WO2010114058A1 - 粒子状吸水性樹脂の製造方法 - Google Patents

粒子状吸水性樹脂の製造方法 Download PDF

Info

Publication number
WO2010114058A1
WO2010114058A1 PCT/JP2010/055930 JP2010055930W WO2010114058A1 WO 2010114058 A1 WO2010114058 A1 WO 2010114058A1 JP 2010055930 W JP2010055930 W JP 2010055930W WO 2010114058 A1 WO2010114058 A1 WO 2010114058A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
water
particles
dried product
drying
Prior art date
Application number
PCT/JP2010/055930
Other languages
English (en)
French (fr)
Inventor
大六 頼道
俊博 鷹合
藤野 眞一
智嗣 松本
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to US13/258,645 priority Critical patent/US9175143B2/en
Priority to EP10758829.5A priority patent/EP2415822B1/en
Priority to JP2011507272A priority patent/JP5631866B2/ja
Priority to CN201080014855XA priority patent/CN102378778A/zh
Publication of WO2010114058A1 publication Critical patent/WO2010114058A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • Water-absorbent resin is widely used in various applications such as disposable diapers, sanitary napkins, adult incontinence products, and hygiene products for soil, and soil water retention agents because of its ability to absorb a large amount of aqueous liquid, several times to several hundred times its own weight. Are produced and consumed in large quantities.
  • a water-absorbing resin also referred to as a superabsorbent resin or a water-absorbing polymer
  • JIS Japanese Industrial Standard
  • Patent Documents 11 to 16 and Patent Document 18 can remove the fine powder, it is not only necessary to discard or reuse (recycle) a large amount of fine powder, but also to clean only the fine powder. In some cases, a long-time classification operation is required. Further, in the granulation methods disclosed in Patent Documents 17 to 22, the granulation strength is weak and fine powder may be regenerated at the time of use or transportation, or the absorbent physical properties may be reduced due to the use of a binder at the time of granulation. It was.
  • the present invention has been made in view of the above-described conventional problems, and provides a method for producing a water-absorbent resin that can essentially control the particle diameter of the water-absorbent resin more easily without deterioration in physical properties. It is in.
  • the particle size in a method for producing a water-absorbent resin including a polymerization step, a drying step, a pulverization step, a classification step, and a surface cross-linking step, the particle size can be easily controlled while relatively suppressing an increase in cost and a decrease in productivity.
  • FIG. 6 is a graph showing the results of Examples 1 to 7 and Comparative Example 1 (correlation between dry substance retention time and the ratio of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m).
  • FIG. 6 is a graph showing the results of Examples 8 to 12 and Comparative Examples 2 to 4 (correlation between the dry matter retention time and the ratio of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m).
  • FIG. 6 is a graph showing the results of Examples 13 to 18 and Comparative Examples 5 to 6 (correlation between the dry matter retention time and the ratio of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m).
  • FIG. 6 is a graph showing the results of Examples 1 to 7 and Comparative Example 1 (correlation between dry substance retention time and the ratio of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m).
  • FIG. 6 is a graph showing the results of Examples 8 to 12 and Comparative Examples 2
  • FIG. 6 is a graph showing the results of Examples 31 to 34 (correlation between dry matter retention time and the ratio of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m). It is a schematic flowchart which shows the 1st manufacturing process which concerns on embodiment of this invention. It is a schematic flowchart which shows the 2nd manufacturing process which concerns on embodiment of this invention. It is a schematic flowchart which shows the 3rd manufacturing process which concerns on embodiment of this invention. It is a schematic flowchart which shows the 4th manufacturing process which concerns on embodiment of this invention. It is a schematic flowchart which shows the 5th manufacturing process which concerns on embodiment of this invention.
  • FIG. 14 is a schematic view showing a hopper included in the manufacturing process of FIGS. 9 to 13;
  • Water-absorbing resin means a water-swelling, water-insoluble polymer gelling agent, and has the following physical properties. . That is, the absorption capacity without pressure (specified by CRC / ERT 441.2-02 (2002)) is essentially 5 [g / g] or more, preferably 10 to 100 [g / g], more preferably 20 to 80.
  • AAP is an abbreviation for Absorbency Against Pressure, which means water absorption capacity under pressure.
  • Residual Monomers (ERT410.2-02) “Residual Monomers” means the amount of monomer remaining in the water-absorbent resin. Specifically, 1 g of water-absorbing resin was added to 200 cm 3 of 0.9 wt% sodium chloride aqueous solution, stirred for 1 hour, and the amount of monomer eluted in the aqueous solution was measured by high performance liquid chromatography (unit: ppm). is there.
  • liquid permeability means a flow of liquid between swollen gel particles under pressure or without pressure.
  • SFC Seline Flow Conductivity
  • the water-containing gel-like polymer defined in claim 1 is the “water-containing gel” of the present invention as long as it is obtained in a monomer aqueous solution and contains water.
  • the water content (water content) of the water-containing gel is appropriately determined depending on the polymerization conditions (for example, the solid content of the monomer aqueous solution, the water evaporation during polymerization, etc.), but usually 25% by weight or more is preferable. 30 weight% or more is more preferable.
  • “Dried product” refers to a dry polymer of a water-absorbent resin that has undergone the drying step after the polymerization.
  • the moisture content after drying depends on the purpose and the moisture content after polymerization, but usually the moisture content is reduced by 5% by weight or more in the drying step, and as a result, the moisture content is less than 30% by weight, further less than 25% by weight, Means 20% by weight or less, especially 3 to 15% by weight of dry polymer.
  • the shape is not limited, and a part of the drying may be performed simultaneously with the polymerization (drying by polymerization heat or heating at the time of polymerization), but is further dried.
  • “Powder” is a solid with a particle size of 5 mm or less as defined by sieve classification, and is used as a dry polymer powder of water-absorbent resin or as a solid among raw materials and additives of water-absorbent resin Powder (for example, water-insoluble inorganic powder, polyvalent metal salt powder or hydrated salt thereof).
  • the water content is not limited as long as it is solid, but it is usually less than 30% by weight, further less than 25% by weight, and further 20% by weight or less.
  • the lower limit of the particle diameter is not particularly limited, but is, for example, 1 nm, more preferably 10 nm. It has a certain fluidity as a powder.
  • One compound or two or more compounds capable of forming a covalent bond by reacting with a carboxyl group such as polyglycidyl ether (ethylene glycol diglycidyl ether) and polyol (ethylene glycol, polyethylene glycol, glycerin, sorbitol) Can be illustrated That.
  • a carboxyl group such as polyglycidyl ether (ethylene glycol diglycidyl ether) and polyol (ethylene glycol, polyethylene glycol, glycerin, sorbitol)
  • the particulate water-absorbing resin of the present invention is produced by crosslinking and polymerizing the unsaturated monomer to obtain a hydrogel polymer.
  • the polymerization method is usually carried out by spray polymerization, drop polymerization, aqueous solution polymerization or reverse phase suspension polymerization from the viewpoint of performance and ease of control of polymerization.
  • the solid content concentration of the hydrogel polymer is preferably increased by 0.1% by weight or more before and after the polymerization, more preferably by 1 to 40% by weight, and more preferably by 2 to 30% by weight. It is more preferable to increase the content by 3 to 20% by weight.
  • the increase in the solid content concentration of the hydrated gel polymer is appropriately determined depending on the temperature, air flow and shape (particle diameter of the polymer gel and sheet thickness) during polymerization.
  • the present invention is more effective in particle size control in production scale and pulverization in actual scale than in laboratory scale, especially in huge scale. That is, when an aqueous solution of an unsaturated monomer is polymerized to obtain a particulate water-absorbing resin, the production capacity is that the particulate water-absorbing resin is polymerized or pulverized on a scale of 1 t / hr or more per line or apparatus. It is preferably 2 t / hr or more, more preferably 5 t / hr or more, and particularly preferably 10 t / hr or more (Note that “ton” and “t” are metric tons, that is, 1000 kg is 1 ton. is there).
  • Preferred forms of the continuous polymerization include continuous kneader polymerization (for example, US Pat. Nos. 6,987,151 and 6,710,141, and US Patent Application Publication No. 2008/0080300), and continuous belt polymerization (for example, US Pat. No. 4,893,999). No. 6,241,928 and US Patent Application Publication No. 2005/215734).
  • the weight average particle diameter (D50) determined by standard sieve classification is in the range of 0.5 to 10 mm, in the range of 1 to 5 mm, and further in the range of 1 to 3 mm. In particular, it is more preferably 1 to 2 mm.
  • drying step the moisture of the hydrated gel is dried to a target range by a dryer.
  • various dryers and drying methods can be adopted within a range of common knowledge of the contractor so as to achieve a desired moisture content.
  • Type dryers radiant heat transfer type dryers (eg infrared drying), hot air heat transfer type dryers, dielectric heating type dryers (eg microwave drying), azeotropic dehydration with hydrophobic organic solvents and their combination Is mentioned.
  • a hot air heat transfer type dryer especially a ventilation band dryer is preferably used from the viewpoint of drying efficiency.
  • the drying temperature is usually 100 to 250 ° C., preferably 100 to 220 ° C., more preferably 120 to 200 ° C., even more preferably 135 to 195 ° C., particularly 150 to 190 ° C. (hot air temperature).
  • the drying time depends on the surface area of the polymer, the moisture content, the type of the dryer, and the air volume, and is selected so as to achieve the desired moisture content. For example, the drying time may be appropriately selected within the range of 1 minute to 1 hour. With such a drying temperature and drying time, the obtained particulate water-absorbing resin is excellent in water absorption capacity (CRC), has a small amount of soluble matter (Extractables), and can suppress / prevent a decrease in whiteness.
  • CRC water absorption capacity
  • Dry matter retention time which is a feature of the present invention, is defined by the time from the end of the drying step to the start of the grinding step.
  • End point of the drying process means the time when the dried product is taken out of the dryer, that is, when the dried product is discharged from the dryer or when the heating in the dryer is finished, that is, forced heating in the dryer. It shall point to the point of stop.
  • dryinger refers to an apparatus within the range described in the drying step, and may also serve as a drying step and a cooling step in the latter half of the drying time.
  • the dry material holding time corresponds to the total time of the intermediate process.
  • the intermediate step for taking the holding time includes (dry matter transport step) and (dry matter storage step), and further includes , (Dry matter cooling step) (Coarse crushing step of agglomerated dry matter) may be included as necessary.
  • the time between the (2-4) drying step and the (2-6) pulverization step is noted, and an intermediate step having a certain time is added.
  • the present invention is a method for solving problems in general drying methods and pulverization methods, and pulverization is facilitated by setting a dry matter retention time.
  • This estimation mechanism will be described below, but the present invention is not limited to this estimation mechanism.
  • the resulting dried product appears to be uniformly dried as a whole, the moisture distribution is uneven within one particle, and the particle surface with which a heating medium such as hot air or a heat transfer tube is in contact It is considered that the moisture content is low, the moisture content inside the particles is high, and the larger the particle diameter, the larger the difference between the moisture content on the particle surface and inside.
  • the dried product that has passed a certain dried product retention time has a uniform moisture distribution.
  • the ease of particle size control during pulverization is presumed to be due to the uniformity of the moisture distribution.
  • the dry matter retention time is 3 minutes or more (within 10 hours), 5 minutes to 3 hours, 7 minutes to 2 hours, 10 minutes to 1 hour. Half, 10 minutes to 1 hour, 15 minutes to 1 hour, 20 minutes to 1 hour, 20 minutes to 50 minutes are preferable in this order.
  • a sufficient proportion of particles having a desired particle size of 150 ⁇ m or more and less than 850 ⁇ m in the pulverized product preferably 75% by weight or more, more preferably 80% by weight with respect to all particles). (Up to more than% by weight).
  • the dry matter retention time is preferably as long as possible in terms of particle size control (for example, preferably 10 minutes or more, more preferably 15 minutes or more, and particularly preferably 20 minutes or more).
  • the retention time of the dried product is preferably shorter than that when the moisture content of the dried product is high.
  • the retention time of the dried product is preferably 3 minutes or more, more preferably 5 minutes or more. is there. This can be imagined as follows.
  • the drying step first, the moisture content on the surface of the particulate hydrogel is lowered, and then the moisture content inside the dried product is lowered. That is, initially, the difference in the moisture content between the surface and the interior of the particulate hydrogel is thought to widen, but as the drying progresses, the drying also proceeds within the particulate hydrous gel, and the difference in the moisture content between the surface and the interior widens. When the drying is further progressed and the surface is sufficiently dried, the difference in moisture content between the surface and the inside is considered to be narrowed.
  • the present invention is not limited to the above estimation.
  • the intermediate process for holding the dried product such as forced cooling by a cooler (using the latter half of the dryer), transportation by a conveyor, air flow, storage in a hopper, and the like. Since it will become easy to grind
  • the holding temperature of the dried product is preferably 40 to 100 ° C., more preferably 45 to 90 ° C., and particularly preferably 50 to 80 ° C.
  • the dried product after the drying step is kept warm or heated to control the above temperature. Insulation or heating is appropriately performed on an apparatus described later.
  • middle process does not change the moisture content of a dried material substantially.
  • a transporter such as a conveyor
  • a storage device such as a hopper
  • the decrease in water content is less than 1% by weight before and after the heating.
  • the heating referred to in the intermediate step is heating for the purpose of manipulating the atmospheric temperature. Even if the temperature of the dried product is increased by this heating, the water content is reduced in the drying step, for example, the water content is 40% by weight. This is different from heating for the purpose of reducing the content to 5% by weight.
  • (C) Different holding time means that a classification step is provided between the drying step and the pulverization step, and each classification product discharged from each classification step (ie, It is intended to change the holding time, depending on the size of the water-absorbing resin).
  • the product retention time is 3 minutes or more means that the shortest dry matter retention time is 3 minutes or more among the dry matter retention times for each classified product discharged from each classification step. Suitable flow charts for different dry matter retention times or retention methods are represented in FIGS. 12-14, but are not limited thereto.
  • the dried product is classified with a sieve having an opening of 2 to 10 mm, and coarse particles (aggregates) may be re-dried or may be subjected to an operation for breaking the aggregation (coarse crushing).
  • the method of rough crushing is the same as that of the (e) rough crushing process (refer below) after drying mentioned later.
  • the dried product is divided into two or more for each particle size, but from the balance of equipment and effect, the number of sieve openings is three or less, and the number of divided dried products is four or less. preferable.
  • a different dry matter holding time or a different dry matter holding method is used for each particle size of the classified dry matter.
  • Different particle sizes are appropriately determined, for example, from 850 ⁇ m to 10 mm, and further from 2 to 10 mm.
  • the different dry matter retention times are appropriately determined within a range suitable for pulverization.
  • the particles having a large particle size in the classified particle size can be used for a longer time or a larger number of later-described steps (d) to (d).
  • the dry matter retention time is preferably extended by 1.01 to 10 times, and further by 1.03 to 5 times, compared with the case where it is not included (or particles having a small particle size).
  • a method of additionally repeating or adding transportation, disintegration, storage, etc., which will be described later, to particles having a large particle size or water content may be employed.
  • the forced cooling referred to in the present invention is a step of performing a cooling operation of an externally and intentionally dried polymer.
  • a drying step and a pulverizing step are used as a method of forced cooling in the present invention.
  • the dried product may be cooled to a predetermined temperature by intentionally providing a cooling step during the pulverization step), and is contacted with a refrigerant (for example, wind) below the temperature of the dried product (usually almost the drying temperature). Done.
  • a refrigerant for example, wind
  • cold air cooled to room temperature or normal temperature is used.
  • transportation process or (h) storage process as the said forced cooling for the said dried material.
  • warm air hot air
  • the rough crushing method in the present invention is not particularly limited as long as the dried product and the aggregate (blocked product) can be made into fluid particles, preferably particles having an average particle diameter of 2 mm or less.
  • a method of pulverizing using a hammer type pulverizer, a jet airflow type pulverizer, or the like, or one or more of various conventionally known pulverization or crushing methods can be used.
  • a coarse crushing step may be performed by loosening the aggregation of the polymer by applying vibration to the dried polymer and classification without using a pulverizer.
  • a pulverizer different from a roll-type pulverizer described later is preferably used as these coarse pulverizers.
  • the transport machine used in the transport process is not limited to the following, for example, various air transport such as high-concentration air transport and low-concentration air transport, belt conveyor, screw conveyor, chain conveyor, vibration conveyor, Preferred examples include various conveyors such as bucket conveyors and flight conveyors.
  • a means for heating these inner wall surfaces from the outside and / or a means for keeping warm may be provided.
  • Air may be directly heated using a heat source, and the air passed through may be indirectly heated by heating the said transport part and piping.
  • the temperature of the heated air is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 70 ° C. or higher.
  • gas preferably air
  • gas may be appropriately dried.
  • examples include a method using a membrane dryer, a method using a cooling adsorption dryer, a method using a diaphragm dryer, and a method using them in combination. It is done.
  • an adsorption dryer it may be a heat regeneration type, a non-heat regeneration type, or a non-regeneration type.
  • the range of the dew point is about ⁇ 70 ° C., and further about ⁇ 50 ° C. is sufficient.
  • the particle size (particle size) other than the above may be further divided by a sieve having an opening of 2 to 10 mm, and the dry matter retention time required for the present application may be changed for each particle size.
  • a dried product having a large particle diameter tends to have a high moisture content, and it is preferable to take a longer dry product retention time.
  • the classification step is performed under reduced pressure and further static elimination.
  • (H) Storage step In the present invention, the dried product is stored for a certain period of time.
  • the residence time in the storage process is sufficient to satisfy the dry matter retention time of 3 minutes or more of the present application together with the residence time in the transportation process.
  • the residence time of the process may be zero, but it is preferably stored for 1 second or longer, more preferably 5 seconds or longer, particularly 1 minute or longer.
  • the upper limit of the residence time of a storage process is not specifically limited, When productivity, a physical property, etc. are considered, Preferably it is 300 minutes or less, More preferably, it is 60 minutes or less.
  • the dry matter retention time can be controlled to a certain level or more, and continuous production and continuous transportation can be stabilized.
  • a storage process especially hopper
  • a form of using a hopper in the pneumatic transportation process is disclosed in, for example, US Patent Application Publication No. 2007/0225160.
  • a hopper is preferably used for storage.
  • a hopper is an apparatus for storing and storing powder particles temporarily or for a long period of time, and includes a silo (vertically long shape) if it has a specific shape.
  • a hopper having a specific shape used in the present invention is described (FIG. 14) and below.
  • 1 is an outer frame; 2 is a jacket; 3 is a steam tress; 4 is an inlet; and 5 is a rotary valve.
  • the shape of the hopper is preferably an inverted truncated pyramid shape or an inverted truncated cone shape from the viewpoint of the transportability and transportability of the powder, particularly the water-absorbent resin, and is preferably used in the present invention.
  • the material is not particularly limited, but stainless steel is preferably used.
  • the ratio of the maximum diameter and height of the hopper is in the range of 1/10 to 10/1, further 1/3 to 3/1, particularly 1/2 to 2/1.
  • the hopper is not a cylinder, it is defined in terms of a diameter of a circle corresponding to the maximum cross-sectional area.
  • the ratio of the inverted angle (or inverted circle) to the truncated cone is that the height of the truncated cone is smaller, and the shape of the hopper cross section is the home base shape.
  • the cross-sectional area of the triangular part is main, that is, the main component of the powder, preferably 50% by weight or more, more preferably 80% by weight or more, is stored in the pyramid or cone part of the hopper.
  • a hopper having a specific shape with a cone portion inclination angle of 45 degrees or more and a drawing ratio of 0.3 to 0.8 The upper limit of the cone portion inclination is 90 degrees or less, and further less than 90 degrees. Is preferred.
  • the cone inclination angle is an inclination angle of the side wall surface with respect to the horizontal surface of the installed hopper, and the cone inclination angle of the hopper is 45 degrees or more, preferably 50 degrees or more, more preferably 60 to 90 degrees, particularly The angle is preferably 65 to 85 degrees, and most preferably 70 to 85 degrees.
  • the squeezing ratio is a value of R2 / R1 ⁇ 100 defined by the diameter of the opening on the top surface of the hopper (maximum diameter portion (R1) at the top of the hopper) and the opening on the bottom surface of the hopper (diameter (R2) of the hopper discharge portion).
  • the squeezing rate of the hopper is 30 to 80%, preferably 40 to 80%, particularly preferably 40 to 70%, and 45 to 65%.
  • the aperture is not a circle, for example, in the case of an ellipse or a polygon, it is defined in terms of a circle corresponding to its cross-sectional area.
  • the drawing ratio exceeds 80%, the cone inclination angle is less than 45 degrees, or the drawing ratio is less than 30%, the physical properties of the water-absorbent resin and its Stability is significantly reduced.
  • the filling rate (average) of the water-absorbent resin in the hopper may be 0% by volume, but exceeds 0% by volume and is 90% by volume or less, preferably 10 to 80% by volume, more preferably 30 to 80% by volume. %, Particularly preferably 40 to 80% by volume.
  • the filling rate is defined by the volume (%) of the water-absorbing resin to be filled with respect to the inner volume of the hopper, and the transportability of the water-absorbing resin is improved by controlling to the above range.
  • the filling rate is out of the above range, for example, when it exceeds 90% by volume, the water-absorbent resin may be broken, which is not preferable.
  • the water-absorbing resin is cooled (to 60 ° C.) in a sense, but in the present invention, the temperature is kept or heated regardless of the temperature change of the water-absorbing resin as long as the apparatus is kept warm or heated. .
  • U.S. Pat. No. 6,716,894 and FIG. 2 disclose a device that is heated or kept warm, but the patent does not suggest the present invention as described above.
  • the inner wall temperature is preferably 30 to 150 ° C, 30 to 100 ° C, 35 to 100 ° C, 40 to 90 ° C, 45 to 85 ° C, and 50 to 80 ° C in this order. If the inner wall temperature is less than 30 ° C., the effect of the present invention cannot be obtained. On the other hand, even if the temperature exceeds 150 ° C., the effect obtained at 150 ° C. or less is not changed. It is disadvantageous.
  • the inner wall surface temperature is preferably adjusted so as not to decrease 20 ° C., more preferably 10 ° C. relative to the temperature of the particulate water-absorbing resin.
  • the temperature of the particulate water-absorbing resin is not less than room temperature, for example, about 40 to 100 ° C., more preferably 45 to 100% in order to ensure fluidity when handling the particulate water-absorbing resin on an industrial scale.
  • the temperature may be adjusted to 85 ° C, particularly preferably about 50 to 80 ° C.
  • the inner wall surface temperature is lower than 20 ° C. with respect to the temperature of the particulate water-absorbing resin, the particulate water-absorbing resin in a heated state is cooled on the inner wall surface of the transport aircraft, It may adhere to the inner wall and cause trouble.
  • (J) Depressurization it is preferable that at least a part of the storage process and the transport process be under reduced pressure in order to improve the fluidity of the dried product and Anti-Caking. More preferably, 50% or more of the required time from the end of the drying step to the start of the following pulverization step is in a reduced pressure state. That is, preferably, the time during which the pressure is reduced is 50% or more of the processing time (dry matter holding time) required from the end of the drying step to the start of the pulverization step described below.
  • the processing time dry matter holding time
  • the reduced pressure state means a state where the atmospheric pressure is lower than the atmospheric pressure.
  • the “degree of decompression with respect to the atmospheric pressure” means a pressure difference from the atmospheric pressure, and is expressed as a positive (plus) value when the atmospheric pressure is lower than the atmospheric pressure.
  • the degree of reduced pressure is 10 kPa
  • the degree of reduced pressure relative to atmospheric pressure is also simply referred to as “the degree of reduced pressure”.
  • the lower limit of the degree of vacuum is preferably more than 0 kPa, more preferably 0.2 kPa or more, and more preferably 0.3 kPa or more.
  • the upper limit of the degree of vacuum is preferably 10 kPa or less, more preferably 8 kPa or less, and even more preferably 5 kPa or less.
  • a preferable numerical range of the degree of reduced pressure can be arbitrarily selected between the lower limit value and the upper limit value.
  • Patent Document 10 US Pat. No. 6,817,557
  • Patent Document 10 after drying, it is pulverized as quickly as possible (within 10 minutes, particularly within 2 minutes), It does not disclose storage steps, classification steps before pulverization (before roll mill pulverization), reduced pressure after drying, different holding times or holding methods for different particle sizes.
  • Patent Documents 1 to 26 including Patent Document 10 do not pay attention to the importance of the dry matter retention time on the particle size, and the Patent Document adjusts the dry matter retention time in the storage process and the transport process. Different dry matter retention time or different drying, before or after the pulverization step, the dry matter classification step, the dry matter particle size above and below, or after the moisture content A configuration using the object holding method is not disclosed.
  • the dried product is pulverized and classified for particle size control.
  • 50% by weight or more of the dried product before pulverization is particles having a particle diameter of 850 ⁇ m or more.
  • the mass average particle size (D50) of the dried product before pulverization is not particularly limited, but is preferably 4000 to 600 ⁇ m, more preferably 3000 to 700 ⁇ m, and the particle size is as follows after pulverization. Thereby, the particle diameter of the obtained particulate water-absorbing resin can be controlled efficiently and easily.
  • various pulverization methods can be used by adding (2-5) dry matter retention time. Yes, it is not limited.
  • a device other than a roll mill or a roll granulator is also preferably used for the above-mentioned rough crushing, and for example, a pin mill that rotates at a low speed or a high speed is used.
  • the pulverization step is in the reduced pressure state.
  • the pulverizer is preferably kept warm or heated.
  • the pulverization temperature at this time is not particularly limited, but the temperature of the dried product to be subjected to the pulverization step is preferably 40 to 100 ° C., More preferably, the temperature is adjusted to 50 to 90 ° C.
  • the size of the pulverized material thus pulverized is not particularly limited, and is appropriately selected according to a desired application.
  • 60% by weight or more of the pulverized product more preferably 70 to 99% by weight, even more preferably 75 to 97% by weight, and still more preferably 80 to 95% by weight are particles having a particle size of less than 850 ⁇ m.
  • the pulverized product preferably has a particle size of from 150 to 850 ⁇ m, preferably 75 to 99% by weight, more preferably 79 to 97% by weight, even more preferably 80 to 95% by weight, and particularly preferably 83 to 90% by weight.
  • the weight average particle diameter (D50) of the pulverized product is not limited to the following, but is preferably adjusted to 200 to 700 ⁇ m, more preferably 300 to 600 ⁇ m.
  • the particulate water-absorbing resin obtained by pulverization has a mass-average particle diameter (D50) of 200 to 600 ⁇ m, preferably 200 to 550 ⁇ m, more preferably 250 to 500 ⁇ m, particularly preferably in the classification step. Is adjusted to 350 to 450 ⁇ m, and if it is used for hygiene, it is usually preferable to carry out surface crosslinking thereafter.
  • the water-absorbent resin obtained by the classification step is preferably pulverized so that particles of 150 ⁇ m or more and less than 850 ⁇ m occupy 80 to 99% by weight, more preferably 90 to 99% by weight, for hygiene materials.
  • the fine powder is removed as appropriate and recycled as described below. Further, the smaller the particle size is less than 150 ⁇ m, the better, and it is usually adjusted to 0 to 5% by weight, preferably 0 to 3% by weight, particularly preferably 0 to 1% by weight. Further, the smaller the number of particles of 850 ⁇ m or more, the better. Usually, it is adjusted to 0 to 20% by weight, preferably 0 to 5% by weight, particularly preferably 0 to 1% by weight. The fine powder generated in the pulverization process and separated in the classification process is recycled if necessary.
  • (B) Classification method The method of classifying the water-absorbent resin is exemplified in, for example, Patent Documents 11 to 16, and can be suitably used in the present invention.
  • the classification device used in the present invention is not particularly limited as long as it has a sieve mesh surface, and is preferably a plane classification method, particularly preferably a tumble-type sieving device.
  • This sieving device is typically vibrated to support classification. This is preferably done to such an extent that the product to be classified is guided on the sieve screen in a spiral.
  • These forced vibrations typically have a runout of 0.7 to 40 mm, preferably 1.5 to 25 mm, and a frequency of 1 to 100 Hz, preferably 5 to 10 Hz.
  • the static elimination is preferably performed.
  • the neutralization is performed on at least one of the classifier and the water-absorbent resin. Since these two are in contact with each other in the classification process, it is sufficient to neutralize one of them, and the sieving apparatus itself is preferably neutralized.
  • C Grounding
  • Earth Rotating object / Rotating shaft / Rotating body / Static electricity generated in the device is removed.
  • Ground resistance refers to the resistance value against the current that flows from the earth electrode embedded in the soil for grounding. What is necessary is just to measure using the commercially available grounding resistance meter as a measuring method.
  • a preferable range of the ground resistance value is 100 ⁇ or less, more preferably 10 ⁇ or less, and further 5 ⁇ or less.
  • (D) Classification under reduced pressure The sieving operation is carried out at a reduced pressure of the water-absorbent resin with respect to the ambient pressure in order to improve the physical properties after surface crosslinking, preferably in the reduced pressure state.
  • Airflow Preferably a gas stream, particularly preferably air, is passed over the water-absorbing resin during classification.
  • the gas stream is typically at least 40.degree. C., preferably at least 50.degree. C., more preferably at least 60.degree. C., particularly preferably at least 65.degree. Heat to at least 70 ° C.
