WO2009113671A1 - 吸水性樹脂を主成分とする粒子状吸水剤の充填方法 - Google Patents
吸水性樹脂を主成分とする粒子状吸水剤の充填方法 Download PDFInfo
- Publication number
- WO2009113671A1 WO2009113671A1 PCT/JP2009/054902 JP2009054902W WO2009113671A1 WO 2009113671 A1 WO2009113671 A1 WO 2009113671A1 JP 2009054902 W JP2009054902 W JP 2009054902W WO 2009113671 A1 WO2009113671 A1 WO 2009113671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- absorbing agent
- particulate water
- filling
- vibration
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B1/00—Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B1/04—Methods of, or means for, filling the material into the containers or receptacles
- B65B1/08—Methods of, or means for, filling the material into the containers or receptacles by vibratory feeders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/002—Methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/7476—Systems, i.e. flow charts or diagrams; Plants
- B29B7/748—Plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/885—Adding charges, i.e. additives with means for treating, e.g. milling, the charges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B1/00—Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B1/04—Methods of, or means for, filling the material into the containers or receptacles
- B65B1/06—Methods of, or means for, filling the material into the containers or receptacles by gravity flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B1/00—Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B1/20—Reducing volume of filled material
- B65B1/22—Reducing volume of filled material by vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B37/00—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged
- B65B37/04—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged by vibratory feeders
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/04—Acids, Metal salts or ammonium salts thereof
- C08F20/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/245—Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/68—Superabsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B2009/125—Micropellets, microgranules, microparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
Definitions
- the present invention relates to a method for filling a particulate water-absorbing agent mainly composed of a water-absorbing resin.
- water-absorbing resin as a constituent material has been widely used as a water-absorbing agent for sanitary materials such as paper diapers, sanitary napkins, and incontinence pads from the viewpoint of absorbing body fluids.
- the water-absorbing resin include a crosslinked polyacrylic acid partially neutralized product, a hydrolyzate of starch-acrylic acid graft polymer, a saponified product of vinyl acetate-acrylic acid ester copolymer, an acrylonitrile copolymer, or an acrylamide.
- a hydrolyzate of a copolymer or a crosslinked product thereof, and a crosslinked product of a cationic monomer are known.
- this water-absorbing resin can be used in the form of a sheet, fiber, or film, it is generally used as a water-absorbing agent in the form of powder (particulate).
- powder particles
- a particulate water-absorbing agent having a mass average particle diameter of about 200 to 800 ⁇ m is widely used.
- the particulate water-absorbing agent is produced through many steps (preferably continuous steps) (for example, Patent Document 1).
- steps for example, Patent Document 1
- the particulate water-absorbing agent is filled in the filling member.
- the filled particulate water-absorbing agent is transported by transport means and delivered to a shipping destination (user or the like).
- a flexible container bag is used as this filling member.
- This flexible container bag is also referred to as a flexible container bag for short.
- the filling is usually carried out from a hopper as described in Patent Document 2 and the like.
- the particulate water-absorbing agent has many parameter properties (for example, water absorption ratio, water absorption capacity under pressure, water absorption speed, liquid permeability, gel stability, etc.) depending on the intended use (for example, paper diapers, sanitary napkins, etc.) It is controlled and produced as a specification.
- parameter properties for example, water absorption ratio, water absorption capacity under pressure, water absorption speed, liquid permeability, gel stability, etc.
- the intended use for example, paper diapers, sanitary napkins, etc.
- It is controlled and produced as a specification.
- particulate water-absorbing agents that are consumed in large quantities it is difficult to stabilize the physical properties of continuous production, and slight physical fluctuations cause deterioration in physical properties and consumer complaints in the final product (such as paper diapers).
- stable physical property control has been a major issue.
- Patent Document 3 discloses a technique of removing and remixing the water absorbent resin that deviates from the physical properties.
- Patent Document 4 discloses a technique of using a plurality of hoppers in an intermediate process.
- Patent Document 5 discloses a technique in which polymerization is carried out in two lines and the latter half in one line. There have been many proposals for improving or stabilizing the properties of the particulate water-absorbing agent by changing or adding a new intermediate production process such as Patent Documents 2, 3, 4, and 5, but there was sufficient room for improvement. .
- the present inventors have found that the filling process greatly affects the stabilization of physical properties (particularly AAP and SFC), and have completed the present invention.
- the fluctuations in the operating conditions in the filling process which is the final process, can cause large fluctuations in the physical properties of the particulate water-absorbing agent.
- the final product eg, diapers
- this may cause a decrease in physical properties and consumer complaints.
- the present inventors have obtained a new finding that the physical properties of the particulate water-absorbing agent can be reduced due to the filling method.
- An object of the present invention is to provide a filling method that can suppress a decrease in physical properties of a particulate water-absorbing agent and can suppress uneven distribution of particle diameters.
- the method for filling a particulate water-absorbing agent according to the present invention includes a contact step of bringing a filling member for filling the particulate water-absorbing agent into contact with a vibrating body, and a supply for supplying the particulate water-absorbing agent to the filling member. And a vibrating step of vibrating the particulate water-absorbing agent present inside the filling member by vibrating the vibrating body.
- At least a part of the supply process and at least a part of the vibration process are performed simultaneously.
- the relative humidity around the filling member is 30% or more and 65% or less.
- the vibration frequency is 30 Hz or more and 120 Hz or less.
- the filling member is a flexible container bag.
- the flexible container bag is placed on the vibrating body.
- the supply process may be performed once or may be performed in multiple times.
- the vibration process includes an intermediate vibration process performed at a stage where a part of the plurality of supply processes is completed, and the plurality of supply processes. And a final vibration process performed at the stage where everything is completed.
- the mass of the particulate water-absorbing agent present in the filling member in the midway vibration step is W1 (kg), and the total filling mass is W2 (kg).
- the following numerical range is preferred. That is, the ratio (W1 / W2) is preferably set to be 0.3 or more and 0.6 or less. Moreover, it is preferable that mass W2 is 500 kg or more and 1500 kg or less.
- the AAP (4.8 kPa) of the particulate water-absorbing agent is 15 g / g or more.
- the particulate water-absorbing agent is a polyacrylic acid (salt) -based water-absorbing resin containing a polyamine polymer, a polyvalent metal (salt), and water-insoluble fine particles.
- the temperature of the particulate water-absorbing agent in the vibration process is 30 to 70 ° C.
- the water-absorbent resin is an irregularly pulverized product obtained by continuous kneader polymerization or continuous belt polymerization.
- the amount of air existing between the particles of the filler can be effectively suppressed. Moreover, uneven distribution of the particle diameter of the particulate water-absorbing agent in the filled state can be suppressed. Furthermore, in the continuous production of a water-absorbing agent having a high water absorption capacity under pressure (AAP) and high liquid permeability (SFC), stabilization of the absorption characteristics of the resulting product can be brought about.
- AAP water absorption capacity under pressure
- SFC high liquid permeability
- FIG. 1 is a schematic view illustrating a filling apparatus according to an embodiment of the present invention.
- each appendix in FIG. 1 represents the following.
- DESCRIPTION OF SYMBOLS 2 ... Filling device, 4 ... Hopper scale, 6 ... Intermediate
- the “water-absorbing resin” means a water-swellable, water-insoluble polymer gelling agent, and has the following physical properties. That is, the water absorption capacity (CRC / specified in the Examples) is essentially 5 g / g or more, preferably 10 to 100 g / g, more preferably 20 to 80 g / g, and water soluble components (Extractables / ERT450 2-02 (2002)) is essentially 0 to 50% by weight, preferably 0 to 30% by weight, more preferably 0 to 20% by weight, particularly preferably 0 to 10% by weight. Refers to an agent.
- the water-absorbent resin is not limited to a form in which the total amount (100%) is a polymer, and may contain additives, which will be described later, as long as the above performance is maintained.
- polyacrylic acid (salt) means a polymer mainly composed of acrylic acid (salt) as a repeating unit.
- acrylic acid (salt) as a monomer excluding the crosslinking agent is essentially 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 90 to 100 mol%, particularly preferably A polymer containing substantially 100 mol% is meant.
- the salt as a polymer essentially contains a water-soluble salt, preferably a monovalent salt, more preferably an alkali metal salt or an ammonium salt. Of these, alkali metal salts are particularly preferred, and sodium salts are more preferred.
- the “water-absorbing agent” means an aqueous liquid gelling agent mainly composed of a water-absorbing resin.
- the aqueous liquid is not limited to water, but may be urine, blood, feces, waste liquid, moisture or steam, ice, a mixture of water and an organic solvent and / or an inorganic solvent, rainwater, groundwater, etc. If water is included, there is no particular limitation. Among them, as the aqueous liquid, urine, particularly human urine can be mentioned more preferably.
- the content of the water-absorbing resin (polyacrylic acid (salt) -based water-absorbing resin) according to the present invention is preferably 70 to 99.9% by weight, more preferably 80 to 99.7% by weight based on the whole. %, More preferably 90 to 99.5% by weight.
- water is preferable from the viewpoint of water absorption speed and impact resistance of the powder (particles), and if necessary, additives described later are included.
- particles means solids having fluidity with a particle size defined by sieve classification of 5 mm or less. If it is solid, the water content is not particularly limited, but it is usually less than 30% by weight, more preferably 20% by weight or less. Moreover, as a minimum of a particle size, it is 1 nm, for example. Furthermore, it is sufficient that the powder has a certain fluidity, for example, a solid that can be measured by Flow Rate (ERT450.2-02) or a solid that can be classified by (ERT420.2-02). means.
- the shape of the solid is not particularly limited, and examples thereof include irregular crushed particles, spherical shapes, substantially spherical shapes, and granulated products (aggregates) thereof. Preferably, irregular crushed particles are included.
- X to Y indicating the range means “X or more and Y or less”.
- ton (t) which is a unit of weight indicates “metric ton”.
- mass and weight weight
- mass% mass
- part by mass part by weight
- the object to be filled is a particulate water-absorbing agent.
- the “particulate water-absorbing agent” contains a water-absorbing resin as a main component.
- This “main component” means that the content of the water-absorbing resin is 80% by mass or more with respect to the particulate water-absorbing agent. That is, the particulate water-absorbing agent according to the present invention contains 80% by mass or more, preferably 90 to 99.999% by mass of a water-absorbing resin.
- the particulate water-absorbing agent includes (1) a polymerization step in which a polymer gel is obtained from a monomer, (2) a drying step in which the polymer gel is dried to obtain a dried product, and (3) the dried product or polymer gel.
- the method for producing the particulate water-absorbing agent may further include (8) a granulation step of granulating the fine powder generated in each step to obtain granulated particles. By granulation in this step (8), the fine powder can be reused, which is economically preferable particularly during mass production.
- a polyacrylic acid (salt) type water absorbing resin is made into a main component from a physical property surface.
- the particulate water-absorbing agent thus produced is then subjected to a filling step.
- the particulate water-absorbing agent is filled in the filling member.
- the particulate water-absorbing agent is based on a water-absorbing resin obtained by a polymerization process.
- a monomer that can become a water-absorbent resin by polymerization (hereinafter also referred to as a monomer) is polymerized to form a polymer gel.
- the polymerization method used in the production method according to the present invention is not particularly limited, and examples thereof include bulk polymerization, precipitation polymerization, aqueous solution polymerization, and reverse phase suspension polymerization.
- aqueous solution polymerization or reverse phase suspension polymerization in which the monomer can be used as an aqueous solution is preferable.
- This production method can sufficiently exhibit the effects (stabilization of physical properties) of the present invention in a water-absorbent resin obtained by aqueous solution polymerization.
- aqueous solution polymerization particularly continuous aqueous solution polymerization is preferably used.
- continuous belt polymerization or continuous kneader polymerization can be preferably used.
- the monomer is not particularly limited, and examples thereof include the following.
- Anionic unsaturated monomers such as sulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2-hydroxyethyl (meth) acryloyl phosphate and salts thereof; mercapto group-containing Unsaturated monomers; phenolic hydroxyl group-containing unsaturated monomers; amide group-containing unsaturated monomers such as (meth) acrylamide, N-ethyl (meth) acrylamide, N, N-
- the water-absorbing resin is preferably a polyacrylic acid (salt) -based water-absorbing resin, and therefore the monomer is acrylic acid and / or a salt thereof (for example, sodium, lithium, potassium, It is preferable to use as a main component a salt such as ammonium or amines, among which a sodium salt is preferable from the viewpoint of cost.
- acrylic acid to be used conventionally known acrylic acid can be used. Specifically, acrylic acid described in US Patent Application Publication No. 2001-0016668 and US Pat. No. 6,596,901 can be used.
- the amount of acrylic acid and / or salt thereof used is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly with respect to all monomer components (excluding an internal crosslinking agent described later). Preferably it is 95 mol% or more (the upper limit is 100 mol%).
- the said monomer is an acid group containing monomer, there is no restriction
- the neutralization rate in the polymer is preferably 40 mol% or more and 90 mol% or less, and more preferably 50 mol% or more and 80 mol% or less.
- the concentration of the monomer in the aqueous solution is not particularly limited, but is in the range of 10 to 70% by weight.
- the content is preferably within the range of 20 to 60% by weight.
- solvents other than water may be used together as needed.
- the kind of solvent used together is not specifically limited.
- these monomers may contain a polymerization inhibitor and iron.
- the iron content is preferably 5 ppm by weight or less, more preferably 1 ppm by weight or less.
- the polymerization inhibitor is not particularly limited, but for example, methoxyphenols can be preferably used.
- the amount of the polymerization inhibitor used is 160 ppm by weight or less, which is disclosed in US Pat. No. 7,049,366.
- a radical polymerization initiator can be used.
- the radical polymerization initiator is not particularly limited, and one or two or more types selected from those used in normal water-absorbing resin polymerization are selected according to the type of monomer to be polymerized and polymerization conditions. Can be used.
- a thermal decomposition type initiator for example, persulfate such as sodium persulfate, potassium persulfate, ammonium persulfate; peroxidation such as hydrogen peroxide, t-butyl peroxide, t-butyl hydroperoxide, methyl ethyl ketone peroxide
- Azonitrile compound azoamidine compound, cyclic azoamidine compound, azoamide compound, alkylazo compound, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) Azo compound such as propane] dihydrochloride; and the like
- photodegradable initiators for example, benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, azo compounds, etc.
- the thermal decomposition type initiator is preferable and the persulfate is particularly preferable from the viewpoint of cost and ability to reduce the residual monomer.
- the combined use of the reducing agent can accelerate the decomposition of these radical polymerization initiators, they can be combined to form a redox initiator.
- sulfite (salt) for example, sodium sulfite, potassium sulfite, ammonium sulfite etc.
- hydrogen sulfite (salt) for example, sodium hydrogen sulfite, potassium hydrogen sulfite, hydrogen sulfite
- pyrosulfurous acid (salt) L-ascorbic acid (salt)
- reducing metal (salt) such as ferrous salt, dithionic acid (salt), trithionic acid (salt), tetrathionic acid ( Salt), thiosulfuric acid (salt), dimethyl sulfoxide, phosphorous acid (salt), nitrous acid (salt), thiourea dioxide, amino acids, amines (ethanolamine and the like) and the like.
- a photodegradable initiator and a thermal decomposable initiator are used in combination.
- the amount of the radical polymerization initiator used in the above-described polymerization step is not particularly limited, but it is usually preferably 0.001 to 2% by weight with respect to the amount of the monomer used, and is preferably 0.01 to 0.00. More preferably, it is 15% by weight.
- the amount of the radical polymerization initiator used relative to the amount of the monomer used is less than 0.001% by weight because the amount of residual monomer in the water-absorbing resin that can increase the amount of unreacted monomers increases. It is not preferable.
- the monomer may be polymerized by irradiating with active energy rays such as radiation, electron beam or ultraviolet ray instead of the above-mentioned radical polymerization initiator.
- an internal crosslinking agent can be used as necessary.
- the internal cross-linking agent include conventionally known internal cross-linking agents having two or more polymerizable unsaturated groups or two or more reactive groups in one molecule.
- the internal crosslinking agent include N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Trimethylolpropane di (meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tri Allyl cyanurate, triallyl is
- These internal crosslinking agents may be used alone or in combination of two or more. Among them, it is preferable to use a compound having two or more polymerizable unsaturated groups as an internal cross-linking agent from the viewpoint of water absorption characteristics of the obtained water-absorbing resin particles.
- the amount of the internal crosslinking agent used is usually from 0.001 to 5 mol%, more preferably from 0.005 to 3 mol%, based on the monomers (total monomers). Even more preferably, it is 0.01 to 1.5 mol%.
- the reaction system may further include various foaming agents such as carbonic acid (hydrogen) salts, carbon dioxide, azo compounds, inert organic solvents; starch / cellulose, starch / cellulose derivatives, polyvinyl alcohol, Range in which hydrophilic polymers such as polyacrylic acid (salt) and crosslinked polyacrylic acid (salt), various surfactants, chain transfer agents such as hypophosphorous acid (salt), etc. do not impair the effects of the present invention (For example, with respect to 100 parts by weight of the monomer, various foaming agents may be added in an amount of 30 parts by weight or less, the hydrophilic polymer is 30 parts by weight or less, and the chain transfer agent is 1 part by weight or less).
- various foaming agents such as carbonic acid (hydrogen) salts, carbon dioxide, azo compounds, inert organic solvents
- the polymerization temperature in the polymerization step is not particularly limited, but it is usually preferably 10 to 140 ° C. If the polymerization temperature is less than 10 ° C., the polymerization time may be prolonged and the productivity may be lowered, and the physical properties of the water absorbent resin may be lowered. On the other hand, if it exceeds 140 ° C., the physical properties of the water-absorbent resin may be reduced.
- the polymerization time is not particularly limited, but may be determined as appropriate according to the type of the monomer and polymerization initiator, the polymerization temperature, and the like.
- the polymerization is usually carried out under normal pressure from the viewpoint of ease of operation and the like, but it is also a preferred embodiment that the polymerization is carried out under reduced pressure in order to lower the boiling temperature during the polymerization.
- a monomer solution composed of an aqueous solution of a partial sodium salt of acrylic acid containing polyethylene glycol diacrylate as an internal crosslinking agent is added to a persulfuric acid as a thermal decomposition initiator.
- aqueous solution polymerization may be continuously performed on the belt while the mixed solution is supplied to a flat steel belt having a weir on the side.
- Such a polymerization method is called belt polymerization.
- continuous kneader polymerization described in Example 1 of US Pat. No. 6,867,269 may be used. Even in this case, a water-absorbing resin having desired performance can be obtained.
- continuous kneader polymerization or continuous belt polymerization is used for the production of the water-absorbent resin.
- water-absorbing resin particles
- filling with such irregularly crushed particles is difficult, and the physical properties freight and decrease during filling.
- This problem particularly in the continuous production on a huge scale, has a large problem of flare and reduction, but the present invention can be suitably applied to solve such a problem.
- U.S. Pat. Nos. 6,987,151 and 6,710,141 are suitably used for such continuous kneader polymerization.
- U.S. Pat. Nos. 4,893,999, 6,241,928 and U.S. Patent Application Publication No. 2005-215734. Etc. are suitably applied.
- the drying step By the drying step, the polymer gel (also known as a hydrogel polymer) obtained in the above-described polymerization step is dried.
- the drying step although not limited to the following, the polymer gel having a water content of 15 to 70% by mass obtained in the above-described polymerization step is dried.
- the polymer gel obtained in the polymerization step is usually subjected to a drying step in a particulate state of about 0.1 to 5 mm. For this reason, when the polymer gel is larger than the above size, it is preferable to perform the crushing treatment in advance before the drying step.
- the crushing means is not particularly limited, and various cutting means such as a meat chopper, a roller cutter, a guillotine cutter, a slicer, a roll cutter, a shredder, and scissors can be used alone or in appropriate combination.
- the drying method in the drying step is not particularly limited, but methods using a normal dryer and a heating furnace such as hot air drying and azeotropic dehydration can be widely adopted.
- the drying device include a conduction heat transfer dryer, a radiation heat transfer dryer, a hot air heat transfer dryer, and a dielectric heating dryer.
- a hot air heat transfer type dryer (hereinafter referred to as a hot air dryer) is preferable.
- the hot air dryer include drying devices such as a ventilation band type, a ventilation circuit type, a ventilation bowl type, a parallel flow band type, a ventilation tunnel type, a ventilation groove type stirring type, a fluidized bed type, an air flow type, and a spray type. .
- the ventilation band type is preferable. Even in such a ventilation band type, when the production scale is increased, physical properties tend to be lowered.
- the ventilation band type drying is preferably applied.
- the drying temperature a relatively high temperature is preferably set, and specifically, 80 to 300 ° C. is preferable.
- the drying time is not particularly limited, but may be set so that the obtained dried product has a desired solid content rate. It is preferable in terms of ease of pulverization that the solid content of the dried product obtained in the drying step (loss on drying when heated at 180 ° C. for 3 hours) is 90% by mass or more.
- the drying time is usually preferably within 2 hours from the viewpoint of production efficiency.
- the pulverization step is a step of pulverizing the polymer gel or a dried product thereof.
- the pulverization is usually performed on a dried product of the polymer gel obtained in the drying step, but may be performed on the polymer gel obtained in the polymerization step before drying.
- a particulate water-absorbing agent as a pulverized product is obtained.
- the pulverization is preferably performed so that more particulate water-absorbing agent having a desired particle diameter (preferably, a mass average particle diameter of 200 to 800 ⁇ m) can be obtained.
- a desired particle diameter preferably, a mass average particle diameter of 200 to 800 ⁇ m
- pulverization method A conventionally well-known method is employable.
- the particulate water-absorbing resin obtained in the pulverization step contains fine powder.
- this pulverization step may not be performed.
