020-10-29 | Exxonbobil Chemical Patents Inc | Processes for producing high propylene content pedm having low glass transition temperatures using tetrahydroindacenyl catalyst systems |
EP3768774B1 (en) | 2018-03-21 | 2024-09-04 | Borealis AG | Use of a bi- or multimodal polyethylene composition |
CN111770940A (zh) | 2018-03-23 | 2020-10-13 | 尤尼威蒂恩技术有限责任公司 | 催化剂调配物 |
US11485802B2 (en) | 2018-03-26 | 2022-11-01 | Dow Global Technologies Llc | Spray-dried zirconocene catalyst system |
BR112020018814B1 (pt) | 2018-03-28 | 2023-12-12 | Univation Technologies, Llc | Composição de polietileno bimodal, método para produzir uma composição de polietileno bimodal, artigo fabricado e tampa ou fecho de garrafa |
WO2019210030A1 (en) | 2018-04-26 | 2019-10-31 | Exxonmobil Chemical Patents Inc. | Non-coordinating anion type activators containing cation having branched alkyl groups |
WO2019209334A1 (en) | 2018-04-27 | 2019-10-31 | Exxonmobil Chemical Patents Inc. | Polyethylene films and methods of making the same |
WO2019213227A1 (en) | 2018-05-02 | 2019-11-07 | Exxonmobil Chemical Patents Inc. | Methods for scale-up from a pilot plant to a larger production facility |
US11459408B2 (en) | 2018-05-02 | 2022-10-04 | Exxonmobil Chemical Patents Inc. | Methods for scale-up from a pilot plant to a larger production facility |
WO2019226766A1 (en) | 2018-05-22 | 2019-11-28 | Exxonmobil Chemical Patents Inc. | Methods for forming films and their related computing devices |
US20210070902A1 (en) | 2018-05-24 | 2021-03-11 | Univation Technologies, Llc | Unimodal polyethylene copolymer and film thereof |
US11649301B2 (en) | 2018-06-12 | 2023-05-16 | Dow Global Technologies Llc | Activator-nucleator formulations |
KR20210020929A (ko) | 2018-06-13 | 2021-02-24 | 유니베이션 테크놀로지즈, 엘엘씨 | 이중 모드 폴리에틸렌 공중합체 및 그의 필름 |
ES2953317T3 (es) | 2018-06-13 | 2023-11-10 | Univation Tech Llc | Sistemas (pro)catalizadores de Ziegler-Natta secados por pulverización |
CN112313254B (zh) | 2018-06-19 | 2023-04-18 | 埃克森美孚化学专利公司 | 聚乙烯组合物和由其制备的膜 |
CN112638958B (zh) | 2018-07-19 | 2023-06-02 | 博里利斯股份公司 | 制备uhmwpe均聚物的方法 |
CA3106914A1 (en) | 2018-07-31 | 2020-02-06 | Dow Global Technologies Llc | Polyethylene formulations for large part blow molding applications |
EP3830145A1 (en) | 2018-07-31 | 2021-06-09 | Univation Technologies, LLC | Unimodal polyethylene copolymer and film thereof |
CN112585177A (zh) | 2018-07-31 | 2021-03-30 | 尤尼威蒂恩技术有限责任公司 | 单峰聚乙烯共聚物和其膜 |
EP3867286A1 (en) | 2018-08-29 | 2021-08-25 | Univation Technologies, LLC | Method of changing melt rheology property of bimodal polyethylene polymer |
EP3844194A1 (en) | 2018-08-29 | 2021-07-07 | Univation Technologies, LLC | Bimodal polyethylene copolymer and film thereof |
WO2020046406A1 (en) | 2018-08-30 | 2020-03-05 | Exxonmobil Chemical Patents Inc. | Polymerization processes and polymers made therefrom |
WO2020056119A1 (en) | 2018-09-14 | 2020-03-19 | Fina Technology, Inc. | Polyethylene and controlled rheology polypropylene polymer blends and methods of use |
CN112638962B (zh) | 2018-09-28 | 2023-05-16 | 尤尼威蒂恩技术有限责任公司 | 双峰聚乙烯共聚物组合物以及由其制成的管材 |
KR102593922B1 (ko) | 2018-10-31 | 2023-10-25 | 보레알리스 아게 | 개선된 균질성을 갖는 고압력 저항성 파이프용 폴리에틸렌 조성물 |