  • the temperature of the gas stream is usually below 120 ° C., preferably below 110 ° C., more preferably below 100 ° C., particularly preferably below 90 ° C., particularly preferably below 80 ° C.
  • the manufacturing process to be recycled may be the same manufacturing line that classifies fine powder, or may be another manufacturing line.
  • the amount of fine powder recycled is appropriately determined, for example, from 1 to 30% by weight, more preferably from 5 to 25% by weight, and particularly from 8 to 20% by weight of the production amount.
  • the amount of the surface cross-linking agent used is preferably in the range of 0.001 to 10 parts by weight with respect to 100 parts by weight (parts by weight) of the water-absorbent resin particles, although it depends on the compounds used and combinations thereof. A range of 0.01 to 5 parts by weight is more preferable.
  • water can be used together with the surface cross-linking agent.
  • the amount of water used is preferably in the range of 0.5 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the water-absorbent resin particles.
  • a hydrophilic organic solvent can be used in addition to water.
  • the water-absorbing resin after mixing the surface cross-linking agent is preferably subjected to heat treatment, and if necessary, is then subjected to cooling treatment.
  • the heating temperature is in the range of 70 to 300 ° C, preferably 120 to 250 ° C, more preferably 150 to 250 ° C.
  • the heating time is preferably in the range of 1 to 120 minutes.
  • the heat treatment can be performed using a normal dryer or a heating furnace.
  • the surface cross-linking treatment in the present invention there is a method of performing surface cross-linking treatment by irradiating active energy after adding a treatment liquid containing a radical polymerizable compound to the particulate water-absorbing resin.
  • a surface active agent can also be added to the said process liquid, and an active energy can be irradiated and surface crosslinking can also be performed.
  • an aqueous solution containing a peroxide radical initiator is added to the particulate water-absorbing resin and then heated to carry out the surface cross-linking treatment. This is described in Japanese Patent No. 4783510.
  • the particulate water absorbent resin obtained by the method for producing a water absorbent resin of the present invention is further added with a liquid permeability improver at the same time as surface crosslinking or before or after surface crosslinking. It is preferable.
  • the particulate water-absorbing resin has a liquid permeability improver layer. Thereby, the particulate water-absorbing resin is further excellent in liquid permeability.
  • liquid permeability improver examples include polyamines, polyvalent metal salts, and water-insoluble fine particles.
  • polyvalent metal salts such as aluminum sulfate, particularly water-soluble polyvalent metal salts are preferable.
  • US Pat. No. 7,179,862 Europe US Patent No. 1165631, US Patent No. 7157141, US Patent No. 6831142, US Patent Application Publication No. 2004/176557, US Patent Application Publication No. 2006/204755, US Patent Application Publication No. 2006/73969, US Patent Application The technique described in Japanese Patent Publication No. 2007/106013 is applied.
  • Polyamines and water-insoluble fine particles are exemplified in International Publication Nos. 2006/082188, 2006/082189, and 2006/082197.
  • the amount of the liquid permeability improving agent used is preferably in the range of 0.001 to 5 parts by weight, preferably in the range of 0.01 to 1 part by weight, with respect to 100 parts by weight of the particulate water-absorbing resin. More preferred. If the usage-amount of a liquid-permeability improver is in the said range, the absorption capacity
  • AAP absorption under pressure
  • SFC physiological saline flow-inductivity
  • the liquid permeability improver is preferably added by mixing with water and / or a hydrophilic organic solvent, if necessary, and then spraying or dropping and mixing the particulate water-absorbing resin, more preferably spraying.
  • the liquid permeability improver is preferably added in the cooling step in the fluidized bed of the particulate water absorbent resin.
  • Particulate water-absorbing resin is a lubricant, chelating agent, deodorant, antibacterial agent, water, surfactant, water-insoluble during or after polymerization. Fine particles, antioxidants, reducing agents, and the like can be added to and mixed with the water-absorbent resin at about 0 to 30%, more preferably about 0.01 to 10%.
  • Suitable chelating agents are exemplified in US Pat. No. 6,599,989 and International Publication No. 2008/090961, and surfactants and lubricants are exemplified in US Pat. Nos. 6,107,358 and 7,473,739.
  • Such a water-absorbing resin is excellent in initial coloring.
  • the L value (Lightness) is preferably 85 or more, more preferably 87 or more, and still more preferably 89 or more.
  • the b value is from -5 to 10, more preferably from -5 to 5, further preferably from -4 to 4, and the a value is from -2 to 2, at least from -1 to 1, preferably from -0.5 to 1, most preferably 0-1.
  • YI is 10 or less, further 8 or less, particularly 6 or less
  • WB is 70 or more, further 75 or more, particularly 77 or more.
  • such a water-absorbent resin is excellent in coloring over time, and exhibits sufficient whiteness even at high temperature and high humidity, which is an accelerated test (model) for long-term storage.
  • AAP Water absorption capacity under pressure
  • a 0.9% by weight sodium chloride aqueous solution under a pressure of 1.9 kPa and further a pressure of 4.8 kPa as defined by ERT is used.
  • the absorption capacity (AAP) is preferably controlled to 20 [g / g] or more, more preferably 22 [g / g] or more, and further preferably 24 [g / g] or more.
  • the water-soluble content defined by ERT is preferably 0 to 35% by weight or less, more preferably 25% by weight or less, still more preferably 15% by weight or less, and particularly preferably 10% by weight or less.
  • the amount of residual monomer (residual monomer) defined by ERT is usually 500 ppm or less, preferably 0 to 400 ppm, more preferably 0 to 300 ppm, and particularly preferably 0 to 200 ppm.
  • Moisture content It is preferably adjusted so that a predetermined amount of water (for example, moisture content of 0.1 to 10% by weight, further 1 to 8% by weight) remains from the viewpoint of water absorption speed and impact resistance. .
  • the moisture content is defined by the method of the example.
  • the use of the water-absorbent resin of the present invention is not particularly limited, but it can be preferably used for absorbent articles such as paper diapers, sanitary napkins, and incontinence pads.
  • it is used for high-concentration diapers (a large amount of water-absorbent resin is used for one diaper), which has been problematic in the past due to odor, coloring, etc., especially in the absorbent upper layer in the absorbent article.
  • high-concentration diapers a large amount of water-absorbent resin is used for one diaper
  • absorbent upper layer in the absorbent article When used in parts, particularly excellent performance is exhibited.
  • the content (core concentration) of the water-absorbent resin in the absorbent body in this absorbent article is 30 to 100% by weight, preferably 40 to 100% by weight, more preferably 50 to 100% by weight, still more preferably 60 to 100%.
  • the effect of the present invention is exhibited by weight%, particularly preferably 70 to 100 weight%, and most preferably 75 to 95 weight%.
  • 300 g is used under the conditions of room temperature (20 to 25 ° C.) and humidity of 50 RH%, and the openings are 9.5 mm, 8.0 mm, 5.6 mm, 4.75 mm, 3 .35 mm, 2.8 mm, 2.0 mm, 1.0 mm, 0.6 mm JIS standard sieve (THE IIDA TESTING SIEVE: diameter 20 cm), classified for 10 minutes using a Ro-Tap type sieve shaker Went.
  • TEE IIDA TESTING SIEVE diameter 20 cm
  • This particulate water-containing polymer was subjected to the following conditions: room temperature (20 to 25 ° C.), humidity 50 RH%, openings 9.5 mm, 8.0 mm, 5.6 mm, 4.75 mm, 3.35 mm, 2.8 mm, A JIS standard sieve (THE IIDA TESTING SIEVE: diameter 20 cm) of 2.0 mm, 1.0 mm, and 0.85 mm was charged and classified for 10 minutes using a Ro-Tap type sieve shaker.
  • the method for measuring the particle size distribution of the particulate hydrous gel one of the following two methods was used. Which one is used will be described later, but the following dry method is effective for measuring a particulate hydrogel having a moisture content of less than 35% by weight, and the wet method is effective for measuring a particulate hydrogel having a moisture content of 35% by weight or more.
  • This particulate water-containing polymer was subjected to the following conditions: room temperature (20 to 25 ° C.), humidity 50 RH%, openings 9.5 mm, 8.0 mm, 5.6 mm, 4.75 mm, 3.35 mm, 2.8 mm, A JIS standard sieve (THE IIDA TESTING SIEVE: diameter 20 cm) of 2.0 mm, 1.0 mm, and 0.85 mm was charged and classified for 10 minutes using a Ro-Tap type sieve shaker.
  • the weight average particle diameter (D50) is a particle diameter of a standard sieve corresponding to 50% by weight of the whole particle with a standard sieve having a constant opening, as described in US Pat. No. 5,051,259.
  • ⁇ Moisture content> Spread 1 g of particulate water-containing gel or particulate water-absorbing resin on a 6 cm aluminum dish and dry it in a windless oven at 180 ° C. for 3 hours to measure the mass before drying and the mass after drying. The moisture content (%) was measured by substituting for. The solid content (%) is defined by (100-water content) (%).
  • the water-containing gel sheet was continuously finely divided using a cutter mill having a 6 mm diameter screen (trade name: “RC250”, manufactured by Kiko Co., Ltd.).
  • a particulate hydrous gel (a) having a temperature of about 35 ° C. and a size of about 1 to 3 mm was obtained.
  • the moisture content of the particulate hydrogel (a) was 29% by weight.
  • the weight average particle size (D50) was 2.0 mm
  • the total weight of the particulate hydrogel (a) was 3 mm or more.
  • the gel particles having a particle size were 12.2% by weight, and the gel particles having a particle size of less than 850 ⁇ m were 7.3% by weight.
  • the dried product (b) in the roll mill was pulverized promptly (within 5 seconds) after removal and taken out from the roll mill.
  • the time taken for pneumatic transportation is several seconds
  • the residence time in the hopper is adjusted to 5 minutes
  • the residence time in the pneumatic transportation and the hopper The total time is shown in FIG. 2 as the dry holding time.
  • the moisture content of the dried product did not change at the dryer outlet and the pulverizer inlet, and the temperature of the dried product was measured at 85 ° C. at the hopper outlet.
  • the inner wall temperature of the hopper was measured by attaching a thermocouple thermometer (K line) to the inner wall.
  • the temperature of the dried product was measured by collecting the dried product at the outlet of the hopper and promptly inserting a contact thermometer.
  • Examples 2 to 7 The residence time of the hopper in Example 1 is from 5 minutes (Example 1) to 10 minutes (Example 2), 15 minutes (Example 3), 20 minutes (Example 4), and 25 minutes (Example 5). Except for changing to 30 minutes (Example 6) and 80 minutes (Example 7), the same operations as in Example 1 were performed to obtain pulverized products (A2 to A7) using a roll mill. The temperature of the dried product to be pulverized was 76 to 85 ° C. The moisture content of the dried product did not change with the residence time of the hopper.
  • the pulverized products (A2 to A7) thus obtained were classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, respectively, and the proportion (% by weight) of the particulate water-absorbing resin having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m was measured. did.
  • Table 1 and FIG. 2 show the relationship between the dry matter retention time and the ratio (% by weight) of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m in the pulverized roll mill (A2 to A7).
  • Example 1 The same procedure as in Example 1 was performed except that the dried product (b) exited from the dryer outlet in Example 1 was quickly put into a roll mill (dried product retention time ⁇ 1 minute) and pulverized, and the roll mill was used. A pulverized product (A8) was obtained. When the dried product (b) was pulverized with a roll mill, the roll mill generated abnormal noise during pulverization, and many flat particles crushed with the roll were observed in the pulverized product.
  • a 1.0% by weight aqueous sodium persulfate solution was further added at a flow rate of 0.589 g / second, and then the endless belt running at a speed of 200 cm / minute kept at about 100 ° C.
  • the monomer aqueous solution was continuously supplied.
  • the monomer aqueous solution continuously supplied onto the belt started to polymerize rapidly, and a band-shaped hydrogel sheet (hydrogel polymer) was obtained.
  • the water-containing gel sheet was continuously finely granulated using a cutter mill (trade name: “RC250”, manufactured by Kiko Co., Ltd.) having a screen with a diameter of 12 mm.
  • a particulate hydrous gel (c) having a temperature of 40 ° C. and a size of about 1 to 4 mm was obtained.
  • the moisture content of the particulate hydrogel (c) was 30% by weight.
  • the weight average particle size (D50) was 2.9 mm
  • the total weight of the particulate hydrogel (c) was 3 mm or more.
  • the gel particles having a particle size were 42.2% by weight, and the gel particles having a particle size of less than 850 ⁇ m were 4.2% by weight.
  • Example 8 500 g of the particulate hydrogel (c) obtained in Production Example 2 above was deposited on a wire mesh having a length of 27 cm, a width of 18 cm, and a 20 mesh with a thickness of about 30 mm, and a hot air dryer (trade name “aeration flow batch drying” Machine 71-S6 ", Satake Chemical Machinery Co., Ltd.) and dried at 180 ° C for 20 minutes.
  • the obtained dried product (d) had a moisture content of 6% by weight and was agglomerated gently to form a block.
  • the material was pulverized once through a roll mill (WML type roll mill pulverizer, manufactured by Inoguchi Giken Co., Ltd.) at a rate of 1 kg / min.
  • the temperature of the dried product subjected to pulverization was 95 ° C.
  • the pulverized product (B1) thus obtained was classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured.
  • the relationship between the dry matter retention time (3 minutes) and the ratio (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m in the roll mill pulverized product (B1) is shown in Table 2 and FIG.
  • Example 9 to 12 The dry matter retention time until the dry matter (d) in Example 8 is taken out from the dryer and pulverized with a roll mill is 3 minutes (Example 8) to 4 minutes (Example 9), 5 minutes (Example) 10), except for changing to 7 minutes (Example 11) and 9 minutes (Example 12), the same operations as in Example 8 were performed to obtain pulverized products (B2 to B5) by a roll mill.
  • the pulverized products (B2 to B5) thus obtained were classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, respectively, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured. did.
  • the relationship between the dry matter retention time and the proportion (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m in the obtained pulverized product (B2 to B5) is shown in Table 2 below and FIG.
  • the temperature of the dried product to be pulverized was in the range of 91 to 95 ° C.
  • Example 8 The time taken for the dried product (d) in Example 8 to be taken out of the dryer and pulverized with a roll mill is from 3 minutes (Example 8) to 0.7 minutes (Comparative Example 2) and 1 minute (Comparative Example 3). ) Except for changing to 2 minutes (Comparative Example 4), the same operation as in Example 8 was performed to obtain a pulverized product (B6 to B8) using a roll mill. When the dried product (d) was pulverized with a roll mill, abnormal noise was generated from the roll mill. The temperature of the dried product to be pulverized was in the range of 94 to 97 ° C.
  • the pulverized products (B6 to B8) thus obtained were classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, respectively, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured. did.
  • the relationship between the dry matter retention time and the ratio (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m in the obtained pulverized product (B6 to B8) is shown in Table 2 below and FIG.
  • the ratio of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m can be significantly increased when the dry matter retention time is 3 minutes or more.
  • the yield of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m is almost the same even when the dry matter retention time exceeds 3 minutes, 4 minutes, and 5 minutes, but the dry matter (d) is dried. It is considered that the product is in the state of c in FIG. 1 after the object retention time of 3 minutes and does not require any longer dry substance retention time.
  • the dried product (d) has a shorter time to be in the state of c in FIG. 1, which is assumed as follows. .
  • the moisture content on the surface first decreases, and then the moisture content inside the dried product decreases.
  • the difference in moisture content between the surface and the interior of the dried product is thought to widen at first, but the difference in moisture content between the surface and the interior does not increase during the drying process.
  • the difference in moisture content is narrowed.
  • unnecessarily long drying is required to reduce the difference in moisture content between the surface and the interior.
  • the moisture content of the dried product (d) is as low as 6% by weight, the surface of the dried product immediately after drying is sufficiently dry, and the moisture content inside the dried product is still decreasing, so compared with the dried product (b)
  • the dried product (d) is considered to have a shorter time to reach the state of c in FIG.
  • the water-containing gel sheet was continuously finely granulated using a meat chopper having a screen with a diameter of 7.5 mm (manufactured by Hiraga Works) to obtain a particulate water-containing gel (e).
  • the moisture content of the particulate hydrogel (e) was 50% by weight.
  • the weight average particle size (D50) was 1.3 mm, and the total weight of the particulate hydrogel (e) was 3 mm or more.
  • the gel particles having a particle size were 24.2% by weight, and the gel particles having a particle size of less than 850 ⁇ m were 29.0% by weight.
  • the pulverized product (C1) thus obtained was classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured.
  • the relationship between the dry matter retention time (3 minutes) and the ratio (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m in the obtained roll mill pulverized product (C1) is shown in Table 3 and FIG.
  • Example 14 The dry matter retention time until the dry matter (f) in Example 13 is taken out from the dryer and pulverized with a roll mill is 3 minutes (Example 13) to 4 minutes (Example 14), 5 minutes (Example) 15), 6 minutes (Example 16), 7 minutes (Example 17), and 8 minutes (Example 18). )
  • the dried product (g) was taken out of the dryer, it was immediately agglomerated and classified with a sieve having openings of 850 ⁇ m and 150 ⁇ m for 2 minutes. At this time, particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m are 2.5% by weight of the total dry matter (g), and particles having a particle size of less than 150 ⁇ m are 0.4% by weight of the total dry matter (g). It was. Coarse particles (On product) having a particle size of 850 ⁇ m or more were transferred to a polystyrene foam container and stored for 1.5 minutes.
  • a roll mill in which coarse particles (on-product) having a particle size of 850 ⁇ m or more are set to a roll clearance of 0.3 mm after taking out from the dryer for 3.5 minutes (that is, dry matter retention time 3.5 minutes).
  • WML roll mill pulverizer manufactured by Inoguchi Giken Co., Ltd.
  • the temperature of coarse particles (On product) subjected to pulverization was 85 ° C.
  • the pulverized product (C9) thus obtained was classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured.
  • the relationship between the dry matter retention time (3.5 minutes) and the ratio (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m in the obtained roll mill pulverized product (C9) is shown in Table 4 and FIG. .
  • Example 20 to 22 The dry matter retention time until the dry matter (g) in Example 19 was taken out of the dryer and pulverized with a roll mill was changed from 3.5 minutes (Example 19) to 4.5 minutes (Example 20), 5 Except for changing to 5 minutes (Example 21) and 6.5 minutes (Example 22), the same operation as in Example 19 was performed to obtain a pulverized product (C10 to C12) by a roll mill.
  • the pulverized products (C10 to C12) thus obtained were classified with sieves having openings of 850 ⁇ m and 150 ⁇ m, respectively, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured. did.
  • the relationship between the dry matter retention time and the proportion (% by weight) of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m in the obtained pulverized product (C10 to C12) is shown in Table 4 and FIG.
  • the temperature of coarse particles (On product) to be pulverized was in the range of 83 to 85 ° C.
  • Example 7 Except for changing the time from taking out the dried product (g) in Example 19 from the dryer to pulverizing with a roll mill from 3.5 minutes (Example 19) to 2.0 minutes (Comparative Example 7). The same operation as in Example 19 was performed to obtain a pulverized product (C13) using a roll mill. When the dried product (g) was pulverized with a roll mill, abnormal noise was generated from the roll mill. The temperature of coarse particles (On product) subjected to pulverization was 85 ° C.
  • the pulverized product (C13) thus obtained was classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured.
  • the relationship between the dry matter retention time (2.0 minutes) and the ratio (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m in the obtained pulverized product (C13) is shown in Table 4 and FIG.
  • the ratio of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m can be significantly increased when the dry matter retention time is 3 minutes or more.
  • the particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m include the particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m separated before pulverization (2.5% by weight of the total dried product). It can be seen that, after pulverization, the total dried product becomes 80 to 82% by weight, and particles having a target particle diameter can be obtained with a yield similar to that in Examples 13 to 18.
  • This hydrogel sheet is continuously finely granulated using a cutter mill having a screen with a diameter of 12 mm (trade name: “RC450”, manufactured by Yoshiko), and a particulate hydrogel (h) having a size of about 1 to 4 mm is obtained. Obtained. At this time, the moisture content of the particulate hydrogel (h) was 29% by weight. Further, when the particle size distribution of the particulate hydrogel (h) was measured by a dry method, the weight average particle size (D50) was 3.0 mm, and the total weight of the particulate hydrogel (h) was 3 mm or more. The gel particles having a particle size were 49.1% by weight, and the gel particles having a particle size of less than 850 ⁇ m were 3.2% by weight.
  • Example 23 below, as FIG. 12 showed, the ground material was obtained using the continuous ventilation band dryer with a cooling chamber. That is, the particulate hydrogel (h) obtained in Production Example 4 was continuously dried with aeration band for 24 minutes using a continuous ventilation band dryer.
  • This dryer is composed of two chambers of the same size. The first chamber has a linear velocity of 1.0 m / s from the top of the belt and hot air at 110 to 120 ° C. The second chamber has a linear velocity from the top of the belt. It was dried by applying hot air of 1.0 m / s and 160 ° C.
  • the dried product (i) obtained by this drying was passed by 1.0 m / s, normal temperature air for 8 minutes with an adjacent cooler, and the temperature of the dried product was cooled to 87 ° C.
  • the dry matter (i) collected at the cooler outlet had a water content of 10.0% by weight and a weight average particle size (D50) of 2.9 mm. Further, this dried product (i) contained 43.2% by weight of gel particles having a particle diameter of 3 mm or more with respect to the total weight of the dried product (i).
  • the dried product (i) was transported by a flight conveyor, put into a sieve having an opening of 6 mm, and a coarse dry product that did not pass through the sieve having an opening of 6 mm was continuously separated. At this time, the coarse dried product having a particle diameter of 6 mm or more was obtained by agglomeration of the dried product particles and occupied 18% by weight of the total dried product.
  • the coarse dried product was immediately crushed by a flash mill (Fuji Paudal) to obtain a coarse crushed product (j).
  • the weight average particle diameter (D50) of the coarsely pulverized product (j) was 2.3 mm, and the particles having a particle diameter of less than 850 ⁇ m was 6.4% by weight.
  • the dried product (k) passed through a sieve having an opening of 6 mm (weight average particle size (D50) is 2.7 mm, particle size of less than 850 ⁇ m). (3.2% by weight) was stored in hopper X warmed with a warming material. Further, the coarsely pulverized product (j) and the dried product (k) were reintegrated and placed in a hopper Y whose inner wall was adjusted to 80 ° C. for 0 minute. This dried product was put into a roll mill (trade name: RM-16, manufactured by Asano Iron Works Co., Ltd.), and pulverized at a processing rate of 250 kg / hr.
  • a roll mill trade name: RM-16, manufactured by Asano Iron Works Co., Ltd.
  • the roll clearance was 0.35 mm. Further, the dried product in the roll mill was pulverized promptly (within 5 seconds) at 80 ° C. and taken out from the roll mill to obtain a roll mill pulverized product (D1).
  • the temperature of the integrated product of the coarsely pulverized product (j) and the dried product (k) having an opening of 6 mm passed through the sieve measured by a contact thermometer was 80 ° C.
  • Example 23 the time (T3) held by the hopper Y was changed from 0 minutes (Example 23) to 5 minutes (Example 24), 10 minutes (Example 25), and 15 minutes (Example 26). Except for the above, the same procedure as in Example 23 was performed to obtain roll mill pulverized products (D2 to D4).
  • the temperature of the integrated product of the coarsely pulverized product (j) and the dried product (k) that passed through a sieve having an opening of 6 mm was 78 to 81 ° C.
  • the pulverized products (D2 to D4) thus obtained were classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, respectively, and the proportion (% by weight) of the particulate water-absorbing resin having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m was measured. did.
  • the relationship between the dry matter retention time and the ratio (% by weight) of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m of the pulverized roll mill (D2 to D4) is shown in Table 5 and FIG.
  • the pulverized product (D5) thus obtained was classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured.
  • the ratio (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m of the pulverized roll mill (D5) in the dry matter retention time (0 minutes) is shown in Table 5 and FIG.
  • the ratio of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m can be significantly increased when the dry matter retention time is 3 minutes or more.
  • the particle size of the pulverized product becomes smaller after 10 minutes and even 15 minutes after the dried product comes out of the dryer, and the yield of particles in a more preferable particle size range (150 ⁇ m or more and less than 850 ⁇ m) is increased. It is understood that
  • the dried product (l) obtained by this drying was passed by 1.0 m / s, normal temperature air for 8 minutes with an adjacent cooler, and the temperature of the dried product was cooled to 87 ° C.
  • the dry matter (l) collected at the cooler outlet had a water content of 10.0% by weight and a weight average particle size (D50) of 2.9 mm. Further, this dried product (l) contained 43.2% by weight of gel particles having a particle diameter of 3 mm or more with respect to the total weight of the dried product (l).
  • the temperature of the integrated product of the coarsely pulverized product (m) and the dried product (n) that passed through a sieve having an opening of 6 mm used for pulverization was 77 ° C.
  • Example 27 the time (T3m) held in the hopper Z was changed from 0 minutes (Example 27) to 5 minutes (Example 28), 10 minutes (Example 29), and 15 minutes (Example 30).
  • a roll mill pulverized product (D7 to D9) was obtained in the same manner as in Example 27 except that.
  • the pulverized products (D7 to D9) thus obtained were classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured.
  • the relationship between the dry matter retention time (T1 + T2 + T3m) of particles having a particle diameter of 6 mm or more and the ratio (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m in the roll mill pulverized product (D7 to D9) is shown in Table 6 below. As shown in FIG.
  • Example 31 In the following, as shown in FIG. 13, the dry matter retention time was increased only for particles having a large particle size, and a pulverized product was obtained. That is, the particulate hydrogel (h) obtained in Production Example 4 was continuously dried with aeration band for 24 minutes using a continuous ventilation band dryer.
  • This dryer is composed of two chambers of the same size. The first chamber has a linear velocity of 1.0 m / s from the top of the belt and hot air at 110 to 120 ° C. The second chamber has a linear velocity from the top of the belt. It was dried by applying hot air of 1.0 m / s and 160 ° C.
  • This dried product (o) is transported by a flight conveyor, put into a three-stage sieve with openings of 6 mm, 850 ⁇ m, and 150 ⁇ m, and a coarse dried product (On product) that does not pass through a sieve with openings of 6 mm, opening of 6 mm.
  • Particles that pass through a sieve with a mesh opening of 850 ⁇ m (one-stage through product), particles that pass through a sieve with a mesh opening of 850 ⁇ m and do not pass through a sieve with a mesh opening of 150 ⁇ m (two-stage through product), and sieves with a mesh opening of 150 ⁇ m And continuously separated into fine powders.
  • a coarse dried product (On product) having a particle diameter of 6 mm or more is 18% by weight of the total dried product, and particles passing through a sieve having an opening of 850 ⁇ m and not passing through a sieve having an opening of 150 ⁇ m (two-stage through product) 2.1% by weight of the total dry matter and fine powder passing through a sieve having an opening of 150 ⁇ m accounted for 0.9% by weight of the total dry matter.
  • the coarse dried product (On product) was immediately subjected to rough crushing with a flash mill (Fuji Powder Co., Ltd.) to obtain a coarsely crushed product (p).
  • the weight average particle diameter (D50) of the coarsely pulverized product (p) at this time was 2.3 mm, and the particles having a particle diameter of less than 850 ⁇ m was 6.4% by weight.
  • the crude pulverized product (p) was passed through hopper Z (residence time 0 minutes).
  • coarse dried product (On product) is roughly crushed with a flash mill, and while being stored in the hopper Z, particles that pass through a sieve with an opening of 6 mm and do not pass through a sieve with an opening of 850 ⁇ m (one-stage through product) ) (Weight average particle diameter (D50) is 2.8 mm) was stored in hopper X kept warm by a heat insulating material.
  • the coarsely pulverized product (p) and particles that pass through a sieve with a mesh opening of 6 mm but do not pass through a sieve with a mesh opening of 850 ⁇ m are reintegrated, and this dried product is rolled into a roll mill (trade name: RM-16, Inc. Into Asano Iron Works) and pulverized at a processing rate of 250 kg / hr. The roll clearance was 0.35 mm. Further, the dried product in the roll mill was pulverized immediately (within 5 seconds) after being charged at 80 ° C. and taken out from the roll mill to obtain a roll mill pulverized product (D10).
  • the temperature of the integrated product of the coarsely pulverized product (p) and the one-stage through product, which is subjected to pulverization measured by a contact thermometer was 80 ° C.
  • the pulverized product (D10) thus obtained was classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, and the proportion (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured.
  • Example 31 the time (T3) held in the hopper Z was changed from 0 minutes (Example 31) to 5 minutes (Example 32), 10 minutes (Example 33), and 15 minutes (Example 34).
  • a roll mill pulverized product (D11 to D13) was obtained in the same manner as in Example 31 except that.
  • the pulverized products (D11 to D13) thus obtained were classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m, and the ratio (% by weight) of the particulate water-absorbing resin having a particle size of 150 ⁇ m or more and less than 850 ⁇ m was measured.
  • Table 7 and FIG. 8 show the relationship between the dry matter holding time and the ratio (% by weight) of particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m in the pulverized roll mill (D11 to D13).
  • the particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m were separated from the particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m (2.1% of the total dry product). Including the weight%), it can be seen that after pulverization, the total dried product is 82 to 89% by weight, and particles having the target particle size can be obtained in the same yield as in Examples 23 to 26. Further, compared with Examples 23 to 26, particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m, which do not require pulverization before the storage process, and particles having a particle diameter of less than 150 ⁇ m are separated, and thus stored in the storage process. Particles are reduced by 3.0% by weight with respect to the total dry matter, and a sufficient storage capacity can be provided.
  • Example 35 The pulverized product (B5) obtained in Example 12 (dried product retention time 9 minutes) was further classified and surface-crosslinked as follows. That is, the pulverized product (B5) obtained in Example 12 was classified with a sieve having an opening of 850 ⁇ m and 150 ⁇ m to obtain a particulate water-absorbing resin (E1) having a particle size of 150 ⁇ m or more and less than 850 ⁇ m. To 100 parts by weight of this particulate water-absorbent resin (E1), a surface cross-linking agent composition liquid consisting of 0.9 parts by weight of ethylene carbonate and 2.0 parts by weight of water is added and mixed, and further heated in an oil bath at 205 ° C.
  • a surface cross-linking agent composition liquid consisting of 0.9 parts by weight of ethylene carbonate and 2.0 parts by weight of water is added and mixed, and further heated in an oil bath at 205 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 原料の変更や高額な設備投資をあえて必要とせずに、簡便な手法で、吸水性樹脂の粒度を制御し、微粉を低減する吸水性樹脂の製造を提供する。当該方法は、アクリル酸(塩)水溶液の重合工程、得られる含水ゲル状重合体の乾燥工程、乾燥物の粉砕工程、粉砕物の分級工程、及び、必要により分級物の表面工程を含むポリアクリル酸(塩)系吸水性樹脂の連続製造方法であって、(a)上記乾燥工程と上記粉砕工程とが、貯蔵工程と輸送工程を含んで連結され、かつ、(b)上記乾燥工程の終了時点から上記粉砕工程の開始時点までの乾燥物保持時間を3分以上とすることを特徴とする。