- the water-absorbent resin and water-absorbing agent particles obtained through the pulverization process become irregularly pulverized products (indeterminate crushed particles), but in such a shape, the surface area is large by pulverization and can be easily fixed to pulp. Is preferable. That is, the water-absorbing resin is preferably an irregularly pulverized product (amorphous crushed particles). Further, although fine powder and dust (dust) are likely to be generated in the pulverization process or the like, the present invention can be suitably applied to solve such a problem.
- the dried product can be pulverized and classified for particle size control.
- these methods are described, for example, in US Patent Application Publication No. 2006-024755.
- a roll mill or a roll granulator can be preferably used, and can be applied after being pulverized by a one-stage, preferably a multi-stage, or further a 2-5 stage roll mill or roll granulator. Even in the roll granulator, when the production scale is increased, the particle size control tends to be lowered.
- the present invention is preferably applied to solve such a problem.
- the classification step is a step of classifying the pulverized product or the dried product obtained in the above pulverization step.
- the pulverized product is sieved.
- the desired particulate water-absorbing agent can be obtained by selecting particles having a desired particle size (preferably, a mass average particle size of 200 to 800 ⁇ m).
- a desired particle size preferably, a mass average particle size of 200 to 800 ⁇ m.
- a conventionally well-known method is employable.
- the particulate water-absorbing resin contained as fine powder in the pulverized product can be obtained as a residue.
- the method for classifying the water-absorbing resin is not particularly limited, but is disclosed in US Pat. No. 6,164,455, WO 2006/074816, WO 2008/037672, WO 2008/037673, WO 2008/037675, WO 2008/123477, and the like. Illustrated. Among these, sieving classification is particularly applied, and the number of sieves is appropriately determined in about 2 to 5 stages.
- the surface cross-linking step is a step of cross-linking the vicinity of the surface of the particulate water-absorbing resin obtained in the classification step using a surface cross-linking agent. By this step, a particulate water-absorbing agent is obtained.
- the particulate water-absorbing resin is a water-swellable cross-linked polymer and has a cross-linked structure inside (particles), but the water-absorbing resin (particles) used in the present invention is further surface cross-linked and cross-linked on the surface or in the vicinity of the surface. It is preferable that the density is higher than the inside.
- the surface cross-linking of the water-absorbent resin may be (1) surface cross-linking with an organic surface cross-linking agent and / or a water-soluble inorganic surface cross-linking agent exemplified as a surface cross-linking agent described later, and (2) a cross-linkable monomer on the surface. May be surface-crosslinked by cross-linking polymerization (for example, disclosed in US Pat. No.
- the particulate water-absorbing resin is capable of increasing the absorption capacity under pressure (AAP) of the particulate water-absorbing agent, in other words, the pressure-absorbing power, by virtue of surface crosslinking in the vicinity of the surface.
- AAP absorption capacity under pressure
- surface cross-linking means that the surface of the particulate water-absorbent resin or a region near the surface is chemically or physically modified to be surface cross-linked.
- chemical modification is a chemical modification that can react with functional groups present in the vicinity of the particle surface, particularly carboxyl groups, such as polyhydric alcohols, polyhydric glycidyl compounds, It means a state where surface cross-linking is performed by an organic surface cross-linking agent having two or more functional groups such as a polyvalent amine.
- surface cross-linking by ion bonding of surface carboxyl groups with a polyvalent metal such as trivalent aluminum is included.
- the form of bonding in the surface crosslinking is not limited.
- the particulate water-absorbing resin whose surface or the vicinity of the surface is crosslinked is the particulate water-absorbing agent.
- a surface crosslinking method using a surface crosslinking agent will be described.
- a conventionally known surface crosslinking agent is preferably used.
- Polyvalent isocyanate compounds 1,2-ethylenebisoxazoline and other polyvalent isocyanate compounds Xazoline compounds; 1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1 , 3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 1,3-dioxane-2-one, 4- Alkylene carbonate compounds such as methyl-1,3-dioxane-2-one, 4,6-dimethyl-1,3-dioxane-2-one, 1,3-dioxopan-2-one; epichlorohydrin, epibrom Haloepoxy compounds such as hydrin and ⁇ -methylepichlorohydrin; polyvalent metallization such as hydroxides or chlorides such
- oxazolidinone compound of (exemplified in U.S. Pat. No. 6,559,239); oxetane compound (exemplified in US Patent Application Publication No. 2002/72471); cyclic urea compounds; and the like.
- these surface cross-linking agents at least one compound selected from the group consisting of polyhydric alcohol compounds, epoxy compounds, polyvalent amine compounds and their salts, alkylene carbonate compounds and oxazolidinone compounds is preferable from the viewpoint of physical properties. .
- one or more dehydrating esterification reactive surface crosslinking agents selected from oxazolidinone compounds, alkylene carbonate compounds, polyhydric alcohol compounds, and oxetane compounds are preferable for surface crosslinking.
- a water-absorbing agent having high physical properties can be obtained.
- physical properties may be fluctuated, but the present invention can be suitably applied to solve such problems.
- at least one selected from a polyhydric alcohol having 2 to 10 carbon atoms and an oxetane compound having 2 to 10 carbon atoms is more preferable.
- Polyhydric alcohols having 3 to 8 carbon atoms are particularly preferred.
- These surface cross-linking agents may be used alone or in combination of two or more in consideration of reactivity.
- the surface cross-linking step may be performed twice or more in consideration of the effect. In that case, the same surface cross-linking agent as the first time may be used for the surface cross-linking agent used for the second time or later.
- a surface cross-linking agent different from the first surface cross-linking agent may be used.
- surface cross-linking with a monomer containing a cross-linking agent Japanese Patent No. 2530668
- surface cross-linking with a radical initiator JP-A 63-99211
- surface cross-linking with a radical initiator and a monomer A method (US Patent Application Publication No.
- the usage-amount of the said surface crosslinking agent is 0.001 mass part or more and 5 mass parts or less with respect to 100 mass parts of solid content of a water absorbing resin, Furthermore, 0.01 mass part or more and 4 mass parts or less, Furthermore, 0 It is preferable that they are 0.05 mass part or more and 3 mass parts or less.
- an organic substance lactic acid, citric acid, p-toluenesulfonic acid
- an acid substance such as an inorganic acid (phosphoric acid, sulfuric acid, sulfurous acid) or a salt thereof
- Base substances such as caustic soda and sodium carbonate, and polyvalent metal salts such as aluminum sulfate are used in an amount of 0 to 10% by weight, more preferably 0 to 5% by weight, particularly preferably 0 to 1% by weight, based on the water-absorbing resin. May be.
- the amount of the above-mentioned surface cross-linking agent used depends on the selected surface cross-linking agent, the combination of the surface cross-linking agents, and the like, but is 0.1% relative to 100 parts by weight of the solid content of the particulate water absorbent resin. 001 to 10 parts by weight is preferable, and 0.01 to 5 parts by weight is more preferable.
- the surface cross-linking agent within this range, the cross-linking density in the vicinity of the surface of the particulate water-absorbing agent can be made higher than that inside.
- the amount of the surface cross-linking agent used exceeds 10 parts by weight, it is not preferable because it is not economical and the supply of the cross-linking agent is excessive in forming an optimal cross-linking structure for the particulate water-absorbent resin.
- the amount of the surface cross-linking agent used is less than 0.001 part by weight, it is not preferable because a sufficient improvement effect cannot be obtained in improving the performance of the particulate water-absorbing agent such as the water absorption capacity under pressure.
- water as a solvent in mixing the particulate water-absorbing resin and the surface crosslinking agent.
- the amount of water used depends on the type of water-absorbing resin, the particle size of the particulate water-absorbing resin, the water content, etc., but exceeds 0 part by weight with respect to 100 parts by weight of the solid content of the particulate water-absorbing resin. It is preferably 20 parts by weight or less, and more preferably in the range of 0.5 to 10 parts by weight.
- a hydrophilic organic solvent may be used in combination as necessary.
- hydrophilic organic solvent examples include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and t-butyl alcohol; ketones such as acetone.
- Ethers such as dioxane and tetrahydrofuran; amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide and the like.
- the amount of the hydrophilic organic solvent used depends on the type of the water-absorbing resin, the particle diameter of the particulate water-absorbing resin, the water content, etc., but is 0 to 20 with respect to 100 parts by weight of the solid content of the particulate water-absorbing resin. Part by weight or less is preferable, and a range of 0 to 10 parts by weight or less is more preferable.
- a method in which the surface crosslinking agent solution containing the surface crosslinking agent and the solvent is mixed by being sprayed or dropped onto the particulate water-absorbing resin by spraying is preferable, and a mixing method by spraying is more preferable.
- the size of the droplets to be sprayed is preferably in the range of 0.1 to 300 ⁇ m, more preferably in the range of 0.1 to 200 ⁇ m, in terms of average particle diameter.
- the particulate water-absorbing resin and the surface cross-linking agent solution are mixed using a mixing device.
- the mixing device has a large mixing force in order to mix the two uniformly and reliably.
- a mixing apparatus include a cylindrical mixer, a double wall conical mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, a double-arm kneader, and a pulverizing mold.
- a kneader, a rotary mixer, an airflow mixer, a turbulator, a batch-type Redige mixer, a continuous-type Redige mixer and the like are suitable.
- the mixture of the particulate water-absorbing resin and the surface cross-linking agent solution can be subjected to surface cross-linking even at room temperature.
- further heat treatment is performed to crosslink the vicinity of the surface of the particulate water-absorbing resin.
- the treatment temperature is preferably 80 ° C. or higher although it depends on the selected surface cross-linking agent. When the treatment temperature is less than 80 ° C., the heat treatment takes time, so that the productivity is lowered and uniform surface crosslinking is not achieved.
- the treatment temperature (heat medium temperature or material temperature / particularly the heat medium temperature) is preferably within the range of 100 to 250 ° C., more preferably within the range of 150 to 250 ° C. (especially the dehydration esterification reactivity described above). Preferred for surface cross-linking agents).
- the heating time is preferably in the range of 1 minute to 2 hours. Preferred examples of the combination of heating temperature and heating time are 180 ° C. for 0.1 to 1.5 hours and 200 ° C. for 0.1 to 1 hour.
- a known dryer or heating furnace is used as the heating device for performing the above heat treatment.
- a conduction heat transfer type, radiation heat transfer type, hot air heat transfer type, dielectric heating type dryer or heating furnace is suitable.
- belt type, groove type stirring type (for example, paddle dryer), screw type, rotary type, disk type, kneading type, fluidized bed type, air flow type, infrared type, electron beam type dryer or heating furnace Is mentioned.
- the heat treatment can be performed in a stationary state or under stirring.
- the mixture may be heated in a mixing apparatus in which the particulate water-absorbing resin and the surface cross-linking agent are mixed to complete the surface cross-linking, for example, a biaxial groove.
- the mixture may be charged into a mold stirring and drying apparatus, and the mixture may be heated to complete surface crosslinking.
- the cooling step is an optional step after the surface cross-linking.
- the particulate water-absorbing agent heated in the above-mentioned surface cross-linking step and cross-linked in the vicinity of the surface is cooled before being introduced into the granulating step described later. It is a process to be performed.
- the cooling device used in this cooling step is not particularly limited, but the cooling device is not particularly limited, but is exemplified in U.S. Pat. No. 6,378,453, for example, 50 ° C. or less inside the inner wall or other heat transfer surface.
- a twin-screw agitation dryer or the like through which cooling water of 20 ° C. to 35 ° C. is passed can be used.
- the particulate water-absorbing agent is preferably cooled to 50 to 70 ° C.
- the surface cross-linking of the particulate water-absorbing resin may be performed at room temperature. In this case, since the particulate water-absorbing agent obtained by surface cross-linking is not heated, this cooling step may not be performed.
- the adding step may be an independent step different from the other steps, or may be performed simultaneously with the other steps in other steps than the adding step.
- the additive step is preferably performed after the polymerization step, more preferably after the drying step, for example, in the cooling step or other steps.
- the additive to be added in the addition step include the following (A) deodorizing component (preferably a plant component), (B) a polyvalent metal salt, (C) inorganic particles ((D) a composite hydrous oxide. ), (E) and other additives.
- the amount of the above (A) to (D) and (E) to be used varies depending on the purpose and additional function, but usually, as one kind of addition amount, 0.001 to 10 with respect to 100 parts by mass of the water absorbent resin. It is in the range of parts by weight, preferably 0.001-5 parts by weight, more preferably 0.002-3 parts by weight. Usually, when this addition amount is less than 0.001 part by mass, sufficient effects and additional functions due to the additive cannot be obtained, and when this addition amount exceeds 10 parts by mass, an effect commensurate with the addition amount cannot be obtained. Or, the water absorption performance is reduced.
- the particulate water-absorbing agent obtained by the production method of the present invention can contain a deodorant component, preferably a plant component, in order to exhibit deodorant properties.
- the plant component is preferably at least one compound selected from polyphenols, flavones and the like, and caffeine, and is preferably at least one compound selected from tannin, tannic acid, pentaploid, gallic acid and gallic acid. More preferably.
- plants containing plant components that can be added to the particulate water-absorbing agent include, for example, camellia plants, camellia trees, mokoku, etc. , Corn, wheat, etc., and for Rubiaceae plants, coffee and the like.
- Examples of the plant component used in the present invention include extracts (essential oils) extracted from plants, plants themselves, plant meals and extracted meals produced as a by-product in the manufacturing process in the plant processing industry and food processing industry, but are particularly limited. Not.
- the particulate water-absorbing agent obtained by the production method of the present invention contains a polyvalent metal salt for the purpose of improving liquid permeability and powder fluidity, particularly powder fluidity during moisture absorption. Can be blended. Preferred amounts of this polyvalent metal salt are as described above. Preferred polyvalent metal salts include organic acid polyvalent metal salts and inorganic polyvalent metal salts.
- Specific inorganic polyvalent metal salts include, for example, aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium aluminum bissulfate, sodium aluminum bissulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate, chloride
- Examples include calcium, calcium nitrate, magnesium chloride, magnesium sulfate, magnesium nitrate, zinc chloride, zinc sulfate, zinc nitrate, zirconium chloride, zirconium sulfate, and zirconium nitrate.
- the salt which has these crystal waters also from the point of solubility with absorption liquids, such as urine.
- aluminum compounds among which aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium aluminum bissulfate, sodium aluminum bissulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate are preferred, aluminum sulfate Particularly preferred are water-containing crystal powders such as aluminum sulfate 18 hydrate and aluminum sulfate 14-18 hydrate. These may be used alone or in combination of two or more.
- the polyvalent metal salt is preferably used in a solution state, particularly preferably in an aqueous solution state, from the viewpoint of handling properties and miscibility with a particulate water-absorbing agent.
- polyvalent metal salt of organic acid used and the mixing method thereof are exemplified in US Pat. No. 7,282,262, for example.
- polyvalent metal salts of organic acids having 7 or more carbon atoms in the molecule that can be used in the present invention include metal salts other than alkali metal salts such as fatty acids, petroleum acids, and polymer acids.
- organic acid constituting the polyvalent metal salt of the organic acid include caproic acid, octylic acid, octic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, etc.
- Fatty acids Fatty acids; petroleum acids such as benzoic acid, myristic acid, naphthenic acid, naphthoic acid, naphthoxyacetic acid; polymer acids such as poly (meth) acrylic acid, polysulfonic acid, etc., but organic acids having a carboxyl group in the molecule
- it is a fatty acid such as caproic acid, octylic acid, octynic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, bovine fatty acid, castor fatty acid.
- fatty acids having no unsaturated bond in the molecule such as caproic acid, octylic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, and stearic acid. Most preferably, it is a long chain fatty acid having 12 or more carbon atoms and no unsaturated bond in the molecule, such as lauric acid, myristic acid, palmitic acid, and stearic acid.
- the inorganic polyvalent metal salt include aluminum sulfate, calcium chloride, calcium sulfate, magnesium chloride, zinc chloride, and aluminum chloride.
- the particulate water-absorbing agent obtained by the production method of the present invention can be blended with inorganic particles, particularly water-insoluble inorganic particles, in order to prevent blocking during moisture absorption.
- inorganic particles used in the present invention include metal oxides such as silicon dioxide and titanium oxide; silicic acid (salts) such as natural zeolite and synthetic zeolite; kaolin; talc; clay; bentonite and the like. It is done. Of these, silicon dioxide and silicic acid (salt) are more preferred, and silicon dioxide and silicic acid (salt) having an average particle size of 0.001 to 200 ⁇ m measured by the Coulter counter method are more preferred.
- the particulate water-absorbing agent obtained by the production method of the present invention exhibits excellent moisture-absorbing fluidity (powder fluidity after water-absorbing resin or water-absorbing agent absorbs moisture), and In order to exhibit an excellent deodorizing function, a composite hydrous oxide containing zinc and silicon or a composite hydrous oxide containing zinc and aluminum can be blended.
- the particulate water-absorbing agent obtained by the production method of the present invention includes, for example, a disinfectant, an antibacterial agent, a fragrance, various inorganic powders, a foaming agent, a pigment, a dye, Hydrophilic short fibers, fertilizers, oxidizing agents, reducing agents, aqueous salts, and the like can be added as long as the effects of the present invention are not impaired.
- the addition amount of the other additives can be, for example, 30 parts by mass or less, and further 10 parts by mass or less with respect to 100 parts by mass of the particulate water-absorbing agent. By this addition, various functions can be imparted.
- the particulate water-absorbing agent used in the present invention may contain a chelating agent.
- the step of mixing the chelating agent is not particularly limited, but it is preferable to mix the chelating agent with the monomer or monomer solution.
- the chelating agent include various polymeric chelating agents and non-polymeric chelating agents, preferably acid group-containing non-polymeric chelating agents, more preferably phosphoric acid group-containing non-polymeric chelating agents or carboxylic acid groups.
- a non-polymer chelating agent containing 2 to 100, more preferably 2 to 50, especially 2 to 10 such acid groups in the molecule is preferably used.
- aminocarboxylic acid and aminophosphoric acid which have nitrogen in a chelating agent are preferable.
- iminodiacetic acid, hydroxyethyliminodiacetic acid, nitrilotriacetic acid, nitrilotripropionic acid ethylenediaminetetraacetic acid, hydroxyethylenediaminetriacetic acid, hexamethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid Trans-1,2-diaminocyclohexanetetraacetic acid, bis (2-hydroxyethyl) glycine, diaminopropanoltetraacetic acid, ethylenediamine-2-propionic acid, glycol etherdiaminetetraacetic acid, bis (2-hydroxybenzyl) ethylenediaminediacetic acid and Aminocarboxylic acid metal chelating agents such as these salts; ethylenediamine
- (G) Surfactant As the surfactant, anionic surfactants such as fatty acid salts and higher alcohol sulfates, and sorbitan such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, etc. Cationic surfactants and amphoteric surfactants such as alkylamine salts such as fatty acid esters, coconut amine acetate, and stearylamine acetate are exemplified. In addition, surfactants described in US Pat. No. 6,107,358 can be applied to the present invention. The amount of the surfactant used in the particulate water-absorbing agent is preferably 10 to 1000 ppm by mass.
- the above (B), (C) and (G) can be suitably used as a surface treatment agent.
- the additives (A) to (G) may be added as an aqueous solution or an aqueous dispersion.
- the additive powder preferably a powder of 300 ⁇ m or less
- the surface treatment means that the surface of the water absorbent resin or a region near the surface is chemically or physically modified.
- the surface treatment is a concept including the surface cross-linking described above.
- the chemical modification is a compound capable of reacting with a functional group present in the vicinity of the particle surface, particularly a carboxyl group, such as a polyhydric alcohol or a polyvalent glycidyl compound. It can mean a state where surface cross-linking is performed by an organic surface cross-linking agent having two or more functional groups such as polyvalent amine.
- surface cross-linking by ionic bonding of surface carboxyl groups with a polyvalent metal such as trivalent aluminum is also included in the surface treatment. The form of bonding in the surface treatment is not limited.
- physical modification means that the surface of the water-absorbent resin or the vicinity of the surface is not simply in the form of a chemical bond such as a covalent bond or an ionic bond with the water-absorbent resin and is simply modified by physical attachment. Indicates. Such a state is also included in the surface treatment in the present application. For example, the state coated with the polyhydric alcohol described above or the state coated with the water-soluble polyvalent metal salt without chemical bonding is a surface-treated state. Simply, chemical modification indicates a state of modification accompanied by some chemical bond, and physical modification means physical coating or attachment without chemical bond.
- a polyvalent metal salt is preferable as an additive for improving liquid permeability.
- the polyvalent metal salt is preferably mixed after the addition.
- the mixing apparatus include a cylindrical mixer, a screw mixer, a screw extruder, a turbulator, a nauter mixer, a V mixer, a ribbon mixer, a double-arm kneader, and fluid mixing.
- the polyvalent metal salt is preferably mixed with the water absorbent resin particles as an aqueous solution.
- the size of the aqueous solution droplets can be adjusted as appropriate.
- the concentration of the polyvalent metal salt in the aqueous solution is 50% or more of the saturated concentration.
- the concentration is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, and particularly preferably 90% or more.
- the upper limit of the concentration of the polyvalent metal salt in the aqueous solution is a saturated concentration, but a dispersion exceeding the saturated concentration may be used.
- the temperature of the aqueous solution is appropriately adjusted in the range below the boiling point for adjusting the solubility and viscosity, but usually mixed at about room temperature (20 to 30 ° C.).
- the particulate water-absorbing agent after the cooling step may contain agglomerates having a large particle size, although the particle size is adjusted.
- This agglomerate can be generated mainly when the surface cross-linking agent is mixed or during the surface cross-linking reaction.
- This granule sizing step is a step in which the particle size is readjusted, and the aggregates are crushed and classified.
- the sizing method is not particularly limited, but is exemplified in US Pat. No. 7,347,330, US Patent Application Publication No. 2005-0113252, and the like.