EP3647645A1 (en) | 2018-10-31 | 2020-05-06 | Borealis AG | Polyethylene composition for high pressure resistant pipes |
CN112969723B (zh) | 2018-11-01 | 2023-04-28 | 埃克森美孚化学专利公司 | 通过修整的混合催化剂比的在线调节和使用其的烯烃聚合 |
EP3873950A1 (en) | 2018-11-01 | 2021-09-08 | ExxonMobil Chemical Patents Inc. | On-line adjustment of catalysts by trim and olefin polymerization |
WO2020092606A1 (en) | 2018-11-01 | 2020-05-07 | Exxonmobil Chemical Patents Inc. | On-line adjustment of mixed catalyst ratio and olefin polymerization |
EP3873946A1 (en) | 2018-11-01 | 2021-09-08 | ExxonMobil Chemical Patents Inc. | Mixed catalyst systems with properties tunable by condensing agent |
WO2020092599A1 (en) | 2018-11-01 | 2020-05-07 | Exxonmobil Chemical Patents Inc. | Slurry trim catalyst feeder modifications |
EP3873951A2 (en) | 2018-11-01 | 2021-09-08 | ExxonMobil Chemical Patents Inc. | In-line trimming of dry catalyst feed |
EP3877392B1 (en) | 2018-11-06 | 2023-11-15 | Dow Global Technologies LLC | Alkane-soluble non-metallocene precatalysts |
CA3118441A1 (en) | 2018-11-06 | 2020-05-14 | Dow Global Technologies Llc | Method of olefin polymerization using alkane-soluble non-metallocene precatalyst |
US11891464B2 (en) | 2018-11-06 | 2024-02-06 | Dow Global Technologies Llc | Alkane-soluble non-metallocene precatalysts |
EP3877464B1 (en) | 2018-11-07 | 2022-10-12 | Borealis AG | Polyolefin composition with improved impact and whitening resistance |
EP3880430B1 (en) | 2018-11-15 | 2024-09-25 | ABU DHABI POLYMERS CO. LTD (BOROUGE) - Sole Proprietorship L.L.C. | Polymer composition for blow molding applications |
EP3887410A1 (en) | 2018-11-28 | 2021-10-06 | Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C. | Polyethylene composition for film applications |
EP3887412A1 (en) | 2018-11-29 | 2021-10-06 | Borealis AG | Process to produce a polymer and polymer |
CN113227244A (zh) | 2018-12-27 | 2021-08-06 | 埃克森美孚化学专利公司 | 具有较快结晶时间的基于丙烯的纺粘织物 |
EP3902851A1 (en) | 2018-12-28 | 2021-11-03 | Borealis AG | A process for producing polyolefin film composition and films prepared thereof |
WO2020136164A1 (en) | 2018-12-28 | 2020-07-02 | Borealis Ag | A process for producing polyolefin film composition and films prepared thereof |
CN113330041B (zh) | 2019-01-25 | 2024-01-12 | Sabic环球技术有限责任公司 | 用于乙烯聚合的氧化铬催化剂 |
WO2020172306A1 (en) | 2019-02-20 | 2020-08-27 | Fina Technology, Inc. | Polymer compositions with low warpage |
US20220098332A1 (en) | 2019-03-21 | 2022-03-31 | Exxonmobil Chemical Patents Inc. | Methods For Improving Gas Phase Polymerization |
EP3941950A1 (en) | 2019-03-21 | 2022-01-26 | ExxonMobil Chemical Patents Inc. | Methods for improving production in gas phase polymerization |
EP3715385B1 (en) | 2019-03-26 | 2024-01-31 | SABIC Global Technologies B.V. | Chromium oxide catalyst for ethylene polymerization |
EP3956387A1 (en) | 2019-04-17 | 2022-02-23 | ExxonMobil Chemical Patents Inc. | Method for improving uv weatherability of thermoplastic vulcanizates |
SG11202111124PA (en) | 2019-04-30 | 2021-11-29 | Dow Global Technologies Llc | Metal-ligand complexes |
US20220162358A1 (en) | 2019-04-30 | 2022-05-26 | Dow Global Technologies Llc | Bimodal poly(ethylene-co-1-alkene) copolymer |
WO2020223191A1 (en) | 2019-04-30 | 2020-11-05 | Dow Global Technologies Llc | Bimodal poly(ethylene-co-1-alkene) copolymer |