Description

粒子状吸水性樹脂の製造方法
 本発明は、粒子状吸水性樹脂の製造方法に関するものである。更に詳しくは、本発明は、微細粒子(微粉)が生じ難く、粗大粒子の発生も抑制でき、目的とする粒子径範囲の粒子が収率よく得られる、粒子状吸水性樹脂の製造方法に関する。
 吸水性樹脂は、自重の数倍から数百倍という多量の水性液を吸収する性質から紙オムツや生理用ナプキン、成人用失禁製品等の衛生用品、土壌用保水剤等の各種用途に幅広く利用され、大量に生産及び消費されている。このような吸水性樹脂(高吸水性樹脂、吸水性ポリマーとも呼ばれる)は、例えば、日本工業規格(JIS)K7223-1996に記載されており、また、市販の多くの参考図書でも紹介されている。
 吸水性樹脂はその形状として、シート状、フィルム状、繊維状、ゲル状、エマルジョン状等も知られているが、一般的には粒子状であり、親水性不飽和単量体を重合することにより含水ゲル状重合体を得て、これを乾燥して粉末状態として提供される。上記含水ゲル状重合体は、塊状又は含水ゲル粒子の凝集体として得られることが多く、通常、固形分濃度95重量%程度まで乾燥された後、所望の大きさの粒子まで粉砕機で粉砕されるが、一般的に粉砕物はある一定の粒度分布を有した状態となるため、目的の粒子径(粒子径)範囲以外の粒子も発生する。そこで、この乾燥後の粉砕物を分級機で篩分けして、目的とする粒子径範囲の大きさの粒子を調製する。その結果、粒子状吸水性樹脂が得られる。用途によっての違いはあるが、衛生用品に用いられる粒子状吸水性樹脂としては、通常、主成分として106μm以上、更には150μm以上850μm未満の範囲にある粒子径の粒子が好ましく用いられる。一方、106μm未満、更には150μm未満の微粉は衛生用品に加工する際、粉塵として舞い上がり、作業環境を悪化させたり、吸水性樹脂の通液性を悪化させたりする原因となるので、吸水性樹脂に含まれる微粉の量は少ない方が望ましい。また粒子径が850μm以上の粒子は、衛生用品の材料として用いる際、肌に接する部分で凹凸感を与たり、吸収速度を低下させてしまうので、吸水性樹脂に含まれる粒子径が850μm以上の粒子は少ない方が望ましく、通常、粒子径が850μm以上の粒子は篩い分けられた後、再粉砕される。このときの粉砕機の負荷や微粉の発生もまた問題となっている(特許文献1~4を参照)。
 以上、吸水性樹脂は粒子径の上下限が制御された粒子であることが好ましいが、かかる粒子状吸水性樹脂の粒子径制御方法としては、逆相懸濁重合等の重合工程で粒子径制御する方法(特許文献5、6を参照)、含水ゲル状重合体の細粒化工程で制御する方法(特許文献7、8を参照)、乾燥物の粉砕工程で制御する方法(特許文献9、10を参照)、分級工程で制御する方法(特許文献11~16を参照)、表面架橋時に造粒する方法(特許文献17を参照)、表面架橋後の冷却工程で微粉を気流で除去する方法(特許文献18を参照)、表面架橋後に粒子同士を結着させて大きい粒子にする方法(造粒)(特許文献18~22を参照)等が知られている。
 しかしながら、特許文献5、6に開示された重合での粒子径制御には限界があり、しかも、粒子状で重合する逆相懸濁重合と異なり水溶液重合での粒子径制御は更に困難であった。
 また、特許文献7~10に開示された方法でも粒子径制御には限界があり、粉砕装置の改良だけでは効果が不十分であり、効率的に粉砕できる乾燥物の条件を探す必要がある。含水率の大きい吸水性樹脂を粉砕する方法は一般に含水率が小さい吸水性樹脂の粉砕に比べて粉砕機の負荷が高く、更に使用できる粉砕方法、粉砕機器が限られる。特許文献10に開示されているように、強制冷却を行う方法では、乾燥物の温度が室温付近であれば、粉砕時に微粉又は、粉砕機を通しても目的の粒子径まで粉砕できない粒子の発生を抑えることができるが、室温の風で50℃から更に冷却を行うときは冷却効率が悪く、冷風の使用や風量を増やそうとすると設備が大型化してしまう問題がある。
 そこで、特許文献11~16及び特許文献18に開示された分級による微粉の除去では微粉は除去できるが、多量の微粉の廃棄ないし再利用(リサイクル)が必要であるだけでなく、微粉だけを綺麗に取り除こうとすると長時間の分級操作が必要となる場合もあった。また、特許文献17~22に開示された造粒方法では、造粒強度が弱く微粉が使用時や運送時に再生したり、造粒時のバインダー使用などで吸収物性が低下したりすることもあった。
 更に、特許文献23~26に記載の吸水性樹脂微粉を製造工程にリサイクルする方法では、微粉を回収し、処理するための設備が必要となり、また、その運転コストもかかるという問題があるので、微粉の発生量自体を減らす必要がある。また、特許文献24~26等に記載の微粉を重合工程の単量体や含水ゲル状重合体にリサイクルする方法では、微粉による重合阻害の問題も発生することがあった。
米国特許第5419956号明細書 米国特許出願公開第2006/204755号明細書 米国特許出願公開第2007/066167号明細書 米国特許第7473470号明細書 米国特許第5244735号明細書 米国特許第4973632号明細書 米国特許第5250640号明細書 米国特許第5275773号明細書 米国特許第6576713号明細書 米国特許第6817557号明細書 米国特許第6164455号明細書 国際公開第2006/074816号パンフレット 国際公開第2008/037672号パンフレット 国際公開第2008/037673号パンフレット 国際公開第2008/037675号パンフレット 国際公開第2008/123477号パンフレット 欧州特許第0450922号明細書 米国特許第7378453号明細書 国際公開第2008/110524号パンフレット 米国特許第4734478号明細書 米国特許出願公開2007/015860号明細書 米国特許第6133193号明細書 米国特許第6228930号明細書 米国特許第5455284号明細書 米国特許第5342899号明細書 米国特許出願公開2008/0306209号明細書
 以上、粒子状吸水性樹脂の粒子径制御は重合工程以降の各工程で多くの手法が提案されているが、何れも、コスト上昇や生産性低下の問題だけでなく、吸収物性低下や造粒する場合には微粉の再生等の問題を伴っている。
 よって、本発明は、上記従来の問題点に鑑みられたものであり、物性の低下なく、より簡便に吸水性樹脂の粒子径を本質的に制御できる、吸水性樹脂の製造方法を提供することにある。
 本発明者らは、上記目的を達成すべく鋭意検討した結果、従来、上記特許文献1~26等でなんら着目されてこなかった「乾燥終了後から粉砕開始までの時間」に初めて着目した。そして、乾燥工程の終了時点から粉砕工程の開始時点までの時間を一定時間以上に制御することで、微粉の発生を抑え、効率的に粉砕できることを見出し、本発明を完成させた。
 すなわち、本発明は上記課題を解決するために、アクリル酸(塩)を含む水溶液の重合工程、得られる含水ゲル状重合体の乾燥工程、乾燥物の粉砕工程、粉砕物の分級工程、及び、必要により分級物の表面架橋工程を含むポリアクリル酸(塩)系吸水性樹脂の連続製造方法であって、(a)上記乾燥工程と上記粉砕工程とが、貯蔵工程と輸送工程を含んで連結され、かつ、(b)上記乾燥工程の終了時点から上記粉砕工程の開始時点までの乾燥物保持時間を3分以上とする製造方法を提供する。
 本発明によると、重合工程、乾燥工程、粉砕工程、分級工程、表面架橋工程を含む吸水性樹脂の製造方法において、コスト上昇や生産性低下を比較的抑えながら、簡便に粒子径を制御できる。
本発明の推定機構を示す概略図である。 実施例1~7及び比較例1の結果(乾燥物保持時間と150μm以上850μm未満の粒子径をもつ粒子の割合との相関)を示す図である。 実施例8~12及び比較例2~4の結果(乾燥物保持時間と150μm以上850μm未満の粒子径をもつ粒子の割合との相関)を示す図である。 実施例13~18及び比較例5~6の結果(乾燥物保持時間と150μm以上850μm未満の粒子径をもつ粒子の割合との相関)を示す図である。 実施例19~22及び比較例7の結果(乾燥物保持時間と150μm以上850μm未満の粒子径をもつ粒子の割合との相関)を示す図である。 実施例23~26及び比較例8の結果(乾燥物保持時間と150μm以上850μm未満の粒子径をもつ粒子の割合との相関)を示す図である。 実施例27~30の結果(乾燥物保持時間と150μm以上850μm未満の粒子径をもつ粒子の割合との相関)を示す図である。 実施例31~34の結果(乾燥物保持時間と150μm以上850μm未満の粒子径をもつ粒子の割合との相関)を示す図である。 本願発明の実施形態に係る第一の製造プロセスを示す概略フロー図である。 本願発明の実施形態に係る第二の製造プロセスを示す概略フロー図である。 本願発明の実施形態に係る第三の製造プロセスを示す概略フロー図である。 本願発明の実施形態に係る第四の製造プロセスを示す概略フロー図である。 本願発明の実施形態に係る第五の製造プロセスを示す概略フロー図である。 図9~図13の製造プロセスに含まれるホッパーを示す概略図である。
 なお、図10~図13は、粒度毎に異なる乾燥物保持時間または乾燥物保持方法を有するプロセスである。
 本発明は、アクリル酸(塩)を含む水溶液の重合工程、得られる含水ゲル状重合体(以下、「含水ゲル」とも称する)の乾燥工程、乾燥物の粉砕工程、粉砕物の分級工程、及び、必要により分級物の表面架橋工程を含むポリアクリル酸(塩)系吸水性樹脂の連続製造方法であって、(a)上記乾燥工程と上記粉砕工程とが、貯蔵工程と輸送工程を含んで連結され、かつ、(b)上記乾燥工程の終了時点から上記粉砕工程の開始時点までの乾燥物保持時間を3分以上とすることを特徴とする、粒子状吸水性樹脂の製造方法を提供する。
 以下、本発明の実施形態に係る粒子状吸水性樹脂の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更、実施し得る。具体的には、本発明は、図9~13のフロー図に示されるような製造プロセスや下記各実施形態にしたがって、行われるが、本発明は、当該製造プロセスや下記の各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。なお、図9~13は、本願発明の実施形態に係る様々な製造プロセスを示す概略フロー図であるが、当該図は、下記各工程を配置した製造プロセス例である。
 また、下記、〔2〕粒子状吸水性樹脂の製造方法に代表的な粒子状吸水性樹脂の製造方法を、さらに、下記、(2-5)乾燥物保持時間には、本発明の特徴部分である「乾燥工程の終了時点から粉砕工程の開始時点までの乾燥物保持時間」を記載する。ただし、実験室のような小スケールの実験では実験操作が不連続となるため、結果として、本発明の乾燥物保持時間となる場合が考えられるが、本発明の実施形態は、生産設備での大スケールの生産(例えば、1ラインあたり1[t/hr]以上)を指すものとする。更には、工業的には各工程が連結されて、全体として連続製造されることが好ましい。
 〔1〕用語の定義
 (1-1)吸水性樹脂
 本明細書において、「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味し、以下の物性を有するものをいう。即ち、無加圧下吸収倍率(CRC/ERT441.2-02(2002)で規定)が、必須に5[g/g]以上、好ましくは10~100[g/g]、更に好ましくは20~80[g/g]であり、また、水可溶分(Extractables/ERT470.2-02(2002)で規定)が、必須に0~50重量%、好ましくは0~30重量%、更に好ましくは0~20重量%、特に好ましくは0~10重量%である高分子ゲル化剤をいう。
 なお、該吸水性樹脂は、全量(100重量%)が重合体である形態に限定されず、上記性能を維持する範囲において、後述する他の添加剤等を含んでいてもよい。即ち、吸水性樹脂組成物であっても、本発明においては吸水性樹脂と総称する。したがって、他の添加剤等を含む場合の、吸水性樹脂、特にポリアクリル酸(塩)系吸水性樹脂の含有量は、好ましくは全体に対して70~99.9重量%であり、より好ましくは80~99.7重量%であり、更に好ましくは90~99.5重量%である。吸水性樹脂以外のその他の成分としては、吸水速度や粉末(粒子)の耐衝撃性の観点から水が好ましく、必要により後述の添加剤が含まれる。
 (1-2)ポリアクリル酸(塩)
 本明細書において、「ポリアクリル酸(塩)」とは、繰り返し単位として、アクリル酸(塩)を主成分とする(共)重合体を意味する。具体的には、架橋剤を除く単量体として、アクリル酸(塩)を、必須に50~100モル%、好ましくは70~100モル%、更に好ましくは90~100モル%、特に好ましくは実質100モル%含む(共)重合体を意味する。(共)重合体としての塩は、必須に水溶性塩を含み、好ましくは一価塩、更に好ましくはアクリル金属塩あるいはアンモニウム塩である。その中でも特にアルカリ金属塩が好ましく、更にはナトリム塩が好ましい。なお、形状は特に問わないが、好ましくは粉末(「粒子」とも称する)である。
 (1-3)EDANA及びERT
 本明細書において、「EDANA」とは、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」とは、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(ERT/EDANA Recomeded Test Method)の略称である。本明細書においては、特に断りのない限り、ERT原本(公知文献:2002年改定)を参照して、吸水性樹脂の物性を測定する。
 (a)「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、無加圧下吸水倍率(以下、「吸水倍率」と称することもある)を意味する。
 具体的には、0.9重量%塩化ナトリウム水溶液に吸水性樹脂0.20gを30分間浸漬した後、遠心分離機で水切りした後の吸水倍率(単位;[g/g])である。
 (b)「AAP」(ERT442.2-02)
 「AAP」は、Absorbency Against Pressureの略称であり、加圧下吸水倍率を意味する。
 具体的には、0.9重量%塩化ナトリウム水溶液に吸水性樹脂0.90gを21[g/cm]の荷重下で1時間膨潤させた後の吸水倍率(単位;g/g)である。なお、本発明においては、50[g/cm]の荷重下で測定した。
 (c)「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、水可溶分(水可溶成分量)を意味する。
 具体的には、0.9重量%塩化ナトリウム水溶液200gに吸水性樹脂1gを投入し、16時間攪拌した後、溶解したポリマー量をpH滴定で測定した値(単位;重量%)である。
 (d)「Residual Monomers」(ERT410.2-02)
 「Residual Monomers」とは、吸水性樹脂中に残存しているモノマー量を意味する。具体的には、0.9重量%塩化ナトリウム水溶液200cmに吸水性樹脂1gを投入し1時間攪拌後、該水溶液に溶出したモノマー量を高速液体クロマトグラフィーで測定した値(単位;ppm)である。
 (1-4)通液性
 本明細書において、「通液性」とは、加圧下又は無加圧下での膨潤ゲル粒子間の液の流れを意味する。代表的な評価方法として、米国特許第5,562,646号明細書に開示されたSFC(Saline Flow Conductivity)の評価方法等がある。この評価方法で測定されるSFCは、「生理食塩水流れ誘導性」とも称される。
 (1-5)含水ゲル、乾燥物、粉体
 本発明における「含水ゲル」、「乾燥物」、および「粉体」は、以下のようにして定義される。
 「含水ゲル」とは、吸水性樹脂の含水ゲル状重合体を指し、その代表例として、吸水性樹脂の吸水によって膨潤したゲルをいうが、請求項1で規定する単量体水溶液の重合工程で得られる含水ゲル状重合体を意味する。
 すなわち、請求項1で規定する含水ゲル状重合体は、単量体水溶液で得られ、かつ水を含有する限り、その水分量にかかわらず本発明の「含水ゲル」となる。なお、含水ゲルの水分量(含水率)は、重合条件(例えば、単量体水溶液の固形分、重合時の水分蒸発量等)によって適宜決定されるが、通常、25重量%以上が好ましく、30重量%以上がより好ましい。
 「乾燥物」とは、上記重合後の乾燥工程を経た吸水性樹脂の乾燥重合体を指す。乾燥後の水分量は目的や重合後の含水率によるが、通常、乾燥工程で含水率が5重量%以上低減され、その結果、含水率が30重量%未満、さらには25重量%未満、さらには20重量%以下、特に3~15重量%の乾燥重合体を指す。形状は問わず、また、乾燥の一部は重合と同時(重合熱や重合時の加熱で乾燥等)に行ってよいが、さらに乾燥される。
 「粉体」とは、篩分級で規定される粒子径5mm以下の固体であって、吸水性樹脂の乾燥重合体の粉体、または、吸水性樹脂の原料や添加剤のうち固体のまま使用される粉体(例えば、水不溶性無機粉末、多価金属塩粉末やその水和塩等)を指す。固体であれば含水率は問わないが、通常は30重量%未満、さらには25重量%未満、さらには20重量%以下である。粒子径の下限は、特に制限されないが、例えば、1nm、さらには好ましくは10nmである。粉体として一定の流動性を有し、例えば、流動性として、Flow Rate(ERT450.2-02)を測定可能である状態、あるいは(ERT420.2-02)で篩分級可能な固体のことである。なお、一般に1mm以上を粒体、1mm未満を粉体と呼ぶ場合もあるが、本発明では、それら粉粒体(吸水性樹脂ないしその原料)を総称して、以下、「粉体」と称する。また、本願明細書では、「粉体」および「粉末」は、同義語として扱う。
 (1-6)その他
 本明細書において、範囲を示す「X~Y」は、「X以上、Y以下」であることを示す。また、「質量」と「重量」、「質量部」と「重量部」、及び「質量%」と「重量%」は同義語として取り扱い、重量の単位である「トン(t)」は、「メトリック・トン(Metoric ton)」を意味する。また、特に注釈のない限り、「ppm」は「質量ppm」または「重量ppm」を意味するものとする。
 さらに、物性等の測定は、特に注釈がない限り、室温:20~25℃/相対湿度:40~50%で実施する。
 〔2〕粒子状吸水性樹脂の製造方法
 (2-1)アクリル酸(塩)水溶液
 (a)単量体
 本発明で使用できる不飽和単量体としては、特に制限されず、「アクリル酸(塩)単独」、あるいは「アクリル酸(塩)とアクリル酸以外の単量体との併用」が挙げられる。これらの中でも、吸水性樹脂の物性(例えば、吸収倍率、可溶分量、通液性、及び、残存モノマー量等)の観点から、アクリル酸および/またはその塩が好ましい。
 また、重合体の繰り返し単位として、酸基含有単量体、更にはアクリル酸を使用する場合、酸基は一価塩、好ましくはアルカリ金属塩あるいはアンモニウム塩、より好ましくはアルカリ金属塩、特に好ましくはナトリウム塩が用いられる。酸基の中和率は、重合前又は重合後に0~100モル%、好ましくは20~100モル%、さらにより好ましくは30~99モル%、さらにより好ましくは50~99モル%、さらにより好ましくは55~95モル%、特に好ましくは60~90モル%の範囲で中和される。
 中和は、重合後の重合体(含水ゲル)に行ってもよく、あるいは単量体として塩の形態のアクリル酸を使用して重合を行ってもよいが、好ましくは、生産性やAAP(加圧下吸収倍率)SFC(加圧下での通液性、生理食塩水流れ誘導性)向上の面などから、中和された単量体を使用する、すなわち単量体がアクリル酸の部分中和塩である。このようなアクリル酸塩としては、特に制限されないが、吸水性樹脂の吸水性能の観点からアクリル酸のアルカリ金属塩、アンモニウム塩、アミン塩から選ばれるアクリル酸の1価塩が好ましい。より好ましくはアクリル酸アルカリ金属塩であり、さらに好ましくは、ナトリウム塩、リチウム塩、カリウム塩から選ばれるアクリル酸塩であり、ナトリウム塩が特に好ましい。
 また、アクリル酸(塩)以外の不飽和単量体(他の単量体)を使用する場合には、他の単量体としては、親水性または疎水性不飽和単量体を使用しても良い。使用できる他の単量体としては、メタクリル酸、(無水)マレイン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリロキシアルカンスルホン酸、N-ビニル-2-ピロリドン、N-ビニルアセトアミド、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ステアリルアクリレートやそれらの塩などである。このような他の単量体を使用する場合の使用量は、所望の特性を損なわない程度であれば特に制限されないが、全単量体重量に対して、好ましくは50モル%以下、より好ましくは0~30モル%、特に0~10モル%である。上記単量体および使用する場合には他の単量体は、それぞれ、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
 (b)内部架橋剤
 本発明で使用できる内部架橋剤としては、特に制限されず、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリオキシエチレン)トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ポリ(メタ)アリロキシアルカン等の分子内に重合性二重結合を少なくとも2個有する化合物;ポリグリシジルエーテル(エチレングリコールジグリシジルエーテル)、ポリオール(エチレングリコール、ポリエチレングリコール、グリセリン、ソルビトール)等のカルボキシル基と反応して共有結合を形成し得る化合物の1種又は2種以上を例示することができる。
 内部架橋剤を使用する場合には、得られる吸水性樹脂の吸収特性等を考慮して、分子内に重合性二重結合を少なくとも2個有する化合物を必須に用いることが好ましい。また、内部架橋剤は、物性面から、前記単量体1モルに対して0.0001~5モル%、好ましくは0.005~2モル%の範囲で使用される。
 (c)濃度
 上記の不飽和単量体は、通常、水溶液状態で重合される。その単量体濃度は、通常、10~90重量%であり、好ましくは20~80重量%、より好ましくは30~70重量%、特に好ましくは30~60重量%の範囲である。
 また、界面活性剤、ポリアクリル酸(塩)やその架橋体(吸水性樹脂)、澱粉、ポリビニルアルコール等の高分子化合物、各種キレート剤、各種添加剤等(他の成分)を、必要に応じて、前記不飽和単量体に添加してもよい。これらのうち、本発明の方法は、キレート剤を添加する工程をさらに含むことが好ましい。キレート剤を使用することにより、本発明の吸水性樹脂の、色安定性(粒子状吸水剤を、高温高湿条件下で、長期間保存する場合の色安定性)の向上や耐尿性(ゲル劣化防止)の向上を達成することができる。
 ここで、キレート剤としては、特に制限されず、例えば、欧州特許出願公開第1426157号及び国際公開第2007/28751号、国際公開第2008/90961号に例示のキレート剤を使用することができる。効果の面から好ましくは、キレート剤の分子量が100~1000である水溶性有機キレート剤である。具体的に好ましいキレート剤としては、イミノ二酢酸、ヒドロキシエチルイミノ二酢酸、ニトリロ三酢酸、ニトリロ三プロピオン酸、エチレンジアミン四酢酸、ヒドロキシエチレンジアミン三酢酸、ヘキサメチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸およびこれらの塩等のアミノカルボン酸系金属キレート剤やエチレンジアミン-N,N’-ジ(メチレンホスフィン酸)、エチレンジアミンテトラ(メチレンホスフィン酸)、ポリメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、1-ヒドロキシエチリデンジホスホン酸、およびこれらの塩等のアミノ多価リン酸化合物である。
 また、上記したような他の成分をさらに使用する場合の添加量は、特に制限されないが、前記不飽和単量体100重量部に対して0重量部を超えて30重量部以下、より好ましくは0.0001~20重量部であるのが好ましい。なお、本願で水溶液とは、飽和濃度を超えた分散液も含むが、好ましくは飽和濃度以下で重合される。
 (d)中和の塩
 単量体としてアクリル酸塩を使用する場合に、重合体またはアクリル酸の中和に用いられる塩基性物質としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物や炭酸(水素)ナトリウム、炭酸(水素)カリウムなどの炭酸(水素)塩等の一価塩基が好ましく、水酸化ナトリウムによるナトリウム塩が特に好ましい。なお、これらの中和処理での好ましい条件等は、欧州特許第574260号に例示されており、該公報に記載の条件も本発明に適応され得る。中和温度は10~120℃、30~110℃で適宜決定される。
 (2-2)重合工程
 (a)重合方法
 本発明の粒子状吸水性樹脂は、前記不飽和単量体を架橋重合し、含水ゲル状重合体を得ることにより製造される。重合方法は、性能面や重合の制御の容易さから、通常、噴霧重合、滴下重合、水溶液重合又は逆相懸濁重合により行われる。
 逆相懸濁重合とは、単量体水溶液を疎水性有機溶媒に懸濁させる重合法であり、例えば、米国特許第4093776号、同第4367323号、同第4446261号、同第4683274号、同第5244735号等の米国特許に開示されている。
 また、水溶液重合とは、分散溶媒を用いずに単量体水溶液を重合する方法であり、例えば、米国特許第4625001号、同第4873299号、同第4286082号、同第4973632号、同第4985518号、同第5124416号、同第5250640号、同第5264495号、同第5145906号、同第5380808号等の米国特許や、欧州特許第0811636号、同第0955086号、同第0922717号、同第1178059号等の欧州特許に開示されている。なお、本発明の重合に際して、これらの特許文献に記載されている単量体、内部架橋剤、重合開始剤、その他の添加剤等を使用してもよい。
 本発明においては、得られる粒子状吸水性樹脂の物性や乾燥効率の観点から、かかる重合時の重合熱によって、重合溶媒の少なくとも一部を揮発させることが好ましい。例えば、含水ゲル状重合体の固形分濃度を、重合の前後で0.1重量%以上上昇させるのが好ましく、1~40重量%上昇させるのがより好ましく、2~30重量%上昇させるのが更に好ましく、3~20重量%上昇させるのが特に好ましい。含水ゲル状重合体の固形分濃度の上昇は、重合時の温度、気流や形状(重合ゲルの粒子径やシート厚み)等で適宜決定される。
 上記の重合は、空気雰囲気下でも実施してもよいが、好ましくは窒素やアルゴン等の不活性気体雰囲気下、例えば、酸素濃度が1容積%以下の雰囲気下で、重合が行われる。また、単量体成分は、その溶解酸素が不活性気体で十分に置換されて、溶存酸素濃度が1[mg/L]未満となった後に、重合に用いられることが好ましい。
 重合方法は、性能面や重合の制御の容易さから、通常、水溶液重合又は逆相懸濁重合、特に、従来、その不定形状粒子のためか粒度制御が困難であった水溶液重合、更には連続水溶液重合で行われる。
 本発明は、実験室スケールよりも実機スケール、中でも巨大スケールでの製造や粉砕における粒度制御で効果を発揮する。即ち、不飽和単量体水溶液を重合させて粒子状吸水性樹脂を得る場合、その生産能力として、1ラインないし装置あたり、1t/hr以上のスケールで粒子状吸水性樹脂の重合または粉砕が行われるのが好ましく、2t/hr以上がより好ましく、5t/hr以上が更に好ましく、10t/hr以上が特に好ましい(なお、「ton」、「t」は、Metiric tonであり、すなわち1000kgが1tonである)。かような巨大スケールで連続重合及び連続粉砕する場合において、本発明は好ましく適用することができる。なお、本発明における生産能力の上限値は、特に制限されないが、例えば、1ラインないし装置あたり、100t/hrである。
 上記連続重合として好ましい形態は、連続ニーダー重合(例えば、米国特許第6987151号、同第6710141号、及び米国特許出願公開第2008/0080300号等)、及び連続ベルト重合(例えば、米国特許第4893999号、同第6241928号、及び米国特許出願公開第2005/215734号等)が挙げられる。
 なお、連続重合では、高温開始(単量体温度が30℃以上、35℃以上、更には40℃以上、特に50℃以上。上限は沸点)、及び高単量体濃度(30重量%以上、特に35重量%以上、更には40重量%以上、更には43重量%以上、特に45重量%以上。上限は飽和濃度以下ないし70重量%以下)での重合が好ましい一例として例示できる。
 (b)重合開始剤
 本発明で使用される重合開始剤は、重合の形態によって適宜選択される。このような重合開始剤としては、好ましくは水溶性重合開始剤、更には、光分解型重合開始剤、熱分解型重合開始剤、レドックス系重合開始剤等を例示することができる。また、本発明においては、光分解型重合開始剤と熱分解型重合開始剤とを併用することも好ましい。
 かかる重合開始剤としては、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド等のアゾ化合物等を例示することができる。レドックス系重合開始剤としては、例えば、前記過硫酸塩や過酸化物に、L-アスコルビン酸や亜硫酸水素ナトリウムのような還元性化合物を併用し、両者を組み合わせた系を例示することができる。
 重合開始剤の量は、前記モノマーに対し、0.0001~1モル%、好ましくは0.001~0.5モル%の範囲で使用される。
 (2-3)含水ゲル状重合体を細粒化する工程(細粒化工程)