- count of this crushing process and a classification process are not specifically limited.
- a classification treatment is first performed on the particulate water-absorbing agent.
- a classification device such as a vibration sieve or an airflow classifier can be used.
- an agglomerate having a large particle diameter can be obtained by using a sieve having a large opening.
- the fine powder with the small particle diameter is removed by using the sieve which has a small opening.
- the aggregate obtained by this classification treatment is subjected to crushing treatment.
- the particles constituting the aggregate can be broken up into individual particles to obtain a particulate water-absorbing agent as primary particles.
- a knife cutter type crusher is used for this crushing treatment.
- the classification process is performed again on the pulverized product obtained by the pulverization process.
- a particulate water-absorbing agent having a desired particle size preferably, a mass average particle size of 200 to 800 ⁇ m
- the particulate water-absorbing agent contained as fine powder can be obtained as a residue.
- the granulation step is a step of obtaining granulated particles by adding an aqueous liquid to the water-absorbent resin containing fine powder or fine powder generated in each of the above steps. All fine powders obtained in the production of the particulate water-absorbing agent can be subjected to this granulation step.
- the granulated particles are composed of a plurality of fine powders.
- the average particle diameter of the granulated particles is 20 mm or less, preferably 0.3 to 10 mm, more preferably 0.35 to 5 mm.
- the granulated particles are put into the drying step and dried in the presence of the polymer gel. When a huge gel-like material is obtained by mixing the fine powder and the aqueous liquid, it is necessary to be further subjected to the above-described drying step and pulverization step.
- the resulting granulated product is a granulated particle.
- the granulated particles preferably have a moisture content of 75% by weight or less, more preferably 70% by weight or less, and even more preferably 65% by weight or less from the viewpoint of drying load. (The lower limit exceeds 0% by weight, preferably 5% by weight or more). When the moisture content of the granulated particles is extremely higher than that of the polymer gel, drying may be partially incomplete when the granulated particles and the polymer gel coexist and are dried.
- the temperature of the fine powder is preferably 35 ° C. or more, more preferably 40 to 100 ° C., and more preferably 45 to 80 ° C. from the viewpoints of mixing with the aqueous liquid and drying efficiency. More preferably.
- the temperature of the fine powder can be appropriately adjusted by keeping, heating, cooling, etc. in each process of producing the particulate water-absorbing agent.
- the aqueous liquid may have an additive dissolved in a solvent.
- This additive is at least one additive selected from the group consisting of a thermal decomposition type radical polymerization initiator, an oxidizing agent and a reducing agent for reducing the amount of residual monomer.
- the solvent of the aqueous liquid is not particularly limited, but for example, water, hydrophilic organic solvents (for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, etc.
- the aqueous liquid preferably contains water in an amount of preferably 90 to 100% by weight, more preferably 99 to 100% by weight, and particularly preferably only water.
- the aqueous liquid may contain a small amount of other additives such as a crosslinking agent, a chelating agent and a surfactant as long as the effects of the present invention are not impaired.
- the surface crosslinking agent as described above can be used as the crosslinking agent.
- the thermal decomposition type radical polymerization initiator that can be used as the additive
- the thermal decomposition type initiator exemplified in the polymerization step can be preferably used as well.
- peroxides are preferable, and persulfates such as sodium persulfate are particularly preferable.
- These thermal decomposition type radical polymerization initiators may be only one kind or two or more kinds.
- the oxidizing agent is not particularly limited as long as it can react with the monomer when the granulated particles and the polymer gel coexist and are dried.
- the oxidizer examples include inorganic oxidizers such as chlorate, bromate, chlorite, and hypochlorite, and persulfates and peroxysulfates exemplified as the thermal decomposition type radical polymerization initiator.
- examples thereof include inorganic peroxides such as hydrogen oxide, t-butyl peroxide, and benzoyl peroxide, and organic peroxides. Among these, persulfate and hydrogen peroxide are preferable, and persulfate is particularly preferable.
- These oxidizing agents may be only one type or two or more types.
- the reducing agent is not particularly limited, and may be an organic reducing agent or an inorganic reducing agent.
- an inorganic reducing agent is preferable, and sulfur-based, phosphorus-based and nitrogen-based reducing agents are particularly suitable.
- the reducing agents exemplified in the polymerization step can be preferably used in the same manner.
- sulfur-based reducing agents in particular, sulfites, hydrogen sulfites, pyrosulfites, and dithionites are preferable, and sodium salts, potassium salts, and ammonium salts are preferable.
- sodium sulfite and sodium hydrogen sulfite are particularly preferable.
- These reducing agents may be only one kind or two or more kinds.
- a thermal decomposition type radical polymerization initiator is preferable, and it is particularly preferable to use a persulfate as an additive since an excellent residual monomer reducing effect can be exhibited.
- the content of the additive in the aqueous liquid is not particularly limited, but is preferably 0.0001 to 1% by weight with respect to the fine powder. If the amount is less than 0.0001% by weight, the residual monomer may not be sufficiently reduced. On the other hand, if the amount exceeds 1% by weight, the final particulate water-absorbing agent obtained after drying may be colored.
- the amount of the aqueous liquid used is not particularly limited, but is preferably 25 parts by weight or more and 280 parts by weight or less with respect to 100 parts by weight of the fine powder. More preferably, it is 200 weight part or less, More preferably, it is 150 weight part or less.
- the amount of the aqueous liquid used exceeds 280 parts by weight, a large gel-like product integrated with a high water content is obtained, and it becomes difficult to dry and grind the gel-like product. In particular, a great load is applied to drying.
- the amount of the aqueous liquid used is less than 25 parts by weight, the granulation strength is insufficient, and it may not be possible to exhibit excellent characteristics in the final product, and the mixing becomes uneven and the structure is not uniform. The grain may be difficult.
- the fine powder and the aqueous liquid may be mixed.
- the gel-like material is kneaded as a lump, it is possible to avoid the problem that the main water chain is broken or entangled and the particulate water-absorbing agent itself deteriorates.
- the temperature at the time of heating the aqueous liquid is usually 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher.
- the upper limit of the temperature is not more than the boiling point of the aqueous liquid, and the boiling point may be variously adjusted by changing the addition of salts or other solvents, pressure (decompression or pressurization), or the like. Since there is no significant change even when the temperature exceeds 100 ° C, the aqueous liquid is usually heated at 100 ° C or less.
- the additive when the aqueous liquid is heated in advance, the additive is separately made into an aqueous liquid having a relatively high concentration at room temperature or under cooling, and this aqueous liquid is heated immediately before mixing with the fine powder. It is preferably mixed with a relatively large amount of the remaining aqueous liquid.
- the fine powder itself is also heated.
- the temperature at the time of heating this fine powder is also usually 40 ° C. or higher, preferably 50 ° C. or higher. Since this temperature does not change greatly even when the temperature exceeds 100 ° C., the fine powder is usually heated at 100 ° C. or less.
- the means in particular is not restrict
- the heated aqueous liquid and fine powder are mixed at a high speed in the preferred embodiment of the granulation.
- High-speed mixing means that the time until the mixing of the aqueous liquid and the fine powder is completed and the granulated particles are generated is a short time. That is, the time from the contact point of the aqueous liquid and the fine powder to the generation of the granulated particles, in other words, the mixing time is short.
- the mixing time is preferably 3 minutes or less, more preferably 1 minute or less, and most preferably from 1 second to 60 seconds.
- the mixing time is long, the additive contained in the aqueous liquid is decomposed before the resulting granulated particles are subjected to the drying process together with the polymer gel, and a sufficient amount is obtained in the drying process.
- the additive may not be present.
- the performance of the particulate water-absorbing agent may be reduced, such as an increase in water-soluble content of the particulate water-absorbing agent obtained after completion of mixing or a reduction in the water absorption capacity under pressure.
- the amount of the granulated particles used when recycling the granulated particles is preferably 5 to 40% by mass with respect to the polymer gel (100% by mass) obtained by the polymerization step. More preferably, it is 30 mass%.
- the filling step is a step in which the particulate water-absorbing agent produced through at least a part of the above steps is filled in the filling member.
- the “filling member” is a member to be filled for filling the particulate water-absorbing agent produced as described above. Details of this filling step will be described later.
- the particulate water-absorbing agent filled in the filling member is shipped after a predetermined inspection, for example.
- the filling method of the present invention is suitably used when continuously produced.
- the present invention is preferably a product obtained continuously at a production scale of 500 kg / hour or more, more preferably 1 ton / hour or more, particularly preferably 1.5 ton / hour or more (upper limit is about 15 ton / hour).
- this invention is used suitably as a filling method of the water absorbing agent containing a polyvalent metal salt, inorganic particles, etc.
- the particle shape of the particulate water-absorbing agent or particulate water-absorbing resin according to the present invention is not limited.
- the particle shape spherical, almost spherical, irregularly crushed (which is a pulverized product), rod, polyhedron, sausage (eg, US Pat. No. 4,973,632), and particles having wrinkles (eg, US Pat. No. 5,744,564) ) And the like.
- They may be primary particles, granulated particles, or a mixture of primary particles and granulated particles.
- the particles may be foamed porous.
- primary particles of irregularly crushed shape or granulated materials thereof are used.
- FIG. 1 is a diagram showing an example of a filling device 2 that can be used in the present invention.
- the filling device 2 includes a hopper scale 4, an intermediate portion 6 provided with a heat retaining device, a discharge control portion 8 provided with a butterfly damper, a placement portion 10, a vibration generator 12, and a frame 14.
- the filling device 2 is configured such that a filling member 16 can be disposed.
- a flexible container bag is used as the filling member 16.
- the flexible container bag is indicated by a two-dot chain line. Examples of the filling member other than the flexible container bag include a container, a silo, and a paper bag.
- a simple moving silo (silo) is also exemplified.
- a silo exemplified in International Publication No. WO 2005/077786 can be applied to the filling member according to the present invention.
- the capacity of the filling member 16 is not limited. Usually, the capacity of the filling member 16 is determined in accordance with the total filling mass [W2 (kg)], and is usually 700 liters to 2500 liters, preferably 1000 liters to 2000 liters.
- the flexible container bag as the filling member 16 preferably has a multilayer structure of two or more layers.
- a preferred flexible container bag has an inner layer and an outer layer.
- the material constituting the inner layer is not particularly limited, but is preferably a material that can prevent leakage of the particulate water-absorbing agent.
- any material having moisture resistance can be adopted.
- polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), an aluminum laminate material, an aluminum vapor deposition material, etc. can be mentioned preferably.
- the material constituting the outer layer is not particularly limited, but a woven fabric having excellent strength is preferably used.
- the material which comprises an outer layer will not be restrict
- the flexible container bag 16 is placed on a vibrating body (pallet 26). By being placed, the entire flexible container bag 16 is likely to vibrate. By vibrating the entire filling member in this way, the amount of air existing between the particulate water-absorbing agents to be filled can be efficiently removed, and the uneven distribution of the particulate water-absorbing agent particle diameter during filling can also be suppressed. . Therefore, the particulate water-absorbing agent obtained by such a method can stably maintain excellent absorption characteristics such as absorption capacity under pressure (AAP) and liquid permeability (SFC).
- AAP absorption capacity under pressure
- SFC liquid permeability
- the opening of the flexible container bag 16 is attached to the discharge port 18 of the filling device 2.
- the flexible container bag 16 has a suspension belt 20, and this suspension belt 20 is suspended by a suspension portion 22 provided on the filling device 2 side. The particulate water-absorbing agent falls into the flexible container bag 16 due to gravity.
- the hopper scale 4 can automatically weigh a set amount of the particulate water-absorbing agent (for example, 500 kg) and discharge the particulate water-absorbing agent of the certain mass downward.
- the particulate water-absorbing agent discharged from the hopper scale 4 is discharged from the discharge port 18 through the intermediate portion 6 and the discharge control portion 8 and flows into the flexible container bag 16.
- the form of the discharge control unit 8 is not particularly limited.
- the discharge control unit 8 can control the discharge timing of the particulate water-absorbing agent by opening and closing a butterfly damper.
- the placement unit 10 is configured so that the flexible container bag 16 can be placed thereon. Moreover, the mounting part 10 is arrange
- the vibration mode of the placement unit 10 is not particularly limited.
- the placement unit 10 is arranged in a state where it can vibrate in the horizontal direction; the placement unit 10 is arranged in a state where it can vibrate in the vertical direction; and the placement unit 10 is arranged in both the horizontal direction and the vertical direction. It is preferable to arrange in a state where it can vibrate.
- the placement unit 10 has an upper surface 24.
- the upper surface 24 is preferably a flat surface.
- the particulate water-absorbing agent obtained by such a method can stably maintain excellent absorption characteristics such as absorption capacity under pressure (AAP) and liquid permeability (SFC). Above the placement unit 10, there is a space that allows the flexible container bag 16 to be placed.
- AAP absorption capacity under pressure
- SFC liquid permeability
- the vibration generator 12 is a vibration generation source.
- the vibration generator 12 is not limited, but an electric vibration generator 12 is preferable, and a known vibration motor is more preferable.
- the vibration motor is a motor that generates vibration by rotating an eccentric portion.
- a low frequency vibration motor is used as the vibration motor.
- trade name “KM170-2PA” manufactured by EXEN Corporation may be mentioned.
- the present invention can also be applied to a vibration device exemplified in JP-A-10-034084.
- the vibration generated from the vibration generator 12 is directly transmitted to the placement unit 10.
- the placement unit 10 is vibrated by the vibration generator 12.
- the vibration trajectory is substantially circular. This vibration includes a vertical vibration component and a horizontal vibration component.
- a pallet 26 is placed on the placement unit 10, and the flexible container bag 16 is placed on the pallet 26.
- the vibration of the placement unit 10 is transmitted to the pallet 26.
- the pallet 26 vibrates in the same manner as the placement unit 10.
- the filling method of this embodiment includes a contact process, a supply process, and a vibration process.
- the contact step is a step of bringing the filling member 16 for filling the particulate water-absorbing agent into contact with the vibrating body.
- the vibrating body is a pallet 26.
- the vibrating body may be, for example, the placement unit 10 or the vibration generator 12 itself.
- the vibrating body is in contact with the bottom surface of the filling member 16, but may be in contact with a portion other than the bottom surface.
- it is preferable that the vibrating body is in contact with the bottom surface of the filling member 16 as in the present embodiment, and the vibrating body is placed on the front surface of the bottom surface of the filling member 16. It is more preferable to make it contact.
- the flexible container bag 16 is arranged in a state that is easy to vibrate. That is, it is preferable that the constraint of the flexible container bag 16 is minimized.
- the suspension belt 20 preferably has a structure that does not substantially restrain the vibration of the flexible container bag 16. Moreover, although the opening part of the flexible container back
- the supplying step is a step of supplying the particulate water-absorbing agent to the filling member 16.
- the supplying step may be performed once. That is, in the supply step, the entire amount of the particulate water-absorbing agent to be supplied may be supplied without interruption. Further, as will be described later, this supplying step may be performed in a plurality of times. That is, in the supplying step, after supplying the particulate water-absorbing agent having the mass A1, the supply may be temporarily interrupted, and then the remaining mass A2 may be supplied. In this case, the mass filled in the filling member 16 (the total amount of the particulate water-absorbing agent to be supplied) is (A1 + A2).
- the supply of the particulate water-absorbing agent in this supplying step is preferably performed by gravity acting on the particulate water-absorbing agent. That is, this supply is preferably performed by the natural fall of the particulate water-absorbing agent.
- the particulate water-absorbing agent dropped by a single supply process tends to form an unevenly distributed layer in which small particles are unevenly distributed upward and large particles are unevenly distributed downward.
- this uneven distribution layer becomes a multiple layer, and therefore, the uneven distribution portions of large particles and the uneven distribution portions of small particles can be alternately stacked. Therefore, uneven distribution of the particle diameter can be reduced by using a plurality of supply steps.
- the number of times of supplying the particulate water-absorbing agent in the case where the supplying step is performed in a plurality of times is not particularly limited, but preferably 2 to 4 times, more preferably 2 to 3 in consideration of relaxation of uneven distribution of the particle diameter. Times, particularly preferably twice.
- the supplying step is performed after the inside of the filling member 16 is filled with dry air.
- the dry air in the present application refers to a gas (air or the like) having a dew point of ⁇ 10 ° C. or lower.
- the dew point of the gas is ⁇ 100 to ⁇ 10 ° C.
- the temperature is ⁇ 10 to 100 ° C., preferably 0 to 50 ° C., preferably 10 to 40 ° C., more preferably about 20 to 30 ° C. (room temperature). .
- the vibration step is a step of vibrating the particulate water-absorbing agent present inside the filling member 16 by vibrating the vibrating body. It has been found that this vibration process can suppress the amount of air existing between the particulate water-absorbing agent and suppress uneven distribution of particle diameters.
- the particulate water-absorbing agent falls on the filling member by gravity. At the time of the fall, air resistance acts. It is considered that this air resistance tends to cause particles having a small particle size to be on the upper side and particles having a large particle size to be on the lower side. For this reason, it is considered that the particulate water-absorbing agent is likely to be filled in a state where the particle diameter is larger toward the lower side. It has been found that the uneven distribution of the particle diameter can be suppressed by the vibration process. It was found that a part of the fine powder concentrated on the surface layer moves downward along with the vibration, whereby uneven distribution of the particle diameter can be suppressed.
- the filling contains air. That is, air exists between the particulate water-absorbing agents (particles) of the packing. When there is a lot of air between the particles, the packing density of the entire packing is lowered.
- the “packing density” is the mass of the particulate water-absorbing agent per unit volume. When the filling density is low, the apparent filling volume becomes large, but the filling amount of the particulate water-absorbing agent itself is small. That is, when the packing density is low, the mass of the particulate water-absorbing agent that can be filled in the filling member having a certain capacity is reduced. In this case, the transportation efficiency can be reduced.
- the present invention also relates to polyvalent metal salts such as aluminum sulfate, hydroxides (particularly salts) and inorganic particles, particularly water-insoluble inorganic fine particles (for example, amorphous silica such as Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.)). ), And can be more effective in a particulate water-absorbing agent containing a polyamine polymer. This is considered to be due to the fact that blocking and powder fluidity are suppressed by the polyvalent metal salt, inorganic particles, and polyamine polymer, and the air release effect is improved.
- polyvalent metal salts such as aluminum sulfate, hydroxides (particularly salts) and inorganic particles, particularly water-insoluble inorganic fine particles (for example, amorphous silica such as Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.)).
- fine particles having a particle size of 300 ⁇ m or less, further 100 ⁇ m or less, and particularly 10 ⁇ m or less are added.
- the use of such polyamine polymers, particles and polyvalent metals (salt / hydroxide) imparts liquid permeability (eg, SFC) and blocking resistance (anti-caking) to the water-absorbing agent. Since powder flowability is suppressed, the filling fluctuates or decreases, but the present invention solves such problems and provides a particulate water-absorbing agent excellent in liquid permeability and blocking resistance. It can be preferably applied.
- the water-absorbing agent is more effective in the filling method when it contains a polyamine polymer, a polyvalent metal salt, and water-insoluble fine particles
- the present invention can be suitably applied.
- Polyamine polymers and water-insoluble fine particles are exemplified in WO 2006/082188, WO 2006/082189, WO 2006/082197, and the like.
- the polyamine polymer is not particularly limited, but is preferably water-soluble, has a weight average molecular weight of 3000 or more, and further has an amine value of 1 to 30 mol / kg.
- the air between the particles contains moisture (humidity). This moisture can be absorbed by the particulate water-absorbing agent. Due to this moisture absorption, the surface of the particulate water-absorbing agent swells and the particles tend to aggregate. This agglomeration can reduce the water absorption properties of the particulate water-absorbing agent.
- the improvement in the physical properties of the particulate water-absorbing agent accompanying the vibration process is thought to be partly due to the loss of air containing moisture.
- the air contained in the filler can give a change with time to the particulate water-absorbing agent. This air can alter the particulate water-absorbing agent being transported. Since the method of the present invention can efficiently remove the air present between the particulate water-absorbing agent by vibration, the present invention can suppress this change with time.
- Air contained in the packing may escape due to vibration during transportation.
- the volume of the packing (apparent volume) decreased due to vibration during transportation, and the flexible container bag could fall over during transportation.
- the present invention can effectively suppress such inconvenience.
- the temperature of the particulate water-absorbing agent in the vibration step is preferably 30 ° C or higher, and more preferably 35 ° C or higher. By increasing the temperature, aggregation of particles and adhesion of particles to the filling member are suppressed, and the vibration effect is enhanced. From the viewpoint of maintaining the physical properties of the particulate water-absorbing agent, the temperature of the particulate water-absorbing agent in the vibration step is preferably 70 ° C. or less.
- the supplying step may be performed once or may be performed N times.
- N is an integer of 2 or more.
- the vibration process is performed in a stage where a part of the plurality of supply processes is completed and in a stage where all of the plurality of supply processes are completed. And a final vibration step to be performed. It has been found that the above-described effects associated with the vibration process can be further improved by dividing the supply process into a plurality of times.
- the midway vibration process may be performed at least partly between the supply processes, and is preferably performed between the supply processes (in this case, the midway vibration process) The number is N times).
- the supply process and the vibration process may be performed simultaneously or separately. It is preferable that at least a part of the supply process and at least a part of the vibration process are performed at the same time from the viewpoint of increasing the vibration effect by applying vibration even in the middle stage of the supply process.
- the supply process before the vibration process may be performed at the same time as the vibration process.
- the supply process after the midway vibration process may be performed simultaneously with the vibration process.
- the midway vibration step may be performed simultaneously with the supply step or in a state where the supply step is stopped, but is preferably performed in a state where the supply is stopped.
- the total time Tt of vibration time is preferably 30 seconds or more, and more preferably 1 minute or more. This vibration time is measured as long as the particulate water-absorbing agent is present in the inside of the filling member, and includes the vibration time in the middle of the supply process.