CA3142138A1 (en) | 2019-06-10 | 2020-12-17 | Univation Technologies, Llc | Polyethylene blend |
WO2020260021A1 (en) | 2019-06-24 | 2020-12-30 | Borealis Ag | Process for preparing polypropylene with improved recovery |
US20220251361A1 (en) | 2019-07-17 | 2022-08-11 | Exxonmobil Chemical Patents Inc. | High Propylene Content EP Having Low Glass Transition Temperatures |
CN114144440B (zh) | 2019-07-22 | 2023-07-21 | 阿布扎比聚合物有限公司(博禄) | 单活性中心催化的多峰聚乙烯组合物 |
AR119631A1 (es) | 2019-08-26 | 2021-12-29 | Dow Global Technologies Llc | Composición a base de polietileno bimodal |
WO2021045889A1 (en) | 2019-09-05 | 2021-03-11 | Exxonmobil Chemical Patents Inc. | Processes for producing polyolefins and impact copolymers with broad molecular weight distribution and high stiffness |
US20220325083A1 (en) | 2019-09-26 | 2022-10-13 | Univation Technologies, Llc | Bimodal polyethylene homopolymer composition |
EP3835327B1 (en) | 2019-12-09 | 2024-07-31 | Borealis AG | System for producing polyolefin and process for recovering polymerization product from gas phase reactor |
US20230056312A1 (en) | 2020-01-24 | 2023-02-23 | Exxonmobil Chemical Patents Inc. | Methods for producing bimodal polyolefins and impact copolymers |
WO2021154204A1 (en) | 2020-01-27 | 2021-08-05 | Formosa Plastics Corporation, U.S.A. | Process for preparing catalysts and catalyst compositions |
WO2021154442A1 (en) | 2020-01-31 | 2021-08-05 | Exxonmobil Research And Engineering Company | Polyethylene films having high tear strength |
CN115135681A (zh) | 2020-02-17 | 2022-09-30 | 埃克森美孚化学专利公司 | 具有高分子量尾部的基于丙烯的聚合物组合物 |
EP4110835A1 (en) | 2020-02-24 | 2023-01-04 | ExxonMobil Chemical Patents Inc. | Lewis base catalysts and methods thereof |
US20230159679A1 (en) | 2020-03-18 | 2023-05-25 | Exxonmobil Chemical Patents Inc. | Extrusion Blow Molded Articles and Processes for Making Same |
WO2021188361A1 (en) | 2020-03-20 | 2021-09-23 | Exxonmobil Chemical Patents Inc. | Linear alpha-olefin copolymers and impact copolymers thereof |
WO2021191019A1 (en) | 2020-03-24 | 2021-09-30 | Borealis Ag | Polyethylene composition for a film layer |
EP4126993A1 (en) | 2020-03-24 | 2023-02-08 | Borealis AG | Polyethylene composition for a film layer |
EP4126998A1 (en) | 2020-04-01 | 2023-02-08 | Dow Global Technologies LLC | Bimodal linear low density polyethylene copolymer |
WO2021205333A1 (en) | 2020-04-07 | 2021-10-14 | Nova Chemicals (International) S.A. | High density polyethylene for rigid articles |
CN111482146B (zh) * | 2020-04-17 | 2022-02-22 | 中国石油化工股份有限公司 | 三相分离器、三相反应器以及三相反应方法 |
WO2021236322A1 (en) | 2020-05-19 | 2021-11-25 | Exxonmobil Chemical Patents Inc. | Extrusion blow molded containers and processes for making same |
BR112022021802A2 (pt) | 2020-05-29 | 2022-12-13 | Dow Global Technologies Llc | Métodos para produzir um catalisador e um polímero poliolefínico, catalisador pós-metalocênico atenuado, método de alimentar um catalisador pós-metalocênico, e, sistema de catalisador multimodal |
CN115803351A (zh) | 2020-05-29 | 2023-03-14 | 陶氏环球技术有限责任公司 | 减弱的混合催化剂 |
CN115698102A (zh) | 2020-05-29 | 2023-02-03 | 陶氏环球技术有限责任公司 | 减弱的后茂金属催化剂 |
CN115667331B (zh) | 2020-05-29 | 2024-08-23 | 陶氏环球技术有限责任公司 | 催化剂体系和使用其生产聚乙烯的方法 |