 乾燥効率の面と乾燥後の粉砕効率の面から、乾燥前の含水ゲル状重合体が重合中ないし重合後に細粒化されていることが好ましい。ここで、細粒化方法としては、特に制限されず、公知の方法が同様にして使用できる。例えば、粉砕機(ニーダー、ミートチョパー、カッターミルなど)を用いてゲルを細粒化(粉砕)できる。ゲル細粒化時の含水ゲルの温度は、特に制限されないが、物性面から、好ましくは40~100℃、さらには50~70℃で行われる。含水ゲルの樹脂固形分は上記範囲である。水や、多価アルコール、水と多価アルコールの混合液、水に多価金属を溶解した溶液あるいはこれらの蒸気等を添加しても良い。
 本発明で水溶液重合により得られる、例えば塊状、シート状等の含水ゲル状重合体は、粉砕装置によって粉砕され、粒子状の含水ゲルとされた後、乾燥される。また、噴霧重合、滴下重合、逆相懸濁重合では、重合によって粒子状の含水ゲルが得られるが、それらは重合中の細粒化に該当する。かかる重合後の粒子状の含水ゲルはそのまま乾燥してもよく、また、必要により更に粉砕ないし造粒して粒度を調整してもよい。
 上記粒子状の含水ゲルの好ましい粒子径としては、標準篩分級により求められる重量平均粒子径(D50)が0.5~10mmの範囲内であり、1~5mmの範囲内、更には1~3mm、特に1~2mmであることが更に好ましい。
 なお、含水ゲル状重合体を細粒化する工程で、上記の範囲内に制御する方法としては、米国特許第6906159号、同第5275773号、同第6100305号、同第6140395号、同第6875511号、米国特許出願公開第2004/234607号、同第2005/46069号等が採用される。
 乾燥前の含水ゲルが3mm以上の粒子径をもつゲル粒子を含む場合にも、好適に本発明は適用される。これにより、ゲル粉砕工程が簡便ないし短時間となりうる。また、この際の乾燥前の含水ゲルにおける3mm以上の粒子径をもつゲル粒子の割合は、特に制限されないが、乾燥前の含水ゲルに対して、0.5~60重量%が好ましい。また、この際の乾燥前の含水ゲルにおける850μm未満の粒子径をもつゲル粒子の割合は、特に制限されないが、乾燥前の含水ゲルに対して、1~50重量%、より好ましくは2~35重量%が好ましい。乾燥前の含水ゲルの含水率は上記範囲である。
 (2-4)乾燥工程
 乾燥工程では乾燥機で含水ゲルの水分を目的の範囲まで乾燥される。本発明での乾燥方法としては、当該業者の常識の範囲内で、目的の含水率となるように種々の乾燥機や乾燥方法を採用することができ、使用できる乾燥機としては、伝導伝熱型乾燥機、輻射伝熱型乾燥機(例;赤外線乾燥)、熱風伝熱型乾燥機、誘電加熱型乾燥機(例;マイクロ波乾燥)、疎水性有機溶媒との共沸脱水やそれらの併用が挙げられる。これら乾燥は減圧下で行ってもよいが、好ましくは、乾燥効率から熱風伝熱型乾燥機(特に通気バンド乾燥機)が用いられる。
 熱風乾燥方法としては、静置状態で乾燥を行う方法、攪拌状態で乾燥を行う方法、振動状態で乾燥を行う方法、流動状態で乾燥を行う方法、気流で乾燥を行う方法等がある。これらの中でも、効率面から、流動層乾燥又は静置乾燥(更には通気バンド乾燥)が好ましく、通気バンド乾燥がより好ましく、更には連続静置乾燥(連続通気バンド乾燥)を用いた熱風乾燥が特に好ましく使用される。
 乾燥温度は、通常100~250℃、好ましくは100~220℃、より好ましくは120~200℃、さらにより好ましくは135~195℃、特に150~190℃の温度範囲(熱風温度)で行われる。乾燥時間は、重合体の表面積、含水率、及び乾燥機の種類、風量に依存し、目的とする含水率になるよう選択される。例えば、乾燥時間は、1分~1時間の範囲内で適宜選択すればよい。このような乾燥温度や乾燥時間であれば、得られる粒子状吸水性樹脂は、吸水倍率(CRC)に優れ、可溶分(Extractables)が少なく、かつ白色度の低下を抑制・防止できる。
 この乾燥により乾燥物の固形分量は、特に制限されないが、85~95重量%、85~97重量%、88~95重量%、90~95重量%の順の固形分量になるように上昇することが好ましい。すなわち、乾燥物の含水率は、特に制限されないが、好ましくは上記範囲である。
 (2-5)乾燥物保持時間
 (a)定義
 本発明の特徴である乾燥物保持時間は、乾燥工程の終了時点から粉砕工程の開始時点までの時間で規定される。「乾燥工程の終了時点」とは、乾燥物を乾燥機から取り出した時点、即ち、乾燥物が乾燥機から排出された時点若しくは乾燥機での加熱が終了した時点、即ち、乾燥機における強制加熱の停止時点を指すものとする。なお、ここで言う乾燥機とは乾燥工程で述べた範囲内の装置であり、乾燥機によって乾燥工程と乾燥時間の後半で冷却工程を兼ねてもよい(例えば、連続通気バンド乾燥機で前半部分を乾燥機に使用、後半、特に終盤を冷却機に使用、乾燥機後半が冷却工程を兼ねる場合は乾燥機中で冷却工程開始)。また、「粉砕工程の開始時点」とは、乾燥機から排出された乾燥物が貯蔵工程、輸送工程等を経て、粉砕機に投入された時点を指すものとする。即ち、乾燥物保持時間は、「乾燥工程の終了時点」から「粉砕工程の開始時点」までの時間を指す。
 乾燥物保持持間は、言わば中間工程の合計時間に相当する。本発明においては、乾燥工程と粉砕工程を直接連結するのではなく、保持時間を取るための中間工程として(乾燥物の輸送工程)と(乾燥物の貯蔵工程)が必須に含まれ、さらには、(乾燥物の冷却工程)(凝集した乾燥物の粗解砕工程)を必要に応じて含んでもよい。
 本発明は(2-4)乾燥工程と(2-6)粉砕工程の間の時間に注目し、ある時間を持った中間工程を加えるという構成となっている。本発明は、一般的な乾燥方法および粉砕方法における課題を解決する方法であって、乾燥物保持時間を置くことで、粉砕が容易になる。この推定メカニズムを以下に述べるが、本発明はこの推定メカニズムにとらわれない。得られた乾燥物は全体としては一様に乾燥されているように見えても、一粒子内部では水分分布が不均一であり、熱風、伝熱管などの加熱媒体が接触している粒子表面は含水率が低く、粒子内部は含水率が高くなっており、粒子径が大きくなるほど、粒子表面と内部の含水率の差は大きくなっていると考えられる。一方、一定の乾燥物保持時間を経た乾燥物は水分分布が均一に近付いていると考えられる。本発明において、粉砕時の粒子径制御の容易さはこの水分分布の均一性によるものと推定される。
 (b)時間と温度
 乾燥機を出たときから粉砕機に入るまで、乾燥物保持時間は3分以上(10時間以内)、5分~3時間、7分~2時間、10分~1時間半、10分~1時間、15分~1時間、20分~1時間、20分~50分の順で好ましい。このような乾燥物保持時間であれば、粉砕物中の、150μm以上850μm未満の所望の粒子径をもつ粒子の割合を十分(全粒子に対して、好ましくは75重量%以上、より好ましくは80重量%以上にまで)向上することができる。中でも、乾燥物の含水率が比較的高い場合、特に9重量%以上の場合、実施例1~7の図2、実施例23~26の図6、実施例27~30の図7および実施例31~34の図8に示されるように、粒度制御の面から乾燥物保持時間は長いほど好ましく(例えば、10分以上が好ましく、15分以上がより好ましく、20分以上が特に好ましい)、また、含水率が比較的低い場合、特に9重量%未満の場合、実施例8~12の図3、実施例13~18の図4および実施例19~22の図5に示されるように、乾燥物保持時間は乾燥物の含水率が高い場合に比して短いことが好ましく、例えば、このような場合には、乾燥物保持時間は3分以上が好ましく、より好ましくは5分以上で十分である。この理由としては以下のように想像される。乾燥工程において、まず粒子状含水ゲルの表面の含水率が低下し、続いて乾燥物内部の含水率が低下する。すなわち、初めは粒子状含水ゲルの表面と内部の含水率の差は広がると考えられるが、乾燥が進行すると粒子状含水ゲルの内部でも乾燥が進んで、表面と内部の含水率の差は広がらなくなり、さらに乾燥が進行し、表面が十分乾燥されると逆に表面と内部の含水率の差は狭まると考えられる。従って、乾燥物の含水率が高い場合、特に含水率が9重量%以上の場合に、好ましい乾燥物保持時間に比べ、さらに乾燥が進む(表面と内部の含水率の差を小さくする)ように、乾燥物保持時間を比較的長くすることが好ましい。これに対して、乾燥物の含水率が低く、特に含水率が9重量%未満の場合には、好ましい乾燥物保持時間が比較的短くても、表面が十分乾燥されて、表面と内部の含水率を十分小さくすることができると考えられる。ただし、表面と内部の含水率の差を減らして乾燥物保持時間を3分未満とするためには、長時間の乾燥が必要となり、乾燥機が大きくなる上に、乾燥物が劣化する。なお、本発明は、上記推測に限定されない。
 この乾燥物を保持するための中間工程の具体的な実施形態は多数あり、(乾燥機の後半を使用した)冷却機による強制冷却、コンベア、気流による輸送、ホッパーでの貯蔵などが挙げられる。冷却すれば粉砕しやすくなるため、好ましくは冷却工程を設ける。このとき乾燥物の保持温度は40~100℃、さらには45~90℃、特に50~80℃が好ましい。これらの温度制御のため、乾燥工程後の乾燥物を保温ないし加熱させて上記温度に制御させる。保温ないし加熱は後述の装置に対し適宜行われる。なお、当該中間工程で言う加熱とは実質的に乾燥物の含水率を変化させない。また、搬送機(コンベアなど)や貯蔵機(ホッパーなど)とは一般に乾燥機とは別の装置に分類される。具体的には含水率の低下が当該加熱の前後で1重量%未満である。当該中間工程で言う加熱とは雰囲気温度を操作することを目的とする加熱であり、仮にこの加熱により乾燥物が昇温したとしても、乾燥工程における含水率の低下、例えば含水率が40重量%から5重量%に低下させることを目的とした加熱とは異なるものである。
 (c)異なる保持時間
 本明細書において、「異なる(乾燥物)保持時間」とは、乾燥工程と粉砕工程との間に分級工程を設け、各分級工程から排出される分級物ごとに(即ち、吸水性樹脂の大きさによって)、保持時間を変更する場合を意図している。このように、保持時間が異なる場合(異なる(乾燥物)保持時間の場合)における、本発明の必須の構成要件である「(b)乾燥工程の終了時点から上記粉砕工程の開始時点までの乾燥物保持時間を3分以上とする」とは、各分級工程から排出される分級物ごとの乾燥物保持時間のうち、最も短い乾燥物保持時間が3分間以上であることを意味する。異なる乾燥物保持時間あるいは保持方法の好適なフロー図は図12~図14に代表されるが、これらに限定されない。
 この工程において、乾燥物を目開きが2~10mmの篩で分級し、粗大な粒子(凝集物)については再乾燥してもよく、また凝集を崩す操作(粗解砕)を行ってもよい。なお、粗解砕の方法は後述の、乾燥後の(e)粗解砕工程(下記参照)と同様である。上記分級によって乾燥物は粒子径ごとに、2つ以上に分割されるが、設備と効果のバランスから、篩の目開きの種類は3種類以下、乾燥物が分割される数は4つ以下が好ましい。また、粗大な粒子(例えば、標準篩で目開きが好ましくは850μm~10mm、より好ましくは2~10mmのon品)については、水分の均一化に時間がかかるので、小さな粒子(例えば、上記標準篩の通過品)に比べてより長時間(好ましくは1.01~10倍、さらには1.03~5倍)の乾燥物保持時間を持つことが望ましい。また、粒子の表面積と乾燥効率から、かかる大きな粒子は小さな粒子に比べて含水率が高いこと(例えば、含水率で1.01~5倍、さらには1.03~2倍)があり、含水率の異なる乾燥物粒子を異なる乾燥物保持時間または乾燥物保持方法に適用できる。
 すなわち、本発明で好ましくは、分級された乾燥物の粒子径ごとに、異なる乾燥物保持時間または異なる乾燥物保持方法を用いる。異なる粒子径(標準篩で規定)は例えば850μm~10mm、さらに2~10mmで適宜決定される。
 異なる乾燥物保持時間は粉砕に適した範囲で適宜決定されるが、例えば、分級される粒子径において、粒子径の大きい粒子に対して、より長時間あるいはより多数の後述の工程(d)~(h)などを含むことで、含まない場合(や粒子径の小さい粒子)に比べて、好ましくは乾燥物保持時間が1.01~10倍、さらには1.03~5倍延長される。また、異なる保持方法としては、粒子径や含水率の大きい粒子に対して、付加的に後述の輸送、解砕、貯蔵などを反復ないし追加する方法を採ればよい。
 以下、乾燥物保持工程に含まれる好ましい詳細な工程を説明する。
 (d)冷却工程
 本発明における乾燥物は好ましくは冷却工程で強制的に冷却される。すなわち、乾燥工程後に乾燥物を冷却する工程を行うことが好ましい。ここで、強制冷却温度としては、本発明を達成する上では、乾燥物の温度が好ましくは95℃以下、より好ましくは90~30℃、より好ましくは85~35℃、さらにより好ましくは80~40℃、特に好ましくは70~45℃の範囲に強制冷却される。
 本発明でいう強制冷却とは外的且つ意図的な乾燥重合体の冷却操作を行う工程であり、本発明で強制冷却する方法としては、乾燥工程と粉砕工程(好ましくは後述のロール型粉砕機による粉砕工程)の間に意図的に冷却工程を設けることで所定温度まで乾燥物を冷却すればよく、乾燥物の温度(通常、ほぼ乾燥温度)以下の冷媒(例えば、風)と接触されて行われる。例えば、冷却効率や乾燥物の流動性から、本発明では乾燥温度にもよるが、90℃以下の温風または冷風、好ましくは、常温または常温以下に冷却された冷風を通気する方法が用いられる。あるいは、上記乾燥物を、下記(f)輸送工程または(h)貯蔵工程を、上記強制冷却としてもよい。なお、例えば、180℃乾燥後に冷却に90℃に温風(熱風)を用いる場合、乾燥温度以下、特に95℃以下に強制冷却されるという意味で本発明でいう冷却工程に該当する。
 乾燥物の温度が95℃を超えると、乾燥機の金網やパンチングメタルからの剥離性が困難で乾燥効率が低く、また、乾燥物の粉砕や分級の効率が大きく低下して、結果的に粒子径分布の狭い優れた粒子状吸水性樹脂を得る事が困難である。また、冷却温度が低く過ぎると、冷却に大きな時間や設備が必要であるのみならず、意外なことに、粉砕時や分級時に粒子状吸水性樹脂の凝集物が生成するので好ましくない。さらに、過度の冷却は、後述の強制加熱や表面架橋にも、物性やエネルギー面で不利なこともある。
 (e)粗解砕工程
 本発明では、乾燥工程の後に凝集した乾燥物の粗解砕工程を任意にもつ。すなわち、乾燥工程後に凝集した乾燥物の粗解砕工程を行うことができる。ここで、粗解砕とは得られた乾燥物が凝集物(ブロック状物)である場合、流動性ある粒子状にする機械的操作であり、さらに、粗解砕とは凝集物を構成する乾燥粒子の物理的破壊や粒子径の有意な減少にまでは至らず、数mm~数10mm程度にまで軽く凝集を解す機械的操作である。特に乾燥物が3mm以上の乾燥粒子ないし凝集物を含む場合、特に5重量%以上含む場合に好適に適用される。
 なお、後述の粉砕と粗解砕との違いは、前者が粒子の粉砕が主であるのに対して、後者は粒子間(乾燥粒子)の凝集を解砕することが主になる。一般的には粗解砕で粒子径850μm以上が主成分(50重量%超)、好ましくは80重量%以上であり、また、粉砕工程では850μm未満が主成分、好ましくは70重量%、特に80重量%以上とされる。
 積層されて乾燥された場合には粒子状含水ゲルは、乾燥後、粒子間の凝集で流動性を失ったブロック状乾燥物となり易いことも併記しておく。かかるブロック状物は乾燥粒子の凝集体であるため、連続した空隙と、ブロック内部への通気性は有しているが、凝集の為に流動性がないため、粗解砕工程を必要とする。
 本発明で粗解砕方法としては、乾燥物やその凝集物(ブロック状物)を流動性ある粒子状、好ましくは平均粒子径2mm以下の粒子状にできれば、特に限定されるものではなく、例えば、ハンマー式粉砕機、ジェット気流式粉砕機等を用いて粉砕する方法、従来公知の種々の粉砕ないし解砕方法の1種または2種以上を用いることができる。また、乾燥時の凝集が弱い場合、特に粉砕機を用いなくても、乾燥重合体に振動を与えて分級することで重合体の凝集をほぐして粗解砕工程としてもよい。これら粗解砕装置は後述のロール型粉砕機と異なる粉砕機が好適に用いられる。
 (f)輸送工程
 本発明では、乾燥物保持時間として、上記乾燥した粒子状吸水性樹脂を輸送機で輸送する輸送工程を必須に含む。ここで、輸送方法としては、特に制限されないが、輸送工程は、空気輸送またはコンベアで行われることが好ましい。輸送工程では輸送の安定性から減圧または加圧で輸送され、前記温度を維持するように、好ましくは輸送装置が所定温度で保温または加温される。加圧で空気輸送する場合、その圧力は好ましくは0.05~7MPa、より好ましくは0.1~3MPaの範囲である。
 上記輸送工程で用いられる輸送機としては、下記に限定されるものではないが、例えば、高濃度空気輸送や低濃度空気輸送などの各種空気輸送、ベルトコンベア、スクリューコンベア、チェーンコンベア、振動コンベア、バケットコンベア、フライトコンベアなどの各種コンベア等が好ましく挙げられる。これらの内壁面を外側から加熱する手段および/または保温する手段を備えていてもよい。
 乾燥物保持時間として輸送工程に好適に使用できる空気輸送方法は、米国特許第6817557号、米国特許出願公開第2007/0225160号、国際公開第2007/104657号、同第2007/104673号、同第2007/104676号等に例示されている。空気輸送は一段空気輸送でもよく、連結された多段空気輸送でもよく、また必要により2次空気を使用してスラストフローとしてもよい。その他、空気輸送方法は、WO2009/119758(PCT/JP2009/56161号)、WO2009/119756(PCT/JP2009/56159号)、WO2009/119754(PCT/JP2009/56157号)にも例示され、かかる手法も好適に使用される。
 輸送時、特に空気輸送時に、露点-100℃~-5℃の気体が使用されることが好ましい。この輸送方法では、粒子状吸水性樹脂の優れた物性が安定に保持されかつ閉塞現象が抑制されうるという観点から、一次空気及び二次空気として、乾燥された空気が用いられるのが好ましい。この空気の露点は-30℃以下であるのが好ましく、-35℃以下であるのがより好ましく、-40℃以下であるのが特に好ましい。乾燥された空気を用いる以外に、加熱された空気が用いられてもよい。加熱方法としては、特に限定されないが、空気が熱源を用いて直接加熱されてもよいし、上記輸送部や配管が加熱されることにより、通される空気が間接的に加熱されてもよい。この加熱された空気の温度は、30℃以上であるのが好ましく、50℃以上であるのがより好ましく、70℃以上であるのがさらに好ましい。
 露点を制御する方法としては、気体、好ましくは空気を適宜乾燥すればよく、メンブレンドライヤーを使用する方法、冷却吸着式ドライヤーを使用する方法、ダイヤフラムドライヤーを使用する方法やそれらを併用する方法が挙げられる。吸着式ドライヤーを使用する場合、加熱再生式でもよく、非加熱再生式でもよく、非再生式でもよい。露点の範囲はコストパーフォマンスを考え、-70℃、さらには-50℃程度で十分でもある。
 (g)分級工程
 乾燥後の凝集物が粒子状にされたのち、粉砕前に分級してもよい(図10中の「分級工程-1」に相当)。すなわち、粉砕工程の前に、更に乾燥物の分級工程を行うことが好ましい。粉砕前の分級によって目的粒度を満たす粒子はあえて粉砕せずとも、次の工程(例;表面架橋工程など)に送付することで、粉砕の負荷や粉砕に伴う微粉の発生を低減することができる。
 ここで、必要により分級する場合、例えば、目的の粒子径(例;850μm通過物)の粒子を分級により取得して、目的外の粒子径(例;850μm以上)の粒子のみを粉砕すればよく、また、必要により上記目的外の粒子径(粒度)の中でもさらに目開きが2~10mmの篩で分けて、粒度ごとに本願の必須とする乾燥物保持時間を変化させてもよい。一般に粒子径が大きい乾燥物は含水率が高くなりやすく、乾燥物保持時間を長くとることが好ましい。
 必要により行われる分級には、後述の各種分級装置が用いられる。その際に、分級工程は減圧さらには除電される。
 (h)貯蔵工程
 本発明では、乾燥物は一定時間貯蔵される。貯蔵工程での滞留時間は輸送工程で滞留時間と合せて、本願の乾燥物保持時間3分以上を満たせばよく、よって、生産量などによって、輸送工程での滞留時間が一定以上ある場合、貯蔵工程の滞留時間をゼロとしてもよいが、好ましくは1秒以上、さらには5秒以上、特に1分以上、貯蔵される。なお、貯蔵工程の滞留時間の上限は、特に限定されないが、生産性、物性などを考慮すると、好ましくは300分以下、より好ましくは60分以下である。また、かかる貯蔵工程を持つことで乾燥物保持時間が一定以上に制御でき、また連続生産や連続輸送が安定化できる。また、輸送工程の前段および/または後段に貯蔵工程(特にホッパー)を設けることが好ましく、特に空気輸送工程を貯蔵工程(特にホッパー)で連結されることが好ましい。空気輸送工程でホッパーを使用する形態は、例えば、米国特許出願公開第2007/0225160号に開示される。
 なお、従来技術として、吸水性樹脂のホッパーや貯蔵方法は、米国特許第6716894号やその図3、米国特許第6817557号やその図1等に記載されている。しかし、かかる特許は本願課題や効果や、さらには、乾燥後の保持時間(やその3分以上の臨界的な意味)をなんら示唆しない。すなわち、乾燥後の保持時間は貯蔵工程や輸送工程の時間などで決まるものであるが、かかる特許やその図は貯蔵時間や輸送時間をなんら記載しない。さらに、本願出願日(2009年3月31日)時点で未公開である出願人自身の先願特許PCT出願;PCT/JP2009/054903もホッパーを開示するが、同様に本願を示唆しない。
 本発明で貯蔵にはホッパーが好適に使用される。ホッパーとは粉粒体を一時的または長期的に貯蔵保管しておく装置であり、特定形状であればサイロ状(縦長形状)のものも含む。本発明で使用される特定の形状を有するホッパーについて、(図14)および以下に記載する。なお、図14において、1は、外枠を;2は、ジャケットを;3は、スチームトレスを;4は、投入口を;およびを;5は、ロータリーバルブを、それぞれ、示す。
 ホッパーの形状としては、粉体、特に吸水性樹脂の搬送性、移送性の観点から逆角錐台形状または逆円錐台形状が好ましく本発明では使用される。またその材質は特に限定されないが、ステンレス製が好ましく使用される。また、ホッパーの最大直径と高さの比は1/10~10/1、さらには1/3~3/1、特に1/2~2/1の範囲である。なお、ホッパーが円筒でない場合、その最大断面積に相当する円の直径に換算して規定される。逆角錐台または逆円錐台の形状として、逆角(ないし逆円)と錐台の比率としては、錐台の方の高さが小さい方、ホッパー断面の形状において、ホームベース形状であり、その三角部分の断面積が主であること、すなわち、粉体の主成分、好ましくは50重量%以上、さらには80重量%以上はホッパーの角錐ないし円錐の部分に貯蔵されてなる。
 また、コーン部傾斜角が45度以上かつ絞り率が0.3~0.8という特定の形状を有するホッパーを使用するのが好ましく、コーン部傾斜の上限は90度以下、さらには90度未満が好ましい。コーン部傾斜角とは、設置されたホッパーの水平面に対する側壁面の傾斜角のことであり、ホッパーのコーン部傾斜角は45度以上、好ましくは50度以上、より好ましくは60~90度、特に好ましくは65~85度、最も好ましくは70~85度とされる。
 なお、側壁面が直線でない場合、その側壁面全体から求められる角度の平均値にて規定される。
 絞り率とは、ホッパー上面の開口部の口径(ホッパー上部の最大口径部(R1))とホッパー底面の開口部(ホッパー排出部の口径(R2))で規定されるR2/R1×100の値であり、ホッパーの絞り率は30~80%であり、好ましくは40~80%、特に好ましくは40~70%、45~65%とされる。なお、口径が円でない場合、例えば、楕円や多角形の場合、その断面積に相当する円に換算して規定される。
 コーン部傾斜角が90度を超える場合や絞り率が80%を超える場合または、コーン部傾斜角が45度未満の場合や、絞り率が30%未満の場合は、吸水性樹脂の物性およびその安定性が著しく低下する。
 また、ホッパー内での吸水性樹脂の充填率(平均)は0体積%でもよいが、0体積%を超えて90体積%以下であり好ましくは10~80体積%、さらに好ましくは30~80体積%、特に好ましくは40~80体積%とされる。充填率とはホッパー内容積に対する充填される吸水性樹脂の体積(%)で規定され、前記範囲に制御することで吸水性樹脂の移送性が良好となる。なお、前記範囲外の充填率では、例えば90体積%を超える場合は吸水性樹脂の破壊が発生したりするため好ましくない。
 また、ホッパーの内容積としては好ましくは1~20m、より好ましくは2~10mとされる。
 (i)上記装置の温度
 本発明では、乾燥工程後の乾燥物が、(該装置が)保温または加熱しながら、輸送または貯蔵されることが好ましい。特に、輸送さらには貯蔵工程では、輸送機の内壁面を外側から加熱した状態および/または保温した状態にすることが好ましい。ここで、加熱や保温とは装置内面への外部加熱や断熱を指すものであり、輸送や貯蔵される吸水性樹脂の温度(例;70℃)が装置の温度(例;60℃)より低い場合、ある意味では吸水性樹脂の(60℃への)冷却ではあるが、本発明では該装置が保温ないし加熱されている範囲では、吸水性樹脂の温度変化に関わらず、保温または加熱とする。なお、前記(h)で説明したように、米国特許第6716894号やその図2は加熱ないし保温した装置を開示するが、該特許は前記したように本発明をなんら示唆しない。
 内壁面温度は、30~150℃、30~100℃、35~100℃、40~90℃、45~85℃、50~80℃の順で好ましい。内壁面温度が30℃未満では、本発明の効果が得られず、一方、150℃を越える温度にしても150℃以下で得られる効果と変わらず、そのような高温にすることは経済的に不利である。内壁面温度は、粒子状吸水性樹脂の温度に対し、好ましくは20℃は低くならないように、さらに好ましくは10℃は低くならないように調整される。粒子状吸水性樹脂の温度は、工業的規模で粒子状吸水性樹脂を取り扱う際に、その流動性を確保するために、室温以上の温度、たとえば、40~100℃程度、より好ましくは45~85℃、特に好ましくは50~80℃程度に調整される場合がある。この粒子状吸水性樹脂の温度に対し内壁面温度が20℃よりも低い場合には、加温された状態にある粒子状吸水性樹脂が輸送機の内壁面で冷却されるため、凝集物が内壁面に付着し、トラブルの原因となることがある。
 (j)減圧
 本発明では、乾燥物の流動性やAnti-Cakingのため、貯蔵工程及び輸送工程の少なくとも一部を減圧下とすることが好ましい。より好ましくは、上記乾燥工程の終了時点から下記粉砕工程の開始時点までの所要時間の50%以上が減圧状態とされる。即ち、好ましくは、上記乾燥工程の終了時点から下記粉砕工程の開始時点までに要する処理時間(乾燥物保持時間)のうち、減圧状態とされている時間が50%以上とされる。なお、後述の空気輸送を用いる場合、減圧または加圧で空気輸送される。空気輸送の減圧および加圧は上記範囲である。
 「減圧状態」とは、大気圧よりも気圧が低い状態を意味する。また「大気圧に対する減圧度」とは、大気圧との圧力差を意味し、気圧が大気圧よりも低い場合に正(プラス)の値として表現される。例えば、大気圧が標準大気圧(101.3kPa)である場合、「減圧度が10kPa」とは、気圧が91.3kPaであることを意味する。本願において、「大気圧に対する減圧度」は、単に「減圧度」とも称される。
 減圧度の下限値は、0kPaを超えるのが好ましく、0.2kPa以上がより好ましく、0.3kPa以上がより好ましい。系内における粉の吊り上がりを抑制する観点、及び排気装置に対する過度のコストを抑制する観点から、減圧度の上限値は、10kPa以下が好ましく、8kPa以下がより好ましく、5kPa以下が更に好ましい。減圧度の好ましい数値範囲は、上記下限値と上記上限値との間で任意に選択できる。
 (k)前記特許文献1~26との相違
 従来、特許文献10(米国特許第6817557号)にあるように乾燥後はなるべく短時間に粉砕(10分以内、特に2分以内)されており、貯蔵工程、粉砕前(ロールミル粉砕前)の分級工程、乾燥後の減圧、粒度の上下ごとに異なる保持時間または保持方法などを開示しない。さらに、特許文献10を含め、前記特許文献1~26などには、乾燥物保持時間の粒度に与える重要性になんら着目せず、前記特許文献では乾燥物保持時間を貯蔵工程および輸送工程で調整する構成や、乾燥物保持工程を減圧下にする構成、粉砕工程の前にもさらに乾燥物の分級工程、乾燥物の粒度の上下ごとに、または含水率後に、異なる乾燥物保持時間または異なる乾燥物保持方法を用いる構成を開示しない。
 (2-6)粉砕工程
 乾燥物は、粒子径制御のため、粉砕、および分級される。ここで、粉砕前の乾燥物の50重量%以上が粒子径850μm以上の粒子であることが好ましい。また、粉砕前の乾燥物の質量平均粒子径(D50)は、特に制限されないが、好ましくは4000~600μm、より好ましくは3000~700μmであり、粉砕後に下記粒子径とされる。これにより、得られる粒子状吸水性樹脂の粒子径を、効率よく、容易に制御できる。これらの方法については、例えば、米国特許出願公開第2006/204755号に記載されているが、本発明においては(2-5)乾燥物保持時間を加えることにより、種々の粉砕方法を用いることができ、限定されるものではない。
 これらの中でも、粒子径制御の面から、複数の回転するロールにより粒子に圧縮力またはせん断力を与えて粉砕する装置、例えばロールミルまたはロールグラニュレター(例えばマツボー製)から選ばれるロール型粉砕機が好適に使用でき、1段好ましくは多段、さらには2~5段のロールミルまたはロールグラニュレターで粉砕され、この際にも粉砕機は前記の保温または加熱されること、さらには減圧とされることが好ましい。また、前述の粗解砕にはロールミルまたはロールグラニュレター以外の装置もまた好適に使用され、例えば、低速または高速で回転するピンミルが使用される。好ましくは、粉砕工程は上記減圧状態とされる。上記したように、粉砕機は、保温または加熱されることが好ましいが、この際の粉砕温度は、特に制限されないが、粉砕工程に供される乾燥物の温度を、好ましくは40~100℃、より好ましくは50~90℃となるように調節する。