- the “vibration time” is the time during which the vibration generator is operating. From the viewpoint of shortening the time required for filling, the total time Tt of vibration time is preferably 3 minutes or less.
- the number of divisions in the supply process (N described above) is preferably 4 or less, and more preferably 3 or less. From the viewpoint of enhancing the above-described effect associated with the vibration step, the number of divisions N is preferably 2 or more. The number N of divisions is particularly preferably 2 from the viewpoint of achieving both the effect of the vibration process and the efficiency of the supply process. In this application, the said effect accompanying a vibration process is also only called a "vibration effect.”
- the ratio (W1 / W2) between the mass of the particulate water-absorbing agent present in the filling member and the total filling mass is not particularly limited.
- the mass of the particulate water-absorbing agent present inside the filling member is W1 (kg), and the total filling mass is W2 (kg).
- the total filling mass W2 is the final filling mass of the particulate water-absorbing agent at the stage where all the supply processes are completed.
- the ratio (W1 / W2) is preferably 0.3 or more.
- the ratio (W1 / W2) is preferably 0.4 or more.
- the ratio (W1 / W2) is preferably 0.6 or less.
- the total filling mass W2 is preferably 500 kg or more, more preferably 700 kg or more, and more preferably 800 kg or more. When the total filling mass W2 is too large, the transport efficiency of the filled filling member may be lowered. In this respect, the total filling mass W2 is preferably equal to or less than 1500 kg, and more preferably equal to or less than 1100 kg.
- the relative humidity around the filling member is preferably 65% or less in the supply step and the vibration step, and is preferably 60% or less. Is more preferable. From the viewpoint of suppressing an excessive cost for air conditioning, the relative humidity around the filling member is preferably 30% or more. In addition, what is necessary is just to set the relative humidity of the air which exists around the filling apparatus 2 to the said value for adjustment of this relative humidity, for example. For example, the adjustment of the relative humidity can be achieved by air conditioning in a room where the filling device 2 is disposed.
- the ambient temperature around the filling member is preferably 20 ° C. to 30 ° C.
- the temperature of the particulate water-absorbing agent during the vibration process is preferably 40 ° C. to 50 ° C.
- the frequency of the vibrating body is preferably 30 Hz or more, more preferably 40 Hz or more, and even more preferably 50 Hz or more. If the frequency is too high, an excessive load may be applied to the vibrating body. From this viewpoint, the vibration frequency of the vibrating body is preferably 120 Hz or less, more preferably 100 Hz or less, and still more preferably 70 Hz or less.
- the amplitude V1 of the vibrating body in the vertical direction is preferably 1 mm or more, and more preferably 1.5 mm or more. From the viewpoint of suppressing an excessive burden on the vibrating body, the amplitude V1 of the vibrating body in the vertical direction is preferably 50 mm or less, more preferably 5 mm or less, and particularly preferably 3 mm or less. Furthermore, the excitation angle of the vibrating body in the vertical direction is preferably 0 to 180 °, more preferably 15 to 165 °, and particularly preferably 45 to 135 °.
- the amplitude V2 of the vibrating body in the horizontal direction is preferably 1 mm or more, and more preferably 1.5 mm or more. From the viewpoint of suppressing an excessive burden on the vibrating body, the amplitude V2 of the vibrating body in the horizontal direction is preferably 50 mm or less, more preferably 5 mm or less, and particularly preferably 3 mm or less. Furthermore, the excitation angle of the vibrating body in the horizontal direction is preferably 0 to 180 °, more preferably 15 to 165 °, and particularly preferably 45 to 135 °.
- the “excitation angle” refers to a mechanical vibration of the particulate water-absorbing agent, and when the filler of the particulate water-absorbing agent is three-dimensionally moved by the vibration, the particulate water-absorbing agent is moved in the vertical direction. It means the direction of vibration given when moving up and down or changing translational movement in the horizontal (horizontal) direction.
- the horizontal excitation angle (°) can be defined by the vibration angle of the center of the vibrating body observed from above, and the vertical excitation angle is observed from the side (the side where the vibration is maximum). It can be defined by the vibration angle at the vibration center.
- the mass average particle diameter (D50) defined by the JIS standard sieve classification of the particulate water-absorbing agent used in the above filling method is preferably 200 to 800 ⁇ m, more preferably 200 to 450 ⁇ m, more preferably 220 to 430 ⁇ m, More preferably, it is 250 to 400 ⁇ m. Further, when the particulate water-absorbing agent has a specific particle size distribution, the present invention can be most effective. As a preferred particle size distribution, the ratio of particles classified into upper and lower limits of 850 to 150 ⁇ m (JIS standard sieve; specified in Z8801-1 (2000)) is preferably 90 to 100% by mass, and further 95 To 100% by mass, particularly preferably 98 to 100% by mass.
- the 150 micrometer passage thing is less than 5 mass%, More preferably, less than 1 mass% is preferable.
- the 150 ⁇ m passing material is classified by the JIS standard sieve (specified in Z8801-1 (2000)).
- the particle size distribution is preferably in a specific range in order to exert the maximum effect, and the logarithmic standard deviation ( ⁇ ) is preferably 0.20 or more and 0.50 or less, more preferably 0. It is 25 or more and 0.45 or less, and still more preferably 0.30 or more and 0.40 or less. If it is out of this range, the liquid permeability and the water absorption speed may decrease.
- the logarithmic standard deviation of the particle size distribution and the mass average particle diameter are defined in US Patent Application Publication No. 2006-0204755.
- the particle shape may be spherical, substantially spherical, irregularly crushed or a granulated product (aggregate) thereof, but these particles may be a foam, but preferably the water absorption rate and fixability to pulp. To irregularly crushed shapes and granulated products thereof.
- the particulate water-absorbing agent filled in accordance with the method of the present invention can reduce the fluctuation of the content of 150 ⁇ m passing material (that is, the ratio of particles less than 150 ⁇ m) between lots. For this reason, the particulate water-absorbing agent filled according to the method of the present invention can suppress the shake of AAP and SFC that are easily affected by the presence of the particles of less than 150 ⁇ m.
- the logarithmic standard deviation of the particle size distribution of the particulate water-absorbing agent after filling by the method of the present invention through a 150 ⁇ m-passed product is preferably 0.1 or more and less than 0.29, more preferably 0.12 or more and 0.28 or less, and particularly preferably 0.15 or more and 0.25 or less.
- the water-absorbing agent contains a polyamine polymer, a polyvalent metal (salt), and water-insoluble fine particles, and particularly 0.001 to 5 parts by weight, more preferably 0.01 to The amount of 3 parts by weight can be suitably applied to the water-absorbing agent.
- the water-absorbing agent contains a polyamine polymer, a polyvalent metal (salt), and water-insoluble fine particles, these components are preferably present on the surface of the water-absorbing agent (water-absorbing agent particles).
- polyvalent metal salts such as aluminum sulfate, particularly water-soluble polyvalent metal salts are preferred as additives for the water-absorbing agent.
- the fine powder When fine powder is mixed as a particulate water-absorbing agent, the fine powder tends to be unevenly distributed on the surface layer. That is, the fine powder tends to concentrate on the surface layer of the packing due to the air resistance at the time of dropping.
- the uneven distribution of fine powder on the surface layer can be suppressed by the vibration step. Moreover, the uneven distribution of fine powder can be further suppressed by interrupting the supply process as described above.
- the present invention can be more effective in a particulate water-absorbing agent containing a polyvalent metal salt such as aluminum sulfate or inorganic particles. This is considered to be because the suppression of blocking by the polyvalent metal salt or inorganic particles can promote the relaxation of uneven distribution due to vibration.
- a polyvalent metal salt such as aluminum sulfate or inorganic particles.
- the physical properties of the particulate water-absorbing agent can be enhanced due to suppression of moisture absorption or the like. Preferred physical property values will be described below.
- the non-pressurized water absorption capacity (CRC) of the particulate water-absorbing agent that can be used in the present invention with respect to physiological saline is preferably 15 g / g or more.
- Absorbent articles such as diapers in which this particulate water-absorbing agent is used absorb body fluids well.
- a particulate water-absorbing agent having a water absorption capacity of less than 15 g / g under no pressure is used for absorbent articles such as diapers, high physical properties may not be obtained.
- the higher the water absorption capacity without pressure the higher the physical properties of the absorbent article can be obtained, so the upper limit is not particularly limited, but this water absorption capacity without pressure is from the viewpoint of difficulty in manufacturing and higher cost.
- the upper limit is considered to be about 70 g / g.
- the water absorption capacity without pressure is more preferably 15 g / g or more and 60 g / g or less, and particularly preferably 25 g / g or more and 45 g / g or less.
- CRC measurement the non-pressurized water absorption capacity (CRC) with respect to physiological saline is measured as follows. First, 0.2 g of the particulate water-absorbing agent is accurately weighed (this mass becomes the “mass of the particulate water-absorbing agent” of the following formula) and is uniformly put in a non-woven bag (60 mm ⁇ 85 mm). This bag is immersed in physiological saline adjusted to 25 ⁇ 2 ° C. for 30 minutes. After 30 minutes, the bag is lifted and drained at 250 G (250 ⁇ 9.81 m / s 2 ) for 3 minutes using a centrifuge (model K-san, model H-122 small centrifuge).
- the mass W2 (g) of the bag subjected to the draining is measured. Moreover, the same operation is performed about the bag made from the nonwoven fabric which does not contain a particulate water absorbing agent, and mass W1 (g) of this bag is measured. Then, using these masses W2 and W1, the water absorption magnification without pressure is calculated according to the following equation.
- the particulate water-absorbing agent that can be used in the present invention preferably has a water absorption capacity under pressure of physiological saline under a load of 4.8 kPa (AAP: Absorbency against Pure) of 15 g / g or more.
- An absorbent article such as a diaper using such a particulate water-absorbing agent absorbs body fluids and the like well.
- the AAP of the particulate water-absorbing agent is more preferably 20 g / g or more, still more preferably 22 g / g or more, still more preferably 23.5 g / g or more, particularly preferably 24 g / g or more, most preferably 26 g / g. That's it.
- the filling method of the present invention is effective when AAP is large.
- the vibration filling of the present invention the uneven distribution of fine powder on the surface layer portion is alleviated, and the shake of AAP due to the uneven distribution of fine powder is reduced.
- quality control is strictly required.
- the degree of stability of the quality becomes high by reducing the swing of the AAP.
- the higher the water absorption capacity under pressure the higher the physical properties of the absorbent article can be obtained, so the upper limit is not particularly limited, but the upper limit of water absorption capacity under pressure is from the viewpoint of difficulty in manufacturing and cost increase. It is considered to be about 35 g / g.
- the water absorption capacity under pressure of physiological saline under a load of 4.8 kPa is also referred to as AAP (4.8 kPa) or simply AAP in the present application.
- the particulate water-absorbing agent after filling can maintain high AAP and suppress the shake thereof.
- An absorbent article such as a diaper using such a particulate water-absorbing agent absorbs body fluids and the like well.
- the standard deviation of AAP of the particulate water-absorbing agent after filling by the method of the present invention is preferably 0.01 to 0.30, more preferably 0.15 to 0.25. Within such a range, the AAP of the particulate water-absorbing resin as the final product can be maintained at a high level.
- the absorption capacity under load (AAP) is measured as follows. First, in AAP measurement, a plastic support cylinder having an inner diameter of 60 mm is prepared. A stainless steel wire mesh is welded to the bottom of the support cylinder. The number of meshes of this wire mesh is 400 mesh (aperture 38 ⁇ m). On the other hand, a piston (cover plate) having an outer diameter slightly smaller than 60 mm, which does not generate a gap with the wall surface of the support cylinder, and which can slide up and down is also prepared. A water-absorbing agent having a mass of W3 (specifically, about 0.900 g) is uniformly dispersed on the wire mesh.
- W3 specifically, about 0.900 g
- a piston is placed on this water-absorbing agent, and the support cylinder, the water-absorbing agent and the mass W4 (g) of the piston are measured.
- a pressure of 4.8 kPa 50 g / cm 2
- a glass filter having a diameter of 90 mm and a thickness of 5 mm is placed inside a Petri dish having a diameter of 150 mm.
- physiological saline adjusted to 25 ⁇ 2 ° C. is poured so as to be at the same level as the upper surface of the glass filter.
- One filter paper No.
- the measurement is performed in an environment of 23 ⁇ 2 ° C. Such a measuring method is disclosed in US Pat. No. 6,071,976.
- the saline flow conductivity (SFC) of the particulate water-absorbing agent obtained by the production method of the present invention is a value indicating the liquid permeability when the particulate water-absorbing agent or the water-absorbing agent swells.
- This saline flow conductivity is also referred to as liquid permeability. It shows that the larger the value of the saline flow conductivity (SFC), the higher the liquid permeability of the particulate water-absorbing agent.
- the saline flow conductivity (SFC) is preferably 30 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more.
- Absorbent articles such as diapers in which this particulate water-absorbing agent is used absorb body fluids well.
- the SFC is more preferably 35 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more, and still more preferably 45 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more.
- the particulate water-absorbing agent after filling can maintain a high SFC and suppress its fluctuation.
- An absorbent article such as a diaper using such a particulate water-absorbing agent absorbs body fluids and the like well.
- the SFC of the particulate water-absorbing agent after filling by the method of the present invention is preferably 40 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more, more preferably 45.5 ( ⁇ 10 ⁇ 7 ⁇ cm 3). S ⁇ g ⁇ 1 ) or more.
- the standard deviation of SFC of the particulate water-absorbing agent after filling by the method of the present invention is preferably 4.0 to 6.0, more preferably 4.5 to 5.5. Within such a range, the SFC of the particulate water-absorbing resin that is the final product can be maintained at a level with high stability without touching.
- saline flow conductivity (SFC measurement) is measured as follows. First, 0.900 g of the water-absorbing agent is put uniformly in the container. The water absorbing agent is pressurized at 2.07 kPa while being immersed in the artificial urine. After 60 minutes, the height of the swollen water-absorbing agent (gel layer) is recorded. In a state where the water absorbing agent is pressurized at 2.07 kPa, 0.69 mass% saline is passed through the gel layer. The room temperature at this time is adjusted from 20 ° C to 25 ° C.
- the amount of liquid passing through the gel layer is recorded at intervals of 20 seconds, and the flow velocity Fs (T) of the passing liquid is calculated.
- the flow velocity Fs (T) is calculated by dividing the increased mass (g) by the increased time (s).
- the time when the hydrostatic pressure of the saline solution is constant and a stable flow rate is obtained is defined as Ts, and only data measured during 10 minutes from this Ts is used for the flow rate calculation.
- Saline flow conductivity (SFC) is calculated by the following mathematical formula.
- L0 is the height of the gel layer (cm)
- ⁇ is the density of saline (g / cm 3 )
- A is the cross-sectional area A (cm 2 ) of the gel layer
- ⁇ P is the gel Hydrostatic pressure (dyne / cm 2 ) applied to the layer.
- the artificial urine consists of 0.25 g calcium chloride dihydrate, 2.0 g potassium chloride, 0.50 g magnesium chloride hexahydrate, 2.0 g sodium sulfate, 0.85 g diphosphate diphosphate. It is obtained by mixing ammonium hydrogen, 0.15 g of diammonium hydrogen phosphate and 994.25 g of pure water. Such evaluation is performed according to the SFC test described in the specification of US Pat. No. 5,849,405.
- the gas (air) inside the filling member has a dew point. It is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 15 ° C. or lower, and particularly preferably ⁇ 20 ° C. or lower.
- the lower limit of the dew point is ⁇ 100 ° C., and the dry air is preferably used.
- the absorbent article using the particulate water-absorbing agent according to the present invention can be obtained, for example, by molding a particulate water-absorbing agent and, if necessary, hydrophilic fibers into a sheet shape.
- an absorbent article can be obtained by fixing a particulate water-absorbing agent to paper or nonwoven fabric.
- the content (core concentration) of the particulate water-absorbing agent in such an absorbent article is, for example, 10 to 100% by mass, preferably 30 to 100% by mass, and more preferably 50 to 100% by mass.
- the absorbent article is preferably adjusted so that the density is in the range of 0.06 to 0.5 g / cc and the basis weight is in the range of 0.01 to 0.2 g / cm 2.
- the fiber base material 34 that can be used include pulverized wood pulp, cotton linters and crosslinked cellulose fibers, rayon, cotton, wool, acetate, vinylon, and other hydrophilic fibers. Those are preferred.
- particulate water-absorbing agent Polymerization process, gel refinement (disintegration) process, drying process, pulverization process, classification process, surface crosslinking process (surface crosslinking agent spraying process, heating process), cooling process, sizing process and product storage / filling process
- the apparatus which performs each was connected with the transport apparatus, and the particulate water absorbing agent was continuously manufactured as follows using the continuous manufacturing apparatus which can perform each process continuously.
- the monomer aqueous solution (1) having a temperature of 91 ° C. was continuously fed using a metering pump, sodium persulfate was continuously mixed, and polymerization was continuously performed on the belt.
- This aqueous monomer solution (1) contained 0.06 mol% of polyethylene glycol diacrylate (the average addition mole number n of ethylene oxide was 9) as an internal crosslinking agent with respect to the total amount of monomers. .
- the monomer aqueous solution (1) contains 73 mol% neutralized acrylic acid partial sodium salt, and the concentration of this acrylic acid partial sodium salt is based on the total amount of the monomer aqueous solution (1). 43 mass%.
- the mixing ratio of the sodium persulfate is 0.10 g (about 0.11 mass relative to the amount of monomer used) with respect to 1 mol of the monomer contained in the monomer aqueous solution (1). %).
- a hydrogel crosslinked polymer (2) was obtained by continuous polymerization on this belt.
- the water-containing gel-like crosslinked polymer (2) was subdivided with a meat chopper, spread on a dryer and mounted, and dried at 185 ° C. for 30 minutes to obtain a dry polymer. After the entire amount of the dry polymer is continuously fed to a roll mill and pulverized, it is classified by a classifier (sieving) having a metal sieve mesh with openings of 850 ⁇ m and 150 ⁇ m, and 850 to 150 ⁇ m is about 98% by mass in the form of particles.
- a water absorbent resin (3) was obtained.
- the surface treating agent solution is a mixed solution obtained by mixing 1,4-butanediol, propylene glycol and pure water. This surface treating agent solution is used for 1,100 parts by mass of the water absorbent resin (3). Spray mixing was performed so that the ratio of 0.3 parts by mass of 4-butanediol, 0.5 parts by mass of propylene glycol, and 2.7 parts by mass of pure water was obtained.
- the obtained mixture (4) was continuously heat-treated at 198 ° C. for 40 minutes with a paddle dryer, and then forcedly cooled to 60 ° C. using the same paddle dryer (cooling step).
- this cooling step in an approximately 90 ° C. zone in the cooler apparatus, 1.0 part by mass of aluminum sulfate 14-18 hydrate per 100 parts by mass of the water-absorbent resin (the concentration in terms of Al 2 O 3 is 8). (Use an aqueous solution with a mass%) was added and these were mixed uniformly.
- the particulate water-absorbing agent discharged from the cooler was classified with a sieving device, and the 850 ⁇ m-on product was classified, and the 850 ⁇ m-on product was pulverized again and then mixed with the 850 ⁇ m-passed product.
- the total amount was 850 ⁇ m passing material
- the mass average particle diameter (D50) was about 430 ⁇ m
- the logarithmic standard deviation ( ⁇ ) of the particle size distribution was about 0.39
- the particle size was adjusted.
- a particulate water-absorbing agent was obtained.
- the water absorption capacity under pressure (AAP) of the particulate water-absorbing agent thus obtained was 23.9 g / g, and the saline flow conductivity (SFC) was 45.0 ( ⁇ 10 ⁇ 7 ⁇ cm 3 S ⁇ g ⁇ 1 )
- Example 1 Using the filling device shown in FIG. 1, the particulate water-absorbing agent finally obtained in the above production example was filled.
- the relative humidity around the filling device was set to 60% by air conditioning.
- the flexible container bag Prior to filling, the flexible container bag was inflated with dry air (dew point ⁇ 30 ° C.), and the internal space of the flexible container bag was filled with dry air.
- the flexible container bag was set so as to abut on the pallet.
- the capacity of the flexible container bag was 1600 liters, and a flexible container bag having a two-layer structure in which the inner layer was a film made of polyethylene and the outer layer was a woven fabric made of polypropylene was used. Next, a supply process was performed.
- the supply process was performed in two steps. First, in the first supply step, 500 kg of the particulate water-absorbing agent was placed in the flexible container bag. During the first supply process, the vibration process was performed simultaneously. The time required for the first supply step was 1 minute. The supply was then interrupted. The vibration was stopped while the supply was interrupted. Next, a second supply step was performed. In the second supply step, 500 kg of the particulate water-absorbing agent was added. That is, in this example, mass W1 was 500 kg and mass W2 was 1000 kg. During the second supply process, the vibration process was performed at the same time. The time required for the second supply process was 1 minute. Therefore, the total vibration time Tt was 2 minutes. In the example, the entire supply process (total time) was performed simultaneously with the vibration process.
- the vibration motor has a frequency of 57.5 Hz.
- the amplitude V1 of the vibrating body in the vertical direction was 2.1 mm, and the amplitude V2 of the vibrating body in the horizontal direction was 2.1 mm.
- the excitation angle of the vibrating body in the vertical direction was 90 °, and the excitation angle of the vibrating body in the horizontal direction was 90 °.
- the temperature of the particulate water-absorbing agent during the vibration process was 40 ° C to 50 ° C.
- the temperature around the filling device was set to 20 ° C. to 30 ° C.