CA3180275A1 (en) | 2020-05-29 | 2021-12-02 | Rhett A. BAILLIE | Catalyst systems and processes for producing polyethylene using the same |
EP4157891A1 (en) | 2020-05-29 | 2023-04-05 | Dow Global Technologies LLC | Attenuated post-metallocene catalysts |
CN115667329A (zh) | 2020-05-29 | 2023-01-31 | 尤尼威蒂恩技术有限责任公司 | 用于挤出吹塑转筒应用的具有改善的模量的单反应器双峰聚乙烯 |
WO2021243211A1 (en) | 2020-05-29 | 2021-12-02 | Dow Global Technologies Llc | Catalyst systems and processes for producing polyethylene using the same |
CA3180287A1 (en) | 2020-05-29 | 2021-12-02 | Rhett A. BAILLIE | Chemically converted catalysts |
EP4157897A1 (en) | 2020-05-29 | 2023-04-05 | Dow Global Technologies LLC | Chemically converted catalysts |
WO2022010622A1 (en) | 2020-07-07 | 2022-01-13 | Exxonmobil Chemical Patents Inc. | Processes for making 3-d objects from blends of polyethylene and polar polymers |
US20230227637A1 (en) | 2020-07-23 | 2023-07-20 | Borealis Ag | Multimodal ethylene copolymer |
KR20230048113A (ko) | 2020-08-05 | 2023-04-10 | 다우 글로벌 테크놀로지스 엘엘씨 | 바이모달 폴리에틸렌을 포함하는 열가소성 조성물 및 이로부터 제조된 물품 |
US20230272196A1 (en) | 2020-08-05 | 2023-08-31 | Dow Global Technologies Llc | Thermoplastic compositions comprising recycled polymers and articles manufactured therefrom |
US20230357454A1 (en) | 2020-08-10 | 2023-11-09 | Exxonmobil Chemical Patents Inc. | Methods for Delivery of Non-Aromatic Solutions to Polymerization Reactors |
CN115989275A (zh) | 2020-08-25 | 2023-04-18 | 埃克森美孚化学专利公司 | 具有优异物理性能的高密度聚乙烯组合物 |
WO2022066550A1 (en) | 2020-09-22 | 2022-03-31 | Dow Global Technologies Llc | Bimodal polyethylene copolymer and film thereof |
KR20220039181A (ko) * | 2020-09-22 | 2022-03-29 | 주식회사 엘지화학 | 올리고머 제조 장치 |
CA3193704A1 (en) | 2020-09-30 | 2022-04-07 | Rujul M. MEHTA | Bimodal polyethylene copolymers for pe-80 pipe applications |
WO2022076216A1 (en) | 2020-10-08 | 2022-04-14 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
EP4229065A1 (en) | 2020-10-15 | 2023-08-23 | Dow Global Technologies LLC | Olefin polymerization catalysts bearing a 6-amino-n-aryl azaindole ligand |
CN116490525A (zh) | 2020-11-19 | 2023-07-25 | 埃克森美孚化学专利公司 | 聚烯烃排放工艺和设备 |
EP4247825A1 (en) | 2020-11-23 | 2023-09-27 | ExxonMobil Chemical Patents Inc. | Metallocene polypropylene prepared using aromatic solvent-free supports |
EP4247819A1 (en) | 2020-11-23 | 2023-09-27 | ExxonMobil Chemical Patents Inc. | Toluene free supported methylalumoxane precursor |
EP4247820A1 (en) | 2020-11-23 | 2023-09-27 | ExxonMobil Chemical Patents Inc. | <smallcaps/>? ? ?in-situ? ? ? ? ?improved process to prepare catalyst fromformed alumoxane |
US20240043673A1 (en) | 2020-12-21 | 2024-02-08 | Ineos Europe Ag | Polypropylene blend |
EP4019583B1 (en) | 2020-12-28 | 2024-04-10 | ABU DHABI POLYMERS CO. LTD (BOROUGE) - Sole Proprietorship L.L.C. | Polyethylene composition for film applications with improved toughness and stiffness |
EP4029914A1 (en) | 2021-01-14 | 2022-07-20 | Borealis AG | Heterophasic polyolefin composition |
CN112843968A (zh) * | 2021-01-30 | 2021-05-28 | 郑州睿强实验设备有限公司 | 一种用于化工实验的固态烟气处理装置 |
WO2022174202A1 (en) | 2021-02-11 | 2022-08-18 | Exxonmobil Chemical Patents Inc. | Process for polymerizing one or more olefins |