 このようにして粉砕された粉砕物の大きさは、特に制限されず、所望の用途に応じて適宜選択される。好ましくは、粉砕物の60重量%以上、より好ましくは70~99重量%が、さらにより好ましくは75~97重量%、さらに好ましくは80~95重量%が粒子径850μm未満の粒子である。また、粉砕物の、好ましくは75~99重量%、より好ましくは79~97重量%、さらにより好ましくは80~95重量%、特に好ましくは83~90重量%が150μm以上850μm未満の粒子である。粉砕物の重量平均粒子径(D50)は、下記に制限されないが、好ましくは200~700μm、より好ましくは300~600μmに調整される。
 (2-7)分級工程(粉砕後の分級)
 (a)目的の粒度
 粉砕により得られた粒子状吸水性樹脂は、分級工程で、質量平均粒子径(D50)としては200~600μm、好ましくは200~550μm、より好ましくは250~500μm、特に好ましくは350~450μmに調整され、衛材向けであれば、その後に通常は表面架橋が施されることが好ましい。分級工程により得られる吸水性樹脂は、衛材向けであれば、好ましくは150μm以上850μm未満の粒子が80~99重量%、さらには90~99重量%を占めるように粉砕される。150μm通過物の微粉が多いと物性低下が起り、微粉を1%未満に低減させるには粉砕効率が低下することもある。微粉は適宜除去されて、後述のようにリサイクルされる。また、150μm未満の粒子が少ないほどよく、通常0~5重量%、好ましくは0~3重量%、特に好ましくは0~1重量%に調整される。さらに、850μm以上の粒子が少ないほどよく、通常0~20重量%、好ましくは0~5重量%、特に好ましくは0~1重量%に調整される。粉砕工程で発生し、分級工程で分離された微粉は必要により、リサイクルされる。また、目的外の大きい粒子(例えば粒子径が850μm以上)は再び粉砕工程に戻しても良いが、粉砕機の負荷を上げないために、その割合は粉砕量の20重量%以下、好ましくは10重量%以下である。上記表面架橋前の粒子状吸水性樹脂の粒度は好ましくは表面架橋後さらには最終製品にも適用され、表面架橋後に再度分級してもよい。また、上記粒度分布の対数標準偏差(σζ)が好ましくは0.2~0.6、より好ましくは0.2~0.5、さらに好ましくは0.2~0.4、さらにより好ましくは0.27~0.4、最も好ましくは0.3~0.4とされる。これらの測定方法については、標準篩を用いて、例えば、国際公開第2004/069915号やEDANA-ERT420.2-02に記載されている。
 (b)分級方法
 吸水性樹脂の分級方法は、例えば前記の特許文献11~16に例示され、本発明でも好適に使用できる。
 本発明に用いられる分級装置は、ふるい網面を有するものであれば特に限定されず、好ましくは、平面分級方法、特に好ましくはタンブル形篩分け装置である。この篩分け装置は、分級をサポートするために典型的には振動させる。これは、好ましくは、分級すべき製品がスパイラル状に篩い網面上に導かれる程度におこなう。これらの強制的なバイブレーションは、典型的には0.7~40mm、好ましくは1.5~25mmの振れ幅で、かつ1~100Hz、好ましくは5~10Hzの振動数を有する。
 (c)除電分級
 分級工程において、好ましくは、除電される。除電は分級装置、吸水性樹脂、の少なくともひとつに対して行われるが、これら2つは分級工程で互いに接するため、いずれかを除電すればよく、好ましくは篩分け装置自体が除電される。
 除電方法としては、たとえば、下記(A)~(C)の方法が適用できるが、これらに特に限定されない。かかる除電の際に取り出された漏洩電流は、好ましくは下記接地抵抗値で示される接地(アース)を通じて大地に流される。
 (A)除電ブラシ:静電気が発生した篩面から除電
 (B)イオン発生ブラシ:高電圧を印加することでイオンを発生させ除電
 (C)接地(アース):回転物・回転軸・回転体・装置に発生した静電気を除電
 上記(C)接地を使用する場合、装置が設置される建屋、あるいは架台を下記に示される接地抵抗値の接地に接続し、装置を建屋あるいは架台に電気的に接続し、装置に帯電物に接触させて、溜った静電気を漏洩電流として取り出し、除電する方法である。この方法は簡易であり、装置全体が除電装置として働くため効果が高く、吸水性樹脂に好ましい方法の一つである。
 接地抵抗とは接地のために土壌に埋設したアース電極から大地に流れる電流に対する抵抗値のことを示す。測定方法としては、市販されている接地抵抗計を用いて測定すればよい。接地抵抗値の好ましい範囲としては、100Ω以下、より好ましくは10Ω以下、さらに5Ω以下である。
 (d)減圧分級
 上記篩分け操作は、表面架橋後の物性を向上させるため、吸水性樹脂を周囲圧に対して減少させた圧力で、好ましくは上記減圧状態で行われる。
 (e)気流
 好ましくは吸水性樹脂上に、分級中に、ガス流、特に好ましくは空気を通過させる。特に好ましくは、ガス流を、篩分け装置に装入する前に、典型的には少なくとも40℃、好ましくは少なくとも50℃、さらに好ましくは少なくとも60℃、殊に好ましくは少なくとも65℃、特に好ましくは少なくとも70℃に加熱する。ガス流の温度は、通常は120℃を下回り、好ましくは110℃を下回り、さらに好ましくは100℃を下回り、殊に好ましくは90℃を下回り、特に好ましくは80℃を下回る。
 また、前記乾燥物の粗砕工程、分級工程、貯蔵工程や粉砕工程においても同様に、吸水性樹脂上に上記ガス流を通過させることも好ましい。
 (2-8)微粉リサイクル工程
 粉砕工程または分級工程で発生する、粒子径が150μm未満の粒子を主成分(特に70重量%以上、さらには90重量%以上)に含む微粉は、吸水性樹脂の物性を低下させ、また、安全衛生上問題となるため、分級して取り除かれることが好ましい。
 この微粉は適宜回収され、再度粒状に成形、または単量体水溶液や重合ゲルに回収(リサイクル)される。微粉のリサイクル方法は、重合工程、ゲル粉砕工程、乾燥工程など、吸水性樹脂の製造工程に微粉を添加すればよく、前記特許文献22~26などに示されている。
 リサイクルする製造工程は微粉を分級した同じ製造ラインでもよく、他の製造ラインでもよい。微粉のリサイクル量は例えば製造量の1~30重量%、さらには5~25重量%、特に8~20重量%程度で適宜決定される。
 (2-9)表面架橋工程
 本発明において、上記の(2-7)分級工程で得られた吸水性樹脂は、従来から知られている表面架橋工程を経て、より衛生材料向けに好適な吸水性樹脂とすることができる。表面架橋とは、吸水性樹脂の表面層(表面近傍、吸水性樹脂表面から通常は数10μm前後)にさらに架橋密度の高い部分を設けることであり、表面でのラジカル架橋や表面重合、表面架橋剤との架橋反応等により形成することができる。
 本発明に用いることができる表面架橋剤としては、種々の有機架橋剤または無機架橋剤を例示することができるが、物性や取り扱い性の観点から、カルボキシル基と反応し得る架橋剤が好ましい。例えば、多価アルコール化合物、エポキシ化合物、多価アミン化合物またはそのハロエポキシ化合物との縮合物、オキサゾリン化合物、モノ,ジまたはポリオキサゾリジノン化合物、多価金属塩、アルキレンカーボネート化合物等が挙げられる。
 より具体的には、米国特許第6228930号、同第6071976号、同第6254990号等に例示されている化合物を挙げることができる。例えば、モノ,ジ,トリ,テトラまたはポリエチレングリコール、モノプロピレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,3,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール等の多価アルコール化合物;エチレングリコールジグリシジルエーテル、グリシドール等のエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン、ポリアミドポリアミン等の多価アミン化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;上記多価アミン化合物と上記ハロエポキシ化合物との縮合物;2-オキサゾリジノン等のオキサゾリジノン化合物;エチレンカーボネート等のアルキレンカーボネート化合物;オキセタン化合物;2-イミダゾリジノンのような環状尿素化合物等が挙げられるが、特に限定されるものではない。
 表面架橋剤の使用量は、用いる化合物やそれらの組み合わせ等にもよるが、吸水性樹脂粒子100重量部(質量部)に対して、0.001重量部~10重量部の範囲内が好ましく、0.01重量部~5重量部の範囲内がより好ましい。本発明において、表面架橋剤とともに水が使用され得る。この際、使用される水の量は、吸水性樹脂粒子100重量部に対し、好ましくは0.5~20重量部、より好ましくは0.5~10重量部の範囲である。また、本発明において、水以外に、親水性有機溶媒を用いることも可能である。この際使用される親水性有機溶媒の量は、吸水性樹脂粒子100重量部に対して、0~10重量部、好ましくは0~5重量部の範囲である。また、吸水性樹脂粒子への架橋剤溶液の混合に際し、本発明の効果を妨げない範囲、例えば、0~10重量%以下、好ましくは0~5重量%、より好ましくは0~1重量%で、水不溶性微粒子粉体や界面活性剤を共存させてもよい。好ましい界面活性剤やその使用方法は、例えば、米国特許第7381775号に例示されている。
 表面架橋剤を混合後の吸水性樹脂は、好ましくは加熱処理され、必要によりその後に冷却処理される。加熱温度は、70~300℃、好ましくは120~250℃、より好ましくは150~250℃の範囲である。また、加熱時間は、好ましくは1~120分の範囲である。加熱処理は、通常の乾燥機または加熱炉などを用いて行うことができる。
 上記表面架橋剤の添加は、種々の手法で行うことができる。ただし、表面架橋剤を、必要により水および/または親水性有機溶媒と予め混合した後、粒子状吸水性樹脂に噴霧あるいは滴下混合する方法が好ましく、噴霧する方法がより好ましい。
 また、本発明における表面架橋処理の別の形態としては、ラジカル重合性化合物を含む処理液を粒子状吸水性樹脂に添加した後に、活性エネルギーを照射して表面架橋処理する方法が挙げられ、例えば、米国特許第7201941号に記載されている。また、上記処理液に界面活性剤を添加し、活性エネルギーを照射して表面架橋処理することもできる。さらに、本発明における表面架橋処理の別の形態としては、過酸化物ラジカル開始剤を含む水性溶液を粒子状吸水性樹脂に添加した後に、加熱して表面架橋処理する方法が挙げられ、例えば米国特許第4783510号に記載されている。
 (2-10)通液性向上剤
 本発明の吸水性樹脂の製造方法により得られた粒子状吸水性樹脂は、表面架橋と同時または表面架橋前または後に、さらに通液性向上剤が添加されることが好ましい。通液性向上剤を添加することにより、上記粒子状吸水性樹脂は、通液性向上剤層を有することになる。これにより、上記粒子状吸水性樹脂は、さらに、液透過性に優れていることになる。
 通液性向上剤としては、ポリアミン、多価金属塩、水不溶性微粒子が例示でき、特に、硫酸アルミニウム等の多価金属塩、特に水溶性多価金属塩が好ましく、米国特許第7179862号、欧州特許第1165631号、米国特許第7157141号、米国特許第6831142号、米国特許出願公開第2004/176557号、米国特許出願公開第2006/204755号、米国特許出願公開第2006/73969号、米国特許出願公開第2007/106013号に記載の技術が適用される。なお、ポリアミンや水不溶性微粒子は、国際公開第2006/082188号、同第2006/082189号、同第2006/082197号等に例示される。
 通液性向上剤の使用量は、粒子状吸水性樹脂100重量部に対して、0.001重量部~5重量部の範囲内が好ましく、0.01重量部~1重量部の範囲内がより好ましい。通液性向上剤の使用量が、上記範囲内であれば、粒子状吸水性樹脂の加圧下吸収倍率(AAP)、生理食塩水流れ誘導性(SFC)を向上させることができる。
 上記通液性向上剤の添加は、必要により水および/または親水性有機溶媒と予め混合した後、粒子状吸水性樹脂に噴霧あるいは滴下混合する方法が好ましく、噴霧する方法がより好ましい。なお、上記通液性向上剤の添加は、粒子状吸水性樹脂の流動層内での冷却工程で行われることが好ましい。
 (2-11)粒子状吸水性樹脂に添加されるその他の物質
 粒子状吸水性樹脂は、重合中または重合後に、滑剤、キレート剤、消臭剤、抗菌剤、水、界面活性剤、水不溶性微粒子、酸化防止剤、還元剤等が吸水性樹脂に0~30%、さらには0.01~10%程度で添加混合されうる。好適に使用できるキレート剤は米国特許第6599989号、国際公開第2008/090961号等に、界面活性剤や滑剤は米国特許第6107358号、同第7473739号等に例示されている。
 重合後に添加混合する場合には、乾燥前、乾燥後、粉砕前または粉砕後に添加混合することができる。また、粒子状吸水性樹脂は、吸水性樹脂の特性を阻害しない限り、他の物質を添加してもよい。他の物質を添加する方法としては、特に限定されるものではない。なお、本発明では吸水性樹脂に少量の添加剤(例えば、0を超えて30重量%)を含む場合でも、すなわち、吸水性樹脂組成物である場合でも、吸水性樹脂と総称する。
 〔3〕粒子状吸水性樹脂の物性
 衛生材料、特に紙おむつを目的とする場合、上記重合や表面架橋をもって、下記(3-1)~(3-6)の少なくとも1つ、さらにはAAPを含め2つ以上、特に3つ以上に制御されることが好ましい。下記を満たさない場合、後述の高濃度おむつでは十分な性能を発揮しないことがある。
 (3-1)初期着色
 かかる吸水性樹脂は初期着色に優れ、例えば、ハンターLab表面色系において、L値(Lightness)が好ましくは85以上、より好ましくは87以上、さらに好ましくは89以上であり、b値が-5から10、より好ましくは-5~5、さらに好ましくは-4~4であり、また、a値は-2~2、少なくとも-1~1、好ましくは-0.5~1、最も好ましくは0~1である。YIは10以下、さらには8以下、特に6以下であり、WBは70以上、さらには75以上、特に77以上である。さらに、かかる吸水性樹脂は経時着色にも優れ、長期保存の促進試験(モデル)である高温高湿でも十分な白色度を示す。
 (3-2)AAP(加圧下吸水倍率)
 紙オムツでのモレを防止するため、上記重合を達成手段の一例として、ERTで規定される1.9kPaの加圧下さらには4.8kPaの加圧下での0.9重量%の塩化ナトリウム水溶液に対する吸収倍率(AAP)が好ましくは20[g/g]以上、よりに好ましくは22[g/g]以上、さらに好ましくは24[g/g]以上に制御される。
 (3-3)SFC(生理食塩水流れ誘導性)
 紙オムツでのモレを防止するため、上記重合を達成手段の一例として、加圧下での液の通液特性である0.69%塩化ナトリウム水溶液流れ誘導性SFCは1[×10-7・cm・s・g-1]以上、好ましくは10[×10-7・cm・s・g-1]以上、より好ましくは50[×10-7・cm・s・g-1]以上、さらに好ましくは70[×10-7・cm・s・g-1]以上、特に好ましくは100[×10-7・cm・s・g-1]以上に制御される。
 (3-4)CRC(無加圧下吸水倍率)
 ERTで規定される無加圧下吸収倍率(CRC)は好ましくは10[g/g]以上であり、より好ましくは20[g/g]以上、さらに好ましくは25[g/g]以上、特に好ましくは30[g/g]以上に制御される。CRCは高いほど好ましく上限値は特に限定されないが、他の物性のバランスから、好ましくは50[g/g]以下、より好ましくは45[g/g]以下、さらに好ましくは40[g/g]以下である。
 (3-5)Ext(水可溶分)
 ERTで規定される水可溶分が好ましくは0~35重量%以下、より好ましくは25重量%以下であり、さらに好ましくは15重量%以下、特に好ましくは10重量%以下である。
 (3-6)Residual Monomers(残存モノマー)
 上記重合を達成手段の一例として、ERTで規定される残存モノマー(残存単量体)量は通常500ppm以下、好ましくは0~400ppm、より好ましくは0~300ppm、特に好ましくは0~200ppmを示す。
 (3-6)含水率
 吸水速度や耐衝撃性からも好ましくは所定量(例;含水率0.1~10重量%、さらには1~8重量%)の水が残存するように調整される。含水率は実施例の方法で規定される。
 〔4〕粒子状吸水性樹脂の用途
 本発明の吸水性樹脂の用途は特に限定されにないが、好ましくは、紙オムツ、生理ナプキン、失禁パット等の吸収性物品に使用され得る。特に、従来、原料由来の臭気、着色等が問題になっていた高濃度オムツ(1枚のオムツに多量の吸水性樹脂を使用したもの)に使用され、特に前記吸収性物品中の吸収体上層部に使用された場合に、特に優れた性能が発揮される。
 この吸収性物品中の吸収体における吸水性樹脂の含有量(コア濃度)は、30~100重量%、好ましくは40~100重量%、より好ましくは50~100重量%、さらに好ましくは60~100重量%、特に好ましくは70~100重量%、最も好ましくは75~95重量%で本発明の効果が発揮される。
 [実施例]
 以下に、製造例、実施例、比較例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。異なる実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施例についても、本発明の範囲に含まれる。
 なお、実施例において使用される電気機器は、特に指定がない場合、すべて200Vまたは100Vで使用した。さらに、吸水性樹脂は、特に指定がない場合、25±2℃、相対湿度50%RHの条件下で使用した。下記測定法や製造例、実施例、比較例で例示された試薬や器具は適宜相当品で代替されてよい。
 〔物性の測定方法〕
 <粒子径>
 粒子径の分布および重量平均粒子径(D50)は、以下で説明するように、試料を標準篩にかけることにより測定した。
 粉砕物の粒子径分布の測定方法については、粉砕物10.0gを、室温(20~25℃)、湿度50RH%の条件下で、目開き850μm、710μm、600μm、500μm、425μm、300μm、212μm、150μm、45μmのJIS標準篩(THE IIDA TESTING SIEVE:径8cm)に仕込み、振動分級器(IIDA SIEVE SHAKER、TYPE:ES-65型、SER.No.0501)により、5分間、分級を行った。
 乾燥物の粒子径分布の測定方法については、300gを、室温(20~25℃)、湿度50RH%の条件下で、目開き9.5mm、8.0mm、5.6mm、4.75mm、3.35mm、2.8mm、2.0mm、1.0mm、0.6mmのJIS標準篩(THE IIDA TESTING SIEVE:径20cm)に仕込み、Ro-Tap式篩振とう器を用いて、10分間、分級を行った。
 粒子状含水ゲルの粒子径分布の測定方法については、約300gの粒子状含水ゲルをポリ袋に入れた後、アエロジルR-972(日本アエロジル(株)製、疎水性の微粒子状酸化珪素)1gを加え、振り混ぜて、よく解(ほぐ)した。この粒子状含水重合体を、室温(20~25℃)、湿度50RH%の条件下で、目開き9.5mm、8.0mm、5.6mm、4.75mm、3.35mm、2.8mm、2.0mm、1.0mm、0.85mmのJIS標準篩(THE IIDA TESTING SIEVE:径20cm)に仕込み、Ro-Tap式篩振とう器を用いて、10分間、分級を行った。
 粒子状含水ゲルの粒子径分布の測定方法については、以下の2種類の方法のいずれかを用いた。どちらを用いたかは後述するが、下記の乾式法は含水率が35重量%未満の粒子状含水ゲル、湿式法は含水率が35重量%以上の粒子状含水ゲルを測定する際有効である。
 (1)乾式法(製造例1、2、および4で使用):約300gの粒子状含水ゲルをポリ袋に入れた後、アエロジルR-972(日本アエロジル(株)製、疎水性の微粒子状酸化珪素)1gを加え、振り混ぜて、よく解(ほぐ)した。この粒子状含水重合体を、室温(20~25℃)、湿度50RH%の条件下で、目開き9.5mm、8.0mm、5.6mm、4.75mm、3.35mm、2.8mm、2.0mm、1.0mm、0.85mmのJIS標準篩(THE IIDA TESTING SIEVE:径20cm)に仕込み、Ro-Tap式篩振とう器を用いて、10分間、分級を行った。
 (2)湿式法(製造例3で使用):日本国特許第3175790号に記載の方法に従った。すなわちサンプリングした粒子状含水ゲル状重合体(固形分 α重量%)25gを、20重量%塩化ナトリウム水溶液1200g中に投入し、スターラーチップを300rpmで回転させ、60分間攪拌した。攪拌終了後、篩(目開き9.5mm、8.0mm、4.0mm、2.0mm、0.85mm、0.60mm、0.30mm、0.075mm)に上記分散液を投入し、上から6000gの20重量%塩化ナトリウム水溶液をゆっくり注ぎ、粒子状含水ゲル状重合体を分級した。分級されたそれぞれの篩上の粒子状含水ゲル状重合体を充分に水切り後、秤量した[w(g)]。篩の目開き[γ(mm)]は、下記の数式1に従い粒子状含水ゲル状重合体の固形分100重量%相当の篩の目開きR(100)に換算した。対数確率紙に固形分100重量%相当の、すなわち乾燥換算時の粒子状含水ゲル状重合体の粒度分布をプロットした。
Figure JPOXMLDOC01-appb-M000001
 重量平均粒子径(D50)は、米国特許第5051259号公報等にあるように、一定目開きの標準篩で粒子全体の50重量%に対応する標準篩の粒子径のことである。上記粒子径分布の測定法により得られた、粒子状吸水性樹脂、乾燥物、および粒子状含水ゲルの粒子径分布を用いて、各粒子径の残留百分率(R)を対数確率紙にプロットした。これにより、R=50%に相当する粒子径から重量平均粒子径(D50)を読み取った。
 <含水率>
 粒子状含水ゲルないし粒子状吸水性樹脂1gを6cmのアルミ皿に薄く広げて、180℃の無風オーブンで3時間乾燥することで、その乾燥前の質量と乾燥後の質量を測定し、下記式に代入することにより含水率(%)を測定した。なお、固形分(%)は、(100-含水率)(%)で規定される。
Figure JPOXMLDOC01-appb-M000002
 〔製造例1〕
 48.5重量%水酸化ナトリウム水溶液を9.7g/秒、アクリル酸を12.1g/秒、30重量%ポリエチレングリコールジアクリレート(平均分子量523)水溶液(流量0.0203g/秒)と46重量%ジエチレントリアミン5酢酸3ナトリウム水溶液(流量0.0016g/秒)との混合溶液を0.0219g/秒、および水を5.286g/秒の流量になるように設定して連続的にミキサーに供給することによって、単量体水溶液を調整した。このとき、単量体水溶液の温度は103℃であった。
 この調製された単量体水溶液に、さらに、1.0重量%過硫酸ナトリウム水溶液を流量0.589g/秒で加えた後、約100℃に保温された230cm/分の速度で走行するエンドレスベルトに、単量体水溶液を連続的に供給した。ベルト上に連続的に供給された単量体水溶液は速やかに重合を開始し、帯状の含水ゲルシート(含水ゲル状重合体)が得られた。
 この含水ゲルシートを直径6mmのスクリーンを有するカッターミル(商品名:「RC250」、有限会社吉工製)を用いて連続的に細粒化した。そして、温度が約35℃で約1~3mmの大きさの粒子状含水ゲル(a)を得た。このとき、粒子状含水ゲル(a)の含水率は29重量%であった。また、乾式法により粒子状含水ゲル(a)の粒子径分布を測定したところ、重量平均粒子径(D50)は2.0mm、粒子状含水ゲル(a)の全重量に対して、3mm以上の粒子径をもつゲル粒子は12.2重量%、850μm未満の粒子径をもつゲル粒子は7.3重量%であった。
 〔実施例1〕
 上記製造例1で得られた粒子状含水ゲル(a)を連続的に、予め熱風温度を140℃、風速2.4m/秒に設定しておいたコンダクションフロー乾燥機(流動層乾燥機、商品名:「FCA-2」、株式会社大川原製作所製、流動床長さ850mm/流動床幅240mm=3.54)に投入した。そして、滞留時間が23分になるように乾燥を行い、連続的に乾燥物(b)を得た。この乾燥物(b)の含水率は11.0重量%、重量平均粒子径(D50)は1.7mm、粒子径が850μm未満の粒子は10.3重量%であった。また、この乾燥物(b)は、3mm以上の粒子径をもつゲル粒子を、乾燥物(b)の全重量に対して、2.3重量%含んでいた。
 さらに乾燥機出口で乾燥物(b)を3kg採取し、速やかに空気輸送で電気ヒーターを周囲に巻いたホッパーに投入した。なお、このホッパーは予め内壁温度が80℃に調整された。さらに一定時間をおいて、ホッパー下部のロータリーバルブから乾燥物(b)を抜き出して、ロールミル(商品名:「RM-16」、浅野鉄工所製 1段)に乾燥物(b)を投入し、200kg/hrの処理速度で粉砕を行い、ロールミルによる粉砕物(A1)を得た。なお、ロールのクリアランスは0.3mmに調整しておいた。また、ロールミルでの乾燥物(b)は、投入後速やかに(5秒以内に)粉砕され、ロールミルから取り出された。ここで、乾燥機から乾燥物が出たときを0分として、空気輸送にかかった時間は数秒であり、ホッパー内の滞留時間は5分に調節し、空気輸送及びホッパー内での滞留時間との合計時間を乾燥保持時間として、図2に示す。なお、乾燥機出口と粉砕機入口で、乾燥物の含水率は変化せず、乾燥物の温度はホッパー出口において85℃と測定された。なお、ホッパーの内壁温度は熱電対温度計(K線)を内壁に貼り付けて測定した。また、乾燥物の温度はホッパー出口で乾燥物を採取し、速やかに接触型温度計を差し込んで測定した。
 このようにして得られた粉砕物(A1)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(5分)と、ロールミル粉砕物(A1)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表1および図2に示す。
 〔実施例2~7〕
 実施例1におけるホッパーの滞留時間を、5分間(実施例1)から、10分間(実施例2)、15分間(実施例3)、20分間(実施例4)、25分間(実施例5)、30分間(実施例6)、80分間(実施例7)に変更した以外は、実施例1と同様の操作を行い、ロールミルによる粉砕物(A2~A7)を得た。なお、粉砕に供される乾燥物の温度は76~85℃であった。また、乾燥物の含水率はホッパーの滞留時間で変化しなかった。
 このようにして得られた粉砕物(A2~A7)を、それぞれ、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間と、ロールミル粉砕物(A2~A7)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表1および図2に示す。
 〔比較例1〕
 実施例1で乾燥機出口から出た乾燥物(b)を速やかにロールミルに投入し(乾燥物保持時間<1分)、粉砕を行う以外は、実施例1と同様の操作を行い、ロールミルによる粉砕物(A8)を得た。ロールミルで乾燥物(b)を粉砕する際、ロールミルは粉砕時に異音を発し、粉砕物にはロールでつぶれた扁平形の粒子が多く見られた。
 このようにして得られた粉砕物(A8)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(0分)における、ロールミル粉砕物(A8)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)を下記表1および図2に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表1および図2の結果により、乾燥物保持時間を3分以上とすると、150μm以上850μm未満の粒子径をもつ粒子の割合を有意に増加することができることが分かる。また、乾燥機から乾燥物(b)が出た直後に比べ、5分後、さらには10分後、さらには15分後に粉砕物の粒子径が小さくなり、さらに好ましい粒度範囲(150μm以上850μm未満)の粒子の収率が高くなったことが理解される。
 〔製造例2〕
 48.5重量%水酸化ナトリウム水溶液を9.7g/秒、アクリル酸を12.1g/秒、30重量%ポリエチレングリコールジアクリレート(平均分子量523)水溶液(流量0.0879g/秒)と46重量%ジエチレントリアミン5酢酸3ナトリウム水溶液(流量0.0016g/秒)との混合溶液を0.0895g/秒、および水を5.286g/秒の流量になるように設定して連続的にミキサーに供給することによって、単量体水溶液を調整した。このとき、単量体水溶液の温度は95℃であった。
 この調製された単量体水溶液に、さらに、1.0重量%過硫酸ナトリウム水溶液を流量0.589g/秒で加えた後、約100℃に保温された200cm/分の速度で走行するエンドレスベルトに、単量体水溶液を連続的に供給した。ベルト上に連続的に供給された単量体水溶液は速やかに重合を開始し、帯状の含水ゲルシート(含水ゲル状重合体)が得られた。
 この含水ゲルシートを直径12mmのスクリーンを有するカッターミル(商品名:「RC250」、有限会社吉工製)を用いて連続的に細粒化した。そして、温度が40℃で約1~4mmの大きさの粒子状含水ゲル(c)を得た。このとき粒子状含水ゲル(c)の含水率は30重量%であった。また、乾式法により粒子状含水ゲル(c)の粒子径分布を測定したところ、重量平均粒子径(D50)は2.9mm、粒子状含水ゲル(c)の全重量に対して、3mm以上の粒子径をもつゲル粒子は42.2重量%、850μm未満の粒子径をもつゲル粒子は4.2重量%であった。
 〔実施例8〕