- the standard deviation shown in the table below is calculated as follows. The sum of the squares of the deviations is obtained, and the value obtained by dividing the sum by the number of data is the variance. Standard deviation is the square root of this variance. The deviation is (measured value ⁇ average value). The standard deviation indicates data variation, and in this embodiment, the standard deviation is an index indicating the stability of quality. The smaller the standard deviation, the better the quality stability.
- the water absorption capacity under pressure (AAP) was measured by the aforementioned AAP (4.8 kPa) measurement method, and the saline flow conductivity (SFC) was measured by the aforementioned SFC measurement method.
- the ratio (mass%) of particles less than 150 ⁇ m was the ratio (mass%) of particles that passed through a JIS standard sieve having an opening of 150 ⁇ m.
- Example 1 has a ratio (mass%) of particles less than 150 ⁇ m, AAP (g / g), and SFC ( ⁇ 10 ⁇ 7 ⁇ cm) than Comparative Example 1. 3 ⁇ s ⁇ g ⁇ 1 ) All have small standard deviation. From this result, the superiority of the embodiment is clear. In particular, stabilization of the absorption characteristics of a product (for example, water absorption capacity under pressure and liquid permeability) has a great effect in continuous mass production.
- a product for example, water absorption capacity under pressure and liquid permeability
- the filling method according to the present invention can be applied to the filling of the particulate water-absorbing agent.
- This particulate water-absorbing agent can be suitably applied to the production of absorbent articles such as sanitary materials including absorbents such as paper diapers, sanitary napkins, and incontinence pads.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Basic Packing Technique (AREA)
Abstract
Description
(a)「吸水性樹脂」
本明細書において、「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味し、以下の物性を有するものをいう。即ち、吸水倍率(CRC/実施例で規定)が、必須に5g/g以上、好ましくは10~100g/g、更に好ましくは20~80g/gであり、また、水可溶分(Extractables/ERT450.2-02(2002)で規定)が、必須に0~50重量%、好ましくは0~30重量%、更に好ましくは0~20重量%、特に好ましくは0~10重量%である高分子ゲル化剤をいう。なお、該吸水性樹脂は、全量(100%)が重合体である形態に限定されず、上記性能を維持する範囲において、後述する添加剤等を含んでいてもよい。
本明細書において、「ポリアクリル酸(塩)」とは、繰り返し単位として、アクリル酸(塩)を主成分とする重合体を意味する。具体的には、架橋剤を除く単量体として、アクリル酸(塩)を、必須に50~100モル%、好ましくは70~100モル%、更に好ましくは90~100モル%、特に好ましくは、実質100モル%含む重合体を意味する。重合体としての塩は、必須に水溶性塩を含み、好ましくは一価塩、更に好ましくはアルカリ金属塩あるいはアンモニウム塩である。その中でも特にアルカリ金属塩が好ましく、更にはナトリウム塩が好ましい。
本明細書において、「吸水剤」とは、吸水性樹脂を主成分とする水性液のゲル化剤を意味する。なお、前記水性液としては、水に限らず、尿、血液、糞、廃液、湿気や蒸気、氷、水と有機溶媒及び/又は無機溶媒との混合物、雨水、地下水等であってもよく、水を含めば特定に制限されるものではない。中でも前記水性液としては、より好ましくは、尿、特に人尿を挙げることができる。本発明に係る吸水性樹脂(ポリアクリル酸(塩)系吸水性樹脂)の含有量は、全体に対して、好ましくは70~99.9重量%であり、より好ましくは80~99.7重量%であり、さらに好ましくは90~99.5重量%である。吸水性樹脂以外のその他の成分としては、吸水速度や粉末(粒子)の耐衝撃性の観点から、水が好ましく、必要により後述の添加剤が含まれる。
「EDANA」は、European Disposables and Nonwovens Associationの略称であり、「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(ERT/EDANA Recomeded Test Methods)の略称である。本明細書においては、特に断りのない限り、ERT原本(公知文献:2002年改定)を参照して、吸水性樹脂の物性を測定している。
本明細書において、「粒子」とは、篩分級で規定される粒径が5mm以下の流動性を有する固体を意味する。固体であれば、含水率について特に制限されないが、通常、30重量%未満、更に好ましくは20重量%以下である。また、粒径の下限としては、例えば、1nmである。更に、粉体として一定の流動性を有していればよく、例えば、Flow Rate(ERT450.2-02)が測定可能な固体、あるいは(ERT420.2-02)で篩分級が可能な固体を意味する。固体の形状については、特に制限されず、不定形破砕状粒子、球状、略球状やそれらの造粒物(凝集物)が挙げられるが、好ましくは、不定形破砕状粒子が含まれる。
[重合工程]
上記粒子状吸水剤は、重合工程により得られた吸水性樹脂をベースとしている。重合工程では、重合により吸水性樹脂となりうる単量体(以下、モノマーとも称することもある)を重合させて重合ゲルを生成させる。本発明にかかる製造方法で用いる重合法としては、特に限定されるものではないが、例えば、バルク重合、沈殿重合、水溶液重合、逆相懸濁重合等が挙げられる。性能面及び重合制御の容易さから、モノマーが水溶液とされて用いられうる水溶液重合又は逆相懸濁重合が好ましい。この製造方法は、水溶液重合により得られる吸水性樹脂において、本発明の効果(物性の安定化)を充分に発揮しうる。この観点から、水溶液重合、特に連続水溶液重合が好ましく使用される。連続水溶液重合においては、連続ベルト重合ないし連続ニーダー重合が好適に使用できる。
乾燥工程により、前述の重合工程で得られた重合ゲル(別称;含水ゲル状重合体)が乾燥される。乾燥工程では、以下に限定されるものではないが、前述の重合工程で得られた含水率が15~70質量%の重合ゲルを乾燥する。重合工程で得られた重合ゲルは、通常、0.1~5mm程度の粒子状の状態にして、乾燥工程に供されることが好ましい。このため、重合ゲルが上記大きさより大きい場合には、乾燥工程前に予め解砕処理を施すことが好ましい。解砕手段は特に制限されないが、例えば、ミートチョッパー、ローラー型カッター、ギロチンカッター、スライサー、ロールカッター、シュレッダー、ハサミなどの各種の切断手段を単独でまたは適宜組み合わせて使用することができる。
粉砕工程は、重合ゲル又はその乾燥物を粉砕する工程である。粉砕は通常、乾燥工程で得られた重合ゲルの乾燥物に対して行うが、乾燥前の、重合工程で得られた重合ゲルに対して行っても良い。この粉砕により、粉砕物としての粒子状吸水剤が得られる。粉砕は、所望の粒径(好ましくは、質量平均粒子径200~800μm)の粒子状吸水剤がより多く得られるように行うことが好ましい。粉砕方法については、特に制限はなく、従来公知の方法を採用することができる。この粉砕により微粉が発生するので、粉砕工程で得られる粒子状吸水性樹脂には微粉が含まれる。なお、乾燥工程で得られた粒子状吸水性樹脂の粒径が小さい場合、この粉砕工程は実施されなくてもよい。
分級工程は、前述の粉砕工程で得られた粉砕物又は乾燥物を分級する工程である。分級工程において、粉砕物が篩い分けられる。該分級工程において、所望の粒径(好ましくは、質量平均粒子径200~800μm)を有する粒子を選択して目的とする粒子状吸水剤が得られうる。分級方法については、特に制限はなく、従来公知の方法を採用することができる。なお、この分級工程において、粉砕物に微粉として含まれている粒子状吸水性樹脂が残存物として得られうる。
表面架橋工程は、前述の分級工程で得られた粒子状吸水性樹脂の表面近傍を表面架橋剤を用いて架橋する工程である。この工程により、粒子状吸水剤が得られる。粒子状吸水性樹脂は水膨潤性架橋重合体であり、(粒子)内部に架橋構造を有するが、本発明で用いられる吸水性樹脂(粒子)は更に表面架橋され、その表面ないし表面近傍の架橋密度が内部より高められていることが好ましい。このような表面架橋工程により、粒子状吸水性樹脂の凝集が抑制できる。なお、「表面近傍」とは、通常、数十μm以下の厚みの表層部分又は全体の1/10以下の厚みの表層部分を意味するが、この厚みは目的に応じて適宜決定される。かかる吸水性樹脂の表面架橋は、(1)後述の表面架橋剤として例示される有機表面架橋剤及び/又は水溶性無機表面架橋剤による表面架橋でもよく、(2)表面で架橋性単量体が架橋重合(例えば、米国特許第7201941号明細書に開示)されてなる表面架橋でもよく、また、(3)過硫酸塩などによるラジカル表面架橋(例えば、米国特許第4783510号明細書に開示)であってもよい。また、架橋反応は加熱や放射線(好ましくは紫外線、欧州特許第1824910号明細書に開示)で反応促進されることが好ましい。これにより生産性が向上できる。粒子状吸水性樹脂はその表面近傍が表面架橋されていることにより、粒子状吸水剤の、加圧下吸水倍率(AAP)、言い換えれば、圧力に対する吸収力を高めることができる。更に詳述すると、本願において「表面架橋」とは、粒子状吸水性樹脂表面あるいは表面近傍の領域が、化学的あるいは物理的に修飾されて表面架橋がなされたことを意味する。例えば部分中和架橋ポリアクリル酸の場合を例にとると、化学的な修飾とは粒子表面近傍に存在する官能基、特にカルボキシル基と反応しうる、例えば多価アルコール、多価グリシジル化合物、多価アミン等、官能基を2個以上有する有機表面架橋剤により、表面架橋が施された状態を意味する。それ以外にも例えば3価アルミニウムのような多価金属による、表面カルボキシル基のイオン結合による表面架橋をも含む。表面架橋における結合の形態は限定されない。本発明では、表面ないし表面近傍が架橋された粒子状吸水性樹脂が、粒子状吸水剤である。
冷却工程は、表面架橋後の任意の工程であり、例えば、前述の表面架橋工程で加熱されて表面近傍が架橋された粒子状吸水剤が、後述する整粒工程に投入される前に、冷却させられる工程である。この冷却工程に用いられる冷却装置としては、特に制限はないが、冷却機は、特に制限されないが、米国特許第6378453号などに例示され、例えば、内壁その他の伝熱面の内部に50℃以下、好ましくは20℃~35℃の冷却水が通水されている2軸撹拌乾燥機等が用いられうる。また、冷却工程において、粒子状吸水剤は、50~70℃にまで冷却されることが好ましい。前述したように、上記表面架橋工程において、粒子状吸水性樹脂の表面架橋が室温で実施される場合がある。この場合、表面架橋により得られる粒子状吸水剤は加熱されないので、この冷却工程は実施されなくてもよい。
本発明では、表面架橋剤以外の添加剤を添加する添加工程を設けてもよい。例えば、添加工程は、他の工程とは別の独立した工程であってもよいし、添加工程以外の他の工程において当該他の工程と同時になされてもよい。この場合、添加工程は、好ましくは上記重合工程以降、より好ましくは乾燥工程以降、例えば、冷却工程又はその他工程において、添加剤を添加する。添加工程において添加される添加剤としては、例えば下記の(A)消臭成分(好ましくは植物成分)、(B)多価金属塩、(C)無機粒子((D)複合含水酸化物を含む)、(E)その他の添加物等が挙げられる。添加剤の添加により、粒子状吸水剤に種々の機能が付与されうる。なお、この粒子状吸水剤への添加物の添加が、粒子状吸水剤の冷却と同時になされてもよい。更に、添加工程において、下記の(F)キレート剤や(G)界面活性剤が添加されてもよい。
本発明の製造方法で得られる粒子状吸水剤は、消臭性を発揮させるために、消臭成分、好ましくは植物成分を配合することが出来る。植物成分としては、好ましくはポリフェノール、フラボン及びその類、カフェインから選ばれる少なくとも1種の化合物であるのが好ましく、タンニン、タンニン酸、五倍子、没食子及び没食子酸から選ばれる少なくとも1種の化合物であるのが更に好ましい。これら植物成分以外に、粒子状吸水剤に添加されうる植物成分を含んだ植物としては、例えば、ツバキ科の植物ではツバキ、ヒカサキ、モッコク等が挙げられ、イネ科の植物ではイネ、ササ、竹、トウモロコシ、麦等が挙げられ、アカネ科の植物ではコーヒー等が挙げられる。本発明において用いられる植物成分の形態としては植物から抽出したエキス(精油)、植物自体、植物加工業や食物加工業における製造工程で副生する植物滓及び抽出滓等が挙げられるが、特に限定されない。
本発明の製造方法で得られる粒子状吸水剤には、通液性や粉体流動性、特に吸湿時の粉体流動性の向上の目的で、多価金属塩が配合されうる。この多価金属塩の好ましい量は上記の通りである。好ましい多価金属塩としては、有機酸の多価金属塩及び無機の多価金属塩が例示される。具体的な無機の多価金属塩として、例えば、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム、カリウムミョウバン、アンモニウムミョウバン、ナトリウムミョウバン、アルミン酸ナトリウム、塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、塩化亜鉛、硫酸亜鉛、硝酸亜鉛、塩化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウムなどが挙げられる。また、尿などの吸収液との溶解性の点からもこれらの結晶水を有する塩を使用するのが好ましい。特に好ましいのは、アルミニウム化合物、中でも、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム、カリウムミョウバン、アンモニウムミョウバン、ナトリウムミョウバン、アルミン酸ナトリウムが好ましく、硫酸アルミニウムが特に好ましく、硫酸アルミニウム18水塩、硫酸アルミニウム14~18水塩などの含水結晶の粉末は最も好適に使用することが出来る。これらは1種のみ用いても良いし、2種以上を併用して用いても良い。また、上記多価金属塩は、ハンドリング性及び粒子状吸水剤との混合性の観点から、溶液状態で用いられることが好ましく、特に水溶液状態で用いられるのが好ましい。
本発明の製造方法で得られる粒子状吸水剤は、吸湿時のブロッキング防止のために無機粒子、特に水不溶性無機粒子を配合することが出来る。本発明に使用される無機粒子としては、具体的には例えば、二酸化珪素や酸化チタン等の金属酸化物;天然ゼオライトや合成ゼオライト等の珪酸(塩);カオリン;タルク;クレー;ベントナイト等が挙げられる。このうち二酸化珪素及び珪酸(塩)がより好ましく、コールターカウンター法により測定された平均粒子径が0.001~200μmの二酸化珪素及び珪酸(塩)が更に好ましい。
本発明の製造方法で得られた粒子状吸水剤は、優れた吸湿流動性(吸水性樹脂又は吸水剤が吸湿した後の粉体の流動性)を示し、更に、優れた消臭機能を発揮させるために亜鉛と珪素とを含む複合含水酸化物、又は亜鉛とアルミニウムを含む複合含水酸化物を配合することが出来る。
本発明の製造方法で得られた粒子状吸水剤には、必要に応じて、例えば、消毒剤、抗菌剤、香料、各種の無機粉末、発泡剤、顔料、染料、親水性短繊維、肥料、酸化剤、還元剤、水性塩類等が、本発明の効果を損なわない範囲で添加されうる。このその他の添加物の添加量は、例えば、粒子状吸水剤100質量部に対して、30質量部以下、更には10質量部以下とすることができる。この添加により、種々の機能が付与されうる。
本発明で用いられる粒子状吸水剤は、キレート剤を含んでも良い。キレート剤を混合する工程は特に限定されないが、前記単量体あるいは単量体溶液に、キレート剤を混合することが好ましい。上記キレート剤としては、高分子キレート剤又は非高分子キレート剤が種々例示できるが、好ましくは酸基含有非高分子キレート剤、更に好ましくは、リン酸基含有非高分子キレート剤又はカルボン酸基含有非高分子キレート剤が用いられ、かかる酸基を分子中に2~100個、更には2~50個、特に2~10個含有する非高分子キレート剤が好ましく用いられる。また、キレート剤中に窒素を有するアミノカルボン酸やアミノリン酸が好ましい。具体的には、例えば、イミノ二酢酸、ヒドロキシエチルイミノ二酢酸、ニトリロ三酢酸、ニトリロ三プロピオン酸、エチレンジアミン四酢酸、ヒドロキシエチレンジアミン三酢酸、ヘキサメチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、trans-1,2-ジアミノシクロヘキサン四酢酸、ビス(2-ヒドロキシエチル)グリシン、ジアミノプロパノール四酢酸、エチレンジアミン-2-プロピオン酸、グリコールエーテルジアミン四酢酸、ビス(2-ヒドロキシベンジル)エチレンジアミン二酢酸及びこれらの塩等のアミノカルボン酸系金属キレート剤;エチレンジアミン-N,N'-ジ(メチレンホスフィン酸)、エチレンジアミンテトラ(メチレンホスフィン酸)、ニトリロ酢酸-ジ(メチレンホスフィン酸)、ニトリロジ酢酸-(メチレンホスフィン酸)、ニトリロ酢酸-β-プロピオン酸-メチレンホスホン酸、ニトリロトリス(メチレンホスホン酸)、シクロヘキサンジアミンテトラ(メチレンホスホン酸)、エチレンジアミン-N,N'-ジ酢酸-N,N'-ジ(メチレンホスホン酸)、エチレンジアミン-N,N'-ジ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ポリメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、1-ヒドロキシエチリデンジホスホン酸、及びこれらの塩等のリン化合物が挙げられる。粒子状吸水剤中におけるキレート剤の使用量は、好ましくは5~10000質量ppm、より好ましくは10~1000質量ppmである。
界面活性剤としては、脂肪酸塩や高級アルコール硫酸塩等のアニオン性界面活性剤や、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリステアレート等のソルビタン脂肪酸エステル、ココナットアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩等のカチオン性界面活性剤や両性界面活性剤が例示される。その他米国特許第6107358号に記載の界面活性剤が本発明に適応できる。粒子状吸水剤中における界面活性剤の使用量は、好ましくは10~1000質量ppmである。
前述した粉砕工程及び分級工程において、その粒径が調整されたにも関わらず、冷却工程後の粒子状吸水剤には、大きな粒径を有する凝集物が含まれる場合がある。この凝集物は、主として、表面架橋剤の混合時や、表面架橋反応時において生成されうる。この整粒工程は、粒度が再調整される工程であり、この凝集物の解砕処理及び分級処理が行なわれる。整粒方法は、特に制限されないが、米国特許第7347330号、米国特許出願公開第2005-0113252号などに例示されている。この解砕処理及び分級処理の順序及び回数は、特に限定されない。この整粒工程では、例えば、粒子状吸水剤に対して、先ず分級処理がなされる。この分級処理では、振動ふるいや気流分級機などの分級装置が用いられうる。この分級処理において、例えば、大きな目開きを有する篩いが用いられることにより、粒径の大きな凝集物が得られうる。このようにして、粒径の大きな凝集物が除かれた後、小さな目開きを有する篩いが用いられることにより、その粒径が小さい微粉が除去される。この分級処理により得られる凝集物には、解砕処理がなされる。この解砕処理により、凝集物を構成する粒子が個々の粒子に解き分けられて一次粒子としての粒子状吸水剤が得られうる。この解砕処理には、例えばナイフカッター式解砕機が用いられる。この解砕処理により得られた解砕物に対しては、上記分級処理が再度実施される。この整粒工程では、その粒径が小さい微粉が除去されつつ、所望の粒径(好ましくは、質量平均粒子径200~800μm)を有する粒子状吸水剤が得られうる。なお、この整粒工程において、微粉として含まれている粒子状吸水剤が残存物として得られうる。
造粒工程は、上記各工程で発生した微粉ないし微粉を含む吸水性樹脂に、水性液を添加して、造粒粒子を得る工程である。粒子状吸水剤の製造において得られる全ての微粉がこの造粒工程に供されうる。造粒粒子は複数の微粉よりなる。造粒粒子の平均粒子径は、20mm以下、好ましくは0.3~10mm、更に好ましくは0.35~5mmである。この造粒粒子は、例えば、上記乾燥工程に投入されて上記重合ゲルの共存下で乾燥させられる。微粉と水性液との混合により一体化した巨大なゲル状物が得られた場合には、更に前述した乾燥工程及び粉砕工程に供せられることが必要となる。
充填工程は、上記工程の少なくとも一部を経て製造された粒子状吸水剤が充填用部材に充填される工程である。本明細書において、「充填用部材」は、上記したようにして製造された粒子状吸水剤を充填するための被充填用部材である。この充填工程の詳細については、後述される。充填用部材に充填された粒子状吸水剤は、例えば、所定の検査がなされた後、出荷される。なお、本発明の充填方法は連続生産される際に好適に用いられる。本発明は、好ましくは500kg/時間以上、更に好ましくは1トン/時間以上、特に好ましくは1.5トン/時間以上の生産規模(上限は15トン/時間程度)において、連続的に得られる製品の吸収特性の安定化をもたらす。そして、上述した吸水剤に機能性を付与するために種々の添加剤を含むものについては、添加剤の量は厳密に管理される必要がある場合がある。このような場合であっても、本発明の方法によると、粒子状吸水剤の種々の特性を安定して維持できる。よって、本発明は、多価金属塩、無機粒子等を含む吸水剤の充填方法として好適に用いられる。
当接工程は、粒子状吸水剤を充填するための充填用部材16を振動体に当接させる工程である。本実施形態では、振動体はパレット26である。振動体は、例えば載置部10であってもよいし、振動発生器12自体であってもよい。本実施形態では、振動体は充填用部材16の底面に当接しているが、底面以外の他の部分に当接していてもよい。ただし、充填物への振動の伝達を確実とする観点から、本実施形態の如く、振動体は充填用部材16の底面に当接させるのが好ましく、振動体が充填用部材16の底面前面に当接させることがより好ましい。
供給工程は、充填用部材16に粒子状吸水剤を供給する工程である。供給工程は、1回でなされてもよい。即ち供給工程では、供給されるべき粒子状吸水剤の全量が、中断されることなく供給されてもよい。また、後述するように、この供給工程は、複数回に分けてなされてもよい。即ち供給工程は、質量A1の粒子状吸水剤を供給した後、一旦供給を中断し、その後に残りの質量A2を供給してもよい。この場合、充填用部材16に充填される質量(供給されるべき粒子状吸水剤の全量)は、(A1+A2)である。供給効率を高める観点から、この供給工程における粒子状吸水剤の供給は、粒子状吸水剤に作用する重力によりなされるのが好ましい。即ちこの供給は、粒子状吸水剤の自然落下によりなされるのが好ましい。
振動工程は、上記振動体を振動させることにより充填用部材16の内部に存在する粒子状吸水剤を振動させる工程である。この振動工程により、粒子状吸水剤間に存在する空気の量が抑制され、粒子径の偏在が抑制されうることが判明した。
上記の充填方法で用いられる粒子状吸水剤の、JIS標準篩分級により規定される質量平均粒子径(D50)は、好ましくは200~800μm、より好ましくは200~450μm、より好ましくは220~430μm、更に好ましくは250~400μmである。また、粒子状吸水剤が特定の粒度分布を有する場合、本発明は最も効果を発揮し得る。好ましい粒度分布として、上下限850~150μm(JIS標準篩;Z8801-1(2000)で規定)に分級される粒子の割合が、吸水剤全体に対して好ましくは90~100質量%、更には95~100質量%、特に好ましくは98~100質量%である。そして、150μm通過物は5質量%未満が好ましく、更に好ましくは1質量%未満が好ましい。150μm通過物は、上記JIS標準篩(Z8801-1(2000)に規定)により分級される。また、粒度分布は、最大の効果を発揮するために、特定の範囲であることが好ましく、対数標準偏差(σζ)が0.20以上0.50以下であることが好ましく、より好ましくは0.25以上0.45以下であり、更により好ましくは0.30以上0.40以下である。この範囲を外れると通液性や吸水速度が低下する場合がある。なお、粒度分布の対数標準偏差や質量平均粒子径は米国特許出願公開第2006-0204755号明細書で規定される。また、粒子形状は、球状、略球状、不定形破砕状やそれらの造粒物(凝集物)が挙げられるが、それら粒子で発泡体でもよいが、好ましくは、吸水速度やパルプへの固定性から、不定形破砕状やそれらの造粒物である。
本明細書において、生理食塩水に対する無加圧下吸水倍率(CRC)は、次のようにして測定される。まず、粒子状吸水剤0.2gが正確にはかり取られ(この質量が下記式の「粒子状吸水剤の質量」となる)、不織布製の袋(60mm×85mm)に均一に入れられる。この袋が、25±2℃に調温された生理食塩水中に30分間浸漬される。30分後に袋が引き上げられて、遠心分離機(株式会社コクサン製、型式H-122小型遠心分離機)を用いて250G(250×9.81m/s2)で3分間水切りが施される。次に、この水切りが施された袋の質量W2(g)が測定される。また、同様の操作が、粒子状吸水剤を含まない不織布製の袋について行われ、この袋の質量W1(g)が測定される。そして、これら質量W2及びW1を用いて、次式に従って無加圧下吸水倍率が算出される。
本明細書において、加圧下吸水倍率(AAP)は、次のようにして測定される。まず、AAPの測定では、内径が60mmであるプラスチック製の支持円筒が準備される。この支持円筒の底には、ステンレススチール製の金網が溶着されている。この金網の目数は、400メッシュ(目開き38μm)である。一方、外径が60mmより僅かに小さく、支持円筒の壁面との間に隙間が生じず、かつ上下に摺動しうるピストン(cover plate)も準備される。上記金網の上に、質量がW3(具体的には約0.900g)である吸水剤が均一に散布される。この吸水剤の上にピストンが載置され、支持円筒、吸水剤及びピストンの質量W4(g)が測定される。このピストンにおもりが載置されることにより、吸水剤に対して4.8kPa(50g/cm2)の圧力が均一に加えられる。直径が150mmであるペトリ皿の内側に、直径が90mmであり厚さが5mmであるガラスフィルターが置かれる。ペトリ皿に、25±2℃に調温した生理食塩水が、ガラスフィルターの上面と同レベルになるように注がれる。このガラスフィルターの上面に、直径が9cmである濾紙(トーヨー濾紙(株)製、No.2)が1枚載せられる。この濾紙の全表面が、食塩水で濡れる。その後、過剰の食塩水が除かれる。この濾紙に金網が接触するように、支持円筒及びピストンがペトリ皿に置かれる。吸水剤は、加圧下にて、食塩水を吸収する。食塩水の水面がガラスフィルターの上面より下がった場合には、食塩水が補充されて、水面レベルが一定に保持される。1時間後にペトリ皿から支持円筒及びピストンがピックアップされ、おもりを取り除いた質量W5(g)が測定される。この質量W5(g)には、生理食塩水によって膨潤した吸水剤の質量が含まれる。下記数式により、加圧下吸水倍率(AAP)が算出される。
本明細書において、食塩水流れ誘導性(SFC)は、次のようにして測定される。まず、0.900gの吸水剤が容器に均一に入れられる。この吸水剤が人工尿に浸漬されつつ、2.07kPaで加圧させられる。60分後に、膨潤した吸水剤(ゲル層)の高さが記録される。吸水剤が2.07kPaで加圧された状態で、0.69質量%食塩水が、ゲル層を通される。このときの室温は、20℃から25℃に調整される。コンピューターと天秤とを用いて、ゲル層を通過する液体量が20秒間隔で記録されて、通過する液体の流速Fs(T)が算出される。流速Fs(T)は、増加質量(g)を増加時間(s)で割ることにより算出される。食塩水の静水圧が一定となり安定した流速が得られた時間がTsとされて、このTsから10分の間に計測されたデータのみが流速計算に使用される。Tsから10分の間に計測される流速から、Fs(T=0)の値が得られる。この値は、ゲル層を通過する最初の流速である。Fs(T)が時間に対してプロットされて、最小2乗法により得られる結果に基づいてFs(T=0)が計算される。食塩水流れ誘導性(SFC)は、下記数式によって算出される。
重合工程、ゲル細粒化(解砕)工程、乾燥工程、粉砕工程、分級工程、表面架橋工程(表面架橋剤の噴霧工程、加熱工程)、冷却工程、整粒工程及び製品貯蔵/充填工程のそれぞれを行う装置が輸送装置によって連結され、各工程を連続して行うことができる連続製造装置を用いて、粒子状吸水剤が以下の如く連続製造された。
図1で示された充填装置を用いて、上記製造例において最終的に得られた粒子状吸水剤が充填された。充填装置の周囲(周辺雰囲気)の相対湿度は空調により60%に設定された。充填前に、フレキシブルコンテナバックがドライエア(露点-30℃)で膨らまされ、フレキシブルコンテナバックの内部空間にドライエアが充填された。次いで、図1が示すように、パレットの上に当接するように、フレキシブルコンテナバックがセットされた。フレキシブルコンテナバックの容量は1600リットルであり、内層がポリエチレンからなるフィルムで、外層がポリプロピレンからなる織布である2層構造を有するフレキシブルコンテナバックを使用した。次に、供給工程がなされた。供給工程は、2回に分けて行われた。先ず、1回目の供給工程において、フレキシブルコンテナバックに500kgの粒子状吸水剤が入れられた。1回目の供給工程がなされている間、振動工程が同時に実施された。1回目の供給工程に要した時間は1分であった。次に、供給が中断された。供給が中断している間は振動も停止された。次に、2回目の供給工程がなされた。この2回目の供給工程では、500kgの粒子状吸水剤が入れられた。即ち、本実施例では、質量W1は500kgであり、質量W2は1000kgであった。2回目の供給工程がなされている間も、振動工程が同時に実施された。2回目の供給工程に要した時間は1分であった。よって、振動時間の総合計Ttは2分であった。実施例では、供給工程の全体(全時間)が、振動工程と同時になされた。振動工程において、振動モータの振動数は57.5Hzとされた。鉛直方向における上記振動体の振幅V1は、2.1mmであり、水平方向における上記振動体の振幅V2は、2.1mmであった。また、鉛直方向における振動体の加振角度は、90°であり、水平方向における振動体の加振角度は、90°であった。振動工程中における粒子状吸水剤の温度は、40℃から50℃であった。なお、充填装置の周囲の気温は20℃~30℃とされた。