MX2023008941A (es) | 2021-02-15 | 2023-08-11 | Dow Global Technologies Llc | Metodo para elaborar un copolimero de poli(etileno-co-1-alqueno) con distribucion de comonomero inversa. |
US20240066514A1 (en) | 2021-03-05 | 2024-02-29 | Exxonmobil Chemical Patents Inc. | Processes for making and using slurry catalyst mixtures |
WO2022214420A1 (en) | 2021-04-06 | 2022-10-13 | Sabic Global Technologies B.V. | Chromium based catalyst for ethylene polymerization |
WO2022232123A1 (en) | 2021-04-26 | 2022-11-03 | Fina Technology, Inc. | Thin single-site catalyzed polymer sheets |
KR20240017932A (ko) | 2021-06-10 | 2024-02-08 | 다우 글로벌 테크놀로지스 엘엘씨 | 개질된 활성을 갖는 촉매 조성물 및 이들의 제조 공정 |
US20240279368A1 (en) | 2021-06-11 | 2024-08-22 | Borealis Ag | A process for producing a multimodal ethylene polymer and films prepared therefrom |
EP4405367A1 (en) | 2021-09-20 | 2024-07-31 | Nova Chemicals (International) S.A. | Olefin polymerization catalyst system and polymerization process |
WO2023044092A1 (en) | 2021-09-20 | 2023-03-23 | Dow Global Technologies Llc | Process of making catalytically-active prepolymer composition and compositions made thereby |
KR20240089569A (ko) | 2021-10-15 | 2024-06-20 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리에틸렌 기상 기술에 의한 고급 크롬 촉매를 사용한 hdpe lpbm 수지 |
EP4416198A1 (en) | 2021-10-15 | 2024-08-21 | Univation Technologies LLC | Hdpe intermediate bulk container resin using advanced chrome catalyst by polyethylene gas phase technology |
WO2023069407A1 (en) | 2021-10-21 | 2023-04-27 | Univation Technologies, Llc | Bimodal poly(ethylene-co-1-alkene) copolymer and blow-molded intermediate bulk containers made therefrom |
WO2023081577A1 (en) | 2021-11-02 | 2023-05-11 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions, articles thereof, and methods thereof |
CA3238452A1 (en) | 2021-11-23 | 2023-06-01 | Andrew M. Camelio | Supported catalyst systems containing a silocon bridged, anthracenyl substituted bis-biphenyl-phenoxy organometallic compound for making polyethylene and polyethylene copolymer resins in a gas phase polymerization reacto |
EP4437011A1 (en) | 2021-11-23 | 2024-10-02 | Dow Global Technologies LLC | Supported catalyst systems containing a germanium bridged, anthracenyl substituted bis-biphenyl-phenoxy organometallic compound for making polyethylene and polyethylene copolymer resins in a gas phase polymerization reactor |
WO2023096864A1 (en) | 2021-11-23 | 2023-06-01 | Dow Global Technologies Llc | Supported catalyst systems containing a carbon bridged, anthracenyl substituted bis-biphenyl-phenoxy organometallic compound for making polyethylene and poly ethylene copolymer resins in a gas phase polymerization reactor |
AR128453A1 (es) | 2022-02-11 | 2024-05-08 | Dow Global Technologies Llc | Composiciones de polietileno de densidad media bimodal adecuadas para el uso como cintas de goteo de microirrigación |
MX2024010013A (es) | 2022-03-22 | 2024-08-22 | Nova Chemicals Int S A | Complejo organometalico, sistema catalizador de polimerizacion de olefina y proceso de polimerizacion. |
EP4257640B1 (en) | 2022-04-04 | 2024-08-28 | Borealis AG | Pipe comprising a polypropylene composition |
WO2023239560A1 (en) | 2022-06-09 | 2023-12-14 | Formosa Plastics Corporaton, U.S.A. | Clay composite support-activators and catalyst compositions |
WO2023244901A1 (en) | 2022-06-15 | 2023-12-21 | Exxonmobil Chemical Patents Inc. | Ethylene-based polymers, articles made therefrom, and processes for making same |
WO2023250240A1 (en) | 2022-06-24 | 2023-12-28 | Exxonmobil Chemical Patents Inc. | Low cost processes of in-situ mao supportation and the derived finished polyolefin catalysts |
WO2024025741A1 (en) | 2022-07-27 | 2024-02-01 | Exxonmobil Chemical Patents Inc. | Polypropylene compositions with enhanced strain hardening and methods of producing same |
EP4317216A1 (en) | 2022-08-03 | 2024-02-07 | Abu Dhabi Polymers Co. Ltd (Borouge) LLC | Low density ethylene terpolymer composition |
EP4344869A1 (en) | 2022-09-30 | 2024-04-03 | Borealis AG | Multimodal ethylene copolymer composition and films comprising the same |
WO2024083689A1 (en) | 2022-10-18 | 2024-04-25 | Borealis Ag | Multilayer film |
US20240174777A1 (en) | 2022-11-29 | 2024-05-30 | Fina Technology, Inc. | Polypropylenes for additive manufacturing |
WO2024129637A1 (en) | 2022-12-12 | 2024-06-20 | Univation Technologies, Llc | Decreasing triboelectric charging of, and/or reactor fouling by, polyolefin particles |
EP4389418A1 (en) | 2022-12-19 | 2024-06-26 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer collation shrink film |
WO2024137235A1 (en) | 2022-12-19 | 2024-06-27 | Dow Global Technologies Llc | Method of making a morphology-improved polyethylene powder |
EP4389414A1 (en) | 2022-12-19 | 2024-06-26 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer collation shrink film |
WO2024132245A1 (en) | 2022-12-20 | 2024-06-27 | Sabic Global Technologies B.V. | Process for the production of polyethylene |
WO2024132273A1 (en) | 2022-12-20 | 2024-06-27 | Sabic Global Technologies B.V. | Catalyst for polyethylene polymerization |
WO2024132716A1 (en) | 2022-12-20 | 2024-06-27 | Ineos Europe Ag | Process |
EP4389820A1 (en) | 2022-12-21 | 2024-06-26 | Borealis AG | Polypropylene random copolymer compositions with improved impact resistance for pipe applications |
EP4403598A1 (en) | 2023-01-23 | 2024-07-24 | Borealis AG | Polymer composition comprising recycled low density polyethylene for packaging applications |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1110566A (en) * | 1965-07-27 | 1968-04-18 | Sir Soc Italiana Resine Spa | Method of polymerizing gaseous vinyl-type monomers |
FR1487845A (fr) * | 1965-07-27 | 1967-07-07 | Sir Soc Italiana Resine Spa | Procédé de polymérisation de monomères vinyliques gazeux et en particulier d'alpha-oléfines |
DE1720292B2 (de) * | 1967-08-10 | 1975-05-22 | Basf Ag, 6700 Ludwigshafen | Verfahren zur Herstellung von Propylenpolymerisaten |
US3625932A (en) * | 1967-12-26 | 1971-12-07 | Phillips Petroleum Co | Vapor phase polymerization of vinyl chloride in a multiple stage fluidized bed reactor |
US4003712A (en) * | 1970-07-29 | 1977-01-18 | Union Carbide Corporation | Fluidized bed reactor |
US4012573A (en) * | 1970-10-09 | 1977-03-15 | Basf Aktiengesellschaft | Method of removing heat from polymerization reactions of monomers in the gas phase |
FR2177480B1 (bg) * | 1972-03-07 | 1974-08-30 | Solvay | |
BE786462R (fr) * | 1972-07-19 | 1973-01-19 | Solvay | Procede de polymerisation du chlorure de |
FR2215802A5 (en) * | 1972-12-28 | 1974-08-23 | Solvay | Fluidised bed polymn using cooling liq. injection - with non return valve on nozzles to prevent back flow of powder clogging feed pipes |
JPS56166207A (en) * | 1980-05-27 | 1981-12-21 | Mitsui Petrochem Ind Ltd | Gas-phase polymerization of olefin |
US4287327A (en) * | 1980-09-29 | 1981-09-01 | Standard Oil Company (Indiana) | Process for controlling polymer particle size in vapor phase polymerization |
DE3200725A1 (de) * | 1982-01-13 | 1983-07-21 | Robert Bosch Gmbh, 7000 Stuttgart | Bremsanlage |
IT1150650B (it) * | 1982-03-10 | 1986-12-17 | Montedison Spa | Reattore a letto fluido |
US4588790A (en) * | 1982-03-24 | 1986-05-13 | Union Carbide Corporation | Method for fluidized bed polymerization |
DZ520A1 (fr) * | 1982-03-24 | 2004-09-13 | Union Carbide Corp | Procédé perfectionné pour accroitre le rendement espace temps d'une réaction de polymérisation exothermique en lit fluidisé. |
US4543399A (en) * | 1982-03-24 | 1985-09-24 | Union Carbide Corporation | Fluidized bed reaction systems |
US4933149A (en) * | 1984-08-24 | 1990-06-12 | Union Carbide Chemicals And Plastics Company Inc. | Fluidized bed polymerization reactors |
CA1241525A (en) * | 1984-08-24 | 1988-09-06 | Larry L. Simpson | Fluidized bed polymerization reactors |
US4877587A (en) * | 1984-08-24 | 1989-10-31 | Union Carbide Chemicals And Plastics Company Inc. | Fluidized bed polymerization reactors |
US4640963A (en) * | 1985-02-15 | 1987-02-03 | Standard Oil Company (Indiana) | Method and apparatus for recycle of entrained solids in off-gas from a gas-phase polyolefin reactor |
JPH0616903Y2 (ja) * | 1986-09-12 | 1994-05-02 | 東燃株式会社 | 気相重合装置のガス分散板 |
FR2617411B1 (fr) * | 1987-06-30 | 1989-11-17 | Bp Chimie Sa | Dispositif et procede d'alimentation en gaz d'un appareil a lit fluidise |
FR2618786B1 (fr) * | 1987-07-31 | 1989-12-01 | Bp Chimie Sa | Procede de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise |
FR2634212B1 (fr) * | 1988-07-15 | 1991-04-19 | Bp Chimie Sa | Appareillage et procede de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise |
FR2642429B1 (fr) * | 1989-01-31 | 1991-04-19 | Bp Chimie Sa | Procede et appareil de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise |
US5352749A (en) * | 1992-03-19 | 1994-10-04 | Exxon Chemical Patents, Inc. | Process for polymerizing monomers in fluidized beds |
US5436304A (en) * | 1992-03-19 | 1995-07-25 | Exxon Chemical Patents Inc. | Process for polymerizing monomers in fluidized beds |
US5317036A (en) * | 1992-10-16 | 1994-05-31 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization reactions utilizing soluble unsupported catalysts |
US5462999A (en) * | 1993-04-26 | 1995-10-31 | Exxon Chemical Patents Inc. | Process for polymerizing monomers in fluidized beds |
JP3077940B2 (ja) * | 1993-04-26 | 2000-08-21 | エクソン・ケミカル・パテンツ・インク | 流動層重合法のための安定な操作条件を決定する方法 |
-
1994
- 1994-05-17 ZA ZA943399A patent/ZA943399B/xx unknown
- 1994-05-18 DZ DZ940051A patent/DZ1782A1/fr active
- 1994-05-18 IN IN606DE1994 patent/IN190621B/en unknown
- 1994-05-19 US US08/256,052 patent/US5541270A/en not_active Expired - Lifetime