 上記製造例2で得られた粒子状含水ゲル(c)500gを縦27cm、横18cm、20メッシュの金網の上に厚さ約30mmで堆積させ、熱風乾燥機(商品名「通気流回分式乾燥機71-S6型」、(株)佐竹化学機械工業)で180℃、20分間乾燥させた。得られた乾燥物(d)は含水率が6重量%で、ゆるやかに凝集し、ブロック状となっていた。
 この乾燥物(d)を乾燥機から取り出して、発泡スチロール製容器に貯蔵し、乾燥機から取り出してから3分(即ち、乾燥物保持時間=3分)後にロールクリアランスが0.3mmに設定されたロールミル(WML型ロールミル粉砕機、有限会社井ノ口技研製)に1kg/分の速度で、一回通して粉砕した。粉砕に供される乾燥物の温度は95℃であった。
 このようにして得られた粉砕物(B1)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(3分)と、ロールミル粉砕物(B1)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表2および図3に示す。
 〔実施例9~12〕
 実施例8における乾燥物(d)の、乾燥機から取り出してロールミルで粉砕するまでの乾燥物保持時間を、3分(実施例8)から、4分間(実施例9)、5分間(実施例10)、7分間(実施例11)、9分間(実施例12)に変更した以外は、実施例8と同様の操作を行い、ロールミルによる粉砕物(B2~B5)を得た。
 このようにして得られた粉砕物(B2~B5)を、それぞれ、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間と、得られた粉砕物(B2~B5)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表2および図3に示す。なお、粉砕に供される乾燥物の温度は91~95℃の範囲内であった。
 〔比較例2~4〕
 実施例8における乾燥物(d)の、乾燥機から取り出してロールミルで粉砕するまでの時間を、3分(実施例8)から、0.7分間(比較例2)、1分間(比較例3)、2分間(比較例4)に変更した以外は、実施例8と同様の操作を行い、ロールミルによる粉砕物(B6~B8)を得た。ロールミルで乾燥物(d)を粉砕する際、ロールミルから異音が生じた。なお、粉砕に供される乾燥物の温度は94~97℃の範囲内であった。
 このようにして得られた粉砕物(B6~B8)を、それぞれ、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間と、得られた粉砕物(B6~B8)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表2および図3に示す。
Figure JPOXMLDOC01-appb-T000004
 上記表2および図3により、乾燥物保持時間を3分以上とすると、150μm以上850μm未満の粒子径をもつ粒子の割合を有意に増加することができることが分かる。また、乾燥物保持時間を、3分を越えて、4分、5分としてもほとんど150μm以上850μm未満の粒子径をもつ粒子の収率はほとんど変わらないが、これは乾燥物(d)が乾燥物保持時間3分以降、図1のcの状態にあり、これ以上の乾燥物保持時間を必要としないためと考えられる。
 また、実施例1~7の乾燥物(b)と比べ、乾燥物(d)は図1のcの状態になる時間が短くなっているように見えるが、これは以下のように推測される。乾燥物はまず表面の含水率が低下し、続いて乾燥物内部の含水率が低下する。すなわち、初めは乾燥物の表面と内部の含水率の差は広がると考えられるが、乾燥途中で表面と内部の含水率の差は広がらなくなり、表面が十分乾燥されると逆に表面と内部の含水率の差は狭まる。ただし、表面と内部の含水率の差を減らすには不必要に長時間の乾燥が必要となる。乾燥物(d)の含水率は6重量%と低く、乾燥直後の乾燥物の表面は十分乾いており、さらに乾燥物内部の含水率が低下途上であるために、乾燥物(b)と比べ、乾燥物(d)は図1のcの状態になる時間が短くなっていると考えられる。
 〔製造例3〕
 48.5重量%水酸化ナトリウム水溶液を6.50g/秒、アクリル酸を7.68g/秒、1重量%N,N’-メチレンビスアクリルアミド水溶液(流量0.668g/秒)と1重量%ジエチレントリアミン5酢酸3ナトリウム水溶液(流量0.048g/秒)との混合溶液を0.199g/秒、および水を6.27g/秒の流量になるように設定して連続的にミキサーに供給することによって、単量体水溶液を調整した。このとき、単量体水溶液の温度は85℃であった。
 この調製された単量体水溶液に、さらに、1.0重量%過硫酸ナトリウム水溶液を流量1.30g/秒で加えた後、約100℃に保温された200cm/分の速度で走行するエンドレスベルトに、単量体水溶液を連続的に供給した。ベルト上に連続的に供給された単量体水溶液は速やかに重合を開始し、帯状の含水ゲルシート(含水ゲル状重合体)が得られた。
 この含水ゲルシートを直径7.5mmのスクリーンを有するミートチョッパー(平賀工作所製)を用いて連続的に細粒化して、粒子状含水ゲル(e)を得た。このとき粒子状含水ゲル(e)の含水率は50重量%であった。また、湿式法により粒子状含水ゲル(e)の粒子径分布を測定したところ、重量平均粒子径(D50)は1.3mm、粒子状含水ゲル(e)の全重量に対して、3mm以上の粒子径をもつゲル粒子は24.2重量%、850μm未満の粒子径をもつゲル粒子は29.0重量%であった。
 〔実施例13〕
 上記製造例3で得られた粒子状含水ゲル(e)250gを縦20cm、横14cm、20メッシュの金網の上に厚さ約30mmで堆積させ、熱風乾燥機(商品名「通気流回分式乾燥機71-S6型」、(株)佐竹化学機械工業)で180℃、20分間乾燥させた。得られた乾燥物(f)は含水率が6重量%で、ゆるやかに凝集し、ブロック状となっていた。
 この乾燥物(f)を乾燥機から取り出して、発泡スチロール製容器に貯蔵し、乾燥機から取り出してから3分(即ち、乾燥物保持時間=3分)後にロールクリアランスが0.3mmに設定されたロールミル(WML型ロールミル粉砕機、有限会社井ノ口技研製)を1kg/分の速度で、一回通して粉砕した。なお、粉砕に供される乾燥物の温度は91℃であった。
 このようにして得られた粉砕物(C1)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(3分)と、得られたロールミル粉砕物(C1)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表3および図4に示す。
 〔実施例14~18〕
 実施例13における乾燥物(f)の、乾燥機から取り出してロールミルで粉砕するまでの乾燥物保持時間を、3分(実施例13)から、4分間(実施例14)、5分間(実施例15)、6分間(実施例16)、7分間(実施例17)、8分間(実施例18)に変更した以外は、実施例13と同様の操作を行い、ロールミルによる粉砕物(C2~C6)を得た。
 このようにして得られた粉砕物(C2~C6)を、それぞれ、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間と、得られた粉砕物(C2~C6)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表3および図4に示す。なお、粉砕に供される乾燥物の温度は85~90℃の範囲内であった。
 〔比較例5、6〕
 実施例13における乾燥物(f)の、乾燥機から取り出してロールミルで粉砕するまでの時間を、3分(実施例8)から、1.5分間(比較例5)、2.5分間(比較例6)に変更した以外は、実施例13と同様の操作を行い、ロールミルによる粉砕物(C7、CB8)を得た。ロールミルで乾燥物(f)を粉砕する際、ロールミルから異音が生じた。なお、粉砕に供される乾燥物の温度は92~94℃の範囲内であった。
 このようにして得られた粉砕物(C7、C8)を、それぞれ、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間における、得られた粉砕物(C7、C8)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表3および図4に示す。
Figure JPOXMLDOC01-appb-T000005
 上記表3および図4により、乾燥物保持時間を3分以上とすると、150μm以上850μm未満の粒子径をもつ粒子の割合を有意に増加することができることが分かる。また、乾燥物保持時間を、3分を越えて、4分、5分としてもほとんど150μm以上850μm未満の粒子径をもつ粒子の収率はほとんど変わらなかった。これは、乾燥物(f)は乾燥物(d)と同様に含水率が6重量%と低いため、図3のまとめと同様の推測がなされる。
 〔実施例19〕
 上記製造例3で得られた粒子状含水ゲル(e)250gを縦20cm、横14cm、20メッシュの金網の上に厚さ約30mmで堆積させ、熱風乾燥機(商品名「通気流回分式乾燥機71-S6型」、(株)佐竹化学機械工業)で180℃、20分間乾燥させた。得られた乾燥物(g)は含水率が6重量%で、ゆるやかに凝集し、ブロック状となっていた。
 この乾燥物(g)を乾燥機から取り出した後、すぐに凝集を解し、目開きが850μmおよび150μmの篩で2分間、分級を行った。このとき、粒子径が150μm以上850μm未満の粒子は全乾燥物(g)の2.5重量%であり、粒子径が150μm未満の粒子は全乾燥物(g)の0.4重量%であった。また、粒子径が850μm以上の粗大粒子(On品)は、発泡スチロール製容器に移し、1.5分間貯蔵した。乾燥機から取り出してから3.5分(即ち、乾燥物保持時間=3.5分)後に、粒子径が850μm以上の粗大粒子(On品)を、ロールクリアランスが0.3mmに設定されたロールミル(WML型ロールミル粉砕機、有限会社井ノ口技研製)を1kg/分の速度で、一回通して粉砕した。なお、粉砕に供される粗大粒子(On品)の温度は85℃であった。
 このようにして得られた粉砕物(C9)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(3.5分)と、得られたロールミル粉砕物(C9)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表4および図5に示す。
 〔実施例20~22〕
 実施例19における乾燥物(g)の、乾燥機から取り出してロールミルで粉砕するまでの乾燥物保持時間を、3.5分(実施例19)から、4.5分間(実施例20)、5.5分間(実施例21)、6.5分間(実施例22)に変更した以外は、実施例19と同様の操作を行い、ロールミルによる粉砕物(C10~C12)を得た。
 このようにして得られた粉砕物(C10~C12)を、それぞれ、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間と、得られた粉砕物(C10~C12)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表4および図5に示す。なお、粉砕に供される粗大粒子(On品)の温度は83~85℃の範囲内であった。
 〔比較例7〕
 実施例19における乾燥物(g)の、乾燥機から取り出してロールミルで粉砕するまでの時間を、3.5分(実施例19)から、2.0分間(比較例7)に変更した以外は、実施例19と同様の操作を行い、ロールミルによる粉砕物(C13)を得た。ロールミルで乾燥物(g)を粉砕する際、ロールミルから異音が生じた。なお、粉砕に供される粗大粒子(On品)の温度は85℃であった。
 このようにして得られた粉砕物(C13)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(2.0分)と、得られた粉砕物(C13)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表4および図5に示す。
Figure JPOXMLDOC01-appb-T000006
 上記表4および図5により、乾燥物保持時間を3分以上とすると、150μm以上850μm未満の粒子径を持つ粒子の割合を有意に増加することができることが分かる。また、実施例19~22において、粒子径が150μm以上850μm未満の粒子は、粉砕前に分離しておいた粒子径が150μm以上850μm未満の粒子(全乾燥物の2.5重量%)も含めると、粉砕後に全乾燥物の80~82重量%となり、実施例13~18と同程度の収率で目的の粒径の粒子が得られることが分かる。さらに、実施例13~18に比べて、貯蔵工程の前に粉砕が不要な、粒子径が150μm以上850μm未満の粒子と、粒子径が150μm未満の粒子を分離しているため、貯蔵工程で貯蔵される粒子を全乾燥物に対して2.9重量%減らすことになり、貯蔵能力に余裕を持たせることができる。
 〔製造例4〕
 48.5重量%水酸化ナトリウム水溶液を13.3g、アクリル酸を45.5g、工業純水を19.8gの割合で混合した中和液を連続的に作製した。
 上記中和液を78.6g/秒、48.5重量%水酸化ナトリウム水溶液を23.3g/秒、20重量%ポリエチレングリコールジアクリレート(平均分子量523)を0.232g/秒の流量になるように設定して連続的にミキサーに供給することによって、単量体水溶液を調整した。このとき、単量体水溶液の温度は90~95℃であった。
 この調製された単量体水溶液に、さらに、46重量%ジエチレントリアミン5酢酸3ナトリウム水溶液(流量0.0278g/秒)、4.0重量%過硫酸ナトリウム水溶液を流量0.635g/秒で加えた後、7m/分の速度で走行するエンドレスベルトに、単量体水溶液を連続的に供給した。ベルト上に連続的に供給された単量体水溶液は速やかに重合を開始し、帯状の含水ゲルシート(含水ゲル状重合体)が得られた。
 この含水ゲルシートを直径12mmのスクリーンを有するカッターミル(商品名:「RC450」、吉工製)を用いて連続的に細粒化し、約1~4mmの大きさの粒子状含水ゲル(h)を得た。このとき粒子状含水ゲル(h)の含水率は29重量%であった。また、乾式法により粒子状含水ゲル(h)の粒子径分布を測定したところ、重量平均粒子径(D50)は3.0mm、粒子状含水ゲル(h)の全重量に対して、3mm以上の粒子径をもつゲル粒子は49.1重量%、850μm未満の粒子径をもつゲル粒子は3.2重量%であった。
 〔実施例23〕
 以下では、図12に示されるように、冷却室付きの連続通気バンド乾燥機を用いて、粉砕物を得た。すなわち、上記製造例4で得られた粒子状含水ゲル(h)を連続的に、連続通気バンド乾燥機で24分間、通気バンド乾燥した。この乾燥機は同じ大きさの2室で構成されており、1室目はベルトの上方から線速1.0m/s、110~120℃の熱風を、2室目はベルトの上方から線速1.0m/s、160℃の熱風を当てて乾かした。この乾燥により得られた乾燥物(i)を隣接した冷却機により、1.0m/s、常温の風で8分間、流し、乾燥物の温度を87℃にまで冷却した。冷却機出口で採取した乾燥物(i)の含水率は10.0重量%、重量平均粒子径(D50)は2.9mmであった。また、この乾燥物(i)は、3mm以上の粒子径をもつゲル粒子を、乾燥物(i)の全重量に対して、43.2重量%含んでいた。
 この乾燥物(i)をフライトコンベアで輸送し、目開きが6mmの篩に投入して、目開き6mmの篩を通過しない粗大な乾燥物を連続的に分離した。このときの粒子径が6mm以上の粗大な乾燥物は、乾燥物の粒子が凝集したものであり、全乾燥物の18重量%を占めていた。この粗大な乾燥物をすぐにフラッシュミル(不二パウダル社製)で粗解砕を行い、粗解砕物(j)を得た。このときの粗解砕物(j)の重量平均粒子径(D50)は2.3mm、850μm未満の粒子径をもつ粒子は6.4重量%であった。一方、粗大な乾燥物をフラッシュミルで粗解砕している間、目開きが6mmの篩を通過した乾燥物(k)(重量平均粒子径(D50)は2.7mm、850μm未満の粒子径をもつ粒子は3.2重量%)を保温材で保温されたホッパーXの中で貯蔵した。さらに上記粗解砕物(j)と乾燥物(k)を再統合して、内壁を80℃に調節したホッパーYの中で0分間置いた。この乾燥物をロールミル(商品名:RM―16 株式会社浅野鉄工所製)に投入し、250kg/hrの処理速度で粉砕を行った。ロールのクリアランスは0.35mmであった。また、ロールミルでの乾燥物は、80℃で投入後速やかに(5秒以内)粉砕され、ロールミルから取り出され、ロールミル粉砕物(D1)を得た。ここで、接触温度計により測定した粉砕に供される、粗解砕物(j)と目開きが6mm篩を通過した乾燥物(k)の統合品の温度は80℃であった。この実施例における乾燥物保持時間は、乾燥物が冷却機の中にある時間(T1=8分)、分級、粗解砕、装置間の運搬(輸送)に要した時間(T2=3分)、およびホッパーYで保持した時間(T3=0分)の和で表される。
 このようにして得られた粉砕物(D1)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(11分;T1+T2+T3=8分+3分+0分)と、ロールミル粉砕物(D1)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表5および図6に示す。
 〔実施例24~26〕
 実施例23において、ホッパーYで保持した時間(T3)を、0分(実施例23)から、5分間(実施例24)、10分間(実施例25)、15分間(実施例26)に変更した以外は、実施例23と同様に行い、ロールミル粉砕物(D2~D4)を得た。なお、粉砕に供される、粗解砕物(j)と目開きが6mmの篩を通過した乾燥物(k)の統合品の温度は78~81℃であった。
 このようにして得られた粉砕物(D2~D4)を、それぞれ、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間と、ロールミル粉砕物(D2~D4)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表5および図6に示す。
 〔比較例8〕
 実施例23において、乾燥機から出た直後の乾燥物を採取し、速やかにロールミルで粉砕を行う(乾燥物保持時間=0分)以外は、実施例23と同様の操作を行い、ロールミル粉砕物(D5)を得た。ロールミルは粉砕時に異音を発し、粉砕物にはロールでつぶれた扁平形の粒子が多く見られた。なお、粉砕に供される乾燥物の温度は93℃であった。
 このようにして得られた粉砕物(D5)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(0分)における、ロールミル粉砕物(D5)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)を下記表5および図6に示す。
Figure JPOXMLDOC01-appb-T000007
 上記表5および図6により、乾燥物保持時間を3分以上とすると、150μm以上850μm未満の粒子径をもつ粒子の割合を有意に増加することができることが分かる。また、乾燥機から乾燥物が出た直後に比べ、10分後、さらには15分後に粉砕物の粒子径が小さくなり、さらに好ましい粒度範囲(150μm以上850μm未満)の粒子の収率が高くなったことが理解される。
 〔実施例27〕
 以下では、図13に示されるように、粒子径の大きい粒子のみ乾燥物保持時間を増加して、粉砕物を得た。すなわち、上記製造例4で得られた粒子状含水ゲル(h)を連続的に、連続通気バンド乾燥機で24分間、通気バンド乾燥した。この乾燥機は同じ大きさの2室で構成されており、1室目はベルトの上方から線速1.0m/s、110~120℃の熱風を、2室目はベルトの上方から線速1.0m/s、160℃の熱風を当てて乾かした。この乾燥により得られた乾燥物(l)を隣接した冷却機により、1.0m/s、常温の風で8分間、流し、乾燥物の温度を87℃にまで冷却した。冷却機出口で採取した乾燥物(l)の含水率は10.0重量%、重量平均粒子径(D50)は2.9mmであった。また、この乾燥物(l)は、3mm以上の粒子径をもつゲル粒子を、乾燥物(l)の全重量に対して、43.2重量%含んでいた。
 この乾燥物(l)をフライトコンベアで輸送し、目開きが6mmの篩に投入して、目開き6mmの篩を通過しない粗大な乾燥物を連続的に分離した。このときの粒子径が6mm以上の粗大な乾燥物は、乾燥物の粒子が凝集したものであり、全乾燥物の18重量%を占めていた。この粗大な乾燥物をすぐにフラッシュミル(不二パウダル社製)で粗解砕を行い、粗解砕物(m)を得た。
 この粗解砕物(m)を所定時間、内壁を80℃に調節したホッパーZで貯蔵した(T3m=0分)。さらにこの粗解砕物(m)を、分級されたばかり(ホッパーXは通過(滞留時間0分))の粒子径が6mm未満の乾燥物(n)と再統合し(ホッパーYは通過(滞留時間0分))、実施例23のロールミルで粉砕し、ロールミル粉砕物(D6)を得た。なお、粉砕に供される、粗解砕物(m)と目開きが6mmの篩を通過した乾燥物(n)の統合品の温度は77℃であった。この実施例における乾燥物保持時間は、乾燥物が冷却機の中にある時間(T1=8分)、分級、粗解砕、装置間の運搬(輸送)に要した時間(T2=3分)、およびホッパーで保持した時間(T3m=0分)の和で表される。
 このようにして得られた粉砕物(D6)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。粒子径が6mm以上の粒子の乾燥物保持時間(T1+T2+T3m=8分+3分+0分)と、ロールミル粉砕物(D6)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表6および図7に示す。
 〔実施例28~30〕
 実施例27において、ホッパーZで保持した時間(T3m)を、0分(実施例27)から、5分間(実施例28)、10分間(実施例29)、15分間(実施例30)に変更した以外は実施例27と同様に行い、ロールミル粉砕物(D7~D9)を得た。
 このようにして得られた粉砕物(D7~D9)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。粒子径が6mm以上の粒子の乾燥物保持時間(T1+T2+T3m)と、ロールミル粉砕物(D7~D9)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表6および図7に示す。
Figure JPOXMLDOC01-appb-T000008
 上記表6および図7により、全体の18重量%しかない粗大粒子およびその粗解砕物のみ、乾燥物保持時間を長くすれば、好ましい粒度範囲(150μm以上850μm未満)の粒子がロールミル粉砕物中に占める割合(重量%)を有為に上昇させることができることが分かる。
 〔実施例31〕
 以下では、図13に示されるように、粒子径の大きい粒子のみ乾燥物保持時間を増加して、粉砕物を得た。すなわち、上記製造例4で得られた粒子状含水ゲル(h)を連続的に、連続通気バンド乾燥機で24分間、通気バンド乾燥した。この乾燥機は同じ大きさの2室で構成されており、1室目はベルトの上方から線速1.0m/s、110~120℃の熱風を、2室目はベルトの上方から線速1.0m/s、160℃の熱風を当てて乾かした。この乾燥により得られた乾燥物(o)を隣接した冷却機により、1.0m/s、常温の風で8分間、流し、乾燥物の温度を87℃にまで冷却した。冷却機出口で採取した乾燥物(o)の含水率は10.0重量%、重量平均粒子径(D50)は2.9mmであった。また、この乾燥物(o)は、3mm以上の粒子径をもつゲル粒子を、乾燥物(o)の全重量に対して、43.2重量%含んでいた。
 この乾燥物(o)をフライトコンベアで輸送し、目開きが6mm、850μm、150μmの3段篩に投入して、目開き6mmの篩を通過しない粗大な乾燥物(On品)、目開き6mmの篩を通過し目開き850μmの篩を通過しない粒子(1段スルー品)、目開き850μmの篩を通過し目開き150μmの篩を通過しない粒子(2段スルー品)、目開き150μmの篩を通過する微粉とに連続的に分離した。このとき、粒子径が6mm以上の粗大な乾燥物(On品)は全乾燥物の18重量%、目開き850μmの篩を通過し目開き150μmの篩を通過しない粒子(2段スルー品)は全乾燥物の2.1重量%、目開き150μmの篩を通過する微粉は全乾燥物の0.9重量%を占めていた。なお、粗大な乾燥物(On品)はすぐにフラッシュミル(不二パウダル社製)で粗解砕を行い、粗解砕物(p)を得た。このときの粗解砕物(p)の重量平均粒子径(D50)は2.3mm、850μm未満の粒子径をもつ粒子は6.4重量%であった。該粗解砕物(p)は、ホッパーZを通過させた(滞留時間0分)。一方、粗大な乾燥物(On品)をフラッシュミルで粗解砕し、ホッパーZで貯蔵している間、目開き6mmの篩を通過し目開き850μmの篩を通過しない粒子(1段スルー品)(重量平均粒子径(D50)は2.8mm)を保温材で保温されたホッパーXの中で貯蔵した。粗解砕物(p)および目開き6mmの篩を通過し目開き850μmの篩を通過しない粒子(1段スルー品)とを再統合し、この乾燥物をロールミル(商品名:RM―16 株式会社浅野鉄工所製)に投入し、250kg/hrの処理速度で粉砕を行った。ロールのクリアランスは0.35mmであった。また、ロールミルでの乾燥物は、80℃で投入後速やかに(5秒以内)粉砕され、ロールミルから取り出され、ロールミル粉砕物(D10)を得た。ここで、接触温度計により測定した粉砕に供される、粗解砕物(p)と1段スルー品の統合品の温度は80℃であった。
 この実施例における乾燥物保持時間は、乾燥物が冷却機の中にある時間(T1=8分)、分級、粗解砕、装置間の運搬(輸送)に要した時間(T2=3分)、およびホッパーZで保持した時間(T3=0分)の和で表される。
 このようにして得られた粉砕物(D10)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間(11分;T1+T2+T3=8分+3分+0分)と、ロールミル粉砕物(D10)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表7および図8に示す。
 〔実施例32~34〕
 実施例31において、ホッパーZで保持した時間(T3)を、0分(実施例31)から、5分間(実施例32)、10分間(実施例33)、15分間(実施例34)に変更した以外は実施例31と同様に行い、ロールミル粉砕物(D11~D13)を得た。
 このようにして得られた粉砕物(D11~D13)を、目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂の割合(重量%)を測定した。乾燥物保持時間と、ロールミル粉砕物(D11~D13)の150μm以上850μm未満の粒子径をもつ粒子の割合(重量%)との関係を下記表7および図8に示す。
Figure JPOXMLDOC01-appb-T000009
 上記表7および図8により、実施例31~34において粒子径が150μm以上850μm未満の粒子は、粉砕前に分離しておいた粒子径が150μm以上850μm未満の粒子(全乾燥物の2.1重量%)も含めると、粉砕後に全乾燥物の82~89重量%となり、実施例23~26と同程度の収率で目的の粒子径の粒子が得られることが分かる。また、実施例23~26に比べて、貯蔵工程の前に粉砕が不要な、粒子径が150μm以上850μm未満の粒子と、粒子径が150μm未満の粒子を分けているため、貯蔵工程で貯蔵される粒子を全乾燥物に対して3.0重量%減らすことになり、貯蔵能力に余裕を持たせることができる。
 〔実施例35〕
 実施例12(乾燥物保持時間9分)で得られた粉砕物(B5)について、以下のようにしてさらに分級と表面架橋を行った。すなわち、実施例12で得られた粉砕物(B5)を目開き850μmと150μmの篩で分級し、粒子径が150μm以上850μm未満の粒子状吸水性樹脂(E1)を得た。この粒子状吸水性樹脂(E1)100重量部に対し、エチレンカーボネート0.9重量部、水2.0重量部からなる表面架橋剤組成液を加えて混合し、さらに205℃のオイルバスで加熱しながらモルタルミキサー(西日本試験機社製)で20分間混合して、表面架橋された粒子状吸水性樹脂(F1)を得た。このようにして得られた表面架橋された粒子状吸水性樹脂(F1)について、無加圧下吸収倍率(CRC)、加圧下吸収倍率(AAP)および通液性(SFC)を評価した。その結果、表面架橋された粒子状吸水性樹脂(F1)の物性は、無加圧下吸収倍率(CRC)が27.0[g/g]、加圧下吸収倍率(AAP)が21.9[g/g]、通液性(SFC)が77[×10-7・cm・s・g-1]であった。結果を下記表8に要約する。
 〔比較例9〕
 実施例35において、粉砕物(B5)の代わりに、比較例2(乾燥物保持時間0.7分)で得られた粉砕物(B6)を使用する以外は、実施例35と同様にして、粉砕物(B6)についてさらに分級と表面架橋を行い、表面架橋された粒子状吸水性樹脂(F2)を得た。このようにして得られた表面架橋された粒子状吸水性樹脂(F2)について、無加圧下吸収倍率(CRC)、加圧下吸収倍率(AAP)および通液性(SFC)を評価した。その結果、本比較例で得られた表面架橋された粒子状吸水性樹脂(F2)の物性は、無加圧下吸収倍率(CRC)が27.2[g/g]、加圧下吸収倍率(AAP)が21.9[g/g]、通液性(SFC)が67[×10-7・cm・s・g-1]であった。結果を下記表8に要約する。
Figure JPOXMLDOC01-appb-T000010
 上記表8の結果から、比較例9の粒子状吸水性樹脂(F2)と比較して、実施例35の粒子状吸水性樹脂(F1)は、乾燥物保持時間を3分以上とすることにより、通液性(SFC)が向上することできることが示される。
 吸水性樹脂の粒子径を制御し、微粉を低減する。
 