上記振動モータを一切作動させず、代わりに作業者がフレキシブルコンテナバックを叩きながら供給工程がなされ、更に供給工程が1回であった他は実施例と同様にして、比較例の充填がなされた。
フレキシブルコンテナバック内の充填品から採取されたサンプルについて、150μm未満粒子の割合が測定された。このサンプルの深さ方向の採取位置は、充填品の表層部とされた。表層部とは、充填品の表面からの深さが0mm~50mmまでの範囲を意味する。このサンプルの水平方向の採取位置は、充填品の中心位置から200mm外側とされた。表1で示されているサンプリング数と同じ回数の充填を行い、各回の充填品のそれぞれから、1つのサンプルを採取して評価した。よって、サンプルの採取数(データ数)も、表1で示されているサンプリング数と同じである。測定値の平均値、最大値、最小値及び標準偏差が下記の表1に示される。
上記評価1で採取されたサンプルのそれぞれについて、加圧下吸水倍率(AAP)が測定された。上記評価1と同様に、サンプルの採取数(データ数)は、表2で示されているサンプリング数と同じである。測定値の平均値、最大値、最小値及び標準偏差が下記の表2に示される。
上記評価1で採取されたサンプルのそれぞれについて、食塩水流れ誘導性(SFC)が測定された。上記評価1と同様に、サンプルの採取数(データ数)は、表3で示されているサンプリング数と同じである。測定値の平均値、最大値、最小値及び標準偏差が下記の表3に示される。
Claims (11)
- 粒子状吸水剤を充填するための充填用部材を振動体に当接させる当接工程と、
上記充填用部材に粒子状吸水剤を供給する供給工程と、
上記振動体を振動させることにより上記充填用部材の内部に存在する上記粒子状吸水剤を振動させる振動工程と、を含む吸水性樹脂を主成分とする粒子状吸水剤の充填方法。 - 上記供給工程の少なくとも一部と上記振動工程の少なくとも一部とが同時になされる、請求項1に記載の充填方法。
- 上記供給工程及び上記振動工程において、上記充填用部材の周囲における相対湿度が30%以上65%以下である、請求項1または2に記載の充填方法。
- 上記振動工程において、上記振動体を30Hz以上120Hz以下の振動数で振動させる、請求項1~3のいずれか1項に記載の充填方法。
- 上記充填用部材がフレキシブルコンテナバックであり、
上記当接工程において、上記フレキシブルコンテナバックが上記振動体の上に載置される、請求項1~4のいずれか1項に記載の充填方法。 - 上記供給工程が、複数回に分けて行われ、
上記振動工程が、上記複数回の供給工程のうちの一部が終了した段階において行われる途中振動工程と、上記複数回の供給工程の全てが終了した段階において行われる最終振動工程と、を含む、請求項1~5のいずれか1項に記載の充填方法。 - 上記途中振動工程において、上記充填用部材の内部に存在する粒子状吸水剤の質量[W1(kg)]と、総充填質量[W2(kg)]と、の比(W1/W2)が、0.3以上0.6以下であり、
総充填質量[W2(kg)]が500kg以上1500kg以下である、請求項6に記載の充填方法。 - 上記粒子状吸水剤のAAP(4.8kPa)が15g/g以上である、請求項1~7のいずれか1項に記載の充填方法。
- 上記粒子状吸水剤は、ポリアミンポリマー、多価金属(塩)、水不溶性微粒子を含む、ポリアクリル酸(塩)系吸水性樹脂である、請求項1~8のいずれか1項に記載の充填方法。
- 振動工程における粒子状吸水剤の温度が30~70℃である、請求項1~8のいずれか1項に記載の充填方法。
- 上記吸水性樹脂が連続ニーダー重合または連続ベルト重合で得られる、不定形粉砕物である、請求項1~8のいずれか1項に記載の充填方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801086793A CN101970299B (zh) | 2008-03-13 | 2009-03-13 | 以吸水性树脂作为主要成分的颗粒状吸水剂的填充方法 |
EP09719350.2A EP2263939B1 (en) | 2008-03-13 | 2009-03-13 | Method of filling a particulate water-absorbing agent composed principally of a water-absorbing resin |
US12/922,274 US8544507B2 (en) | 2008-03-13 | 2009-03-13 | Method for filling particulate water-absorbing agent having as a main component water-absorbing resin |
JP2010502902A JP5350361B2 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂を主成分とする粒子状吸水剤の充填方法 |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-064408 | 2008-03-13 | ||
JP2008064408 | 2008-03-13 | ||
JP2008-088072 | 2008-03-28 | ||
JP2008088072 | 2008-03-28 | ||
JP2008115446 | 2008-04-25 | ||
JP2008-115751 | 2008-04-25 | ||
JP2008115751 | 2008-04-25 | ||
JP2008-115446 | 2008-04-25 | ||
JP2008187904 | 2008-07-18 | ||
JP2008-187904 | 2008-07-18 | ||
JP2008-238918 | 2008-09-18 | ||
JP2008238918 | 2008-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009113671A1 true WO2009113671A1 (ja) | 2009-09-17 |
Family
ID=41065332
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/054913 WO2009113678A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 |
PCT/JP2009/054905 WO2009113673A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 |
PCT/JP2009/054902 WO2009113671A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂を主成分とする粒子状吸水剤の充填方法 |
PCT/JP2009/054903 WO2009113672A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂の製造方法 |
PCT/JP2009/054914 WO2009113679A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/054913 WO2009113678A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 |
PCT/JP2009/054905 WO2009113673A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/054903 WO2009113672A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂の製造方法 |
PCT/JP2009/054914 WO2009113679A1 (ja) | 2008-03-13 | 2009-03-13 | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (5) | US8544507B2 (ja) |
EP (5) | EP2263939B1 (ja) |
JP (5) | JP5524042B2 (ja) |
CN (5) | CN101970101B (ja) |
WO (5) | WO2009113678A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011111855A1 (ja) | 2010-03-12 | 2011-09-15 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
WO2012102407A1 (ja) | 2011-01-28 | 2012-08-02 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法 |
US20120298915A1 (en) * | 2010-02-10 | 2012-11-29 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin powder |
WO2014061802A1 (ja) * | 2012-10-18 | 2014-04-24 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法及びその工程管理方法 |
WO2014119553A1 (ja) * | 2013-01-29 | 2014-08-07 | 株式会社日本触媒 | 吸水性樹脂材料及びその製造方法 |
WO2015046604A1 (ja) | 2013-09-30 | 2015-04-02 | 株式会社日本触媒 | 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法 |
WO2015133378A1 (ja) * | 2014-03-07 | 2015-09-11 | 株式会社日本製鋼所 | 水素吸蔵合金の充填方法 |
WO2015163083A1 (ja) * | 2014-04-25 | 2015-10-29 | 積水化成品工業株式会社 | 複合粒子、複合粒子の製造方法、及び、その用途 |
US10493429B2 (en) | 2011-01-28 | 2019-12-03 | Nippon Shokubai Co., Ltd. | Method for producing polyacrylic acid (salt)-based water absorbent resin powder |
US10640588B2 (en) | 2010-04-26 | 2020-05-05 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US10640593B2 (en) | 2010-04-26 | 2020-05-05 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
JP2021511408A (ja) * | 2018-01-19 | 2021-05-06 | エルジー・ケム・リミテッド | 高吸水性樹脂およびその製造方法 |
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009529478A (ja) * | 2006-03-14 | 2009-08-20 | ビーエーエスエフ ソシエタス・ヨーロピア | 吸水性ポリマー粒子を空気により搬送する方法 |
EP2135669B1 (en) * | 2007-03-29 | 2019-10-30 | Nippon Shokubai Co., Ltd. | Particulate water absorbent and process for producing the same |
DE102007045724B4 (de) | 2007-09-24 | 2012-01-26 | Evonik Stockhausen Gmbh | Superabsorbierende Zusammensetzung mit Tanninen zur Geruchskontrolle, Verfahren zu deren Herstellung und Verwendung |
EP2258749A4 (en) * | 2008-03-28 | 2011-12-14 | Nippon Catalytic Chem Ind | METHOD OF PREPARING WATER ABSORBING RESINS |
EP2261264B1 (en) * | 2008-03-31 | 2013-10-09 | Nippon Shokubai Co., Ltd. | Method of manufacturing particulate water absorbent with water-absorbent resin as main ingredient |
CN102124039B (zh) * | 2008-09-16 | 2013-04-24 | 株式会社日本触媒 | 吸水性树脂的制造方法和通液性提高方法 |
WO2010114058A1 (ja) * | 2009-03-31 | 2010-10-07 | 株式会社日本触媒 | 粒子状吸水性樹脂の製造方法 |
NL2003319C2 (nl) * | 2009-07-31 | 2011-02-02 | Bag Treat Holland B V | Inrichting voor het verpakken van stortgoed. |
EP2471846B1 (en) * | 2009-08-27 | 2016-12-21 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water absorbent resin and method for producing same |
EP2479196B1 (en) * | 2009-09-16 | 2021-10-27 | Nippon Shokubai Co., Ltd. | Method for producing water absorbent resin powder |
JP5871803B2 (ja) * | 2009-10-09 | 2016-03-01 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 表面後架橋された吸水性ポリマー粒子の後給湿方法 |
CN102574941B (zh) | 2009-10-09 | 2015-09-16 | 巴斯夫欧洲公司 | 用于再润湿表面后交联吸水性聚合物颗粒的方法 |
WO2011115216A1 (ja) * | 2010-03-17 | 2011-09-22 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
EP2371869A1 (en) * | 2010-03-30 | 2011-10-05 | Evonik Stockhausen GmbH | A process for the production of a superabsorbent polymer |
US9447203B2 (en) * | 2010-04-07 | 2016-09-20 | Nippom Shokubai Co., Ltd. | Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder |
US8596255B2 (en) | 2010-05-10 | 2013-12-03 | Hobbeezone, Inc. | Super absorbent polymer projectile launching device |
US8371282B2 (en) | 2010-05-10 | 2013-02-12 | The Maya Group, Inc. | Soft-projectile launching device |
EP2581403B1 (en) * | 2010-06-08 | 2019-08-28 | Nippon Shokubai Co., Ltd. | Manufacturing method for granular water-absorbing resin |
KR101989142B1 (ko) | 2010-09-30 | 2019-06-13 | 가부시기가이샤 닛뽕쇼꾸바이 | 입자상 흡수제 및 그 제조 방법 |
JP5756128B2 (ja) | 2010-12-17 | 2015-07-29 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂及びその製造方法 |
EP2673011B2 (de) | 2011-02-07 | 2019-01-16 | Basf Se | Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit |
JP6113084B2 (ja) * | 2011-03-08 | 2017-04-12 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 改善された浸透性を有する吸水性ポリマー粒子を製造する方法 |
US8802786B2 (en) * | 2011-04-21 | 2014-08-12 | Evonik Corporation | Particulate superabsorbent polymer composition having improved performance properties |
EP2714750B1 (de) | 2011-06-03 | 2015-04-08 | Basf Se | Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel |
US9169062B2 (en) | 2011-06-30 | 2015-10-27 | Kellogg Brown & Root Llc | Lock hopper mass flow arrangement |
US9914132B2 (en) | 2011-09-15 | 2018-03-13 | Michael J. Pilgrim | Devices, systems, and methods for processing heterogeneous materials |
US8646705B2 (en) * | 2011-09-15 | 2014-02-11 | Ablation Technologies, Llc | Devices, systems, and methods for processing heterogeneous materials |
CN102516578B (zh) * | 2011-11-04 | 2013-09-18 | 万华化学集团股份有限公司 | 丙烯酸高吸水性树脂的制备方法 |
CN103131028A (zh) * | 2011-11-25 | 2013-06-05 | 上海华谊丙烯酸有限公司 | 高吸水性树脂、其制备方法和用途 |
CN102716729B (zh) * | 2012-07-05 | 2014-01-15 | 沈阳工业大学 | 一种可循环利用的水处理材料的制备方法 |
CN102731713B (zh) * | 2012-07-23 | 2014-12-03 | 上海华谊丙烯酸有限公司 | 一种高性能吸水性树脂的制备方法 |
US20140037419A1 (en) * | 2012-08-06 | 2014-02-06 | Exxonmobil Research And Engineering Company | Process for reactor catalyst loading |
EP2890411B1 (en) * | 2012-08-29 | 2021-10-06 | Basf Se | Process for producing water-absorbing polymer particles |
JP5996664B2 (ja) | 2012-10-01 | 2016-09-21 | 株式会社日本触媒 | 多元金属化合物からなる粉塵低減剤、多元金属化合物を含む吸水剤及びその製造方法 |
TWI499080B (zh) * | 2012-11-19 | 2015-09-01 | Genesis Photonics Inc | 氮化物半導體結構及半導體發光元件 |
KR101471982B1 (ko) | 2013-04-30 | 2014-12-10 | 주식회사 엘지화학 | 고흡수성 수지 |
KR101632058B1 (ko) * | 2013-06-14 | 2016-06-20 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
JP6452273B2 (ja) * | 2013-06-24 | 2019-01-16 | 株式会社リブドゥコーポレーション | 吸水性樹脂の処理方法 |
US20150175280A1 (en) * | 2013-12-20 | 2015-06-25 | Spiroflow Systems, Inc. | Bulk bag densifying apparatus and method |
WO2015126947A1 (en) * | 2014-02-18 | 2015-08-27 | Aemtek, Inc. | Methods, systems and devices for batch sampling |
WO2015163438A1 (ja) * | 2014-04-25 | 2015-10-29 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法 |
KR101743274B1 (ko) | 2014-06-12 | 2017-06-02 | 주식회사 엘지화학 | 고흡수성 수지 |
WO2016003240A1 (ko) * | 2014-07-04 | 2016-01-07 | 한화케미칼 주식회사 | 고흡수성 수지 및 이의 제조 방법 |
CN104369882B (zh) * | 2014-11-06 | 2016-03-30 | 四川旭华制药有限公司 | 一种颗粒包装机 |
KR20160061743A (ko) * | 2014-11-24 | 2016-06-01 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
CN104443456A (zh) * | 2014-12-04 | 2015-03-25 | 安徽丰絮农业科技有限公司 | 改进型种子自动定量包装秤 |
KR101596623B1 (ko) * | 2015-01-30 | 2016-02-22 | 에스케이이노베이션 주식회사 | 흡수성 수지 및 이의 제조 방법 |
RU2584617C1 (ru) * | 2015-02-02 | 2016-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (ФГБОУВПО "ЯГТУ") | Устройство для уплотнения сыпучих материалов |
JP6577572B2 (ja) | 2015-04-02 | 2019-09-18 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤の製造方法 |
CN107847905A (zh) * | 2015-07-01 | 2018-03-27 | 株式会社日本触媒 | 颗粒状吸水剂 |
KR101949994B1 (ko) | 2015-10-14 | 2019-02-19 | 주식회사 엘지화학 | 고흡수성 수지 조립체 및 이의 제조 방법 |
CN105235924A (zh) * | 2015-11-16 | 2016-01-13 | 南通宝聚颜料有限公司 | 一种封闭式负压除尘颜料包装机 |
JP6991161B2 (ja) * | 2016-05-31 | 2022-01-13 | ビーエーエスエフ ソシエタス・ヨーロピア | 超吸収体の製造方法 |
US20170351263A1 (en) * | 2016-06-02 | 2017-12-07 | Delphi Technologies, Inc. | Roadway-Infrastructure-Maintenance System Using Automated Vehicles |
EP3497141B1 (de) * | 2016-08-10 | 2020-11-25 | Basf Se | Verfahren zur herstellung von superabsorbern |
WO2018062539A1 (ja) * | 2016-09-30 | 2018-04-05 | 株式会社日本触媒 | 吸水性樹脂組成物 |
JP2020500693A (ja) * | 2016-10-26 | 2020-01-16 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 超吸収体粒子をサイロから排出して、バルクコンテナに充填する方法 |
EP3543279A4 (en) | 2016-11-16 | 2020-08-19 | Nippon Shokubai Co., Ltd. | PROCESS FOR PRODUCING WATER-ABSORBING RESIN POWDER, AND DEVICE AND PROCESS FOR DRYING PARTICULAR HYDRATED GEL |
US10915948B1 (en) | 2017-04-28 | 2021-02-09 | Wells Fargo Bank, N.A. | Default sharing between frequently used line of business products |
KR20200036858A (ko) | 2017-07-31 | 2020-04-07 | 바스프 에스이 | 고흡수성 폴리머 입자의 분류 방법 |
AT519978B1 (de) * | 2017-12-19 | 2018-12-15 | Sonderhoff Eng Gmbh | Vorrichtung zur Herstellung von Kunststoffteilen |
CN108587024B (zh) * | 2018-05-15 | 2021-01-19 | 邦丽达(福建)新材料股份有限公司 | 一种高分子吸水树脂的生产工艺 |
CN112119112B (zh) | 2018-05-16 | 2024-02-27 | 株式会社日本触媒 | 吸水性树脂的制造方法 |
US11027959B2 (en) * | 2018-06-29 | 2021-06-08 | Matsys Inc. | Fluidized powder valve system |
CN108993315A (zh) * | 2018-08-07 | 2018-12-14 | 山东理工大学 | 一种生物质制粒设备系统 |
CN109436390B (zh) * | 2018-11-01 | 2020-12-01 | 山东海伦食品有限公司 | 饲料自动分装设备 |
KR102566284B1 (ko) * | 2018-11-14 | 2023-08-10 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
JP2020172278A (ja) * | 2019-04-09 | 2020-10-22 | 株式会社日本触媒 | 含水ゲルを含む包装体の製造方法 |
US10889744B2 (en) | 2019-04-26 | 2021-01-12 | Signet Aggregates, Llc | Clarification of colloidal suspensions |
CN110419571B (zh) * | 2019-07-26 | 2022-07-19 | 天津捷盛东辉保鲜科技有限公司 | 红薯土窖沙藏保鲜方法 |
CN110815620B (zh) * | 2019-11-04 | 2020-11-17 | 义乌市汇淼科技有限公司 | 一种塑料加工波浪式混料机构 |
CN111232261A (zh) * | 2020-01-18 | 2020-06-05 | 高全 | 一种饲料灌装设备 |
WO2021235524A1 (ja) * | 2020-05-21 | 2021-11-25 | 住友精化株式会社 | 吸水性樹脂粒子を製造する方法 |
CN111533844B (zh) * | 2020-06-04 | 2022-02-08 | 江苏万邦新材料科技有限公司 | 一种改性混凝土保水剂及其制备方法 |
KR20220049068A (ko) | 2020-10-13 | 2022-04-21 | 삼성전자주식회사 | 흡습제 교체 장치 및 이를 포함하는 공기 건조 시스템 |
CN114350001B (zh) * | 2021-12-31 | 2023-07-28 | 宜兴丹森科技有限公司 | 一种高吸水树脂表面改性交联剂及改性方法 |
WO2023139987A1 (ja) * | 2022-01-18 | 2023-07-27 | 松本油脂製薬株式会社 | 粒子、及びその用途 |
JPWO2023149576A1 (ja) | 2022-02-04 | 2023-08-10 | ||
JP7547404B2 (ja) | 2022-02-14 | 2024-09-09 | プライムアースEvエナジー株式会社 | 二次電池の絶縁保護層用スラリーの製造方法及び二次電池の絶縁保護層用スラリーの製造装置 |
Citations (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578601A (en) * | 1980-06-14 | 1982-01-16 | Matsushita Electric Works Ltd | Automatic weighing packing device for powdered and granular body |
JPS6399211A (ja) | 1986-06-04 | 1988-04-30 | Hayashikane Zosen Kk | 改質吸水性樹脂の製造方法 |
US4783510A (en) | 1986-06-04 | 1988-11-08 | Taiyo Fishery Co., Ltd. | Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process |
JPH0196807U (ja) * | 1987-12-21 | 1989-06-27 | ||
US4893999A (en) | 1985-12-18 | 1990-01-16 | Chemische Fabrik Stockhausen Gmbh | Apparatus for the continuous production of polymers and copolymers of water-soluble monomers |
US4973632A (en) | 1988-06-28 | 1990-11-27 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Production process for water-absorbent resin |
JPH0397803A (ja) * | 1989-09-08 | 1991-04-23 | Kobe Steel Ltd | 原料粉末のカプセル内充填方法および充填装置 |
JP2530668B2 (ja) | 1987-11-12 | 1996-09-04 | 株式会社日本触媒 | 改良された吸水性樹脂の製造法 |
JPH1034084A (ja) | 1996-07-23 | 1998-02-10 | Iijima Kogyo Kk | 振動体の加振装置 |
US5744564A (en) | 1991-03-19 | 1998-04-28 | The Dow Chemical Company | Wrinkled absorbent particles of high effective surface area having fast absorption rate |
US5849405A (en) | 1994-08-31 | 1998-12-15 | The Procter & Gamble Company | Absorbent materials having improved absorbent property and methods for making the same |
US6071976A (en) | 1995-12-27 | 2000-06-06 | Nippon Shokubai Co., Ltd. | Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof |
US6107358A (en) | 1996-08-23 | 2000-08-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and method for production thereof |
US6164455A (en) | 1997-01-27 | 2000-12-26 | Nippon Shokubai Co., Ltd. | Process for classifying particulate hydrophilic polymer and sieving device |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
US20010016668A1 (en) | 2000-02-03 | 2001-08-23 | Tetsuji Mitsumoto | Method for production of (meth) acrylic acid |
EP1165631A1 (de) | 1999-03-05 | 2002-01-02 | STOCKHAUSEN GmbH & CO. KG | Pulverförmige, vernetzte, wässrige flüssigkeiten sowie blut absorbierende polymere, verfahren zu ihrer herstellung und ihre verwendung |
US6378453B1 (en) | 2000-03-14 | 2002-04-30 | Eugene Conway | Foldable flexible vehicle locator |
US20020072471A1 (en) | 2000-10-20 | 2002-06-13 | Hiroyuki Ikeuchi | Water-absorbing agent and process for producing the same |
JP2003082107A (ja) * | 2001-07-03 | 2003-03-19 | Nippon Shokubai Co Ltd | 吸水性樹脂粉末の連続製造方法およびこれに用いる粉面検知器 |
US6559239B1 (en) | 1998-11-26 | 2003-05-06 | Basf Aktiengesellschaft | Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones |
US6596901B1 (en) | 1996-07-10 | 2003-07-22 | Basf Aktiengesellschaft | Method for purifying acrylic acid and methacrylic acid |
US6710141B1 (en) | 1999-11-20 | 2004-03-23 | Basf Aktiengesellschaft | Method for continuously producing cross-linked fine-particle geleous polymerizates |
US6716894B2 (en) | 2001-07-06 | 2004-04-06 | Nippon Shokubai Co., Ltd. | Water-absorbent resin powder and its production process and uses |
US6727345B2 (en) | 2001-07-03 | 2004-04-27 | Nippon Shokubai Co., Ltd. | Continuous production process for water-absorbent resin powder and powder surface detector used therefor |
JP2004155963A (ja) * | 2002-11-07 | 2004-06-03 | Nippon Shokubai Co Ltd | 吸水性樹脂の製造方法および製造装置 |
US20040176557A1 (en) | 2000-09-04 | 2004-09-09 | Richard Mertens | Pulverulent, crosslinked polymers which absorb aqueous liquids and blood |
US6817557B2 (en) | 2000-01-20 | 2004-11-16 | Nippon Shokubai Co., Ltd. | Process for transporting, storing, and producing a particulate water-absorbent resin |
US20050011325A1 (en) | 2002-07-29 | 2005-01-20 | Caluori Raymond J. | Light beam rotary saw cut alignment device |
US20050048221A1 (en) | 2003-08-27 | 2005-03-03 | Yoshio Irie | Process for production of surface-treated particulate water-absorbent resin |
US6867269B2 (en) | 2001-12-19 | 2005-03-15 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process therefor |
JP2005113135A (ja) * | 2003-09-19 | 2005-04-28 | Nippon Shokubai Co Ltd | 表面処理された吸水性樹脂およびその製造方法 |
WO2005077786A1 (de) | 2004-02-12 | 2005-08-25 | Stockhausen Gmbh | Silo-vorrichtung für superabsorbierende polymere |
US20050215734A1 (en) | 2004-03-24 | 2005-09-29 | Yorimichi Dairoku | Method for continuous production of water-absorbent resin |
US6987151B2 (en) | 2001-09-12 | 2006-01-17 | Dow Global Technologies Inc. | Continuous polymerization process for the manufacture of superabsorbent polymers |
US20060024755A1 (en) | 2001-04-30 | 2006-02-02 | George Jackowski | Biopolymer marker indicative of disease state having a molecular weight of 1424 daltons |
US20060073969A1 (en) | 2003-02-10 | 2006-04-06 | Kazushi Torii | Vater-absorbent resin composition and its production process |
US7049366B2 (en) | 2001-12-19 | 2006-05-23 | Nippon Shokubai Co., Ltd. | Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin |
WO2006074816A1 (de) | 2005-01-13 | 2006-07-20 | Basf Aktiengesellschaft | Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes |
WO2006082197A1 (en) | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Polyamine-coated superabsorbent polymers |
WO2006082189A1 (en) | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Polyamine-coated superabsorbent polymers |
WO2006082188A1 (en) | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Polyamine-coated superabsorbent polymers |
US20060204755A1 (en) | 2003-02-10 | 2006-09-14 | Kazushi Torii | Walter-absorbing agent |
US7157141B2 (en) | 2000-03-31 | 2007-01-02 | Stockhausen Gmbh | Pulverulent polymers crosslinked on the surface |
US7179862B2 (en) | 1999-03-05 | 2007-02-20 | Stockhausen Gmbh | Powdery, cross-linked absorbent polymers method for the production thereof and their use |
WO2007023097A1 (de) | 2005-08-24 | 2007-03-01 | Basf Se | Verfahren zur herstellung wasserabsorbierender polymerpartikel |
US7193006B2 (en) | 2002-12-06 | 2007-03-20 | Nippon Shokubai Co., Ltd. | Process for continuous production of water-absorbent resin product |
US20070106013A1 (en) | 2003-06-24 | 2007-05-10 | Yoshifumi Adachi | Water absorbent resin composition and production method thereof |
EP1824910A2 (en) | 2004-12-10 | 2007-08-29 | Nippon Shokubai Co.,Ltd. | Method for production of modified water absorbent resin |
US7282262B2 (en) | 2003-02-10 | 2007-10-16 | Nippon Shokubai Co., Ltd. | Particulate water absorbent containing water absorbent resin as a main component |
US7347330B2 (en) | 2003-05-27 | 2008-03-25 | Nippon Shokubai Co., Ltd. | Method for sizing of water-absorbent resin |
WO2008037673A1 (de) | 2006-09-25 | 2008-04-03 | Basf Se | Verfahren zum klassieren wasserabsorbierender polymerpartikel |
WO2008037672A1 (de) | 2006-09-25 | 2008-04-03 | Basf Se | Verfahren zum klassieren wasserabsorbierender polymerpartikel |
WO2008037675A1 (de) | 2006-09-25 | 2008-04-03 | Basf Se | Verfahren zum klassieren wasserabsorbierender polymerpartikel |
WO2008123477A1 (en) | 2007-03-26 | 2008-10-16 | Nippon Shokubai Co., Ltd. | Classification method of particulate water absorbent resin |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2572321A (en) * | 1947-11-25 | 1951-10-23 | Universal Oil Prod Co | Preparation of fine powders from gel materials |
US4182386A (en) * | 1977-11-30 | 1980-01-08 | Semi-Bulk Systems, Inc. | Closed system and container for dust free loading and unloading of powdered materials |
US4985518A (en) | 1981-10-26 | 1991-01-15 | American Colloid Company | Process for preparing water-absorbing resins |
JP2741695B2 (ja) | 1986-09-19 | 1998-04-22 | キヤノン株式会社 | 適応形差分符号化方式 |
JPS6376684U (ja) * | 1986-11-07 | 1988-05-21 | ||
US4804550A (en) * | 1986-12-10 | 1989-02-14 | Tetley Inc. | Method for packaging ground coffee |
US4782865A (en) * | 1987-06-29 | 1988-11-08 | Container Corporation Of America | Box filling apparatus |
JP2540881B2 (ja) | 1987-10-07 | 1996-10-09 | 三菱電機株式会社 | 磁気記録装置 |
US4854353A (en) * | 1988-03-09 | 1989-08-08 | Container Corporation Of America | Bulk container filling apparatus |
US4872493A (en) * | 1988-05-10 | 1989-10-10 | Container Corporation Of America | Apparatus for filling a lined container |
TW201758B (ja) | 1988-06-28 | 1993-03-11 | Catalyst co ltd | |
US4950692A (en) | 1988-12-19 | 1990-08-21 | Nalco Chemical Company | Method for reconstituting superabsorbent polymer fines |
US4983434A (en) * | 1989-04-07 | 1991-01-08 | W. L. Gore & Associates, Inc. | Filter laminates |
US4970267A (en) | 1990-03-08 | 1990-11-13 | Nalco Chemical Company | Reconstitution of superabsorbent polymer fines using persulfate salts |
DE4020780C1 (ja) | 1990-06-29 | 1991-08-29 | Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De | |
US5238032A (en) * | 1991-04-29 | 1993-08-24 | Mcgregor Harold R | Product settler having vertically movable rollers |
US5342899A (en) | 1991-05-16 | 1994-08-30 | The Dow Chemical Company | Process for recycling aqueous fluid absorbents fines to a polymerizer |
CA2074349C (en) * | 1991-07-23 | 2004-04-20 | Shinji Tamaru | Polytetrafluoroethylene porous film and preparation and use thereof |
JP2727382B2 (ja) | 1991-08-12 | 1998-03-11 | 株式会社日立製作所 | 通帳取扱い装置 |
JP2525825Y2 (ja) * | 1991-11-27 | 1997-02-12 | 東京瓦斯株式会社 | 粉体供給ホッパー |
DE69323652T2 (de) | 1992-06-10 | 1999-09-09 | Nippon Shokubai Co. Ltd. | Verfahren zur Herstellung eines hydrophilen Harzes |
JP3310356B2 (ja) | 1992-11-20 | 2002-08-05 | 株式会社クラレ | スギ花粉症抗原の不活性化装置 |
US5348063A (en) * | 1993-01-04 | 1994-09-20 | Semi-Bulk Systems, Inc. | Material handling system |
JPH07232062A (ja) * | 1994-02-25 | 1995-09-05 | Nippon Shokubai Co Ltd | 吸水性物品 |
JPH07241462A (ja) | 1994-03-04 | 1995-09-19 | Nisso Eng Kk | 空気浄化フィルター用吸着材 |
US5599335A (en) | 1994-03-29 | 1997-02-04 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
DE4419333A1 (de) * | 1994-06-02 | 1995-12-07 | Bolz Alfred Gmbh Co Kg | Abfüllanlage für gefährliche, schütt- oder fließfähige Medien |
GB9515340D0 (en) * | 1995-07-26 | 1995-09-20 | Glaxo Group Ltd | Method and apparatus for filling cavities |
JPH09104401A (ja) * | 1995-10-12 | 1997-04-22 | Minolta Co Ltd | 粉体充填方法 |
JP3688418B2 (ja) | 1995-12-27 | 2005-08-31 | 株式会社日本触媒 | 吸水剤並びに衛生材料 |
JPH09194598A (ja) | 1996-01-18 | 1997-07-29 | Mitsubishi Chem Corp | 高吸水性樹脂の造粒法 |
EP0882502B1 (en) * | 1996-08-07 | 2007-04-11 | Nippon Shokubai Co., Ltd. | Water-absorbent and process for preparing the same |
JP3325806B2 (ja) | 1996-08-07 | 2002-09-17 | 株式会社日本触媒 | 吸水剤およびその製造方法 |
JPH10109754A (ja) * | 1996-10-03 | 1998-04-28 | Mitsubishi Heavy Ind Ltd | 粉粒体用ホッパ |
JP4087500B2 (ja) | 1997-06-13 | 2008-05-21 | 株式会社日本触媒 | 吸収性物品の製造方法 |
JP3137601B2 (ja) * | 1997-06-16 | 2001-02-26 | 株式会社アンレット | 集塵装置 |
JP3979724B2 (ja) * | 1997-06-18 | 2007-09-19 | 株式会社日本触媒 | 吸水性樹脂造粒物の乾燥体の製造方法 |
US6228930B1 (en) | 1997-06-18 | 2001-05-08 | Nippon Shokubai Co., Ltd. | Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule |
US6089283A (en) * | 1997-12-19 | 2000-07-18 | Renold, Inc. | Method of filling containers |
US6254990B1 (en) | 1998-02-18 | 2001-07-03 | Nippon Shokubai Co., Ltd. | Surface-crosslinking process for water-absorbent resin |
JP4583516B2 (ja) * | 1998-03-04 | 2010-11-17 | 株式会社日本触媒 | 吸水性樹脂、その製造方法および吸収性物品 |
JP2000061224A (ja) | 1998-06-08 | 2000-02-29 | Daikin Ind Ltd | 高温炉の集塵装置用濾材およびバグフィルタ― |
WO1999064135A1 (fr) | 1998-06-08 | 1999-12-16 | Daikin Industries, Ltd. | Materiau filtrant pour collecteur de poussiere de four a temperature elevee |
AU766785B2 (en) * | 1998-06-09 | 2003-10-23 | Lance John Muller | Liner bag for flexible bulk container |
WO2000046492A1 (fr) | 1999-02-02 | 2000-08-10 | Fumiya Takeuchi | Dispositif reduisant les fumees noires et les particules destine aux moteurs diesel et dispositif auxiliaire servant a reduire les gaz d'echappement |
US6562879B1 (en) * | 1999-02-15 | 2003-05-13 | Nippon Shokubai Co., Ltd. | Water-absorbent resin powder and its production process and use |
US6112504A (en) * | 1999-03-03 | 2000-09-05 | Slidell, Inc. | Bulk bagging machine |
DE60014054T2 (de) | 1999-03-12 | 2005-02-03 | Basf Ag | Farbstabile superabsorbierende polymerzusammensetzung |
JP4132592B2 (ja) * | 1999-06-25 | 2008-08-13 | 株式会社日本触媒 | 吸水性樹脂およびその製造方法 |
JP2001219015A (ja) | 1999-11-30 | 2001-08-14 | Sanyo Chem Ind Ltd | フィルター用繊維もしくは繊維製品およびその製造方法 |
JP4739534B2 (ja) * | 2000-01-20 | 2011-08-03 | 株式会社日本触媒 | 吸水性樹脂の取扱方法 |
US6906159B2 (en) | 2000-08-03 | 2005-06-14 | Nippon Shokubai Co., Ltd. | Water-absorbent resin, hydropolymer, process for producing them, and uses of them |
JP2002145385A (ja) * | 2000-11-01 | 2002-05-22 | Mitsubishi Heavy Ind Ltd | 粉粒体貯槽 |
US6831122B2 (en) † | 2001-01-19 | 2004-12-14 | Basf Aktiengesellschaft | Water-absorbing agent, method for the production and the utilization thereof |
DE60216911T2 (de) | 2001-06-08 | 2007-09-06 | Nippon Shokubai Co. Ltd. | Wasserabsorbierendes miitel, dessen herstellung und sanitärartikel |
JP4158775B2 (ja) * | 2001-08-01 | 2008-10-01 | 東洋紡績株式会社 | 熱収縮性ポリエステル系フィルムロールの製造方法 |
GB0122548D0 (en) * | 2001-09-19 | 2001-11-07 | Flomat Bagfilla Internat Ltd | Bag filling apparatus |
AU2003225136A1 (en) * | 2002-04-25 | 2003-11-10 | Avon Protection Systems, Inc. | Respirator filter canisters and method of filling same |
JP2004018084A (ja) * | 2002-06-20 | 2004-01-22 | Ippei Yamazaki | 円錐台状ホッパーセグメントの製造方法 |
MXPA04012712A (es) * | 2002-06-27 | 2005-03-23 | Nektar Therapeutics | Aparato y metodo para controlar el flujo de un polvo. |
CN100474160C (zh) * | 2002-07-02 | 2009-04-01 | 兄弟工业株式会社 | 显影剂充入方法 |
JP4219211B2 (ja) * | 2002-08-22 | 2009-02-04 | 旭化成ケミカルズ株式会社 | 製造方法及びその難燃樹脂組成物 |
JP4642343B2 (ja) * | 2002-12-06 | 2011-03-02 | 株式会社日本触媒 | 吸水性樹脂製品の連続製造方法 |
JP2004210924A (ja) | 2002-12-27 | 2004-07-29 | Sumitomo Seika Chem Co Ltd | 吸水性樹脂組成物 |
EP1832621B1 (en) * | 2003-03-14 | 2017-03-08 | Nippon Shokubai Co.,Ltd. | Method of surface crosslinking a water-absorbing resin powder |
JP4364020B2 (ja) * | 2003-03-14 | 2009-11-11 | 株式会社日本触媒 | 吸水性樹脂粉末の表面架橋処理方法 |
EP1506788A1 (en) | 2003-08-06 | 2005-02-16 | The Procter & Gamble Company | Superabsorbent polymers having radiation activatable surface cross-linkers and method of making them |
JP2005081204A (ja) | 2003-09-05 | 2005-03-31 | Nippon Shokubai Co Ltd | 吸水性樹脂組成物の製造方法 |
JP4640923B2 (ja) * | 2003-09-05 | 2011-03-02 | 株式会社日本触媒 | 粒子状吸水性樹脂組成物の製造方法 |
AU2005210411B2 (en) | 2004-02-05 | 2008-01-31 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent and method for production thereof, and water absorbing article |
US7267144B2 (en) * | 2004-05-03 | 2007-09-11 | Material Transfer & Storage, Inc. | Bulk bag filling system |
US7267145B2 (en) * | 2004-05-03 | 2007-09-11 | Material Transfer & Storage, Inc. | Bulk bag filling system |
WO2005108472A1 (en) | 2004-05-07 | 2005-11-17 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
WO2006034806A1 (de) | 2004-09-28 | 2006-04-06 | Basf Aktiengesellschaft | Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten |
DE102004057874A1 (de) * | 2004-11-30 | 2006-06-01 | Basf Ag | Verfahren zur Nachvernetzung wasserabsorbierender Polymerpartikel |
EP1878761B1 (en) * | 2005-03-14 | 2018-10-17 | Nippon Shokubai Co.,Ltd. | Water absorbent and process for producing the same |
DE102005042038A1 (de) | 2005-09-02 | 2007-03-08 | Basf Ag | Verfahren zur Herstellung wasserabsorbierender Polymere |
DE102005042604A1 (de) | 2005-09-07 | 2007-03-08 | Basf Ag | Neutralisationsverfahren |
DE102005042606A1 (de) | 2005-09-07 | 2007-03-08 | Basf Ag | Neutralisationsverfahren |
TWI377222B (en) | 2005-12-22 | 2012-11-21 | Nippon Catalytic Chem Ind | Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin |
EP1996492A2 (de) | 2006-03-14 | 2008-12-03 | Basf Se | Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel |
US8591152B2 (en) | 2006-03-14 | 2013-11-26 | Basf Se | Method for the pneumatic conveying of water-absorbent polymer particles |
JP2009529478A (ja) | 2006-03-14 | 2009-08-20 | ビーエーエスエフ ソシエタス・ヨーロピア | 吸水性ポリマー粒子を空気により搬送する方法 |
JP4674560B2 (ja) | 2006-03-23 | 2011-04-20 | 三菱化学株式会社 | 静電荷像現像用トナーの製造方法 |
TWI410447B (zh) | 2006-03-27 | 2013-10-01 | Nippon Catalytic Chem Ind | 吸水性樹脂組合物 |