- 1994-05-19 AT AT94915621T patent/ATE163017T1/de active
- 1994-05-19 CN CN94192172A patent/CN1077111C/zh not_active Expired - Lifetime
- 1994-05-19 DE DE69408450T patent/DE69408450T2/de not_active Expired - Lifetime
- 1994-05-19 BR BR9406535A patent/BR9406535A/pt not_active IP Right Cessation
- 1994-05-19 RO RO95-01861A patent/RO116551B1/ro unknown
- 1994-05-19 DE DE69421418T patent/DE69421418T2/de not_active Expired - Lifetime
- 1994-05-19 HU HU9503302A patent/HU214842B/hu not_active IP Right Cessation
- 1994-05-19 RU RU95122233A patent/RU2144042C1/ru not_active IP Right Cessation
- 1994-05-19 EG EG29094A patent/EG20361A/xx active
- 1994-05-19 ES ES94915621T patent/ES2113104T3/es not_active Expired - Lifetime
- 1994-05-19 SK SK1433-95A patent/SK281033B6/sk unknown
- 1994-05-19 EP EP99101676A patent/EP0926163A3/en not_active Withdrawn
- 1994-05-19 EP EP97201508A patent/EP0802202B1/en not_active Expired - Lifetime
- 1994-05-19 EP EP94915621A patent/EP0699213B1/en not_active Expired - Lifetime
- 1994-05-19 CZ CZ19952940A patent/CZ289037B6/cs not_active IP Right Cessation
- 1994-05-19 UA UA95104678A patent/UA40615C2/uk unknown
- 1994-05-19 JP JP7500343A patent/JPH08510497A/ja active Pending
- 1994-05-19 PL PL94311280A patent/PL177865B1/pl not_active IP Right Cessation
- 1994-05-19 SG SG1996005460A patent/SG49037A1/en unknown
- 1994-05-19 WO PCT/GB1994/001074 patent/WO1994028032A1/en active IP Right Grant
- 1994-05-19 CA CA002161432A patent/CA2161432C/en not_active Expired - Lifetime
- 1994-05-19 NZ NZ266173A patent/NZ266173A/en unknown
- 1994-05-19 AT AT97201508T patent/ATE186056T1/de active
- 1994-05-19 KR KR1019950705119A patent/KR100300468B1/ko not_active IP Right Cessation
- 1994-05-20 TW TW083104574A patent/TW347397B/zh not_active IP Right Cessation
- 1994-05-20 MY MYPI94001304A patent/MY121539A/en unknown
-
1995
- 1995-10-27 BG BG100102A patent/BG62854B1/bg unknown
- 1995-11-17 FI FI955561A patent/FI112230B/fi not_active IP Right Cessation
- 1995-11-17 NO NO954648A patent/NO309327B1/no not_active IP Right Cessation
-
1996
- 1996-02-15 US US08/602,014 patent/US5668228A/en not_active Expired - Lifetime
- 1996-02-15 US US08/602,013 patent/US5733510A/en not_active Expired - Lifetime
- 1996-07-09 US US08/678,457 patent/US5804677A/en not_active Expired - Lifetime
-
1998
- 1998-01-21 GR GR980400143T patent/GR3025973T3/el unknown
- 1998-08-04 HK HK98109687A patent/HK1008963A1/xx not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BG100102A (bg) | Метод за полимеризация | |
KR100466302B1 (ko) | 유동층에 유체를 분무하기 위한 노즐 | |
US6096839A (en) | Atomizer nozzle | |
RU2198184C2 (ru) | Способ полимеризации | |
US6225422B1 (en) | Gas fluidized bed polymerization process for olefins | |
US6001938A (en) | Polymerization process | |
KR19980018658A (ko) | 중합방법 | |
EP0825204B1 (en) | Polymerisation process | |
KR100427837B1 (ko) | 중합화방법 | |
EP0824114A1 (en) | Polymerisation process | |
EP0814100A1 (en) | Polymerisation process | |
AU694924C (en) | Polymerisation process | |
AU701999B2 (en) | Polymerisation process | |
CZ152299A3 (cs) | Způsob rozstřikování kapaliny ve fluidním loži v procesu polymerace olefinů v plynné fázi a tryska k provádění způsobu | |
MXPA97006175A (en) | Procedure of polimerizac |