 さらに、本出願は、2009年3月31日に出願された日本特許出願番号2009-084955号に基づいており、その開示内容は、参照され、全体として、組み入れられている。

Claims (19)

  1.  アクリル酸(塩)を含む水溶液の重合工程、得られる含水ゲル状重合体の乾燥工程、乾燥物の粉砕工程、粉砕物の分級工程、及び、必要により分級物の表面架橋工程を含むポリアクリル酸(塩)系吸水性樹脂の連続製造方法であって、
     (a)上記乾燥工程と上記粉砕工程とが、貯蔵工程と輸送工程を含んで連結され、かつ、
     (b)上記乾燥工程の終了時点から上記粉砕工程の開始時点までの乾燥物保持時間を3分以上とすることを特徴とする、粒子状吸水性樹脂の製造方法。
  2.  上記貯蔵工程および上記輸送工程の少なくとも一部を減圧下とする、請求項1に記載の製造方法。
  3.  上記乾燥工程後に乾燥物を冷却する工程を行う、請求項1または2に記載の製造方法。
  4.  上記乾燥工程後に凝集した乾燥物の粗解砕工程を行う、請求項1~3のいずれか1項に記載の製造方法。
  5.  上記乾燥物の含水率が3~15重量%である、請求項1~4のいずれか1項に記載の製造方法。
  6.  上記粉砕工程の前に、更に乾燥物の分級工程を行う、請求項1~5のいずれか1項に記載の製造方法。
  7.  上記分級された乾燥物の粒子径毎に、異なる乾燥物保持時間または異なる乾燥物保持方法を適用する、請求項6に記載の製造方法。
  8.  上記粉砕工程に供される乾燥物の温度が40~100℃である、請求項1~7のいずれか1項に記載の製造方法。
  9.  上記乾燥工程後の乾燥物が、保温または加熱しながら、輸送または貯蔵される、請求項1~8のいずれか1項に記載の製造方法。
  10.  上記乾燥工程が120~200℃で行われる、請求項1~9のいずれか1項に記載の製造方法。
  11.  上記乾燥物の粉砕工程、及び上記粉砕物の分級工程を経て得られる粒子状吸水性樹脂であって、150μm以上850μm未満の粒子径を有する粒子の割合が80~99重量%である、請求項1~10のいずれか1項に記載の製造方法。
  12.  上記分級工程で微粉を除去し、除去した微粉をリサイクルする工程を含む、請求項1~11のいずれか1項に記載の製造方法。
  13.  上記重合工程が連続ニーダー重合または連続ベルト重合で行われる、請求項1~12のいずれか1項に記載の製造方法。
  14.  上記乾燥工程が通気バンド乾燥で行われる、請求項1~13のいずれか1項に記載の製造方法。
  15.  上記粉砕物の80重量%以上が粒子径850μm未満の粒子である、請求項1~14のいずれか1項に記載の製造方法。
  16.  上記粉砕前の乾燥物の50重量%以上が粒子径850μm以上の粒子である、請求項1~15のいずれか1項に記載の製造方法。
  17.  上記粉砕がロールミルまたはロールグラニュレーターで行われる、請求項1~16のいずれか1項に記載の製造方法。
  18.  上記輸送工程が空気輸送またはコンベアで行われる、請求項1~17のいずれか1項に記載の製造方法。
  19.  上記吸水性樹脂の粉砕が1ラインあたり1t/hr以上のスケールで行われる、請求項1~18のいずれか1項に記載の製造方法。
PCT/JP2010/055930 2009-03-31 2010-03-31 粒子状吸水性樹脂の製造方法 WO2010114058A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/258,645 US9175143B2 (en) 2009-03-31 2010-03-31 Method for producing particulate water-absorbent resin
EP10758829.5A EP2415822B1 (en) 2009-03-31 2010-03-31 Process for producing particulate water-absorbing resin
JP2011507272A JP5631866B2 (ja) 2009-03-31 2010-03-31 粒子状吸水性樹脂の製造方法
CN201080014855XA CN102378778A (zh) 2009-03-31 2010-03-31 颗粒状吸水性树脂的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-084955 2009-03-31
JP2009084955 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010114058A1 true WO2010114058A1 (ja) 2010-10-07

Family

ID=42828347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055930 WO2010114058A1 (ja) 2009-03-31 2010-03-31 粒子状吸水性樹脂の製造方法

Country Status (5)

Country Link
US (1) US9175143B2 (ja)
EP (1) EP2415822B1 (ja)
JP (1) JP5631866B2 (ja)
CN (2) CN102378778A (ja)
WO (1) WO2010114058A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338918A1 (en) * 2008-09-16 2011-06-29 Nippon Shokubai Co., Ltd. Water-absorbent resin manufacturing method and liquid permeability improvement method
JP2014047270A (ja) * 2012-08-30 2014-03-17 Mitsubishi Rayon Co Ltd 水溶性重合体の製造方法
WO2014084281A1 (ja) 2012-11-27 2014-06-05 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
KR20140119102A (ko) * 2012-01-12 2014-10-08 에보니크 데구사 게엠베하 수-흡수성 중합체의 연속 제조 공정
JP2015526573A (ja) * 2012-08-27 2015-09-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
KR20190015234A (ko) * 2016-05-31 2019-02-13 바스프 에스이 초흡수제의 제조 방법
JP2020520390A (ja) * 2018-04-03 2020-07-09 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
JP2021509422A (ja) * 2018-11-14 2021-03-25 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
JP2021514417A (ja) * 2018-02-22 2021-06-10 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 超吸収体粒子を製造する方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731713B (zh) * 2012-07-23 2014-12-03 上海华谊丙烯酸有限公司 一种高性能吸水性树脂的制备方法
CN103360555B (zh) * 2013-07-31 2016-01-20 苏州大学 一种高吸液速率的高吸水性树脂及其制备方法
EP3053831B1 (en) * 2013-09-30 2023-12-27 Nippon Shokubai Co., Ltd. Filled particulate water absorbing agent
JP7150701B2 (ja) * 2016-08-10 2022-10-11 ビーエーエスエフ ソシエタス・ヨーロピア 高吸収体の製造方法
CN110402267A (zh) * 2017-03-24 2019-11-01 住友精化株式会社 吸水性树脂的制备方法
CA3078707A1 (en) * 2017-10-19 2019-04-25 Univation Technologies, Llc A method for the determination of particle size bimodality
KR102457689B1 (ko) * 2018-11-13 2022-10-20 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR102576735B1 (ko) 2018-12-18 2023-09-07 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR102567563B1 (ko) * 2018-12-03 2023-08-14 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2020101287A1 (ko) 2018-11-13 2020-05-22 주식회사 엘지화학 고흡수성 수지의 제조 방법
CN110229256A (zh) * 2019-06-11 2019-09-13 安徽富瑞雪化工科技股份有限公司 一种高吸水性树脂的生产方法

Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093776A (en) 1976-10-07 1978-06-06 Kao Soap Co., Ltd. Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4367323A (en) 1980-12-03 1983-01-04 Sumitomo Chemical Company, Limited Production of hydrogels
US4446261A (en) 1981-03-25 1984-05-01 Kao Soap Co., Ltd. Process for preparation of high water-absorbent polymer beads
US4625001A (en) 1984-09-25 1986-11-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for continuous production of cross-linked polymer
US4683274A (en) 1984-10-05 1987-07-28 Seitetsu Kagaku Co., Ltd. Process for producing a water-absorbent resin
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
US4873299A (en) 1986-03-21 1989-10-10 Basf Aktiengesellschaft Batchwise preparation of crosslinked, finely divided polymers
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US4973632A (en) 1988-06-28 1990-11-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Production process for water-absorbent resin
US4985518A (en) 1981-10-26 1991-01-15 American Colloid Company Process for preparing water-absorbing resins
US5046069A (en) 1987-10-30 1991-09-03 International Business Machines Corporation Data integrity securing means
US5051259A (en) 1987-12-15 1991-09-24 Coloplast A/S Skin barrier product with discontinuous adhesive layer
US5124416A (en) 1988-05-23 1992-06-23 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Method for production of absorbent polymer
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
US5244735A (en) 1988-06-28 1993-09-14 Nippon Shokubai Kagaku Kabushiki Kaisha Water-absorbent resin and production process
US5250640A (en) 1991-04-10 1993-10-05 Nippon Shokubai Co., Ltd. Method for production of particulate hydrogel polymer and absorbent resin
US5264495A (en) 1990-04-27 1993-11-23 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of salt-resistant absorbent resin
EP0574260A1 (en) 1992-06-10 1993-12-15 Nippon Shokubai Co., Ltd. Method for production of hydrophilic resin
US5275773A (en) 1991-02-01 1994-01-04 Nippon Shokubai Co., Ltd. Method for production of particulate hydrated gel polymer and absorbent resin
US5380808A (en) 1990-07-17 1995-01-10 Sanyo Chemical Industries, Ltd. Process for producing water-absorbing resins
US5562646A (en) 1994-03-29 1996-10-08 The Proctor & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity
EP0811636A1 (en) 1996-06-05 1997-12-10 Nippon Shokubai Co., Ltd. Method for production of cross-linked polymer
EP0922717A1 (en) 1997-12-10 1999-06-16 Nippon Shokubai Co., Ltd. Production process of water-absorbent resin
JPH11292919A (ja) * 1998-04-07 1999-10-26 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
EP0955086A2 (en) 1998-04-28 1999-11-10 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6071976A (en) 1995-12-27 2000-06-06 Nippon Shokubai Co., Ltd. Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof
US6100305A (en) 1996-10-24 2000-08-08 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6140395A (en) 1997-12-25 2000-10-31 Nippon Shokubai Co., Ltd. Method of producing hydrophilic resin
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JP3175790B2 (ja) 1991-04-10 2001-06-11 株式会社日本触媒 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
US6254990B1 (en) 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin
EP1165631A1 (de) 1999-03-05 2002-01-02 STOCKHAUSEN GmbH & CO. KG Pulverförmige, vernetzte, wässrige flüssigkeiten sowie blut absorbierende polymere, verfahren zu ihrer herstellung und ihre verwendung
EP1178059A2 (en) 2000-08-03 2002-02-06 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
JP2002121291A (ja) * 2000-02-29 2002-04-23 Nippon Shokubai Co Ltd 吸水性樹脂粉末およびその製造方法
JP2003082107A (ja) * 2001-07-03 2003-03-19 Nippon Shokubai Co Ltd 吸水性樹脂粉末の連続製造方法およびこれに用いる粉面検知器
US6599989B2 (en) 1998-03-03 2003-07-29 Nippon Skokubai Co., Ltd. Water-absorbent agents containing polycarboxylic amine chelating agents
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
EP1426157A1 (en) 2001-07-03 2004-06-09 Nippon Shokubai Co., Ltd. Continuous manufacturing method for hygroscopic resin powder and powder level detector used therefor
WO2004069915A2 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
US20040176557A1 (en) 2000-09-04 2004-09-09 Richard Mertens Pulverulent, crosslinked polymers which absorb aqueous liquids and blood
US6817557B2 (en) 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
US20040234607A1 (en) 2003-04-25 2004-11-25 Nippon Shokubai Co.,Ltd. Method for disintegrating hydrate polymer and method for production of water-absorbent resin
JP2004345804A (ja) * 2003-05-22 2004-12-09 Nippon Shokubai Co Ltd 吸水性樹脂粉体の輸送方法
US6875511B2 (en) 2002-05-30 2005-04-05 Nippon Shokubai Co., Ltd. Production process for particulate water-absorbent resin
JP2005097604A (ja) * 2003-09-05 2005-04-14 Nippon Shokubai Co Ltd 粒子状吸水性樹脂組成物の製造方法
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US20060073969A1 (en) 2003-02-10 2006-04-06 Kazushi Torii Vater-absorbent resin composition and its production process
WO2006082197A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082188A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082189A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
US7157141B2 (en) 2000-03-31 2007-01-02 Stockhausen Gmbh Pulverulent polymers crosslinked on the surface
US7179862B2 (en) 1999-03-05 2007-02-20 Stockhausen Gmbh Powdery, cross-linked absorbent polymers method for the production thereof and their use
WO2007028751A2 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
US7201941B2 (en) 2003-08-27 2007-04-10 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
US20070106013A1 (en) 2003-06-24 2007-05-10 Yoshifumi Adachi Water absorbent resin composition and production method thereof
WO2007104673A2 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104657A2 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104676A1 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
US20070225160A1 (en) 2006-03-27 2007-09-27 Nippon Shokubai Co., Ltd. Production method for water-absorbing resin composition
US20080080300A1 (en) 2004-09-28 2008-04-03 Basf Aktiengesellschaft Mixing Kneader and Process for Preparing Poly(Meth)Acrylates Using the Mixing Kneader
WO2008090961A1 (ja) 2007-01-24 2008-07-31 Nippon Shokubai Co., Ltd. 粒子状吸水性ポリマーおよびその製造方法
JP2008260636A (ja) * 2007-03-20 2008-10-30 Mitsubishi Chemicals Corp ポリマーペレットの輸送方法および貯蔵方法
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
JP2009054903A (ja) 2007-08-29 2009-03-12 Fuji Electric Device Technology Co Ltd トレンチ型絶縁ゲート半導体装置
JP2009056161A (ja) 2007-08-31 2009-03-19 Sharp Corp 食器洗浄機
JP2009056159A (ja) 2007-08-31 2009-03-19 Olympus Medical Systems Corp 被検体内情報取得システム
JP2009056157A (ja) 2007-08-31 2009-03-19 Kuriha Kogyo Co Ltd 剃刀具およびその製造方法
JP2009084955A (ja) 2007-10-02 2009-04-23 Tachikawa Blind Mfg Co Ltd 電動型日射遮蔽装置のリモコン装置
WO2009113679A1 (ja) * 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009119756A1 (ja) 2008-03-28 2009-10-01 株式会社日本触媒 吸水性樹脂粉体の輸送方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
AU637470B2 (en) 1990-04-02 1993-05-27 Nippon Shokubai Kagaku Kogyo Co. Ltd. Method for production of fluid stable aggregate
DE4021847C2 (de) 1990-07-09 1994-09-08 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung wasserquellbarer Produkte unter Verwendung von Feinstanteilen wasserquellbarer Polymerer
US5419956A (en) 1991-04-12 1995-05-30 The Procter & Gamble Company Absorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials mixed with inorganic powders
US5342899A (en) 1991-05-16 1994-08-30 The Dow Chemical Company Process for recycling aqueous fluid absorbents fines to a polymerizer
JP3481250B2 (ja) 1994-10-26 2003-12-22 株式会社 日本触媒 吸水性樹脂組成物およびその製造方法
JP3875757B2 (ja) 1997-01-27 2007-01-31 株式会社日本触媒 粒子状親水性重合体の分級方法およびふるい分け装置
DE60112630T3 (de) * 2000-02-29 2016-03-03 Nippon Shokubai Co., Ltd. Verfaren zur Herstellung eines wasserabsorbierenden Harzpulvers
JP4364020B2 (ja) * 2003-03-14 2009-11-11 株式会社日本触媒 吸水性樹脂粉末の表面架橋処理方法
EP1462473B1 (en) * 2003-03-14 2011-07-06 Nippon Shokubai Co., Ltd. Surface crosslinking method of water-absorbing resin powder
DE10334271B4 (de) 2003-07-25 2006-02-23 Stockhausen Gmbh Verfahren zur Agglomeration von Superabsorberfeinteilchen, daraus erhältliche Superabsorberpartikel, deren Verwendung sowie diese beinhaltende Verbunde
EP1730219B1 (en) 2004-03-29 2016-02-03 Nippon Shokubai Co.,Ltd. Particulate water absorbing agent with water-absorbing resin as main component
DE102005001789A1 (de) 2005-01-13 2006-07-27 Basf Ag Verfahren zum Klassieren eines teilchenförmigen wasserabsorbierenden Harzes
DE102005062929A1 (de) 2005-12-29 2007-07-05 Basf Ag Herstellung eines wasserabsorbierenden Harzes unter Einmischen eines wasserabsorbierenden Harzpulvers
WO2008037675A1 (de) 2006-09-25 2008-04-03 Basf Se Verfahren zum klassieren wasserabsorbierender polymerpartikel
JP5766913B2 (ja) 2006-09-25 2015-08-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の分級法
US20090261023A1 (en) 2006-09-25 2009-10-22 Basf Se Method for the Classification of Water Absorbent Polymer Particles
CN101631819B (zh) 2007-03-12 2015-03-11 巴斯夫欧洲公司 再润湿的表面交联的超吸收剂的制备方法
TWI427087B (zh) * 2007-03-16 2014-02-21 Nippon Catalytic Chem Ind 吸水性樹脂的製造方法及其用途
JP5308344B2 (ja) 2007-03-26 2013-10-09 株式会社日本触媒 粒子状吸水性樹脂の分級方法
US8596931B2 (en) * 2007-03-29 2013-12-03 Nippon Shokubai Co., Ltd. Particulate water absorbing agent and method for producing the same

Patent Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093776A (en) 1976-10-07 1978-06-06 Kao Soap Co., Ltd. Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4367323A (en) 1980-12-03 1983-01-04 Sumitomo Chemical Company, Limited Production of hydrogels
US4446261A (en) 1981-03-25 1984-05-01 Kao Soap Co., Ltd. Process for preparation of high water-absorbent polymer beads
US4985518A (en) 1981-10-26 1991-01-15 American Colloid Company Process for preparing water-absorbing resins
US4625001A (en) 1984-09-25 1986-11-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for continuous production of cross-linked polymer
US4683274A (en) 1984-10-05 1987-07-28 Seitetsu Kagaku Co., Ltd. Process for producing a water-absorbent resin
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US4873299A (en) 1986-03-21 1989-10-10 Basf Aktiengesellschaft Batchwise preparation of crosslinked, finely divided polymers
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
US5046069A (en) 1987-10-30 1991-09-03 International Business Machines Corporation Data integrity securing means
US5051259A (en) 1987-12-15 1991-09-24 Coloplast A/S Skin barrier product with discontinuous adhesive layer
US5124416A (en) 1988-05-23 1992-06-23 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Method for production of absorbent polymer
US5244735A (en) 1988-06-28 1993-09-14 Nippon Shokubai Kagaku Kabushiki Kaisha Water-absorbent resin and production process
US4973632A (en) 1988-06-28 1990-11-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Production process for water-absorbent resin
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
US5264495A (en) 1990-04-27 1993-11-23 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of salt-resistant absorbent resin
US5380808A (en) 1990-07-17 1995-01-10 Sanyo Chemical Industries, Ltd. Process for producing water-absorbing resins
US5275773A (en) 1991-02-01 1994-01-04 Nippon Shokubai Co., Ltd. Method for production of particulate hydrated gel polymer and absorbent resin
US5250640A (en) 1991-04-10 1993-10-05 Nippon Shokubai Co., Ltd. Method for production of particulate hydrogel polymer and absorbent resin
JP3175790B2 (ja) 1991-04-10 2001-06-11 株式会社日本触媒 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
EP0574260A1 (en) 1992-06-10 1993-12-15 Nippon Shokubai Co., Ltd. Method for production of hydrophilic resin
US5562646A (en) 1994-03-29 1996-10-08 The Proctor & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity
US6071976A (en) 1995-12-27 2000-06-06 Nippon Shokubai Co., Ltd. Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof
EP0811636A1 (en) 1996-06-05 1997-12-10 Nippon Shokubai Co., Ltd. Method for production of cross-linked polymer
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6100305A (en) 1996-10-24 2000-08-08 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
EP0922717A1 (en) 1997-12-10 1999-06-16 Nippon Shokubai Co., Ltd. Production process of water-absorbent resin
US6140395A (en) 1997-12-25 2000-10-31 Nippon Shokubai Co., Ltd. Method of producing hydrophilic resin
US6254990B1 (en) 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin
US6599989B2 (en) 1998-03-03 2003-07-29 Nippon Skokubai Co., Ltd. Water-absorbent agents containing polycarboxylic amine chelating agents
JPH11292919A (ja) * 1998-04-07 1999-10-26 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
EP0955086A2 (en) 1998-04-28 1999-11-10 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
EP1165631A1 (de) 1999-03-05 2002-01-02 STOCKHAUSEN GmbH & CO. KG Pulverförmige, vernetzte, wässrige flüssigkeiten sowie blut absorbierende polymere, verfahren zu ihrer herstellung und ihre verwendung
US7179862B2 (en) 1999-03-05 2007-02-20 Stockhausen Gmbh Powdery, cross-linked absorbent polymers method for the production thereof and their use
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US6817557B2 (en) 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
JP2002121291A (ja) * 2000-02-29 2002-04-23 Nippon Shokubai Co Ltd 吸水性樹脂粉末およびその製造方法
US7157141B2 (en) 2000-03-31 2007-01-02 Stockhausen Gmbh Pulverulent polymers crosslinked on the surface
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
EP1178059A2 (en) 2000-08-03 2002-02-06 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US6831142B2 (en) 2000-09-04 2004-12-14 Stockhausen Gmbh & Co. Kg Pulverulent, crosslinked polymers which absorb aqueous liquids and blood
US20040176557A1 (en) 2000-09-04 2004-09-09 Richard Mertens Pulverulent, crosslinked polymers which absorb aqueous liquids and blood
EP1426157A1 (en) 2001-07-03 2004-06-09 Nippon Shokubai Co., Ltd. Continuous manufacturing method for hygroscopic resin powder and powder level detector used therefor
JP2003082107A (ja) * 2001-07-03 2003-03-19 Nippon Shokubai Co Ltd 吸水性樹脂粉末の連続製造方法およびこれに用いる粉面検知器
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US6875511B2 (en) 2002-05-30 2005-04-05 Nippon Shokubai Co., Ltd. Production process for particulate water-absorbent resin
WO2004069915A2 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
US20060073969A1 (en) 2003-02-10 2006-04-06 Kazushi Torii Vater-absorbent resin composition and its production process
US20060204755A1 (en) 2003-02-10 2006-09-14 Kazushi Torii Walter-absorbing agent
US20040234607A1 (en) 2003-04-25 2004-11-25 Nippon Shokubai Co.,Ltd. Method for disintegrating hydrate polymer and method for production of water-absorbent resin
JP2004345804A (ja) * 2003-05-22 2004-12-09 Nippon Shokubai Co Ltd 吸水性樹脂粉体の輸送方法
US20070106013A1 (en) 2003-06-24 2007-05-10 Yoshifumi Adachi Water absorbent resin composition and production method thereof
US7201941B2 (en) 2003-08-27 2007-04-10 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
JP2005097604A (ja) * 2003-09-05 2005-04-14 Nippon Shokubai Co Ltd 粒子状吸水性樹脂組成物の製造方法
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US20080080300A1 (en) 2004-09-28 2008-04-03 Basf Aktiengesellschaft Mixing Kneader and Process for Preparing Poly(Meth)Acrylates Using the Mixing Kneader
WO2006082188A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082197A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082189A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2007028751A2 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
WO2007104673A2 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104657A2 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104676A1 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
US20070225160A1 (en) 2006-03-27 2007-09-27 Nippon Shokubai Co., Ltd. Production method for water-absorbing resin composition
WO2008090961A1 (ja) 2007-01-24 2008-07-31 Nippon Shokubai Co., Ltd. 粒子状吸水性ポリマーおよびその製造方法
JP2008260636A (ja) * 2007-03-20 2008-10-30 Mitsubishi Chemicals Corp ポリマーペレットの輸送方法および貯蔵方法
JP2009054903A (ja) 2007-08-29 2009-03-12 Fuji Electric Device Technology Co Ltd トレンチ型絶縁ゲート半導体装置
JP2009056161A (ja) 2007-08-31 2009-03-19 Sharp Corp 食器洗浄機
JP2009056159A (ja) 2007-08-31 2009-03-19 Olympus Medical Systems Corp 被検体内情報取得システム
JP2009056157A (ja) 2007-08-31 2009-03-19 Kuriha Kogyo Co Ltd 剃刀具およびその製造方法
JP2009084955A (ja) 2007-10-02 2009-04-23 Tachikawa Blind Mfg Co Ltd 電動型日射遮蔽装置のリモコン装置
WO2009113679A1 (ja) * 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009119756A1 (ja) 2008-03-28 2009-10-01 株式会社日本触媒 吸水性樹脂粉体の輸送方法
WO2009119754A1 (ja) 2008-03-28 2009-10-01 株式会社日本触媒 吸水性樹脂の製造方法
WO2009119758A1 (ja) 2008-03-28 2009-10-01 株式会社日本触媒 吸水性樹脂粉体の輸送方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338918A1 (en) * 2008-09-16 2011-06-29 Nippon Shokubai Co., Ltd. Water-absorbent resin manufacturing method and liquid permeability improvement method
EP2338918A4 (en) * 2008-09-16 2011-12-14 Nippon Catalytic Chem Ind METHOD FOR PRODUCING A WATER ABSORBENT RESIN RESIN AND METHOD FOR INCREASING LIQUID PERMEABILITY
KR101635694B1 (ko) * 2012-01-12 2016-07-01 에보니크 데구사 게엠베하 수-흡수성 중합체의 연속 제조 공정
KR20140119102A (ko) * 2012-01-12 2014-10-08 에보니크 데구사 게엠베하 수-흡수성 중합체의 연속 제조 공정
US20140377538A1 (en) * 2012-01-12 2014-12-25 Evonik Degussa Gmbh Process for the continuous preparation of water-absorbent polymers
JP2015506400A (ja) * 2012-01-12 2015-03-02 エボニック デグサ ゲーエムベーハーEvonik De 吸水性ポリマーの連続的な製造方法
EP2615120B1 (en) 2012-01-12 2020-01-08 Evonik Operations GmbH Process for the continuous preparation of water-absorbent polymers
EP2615120B2 (en) 2012-01-12 2022-12-21 Evonik Superabsorber GmbH Process for the continuous preparation of water-absorbent polymers
US10377057B2 (en) 2012-01-12 2019-08-13 Evonik Degussa Gmbh Process for the continuous preparation of water-absorbent polymers
JP2015526573A (ja) * 2012-08-27 2015-09-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
JP2014047270A (ja) * 2012-08-30 2014-03-17 Mitsubishi Rayon Co Ltd 水溶性重合体の製造方法
WO2014084281A1 (ja) 2012-11-27 2014-06-05 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP5883948B2 (ja) * 2012-11-27 2016-03-15 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
JPWO2014084281A1 (ja) * 2012-11-27 2017-01-05 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
US9550843B2 (en) 2012-11-27 2017-01-24 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin
KR20190015234A (ko) * 2016-05-31 2019-02-13 바스프 에스이 초흡수제의 제조 방법
JP6991161B2 (ja) 2016-05-31 2022-01-13 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体の製造方法
JP2019518116A (ja) * 2016-05-31 2019-06-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超吸収体の製造方法
KR102528637B1 (ko) 2016-05-31 2023-05-03 바스프 에스이 초흡수제의 제조 방법
JP2021514417A (ja) * 2018-02-22 2021-06-10 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 超吸収体粒子を製造する方法
JP7337823B2 (ja) 2018-02-22 2023-09-04 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体粒子を製造する方法
JP2020520390A (ja) * 2018-04-03 2020-07-09 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
US11161942B2 (en) 2018-04-03 2021-11-02 Lg Chem, Ltd. Method for preparing superabsorbent polymer
JP7008718B2 (ja) 2018-04-03 2022-01-25 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
JP2021509422A (ja) * 2018-11-14 2021-03-25 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
US11648531B2 (en) 2018-11-14 2023-05-16 Lg Chem, Ltd. Method for preparing super absorbent polymer
JP7438606B2 (ja) 2018-11-14 2024-02-27 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Also Published As

Publication number Publication date
EP2415822B1 (en) 2019-03-20
CN104974358B (zh) 2018-11-23
EP2415822A4 (en) 2017-06-07
EP2415822A1 (en) 2012-02-08
JP5631866B2 (ja) 2014-11-26
US20120016084A1 (en) 2012-01-19
JPWO2010114058A1 (ja) 2012-10-11
CN102378778A (zh) 2012-03-14
US9175143B2 (en) 2015-11-03
CN104974358A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5631866B2 (ja) 粒子状吸水性樹脂の製造方法
JP6913107B2 (ja) 吸水性樹脂粉末の製造方法及びその製造装置
JP6931744B2 (ja) 吸水性樹脂の製造方法
CN109608661B (zh) 凝胶粉碎装置、及聚丙烯酸(盐)系吸水性树脂粉末的制造方法、以及吸水性树脂粉末
JP5635397B2 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
EP2905072B1 (en) Absorbent and manufacturing method therefor
WO2015030129A1 (ja) ゲル粉砕装置、及びポリアクリル酸(塩)系吸水性樹脂粉末の製造方法、並びに吸水性樹脂粉末
JP5977839B2 (ja) ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
WO2009119754A1 (ja) 吸水性樹脂の製造方法
WO2019221154A1 (ja) 吸水性樹脂粒子の製造方法
EP2546284A1 (en) Method for manufacturing a water-absorbing resin
JP5605855B2 (ja) 吸水性樹脂粉末の製造方法
JP5551836B2 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
CN108350190B (zh) 超吸收性聚合物
KR102304003B1 (ko) 폴리아크릴산(염)계 흡수성 수지의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014855.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011507272

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13258645

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010758829

Country of ref document: EP