EP1840137B1 (en) * | 2006-03-29 | 2009-11-25 | Nippon Shokubai Co., Ltd. | Method of Producing Polyacrylic Acid (Salt) Water-Absorbent Resin |
CN101490139B (zh) * | 2006-07-31 | 2012-02-15 | 株式会社日本触媒 | 吸水树脂粉末的制备方法和吸水树脂粉末的包装 |
JP5415256B2 (ja) | 2006-08-31 | 2014-02-12 | 株式会社日本触媒 | 粒子状吸水剤およびその製造方法 |
WO2008090961A1 (ja) | 2007-01-24 | 2008-07-31 | Nippon Shokubai Co., Ltd. | 粒子状吸水性ポリマーおよびその製造方法 |
JP4064438B1 (ja) * | 2007-03-22 | 2008-03-19 | 国立大学法人徳島大学 | 粉体取扱装置用鋼製部材及び粉体取扱装置 |
JP2010531366A (ja) | 2007-06-27 | 2010-09-24 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
JP5046795B2 (ja) * | 2007-08-24 | 2012-10-10 | フクダ電子株式会社 | 携帯型医療電子機器用収容袋 |
SA08290542B1 (ar) * | 2007-08-28 | 2012-11-14 | نيبون شوكوباي كو. ، ليمتد | طريقة لإنتاج راتنج ماص للماء |
-
2009
- 2009-03-13 EP EP09719350.2A patent/EP2263939B1/en active Active
- 2009-03-13 WO PCT/JP2009/054913 patent/WO2009113678A1/ja active Application Filing
- 2009-03-13 WO PCT/JP2009/054905 patent/WO2009113673A1/ja active Application Filing
- 2009-03-13 US US12/922,274 patent/US8544507B2/en active Active
- 2009-03-13 WO PCT/JP2009/054902 patent/WO2009113671A1/ja active Application Filing
- 2009-03-13 JP JP2010502907A patent/JP5524042B2/ja active Active
- 2009-03-13 EP EP09720912.6A patent/EP2253376B1/en active Active
- 2009-03-13 US US12/922,011 patent/US8138292B2/en active Active
- 2009-03-13 WO PCT/JP2009/054903 patent/WO2009113672A1/ja active Application Filing
- 2009-03-13 US US12/921,946 patent/US8424786B2/en active Active
- 2009-03-13 JP JP2010502903A patent/JP5558343B2/ja active Active
- 2009-03-13 EP EP09720188.3A patent/EP2253563B2/en active Active
- 2009-03-13 CN CN2009801086774A patent/CN101970101B/zh active Active
- 2009-03-13 JP JP2010502902A patent/JP5350361B2/ja active Active
- 2009-03-13 JP JP2010502904A patent/JP5635397B2/ja active Active
- 2009-03-13 CN CN200980108666.6A patent/CN101970546B/zh active Active
- 2009-03-13 CN CN2009801086793A patent/CN101970299B/zh active Active
- 2009-03-13 US US12/922,203 patent/US8148485B2/en active Active
- 2009-03-13 EP EP09720556.1A patent/EP2253657B1/en active Active
- 2009-03-13 WO PCT/JP2009/054914 patent/WO2009113679A1/ja active Application Filing
- 2009-03-13 CN CN2009801086789A patent/CN101970316B/zh active Active
- 2009-03-13 US US12/921,877 patent/US9051067B2/en active Active
- 2009-03-13 CN CN2009801086806A patent/CN101970102B/zh active Active
- 2009-03-13 JP JP2010502906A patent/JP5706156B2/ja active Active
- 2009-03-13 EP EP09718585.4A patent/EP2253375B1/en active Active
Patent Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578601A (en) * | 1980-06-14 | 1982-01-16 | Matsushita Electric Works Ltd | Automatic weighing packing device for powdered and granular body |
US4893999A (en) | 1985-12-18 | 1990-01-16 | Chemische Fabrik Stockhausen Gmbh | Apparatus for the continuous production of polymers and copolymers of water-soluble monomers |
JPS6399211A (ja) | 1986-06-04 | 1988-04-30 | Hayashikane Zosen Kk | 改質吸水性樹脂の製造方法 |
US4783510A (en) | 1986-06-04 | 1988-11-08 | Taiyo Fishery Co., Ltd. | Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process |
JP2530668B2 (ja) | 1987-11-12 | 1996-09-04 | 株式会社日本触媒 | 改良された吸水性樹脂の製造法 |
JPH0196807U (ja) * | 1987-12-21 | 1989-06-27 | ||
US4973632A (en) | 1988-06-28 | 1990-11-27 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Production process for water-absorbent resin |
JPH0397803A (ja) * | 1989-09-08 | 1991-04-23 | Kobe Steel Ltd | 原料粉末のカプセル内充填方法および充填装置 |
US5744564A (en) | 1991-03-19 | 1998-04-28 | The Dow Chemical Company | Wrinkled absorbent particles of high effective surface area having fast absorption rate |
US5849405A (en) | 1994-08-31 | 1998-12-15 | The Procter & Gamble Company | Absorbent materials having improved absorbent property and methods for making the same |
US6071976A (en) | 1995-12-27 | 2000-06-06 | Nippon Shokubai Co., Ltd. | Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof |
US6596901B1 (en) | 1996-07-10 | 2003-07-22 | Basf Aktiengesellschaft | Method for purifying acrylic acid and methacrylic acid |
JPH1034084A (ja) | 1996-07-23 | 1998-02-10 | Iijima Kogyo Kk | 振動体の加振装置 |
US6107358A (en) | 1996-08-23 | 2000-08-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and method for production thereof |
US6164455A (en) | 1997-01-27 | 2000-12-26 | Nippon Shokubai Co., Ltd. | Process for classifying particulate hydrophilic polymer and sieving device |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
US6559239B1 (en) | 1998-11-26 | 2003-05-06 | Basf Aktiengesellschaft | Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones |
EP1165631A1 (de) | 1999-03-05 | 2002-01-02 | STOCKHAUSEN GmbH & CO. KG | Pulverförmige, vernetzte, wässrige flüssigkeiten sowie blut absorbierende polymere, verfahren zu ihrer herstellung und ihre verwendung |
US7179862B2 (en) | 1999-03-05 | 2007-02-20 | Stockhausen Gmbh | Powdery, cross-linked absorbent polymers method for the production thereof and their use |
US6710141B1 (en) | 1999-11-20 | 2004-03-23 | Basf Aktiengesellschaft | Method for continuously producing cross-linked fine-particle geleous polymerizates |
US6817557B2 (en) | 2000-01-20 | 2004-11-16 | Nippon Shokubai Co., Ltd. | Process for transporting, storing, and producing a particulate water-absorbent resin |
US20010016668A1 (en) | 2000-02-03 | 2001-08-23 | Tetsuji Mitsumoto | Method for production of (meth) acrylic acid |
US6378453B1 (en) | 2000-03-14 | 2002-04-30 | Eugene Conway | Foldable flexible vehicle locator |
US7157141B2 (en) | 2000-03-31 | 2007-01-02 | Stockhausen Gmbh | Pulverulent polymers crosslinked on the surface |
US6831142B2 (en) | 2000-09-04 | 2004-12-14 | Stockhausen Gmbh & Co. Kg | Pulverulent, crosslinked polymers which absorb aqueous liquids and blood |
US20040176557A1 (en) | 2000-09-04 | 2004-09-09 | Richard Mertens | Pulverulent, crosslinked polymers which absorb aqueous liquids and blood |
US20020072471A1 (en) | 2000-10-20 | 2002-06-13 | Hiroyuki Ikeuchi | Water-absorbing agent and process for producing the same |
US20060024755A1 (en) | 2001-04-30 | 2006-02-02 | George Jackowski | Biopolymer marker indicative of disease state having a molecular weight of 1424 daltons |
US6727345B2 (en) | 2001-07-03 | 2004-04-27 | Nippon Shokubai Co., Ltd. | Continuous production process for water-absorbent resin powder and powder surface detector used therefor |
JP2003082107A (ja) * | 2001-07-03 | 2003-03-19 | Nippon Shokubai Co Ltd | 吸水性樹脂粉末の連続製造方法およびこれに用いる粉面検知器 |
US6716894B2 (en) | 2001-07-06 | 2004-04-06 | Nippon Shokubai Co., Ltd. | Water-absorbent resin powder and its production process and uses |
US6987151B2 (en) | 2001-09-12 | 2006-01-17 | Dow Global Technologies Inc. | Continuous polymerization process for the manufacture of superabsorbent polymers |
US6867269B2 (en) | 2001-12-19 | 2005-03-15 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process therefor |
US7049366B2 (en) | 2001-12-19 | 2006-05-23 | Nippon Shokubai Co., Ltd. | Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin |
US20050011325A1 (en) | 2002-07-29 | 2005-01-20 | Caluori Raymond J. | Light beam rotary saw cut alignment device |
JP2004155963A (ja) * | 2002-11-07 | 2004-06-03 | Nippon Shokubai Co Ltd | 吸水性樹脂の製造方法および製造装置 |
US7193006B2 (en) | 2002-12-06 | 2007-03-20 | Nippon Shokubai Co., Ltd. | Process for continuous production of water-absorbent resin product |
US20060073969A1 (en) | 2003-02-10 | 2006-04-06 | Kazushi Torii | Vater-absorbent resin composition and its production process |
US7282262B2 (en) | 2003-02-10 | 2007-10-16 | Nippon Shokubai Co., Ltd. | Particulate water absorbent containing water absorbent resin as a main component |
US20060204755A1 (en) | 2003-02-10 | 2006-09-14 | Kazushi Torii | Walter-absorbing agent |
US7347330B2 (en) | 2003-05-27 | 2008-03-25 | Nippon Shokubai Co., Ltd. | Method for sizing of water-absorbent resin |
US20070106013A1 (en) | 2003-06-24 | 2007-05-10 | Yoshifumi Adachi | Water absorbent resin composition and production method thereof |
US7201941B2 (en) | 2003-08-27 | 2007-04-10 | Nippon Shokubai Co., Ltd. | Process for production of surface-treated particulate water-absorbent resin |
US20050048221A1 (en) | 2003-08-27 | 2005-03-03 | Yoshio Irie | Process for production of surface-treated particulate water-absorbent resin |
JP2005113135A (ja) * | 2003-09-19 | 2005-04-28 | Nippon Shokubai Co Ltd | 表面処理された吸水性樹脂およびその製造方法 |
WO2005077786A1 (de) | 2004-02-12 | 2005-08-25 | Stockhausen Gmbh | Silo-vorrichtung für superabsorbierende polymere |
US20050215734A1 (en) | 2004-03-24 | 2005-09-29 | Yorimichi Dairoku | Method for continuous production of water-absorbent resin |
EP1824910A2 (en) | 2004-12-10 | 2007-08-29 | Nippon Shokubai Co.,Ltd. | Method for production of modified water absorbent resin |
WO2006074816A1 (de) | 2005-01-13 | 2006-07-20 | Basf Aktiengesellschaft | Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes |
WO2006082188A1 (en) | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Polyamine-coated superabsorbent polymers |
WO2006082189A1 (en) | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Polyamine-coated superabsorbent polymers |
WO2006082197A1 (en) | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Polyamine-coated superabsorbent polymers |
WO2007023097A1 (de) | 2005-08-24 | 2007-03-01 | Basf Se | Verfahren zur herstellung wasserabsorbierender polymerpartikel |
WO2008037673A1 (de) | 2006-09-25 | 2008-04-03 | Basf Se | Verfahren zum klassieren wasserabsorbierender polymerpartikel |
WO2008037672A1 (de) | 2006-09-25 | 2008-04-03 | Basf Se | Verfahren zum klassieren wasserabsorbierender polymerpartikel |
WO2008037675A1 (de) | 2006-09-25 | 2008-04-03 | Basf Se | Verfahren zum klassieren wasserabsorbierender polymerpartikel |
WO2008123477A1 (en) | 2007-03-26 | 2008-10-16 | Nippon Shokubai Co., Ltd. | Classification method of particulate water absorbent resin |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120298915A1 (en) * | 2010-02-10 | 2012-11-29 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin powder |
US9976001B2 (en) | 2010-02-10 | 2018-05-22 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin powder |
US9272068B2 (en) | 2010-03-12 | 2016-03-01 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin |
US10307506B2 (en) | 2010-03-12 | 2019-06-04 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin |
WO2011111857A1 (ja) | 2010-03-12 | 2011-09-15 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
WO2011111856A1 (ja) | 2010-03-12 | 2011-09-15 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
US9233186B2 (en) | 2010-03-12 | 2016-01-12 | Nippon Shokubai Co., Ltd. | Process for producing water-absorbing resin |
WO2011111855A1 (ja) | 2010-03-12 | 2011-09-15 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
US10640593B2 (en) | 2010-04-26 | 2020-05-05 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US10640588B2 (en) | 2010-04-26 | 2020-05-05 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US10493429B2 (en) | 2011-01-28 | 2019-12-03 | Nippon Shokubai Co., Ltd. | Method for producing polyacrylic acid (salt)-based water absorbent resin powder |
WO2012102407A1 (ja) | 2011-01-28 | 2012-08-02 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法 |
US9567414B2 (en) | 2011-01-28 | 2017-02-14 | Nippon Shokubai Co., Ltd. | Method for producing polyacrylic acid (salt)-based water absorbent resin powder |
JPWO2014061802A1 (ja) * | 2012-10-18 | 2016-09-05 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法及びその工程管理方法 |
WO2014061802A1 (ja) * | 2012-10-18 | 2014-04-24 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法及びその工程管理方法 |
JP5941992B2 (ja) * | 2012-10-18 | 2016-06-29 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法及びその工程管理方法 |
US10195584B2 (en) | 2013-01-29 | 2019-02-05 | Nippon Shokubai Co., Ltd. | Water absorbent resin material, and method for producing same |
JPWO2014119553A1 (ja) * | 2013-01-29 | 2017-01-26 | 株式会社日本触媒 | 吸水性樹脂材料及びその製造方法 |
JP5952431B2 (ja) * | 2013-01-29 | 2016-07-13 | 株式会社日本触媒 | 吸水性樹脂材料及びその製造方法 |
WO2014119553A1 (ja) * | 2013-01-29 | 2014-08-07 | 株式会社日本触媒 | 吸水性樹脂材料及びその製造方法 |
US10577135B2 (en) | 2013-09-30 | 2020-03-03 | Nippon Shokubai Co., Ltd. | Method for filling particulate water absorbing agent and method for sampling filled particulate water absorbing agent |
JPWO2015046604A1 (ja) * | 2013-09-30 | 2017-03-09 | 株式会社日本触媒 | 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法 |
EP4159307A1 (en) | 2013-09-30 | 2023-04-05 | Nippon Shokubai Co., Ltd. | Method for filling particulate water absorbing agent and method for sampling filled particulate water absorbing agent |
JP2018061852A (ja) * | 2013-09-30 | 2018-04-19 | 株式会社日本触媒 | 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法 |
KR20160064113A (ko) | 2013-09-30 | 2016-06-07 | 가부시키가이샤 닛폰 쇼쿠바이 | 입자상 흡수제의 충전 방법 및 입자상 흡수제 충전물의 샘플링 방법 |
US10934031B2 (en) | 2013-09-30 | 2021-03-02 | Nippon Shokubai Co., Ltd. | Method for filling particulate water absorbing agent and method for sampling filled particulate water absorbing agent |
WO2015046604A1 (ja) | 2013-09-30 | 2015-04-02 | 株式会社日本触媒 | 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法 |
US10247360B2 (en) | 2014-03-07 | 2019-04-02 | The Japan Steel Works, Ltd. | Method for filling hydrogen storage alloy |
WO2015133378A1 (ja) * | 2014-03-07 | 2015-09-11 | 株式会社日本製鋼所 | 水素吸蔵合金の充填方法 |
JP2015169269A (ja) * | 2014-03-07 | 2015-09-28 | 株式会社日本製鋼所 | 水素吸蔵合金の充填方法 |
US20170016578A1 (en) * | 2014-03-07 | 2017-01-19 | The Japan Steel Works, Ltd. | Method for filling hydrogen storage alloy |
WO2015163083A1 (ja) * | 2014-04-25 | 2015-10-29 | 積水化成品工業株式会社 | 複合粒子、複合粒子の製造方法、及び、その用途 |
JPWO2015163083A1 (ja) * | 2014-04-25 | 2017-04-13 | 積水化成品工業株式会社 | 複合粒子、複合粒子の製造方法、及び、その用途 |
JP2021511408A (ja) * | 2018-01-19 | 2021-05-06 | エルジー・ケム・リミテッド | 高吸水性樹脂およびその製造方法 |
JP7062868B2 (ja) | 2018-01-19 | 2022-05-09 | エルジー・ケム・リミテッド | 高吸水性樹脂およびその製造方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5350361B2 (ja) | 吸水性樹脂を主成分とする粒子状吸水剤の充填方法 | |
JP6688276B2 (ja) | 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法 | |
JP5421243B2 (ja) | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 | |
JP5710966B2 (ja) | 吸水性樹脂粉体の輸送方法 | |
JP7181948B2 (ja) | 吸水剤、及び吸水剤の製造方法 | |
JP6649441B2 (ja) | 使い捨てカイロ用吸水剤および使い捨てカイロの製造方法 | |
JP2015144729A (ja) | 使い捨てカイロの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980108679.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09719350 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010502902 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2009719350 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009719350 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12922274 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |