EP1996492A2 - Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel - Google Patents
Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikelInfo
- Publication number
- EP1996492A2 EP1996492A2 EP07712422A EP07712422A EP1996492A2 EP 1996492 A2 EP1996492 A2 EP 1996492A2 EP 07712422 A EP07712422 A EP 07712422A EP 07712422 A EP07712422 A EP 07712422A EP 1996492 A2 EP1996492 A2 EP 1996492A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymer particles
- water
- pneumatic conveying
- less
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G53/00—Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
- B65G53/34—Details
- B65G53/52—Adaptations of pipes or tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2201/00—Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
- B65G2201/04—Bulk
- B65G2201/042—Granular material
Definitions
- the present invention relates to methods for the pneumatic conveying of water-absorbing polymer particles using curved pipes, wherein the ratio of radius of curvature to pipe diameter is at least 5.
- Water-absorbing polymers are, in particular, polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products swellable in aqueous liquids, such as guar derivatives.
- Such polymers are used as aqueous solution-absorbing products for the production of diapers, tampons, sanitary towels and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
- Water-absorbing polymers typically have a centrifuge retention capacity of 25 to 60 g / g, preferably of at least 30 g / g, preferably of at least 32 g / g, more preferably of at least 34 g / g, most preferably of at least 35 g /G.
- Centrifuge retention capacity is determined according to the EDANA (European Disposables and Nonwovens Association) recommended test method no. 441.2-02 "Centrifuge retention capacity".
- water-absorbing polymers are described, for example, in "Modern Superabsorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, pages 69 to 17.
- water-absorbing polymer particles are transported by means of pneumatic conveying systems. The inevitably occurring mechanical stress leads to undesirable abrasion. Therefore, low transport speeds and thus reduced mechanical loads should be strived for.
- the object of the present invention was to provide an improved process for the pneumatic transport of water-absorbing polymer particles.
- the object has been achieved by a method for pneumatic conveying water-absorbing polymer particles using curved pipes, wherein the ratio of radius of curvature to pipe diameter is at least 5.
- the ratio of radius of curvature to tube diameter is preferably from 6 to 20, more preferably from 7 to 15, most preferably from 8 to 12.
- the diameter of the pipeline, in which the pneumatic conveying is carried out is preferably from 3 to 30 cm, more preferably from 4 to 25 cm, most preferably from 5 to 20 cm. Too low pipe diameters lead to a higher mechanical load due to the pneumatic conveying and thus promote the undesirable abrasion. Too large a pipe diameter allow an equally undesirable settling of the water-absorbing polymer particles in the delivery line.
- the optimum gas start speed for pneumatic delivery depends on the diameter of the pneumatic delivery line. This dependency is best described by the Froude number:
- the Froude number in the pneumatic conveying according to the invention is preferably from 12 to 40, particularly preferably from 14 to 30, very particularly preferably from 16 to 20.
- the pneumatic conveying becomes unstable and higher conveying speeds increase the undesired abrasion as a result of increasing mechanical load.
- the baingutbeladung the pneumatic conveying is preferably from 0.5 to 20 kg / kg, more preferably from 1 to 10 kg / kg, most preferably from 2 to 8 kg / kg, wherein the designedgutbeladung is the quotient of randomlygutmassenstrom and gas mass flow.
- a pipeline in a pneumatic Conveyor system is the section between the feed device for the water-absorbing polymer particles and the receiving container, ie the area in which the water-absorbing polymer particles are transported in the gas stream.
- the water content of the water-absorbing polymer particles is preferably less than 10 wt .-%, more preferably less than 5 wt .-%, most preferably from 1 to 5 wt .-%, wherein the water content according to the EDANA (European Disposables and Nonwovens Association) recommended test method No. 430.2-02 "Moisture content" is determined.
- the mechanical stability of the water-absorbing polymer particles decreases with the water content, i. the unwanted abrasion increases. Too high water contents during the pneumatic conveying can lead to the plastic deformation of the polymer particles (angel hair formation) or to blockages.
- the water-absorbing polymer particles preferably have at least 90% by weight, a particle diameter of less than 1000 ⁇ m, particularly preferably at least 95% by weight, a particle diameter of less than 900 ⁇ m, very particularly preferably at least 98% by weight Particle diameter of less than 800 microns, on.
- the mechanical load during pneumatic conveying is reduced to such an extent that the proportion of polymer particles having a particle diameter of less than 150 ⁇ m by pneumatic conveying is preferably less than 1% by weight, particularly preferably less than 0 , 7 wt .-%, most preferably by less than 0.5 wt .-%, each based on the total amount of polymer particles, is increased and the permeability of the polymer particles by the pneumatic conveying preferably by less than 5x10 "7 cm 3 s / g, more preferably less than 4x10 "7 cm 3 s / g, most preferably less than 3x10" 7 cm 3 sec / g, decreases.
- the water-absorbing polymer particles which can be used in the process according to the invention can be obtained by polymerization of a monomer solution containing
- Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
- the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
- Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or tocopherols.
- Tocopherol is understood as meaning compounds of the following formula
- R 1 is hydrogen or methyl
- R 2 is hydrogen or methyl
- R 3 is hydrogen or methyl
- R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
- Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically acceptable carboxylic acids.
- the carboxylic acids can be mono-, di- or tricarboxylic acids.
- R 4 is particularly preferably hydrogen or acetyl. Especially preferred is RRR-alpha-tocopherol.
- the monomer solution preferably contains at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, especially preferably around 50 ppm by weight, hydroquinone halide, in each case based on acrylic acid, acrylic acid salts being taken into account mathematically as acrylic acid.
- acrylic acid having a corresponding content of hydroquinone half-ether can be used to prepare the monomer solution.
- the water-absorbing polymers are crosslinked, i. the polymerization is carried out in the presence of compounds having at least two polymerisable groups which can be radically copolymerized into the polymer network.
- Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as described in EP-A-0 530 438, di- and triacrylates, as in EP-A-0 547 847, EP-A-0 559 476, EP-A-0 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A-03/104301 and DE-A-10331450, mixed acrylates which contain, in addition to acrylate groups contain ethylenically unsaturated groups, as described in DE-A-103 31 4
- Suitable crosslinkers b) are in particular N, N'-methylenebisacrylamide and N 1 N'-
- esters of unsaturated mono- or polycarboxylic acids of polyols such as diacrylate or triacrylate, for example butanediol or ethylene glycol diacrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine , Allylester of phosphoric acid and Vinylphosphonklarivate, as described for example in EP-AO 343 427.
- crosslinkers b) are pentaerythritol di-, pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol and glycerol triallyl ethers, polyallyl ethers based on sorbitol, and ethoxylated variants thereof.
- Useful in the process according to the invention are di (meth) acrylates of polyethylene glycols, where the polyethylene glycol used has a molecular weight between 300 and 1000.
- crosslinkers b) are di- and triacrylates of 3 to 20 times ethoxylated glycerol, 3 to 20 times ethoxylated trimethylolpropane, 3 to 20 times ethoxylated trimethylolethane, in particular di- and triacrylates of 2 to 6-times ethoxylated glycerol or trimethylolpropane, the 3-fold propoxylated glycerol or trimethylolpropane, as well as the 3-times mixed ethoxylated or propoxylated glycerol or trimethylolpropane, 15-ethoxylated glycerol or trimethylolpropane, as well as at least 40-times ethoxylated glycerol, trimethylolethane or trimethylolpropane.
- Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in DE-A-103 19 462.
- Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
- diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
- Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerin.
- the amount of crosslinker b) is preferably 0.01 to 1 wt .-%, particularly preferably 0.05 to 0.5 wt .-%, most preferably 0.1 to 0.3 wt .-%, each based on the monomer a).
- Examples of ethylenically unsaturated monomers c) copolymerizable with the monomers a) are acrylamide, methacrylamide, crotonamide, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminobutyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoneopentyl acrylate and dimethylaminoneopentyl methacrylate.
- water-soluble polymers d) it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, polyglycols or polyacrylic acids, preferably polyvinyl alcohol and starch.
- Suitable reactors are kneading reactors or belt reactors.
- the polymer gel formed in the polymerization of an aqueous monomer solution is continuously comminuted by, for example, counter-rotating stirrer shafts, as described in WO-A-01/38402.
- the polymerization on the belt is described, for example, in DE-A-38 25 366 and US Pat. No. 6,241,928.
- Polymerization in a belt reactor produces a polymer gel which must be comminuted in a further process step, for example in a meat grinder, extruder or kneader.
- the hydrogel After leaving the polymerization reactor, the hydrogel is advantageously stored even at a higher temperature, preferably at least 50 ° C., more preferably at least 70 ° C., very preferably at least 80 ° C., and preferably less than 100 ° C., for example in isolated containers. By storage, usually 2 to 12 hours, the monomer conversion is further increased.
- the acid groups of the hydrogels obtained are usually partially neutralized, preferably from 25 to 95 mol%, preferably from 50 to 80 mol%, particularly preferably from 60 to 75 mol%, the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
- the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
- alkali metal salts it is also possible to use ammonium salts.
- Sodium and potassium are considered
- Alkali metals are particularly preferred, but very particularly preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
- the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution, as a melt, or preferably as a solid.
- sodium hydroxide with a water content well below 50 wt .-% may be present as a waxy mass with a melting point above 23 ° C. In this case, a dosage as general cargo or melt at elevated temperature is possible.
- the hydrogel stage it is also possible to carry out the neutralization after the polymerization at the hydrogel stage. Furthermore, it is possible to neutralize up to 40 mol%, preferably 10 to 30 mol%, particularly preferably 15 to 25 mol%, of the acid groups prior to the polymerization by adding a part of the neutralizing agent to the monomer solution and the desired final degree of neutralization is adjusted only after the polymerization at the level of the hydrogel. If the hydrogel is at least partially neutralized after the polymerization, the hydrogel is preferably comminuted mechanically, for example by means of a meat grinder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed. For this purpose, the gel mass obtained can be further gewolfft for homogenization.
- the hydrogel is then preferably dried with a belt dryer until the residual moisture content is preferably below 15% by weight, in particular below 10% by weight, the water content being determined in accordance with the test method No. 430.2- recommended by EDANA (European Disposables and Nonwovens Association). 02 "Moisture content" is determined.
- a fluidized bed dryer or a heated ploughshare mixer can be used for drying.
- the dryer temperature must be optimized, the air supply and removal must be controlled, and it is in any case to ensure adequate ventilation. The drying is naturally simpler and the product is the whiter, if the solids content of the gel is as high as possible.
- the solids content of the gel before drying is therefore preferably between 30 and 80% by weight.
- Particularly advantageous is the ventilation of the dryer with nitrogen or other non-oxidizing inert gas.
- sufficient ventilation and removal of the water vapor also leads to an acceptable product.
- Advantageous in terms of color and product quality is usually the shortest possible drying time.
- the dried hydrogel is thereafter ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills can be used.
- Suitable postcrosslinkers e) for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxylate groups of the polymers.
- Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds, as described in EP-AO 083 022, EP-A-543 303 and EP-A-937 736, polyhydric alcohols, as in DE-C No. 2,314,019, DE-C-35 23 617 and EP-A-450 922, or ⁇ -hydroxyalkylamides as described in DE-A-102 04 938 and US Pat. No.
- 6,239,230 are also suitable.
- compounds having mixed functionality such as glycidol, 3-ethyl-3-oxetanemethanol (trimethylolpropane oxetane), as described in EP-A-1 199 327, aminoethanol, diethanolamine, triethanolamine or compounds which form a further functionality after the first reaction such as ethylene oxide, propylene oxide, isobutylene oxide, aziridine, azetidine or oxetane.
- DE-A-40 20 780 cyclic carbonates, in DE-A-198 07 502 2-oxazolidone and its derivatives, such as N- (2-hydroxyethyl) -2-oxazolidone, in DE-A-198 07 992 Bis- and poly-2-oxazolidinones, in DE-A-198 54 573 2-oxotetrahydro-1,3-oxazine and its derivatives, in DE-A-198 54 574 N-acyl-2-oxazolidones, in DE-A-102 04 937 cyclic ureas, in DE-A-103 34 584 bicyclic amide acetals , EP-A-1 199 327 describes oxetanes and cyclic ureas and in WO-A-03/031482 morpholine-2,3-dione and its derivatives as suitable post-crosslinkers e).
- Preferred postcrosslinkers e) are oxazolidone and its derivatives, in particular N- (2-hydroxyethyl) -2-oxazolidone.
- the amount of postcrosslinker e) is preferably 0.01 to 1 wt .-%, particularly preferably 0.05 to 0.5 wt .-%, most preferably 0.1 to 0.2 wt .-%, each based on the polymer.
- the postcrosslinking is usually carried out so that a solution of the crosslinker e) is sprayed onto the hydrogel or the dry polymer particles. Subsequent to the spraying, it is thermally dried, whereby the postcrosslinking reaction can take place both before and during the drying.
- the spraying of a solution of the crosslinker is preferably carried out in mixers with moving mixing tools, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
- moving mixing tools such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
- Vertical mixers are particularly preferred, plowshare mixers and paddle mixers are very particularly preferred.
- Suitable mixers are, for example, Lödige® mixers, Bepex® mixers, Nauta® mixers, Processall® mixers and Schugi® mixers.
- the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, very particularly preferably disk dryers.
- Suitable dryers are, for example, Bepex® T rockner and Nara® T rockner.
- fluidized bed dryers can also be used.
- the drying can take place in the mixer itself, by heating the jacket or blowing hot air. Also suitable is a downstream dryer, such as a hopper dryer, a rotary kiln or a heatable screw. However, it is also possible, for example, to use an azeotropic distillation as the drying process.
- Preferred drying temperatures are in the range 170 to 250 ° C, preferably 180 to 220 ° C, and particularly preferably 190 to 210 ° C.
- the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes.
- the water-absorbing polymer particles can additionally be aftertreated with at least one polyvalent cation f).
- Suitable cations f) are, for example, divalent cations, such as the cations of zinc, magnesium, calcium and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, selenium earths and manganese, tetravalent cations, such as the cations of titanium and zirconium ,
- divalent cations such as the cations of zinc, magnesium, calcium and strontium
- trivalent cations such as the cations of aluminum, iron, chromium, selenium earths and manganese
- tetravalent cations such as the cations of titanium and zirconium
- chloride, bromide, sulfate, hydrogen sulfate, carbonate, bicarbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate, such as acetate and lactate are possible.
- Aluminum sulfate is preferred.
- the multivalent cation f) is used as an aqueous solution.
- Concentration of the polyvalent cation f) in the aqueous solution is for example 0.1 to 12 wt .-%, preferably 0.5 to 8 wt .-%, particularly preferably 1, 5 to 4 wt .-%.
- the amount of polyvalent cation f) is preferably 0.001 to 0.25 wt .-%, more preferably 0.005 to 0.2 wt .-%, most preferably 0.01 to 0.15 wt .-%, each based on the Polymer.
- the polyvalent cations f) are preferably applied during the postcrosslinking, wherein postcrosslinker e) and cation f) are preferably metered in via separate solutions.
- measurements should be taken at an ambient temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 10%.
- the water-absorbing polymer particles are thoroughly mixed before the measurement.
- Fluid transfer is calculated as follows:
- LO is the thickness of the gel layer in cm, d the density of the NaCl
- A is the area of the gel layer in cm 2 and WP is the hydrostatic pressure over the gel layer in dynes / cm 2 .
- Polyethylene glycol 400 diacrylate (diacrylate of a polyethylene glycol having an average molecular weight of 400 g / mol) is used as the polyethylenically unsaturated crosslinker.
- the amount used was 2 kg per ton of monomer solution.
- the throughput of the monomer solution was 18 t / h.
- the reaction solution had a temperature of 23.5 ° C. at the inlet.
- the reactor was operated at a shaft speed of 38rpm.
- the residence time of the reaction mixture in the reactor was 15 minutes.
- the aqueous polymer gel was applied to a belt dryer. In total, 18.3 t / h of aqueous polymer gel having a water content of 55% by weight were dried. The gel was applied from a height of 30 cm by means of a swivel tape on the conveyor belt of the dryer. The height of the gel layer was about 10 cm.
- the belt speed of the dryer belt was 0.02 m / s and the residence time on the dryer belt was about 37 minutes.
- the dried hydrogel was ground and sieved. The fraction with the particle size 150 to 800 microns was postcrosslinked.
- the postcrosslinker solution was sprayed onto the polymer particles in a Schugi® mixer.
- the postcrosslinker solution was a 1.2% strength by weight solution of ethylene glycol diglycidyl ether in propylene glycol / water weight ratio 1: 2). Based on the polymer particles 5 wt .-% solution were sprayed. It was then dried for 60 minutes at 150 ° C and postcrosslinked.
- the water-absorbing polymer particles were pneumatically conveyed.
- a smooth stainless steel pipe with a length of 153 m and an inner diameter of 108.5 mm was used.
- the delivery line consisted of two horizontal and two vertical sections, the sections being connected by arcs having a radius of curvature to pipe diameter (R / D) ratio of 3.
- the vertical elevation totaled 10 m.
- the delivery rate was 6,400 kg / h of water-absorbing polymer particles, the delivery air volume was 1,050 kg / h and the gas velocity was 17.8 m / s at the beginning of the delivery line and 26 m / s at the delivery line end.
- Example 2 The procedure was as in Example 1. The sheets were replaced by sheets with a radius of curvature to pipe diameter (R / D) ratio of 10.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Air Transport Of Granular Materials (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07712422A EP1996492A2 (de) | 2006-03-14 | 2007-03-02 | Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06111102 | 2006-03-14 | ||
EP07712422A EP1996492A2 (de) | 2006-03-14 | 2007-03-02 | Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel |
PCT/EP2007/051985 WO2007104657A2 (de) | 2006-03-14 | 2007-03-02 | Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1996492A2 true EP1996492A2 (de) | 2008-12-03 |
Family
ID=38057544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07712422A Ceased EP1996492A2 (de) | 2006-03-14 | 2007-03-02 | Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090060661A1 (de) |
EP (1) | EP1996492A2 (de) |
JP (1) | JP2009529477A (de) |
CN (1) | CN101405207B (de) |
WO (1) | WO2007104657A2 (de) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101400589B (zh) * | 2006-03-14 | 2011-07-13 | 巴斯夫欧洲公司 | 吸水性聚合物颗粒的气动输送方法 |
EP2135669B1 (de) | 2007-03-29 | 2019-10-30 | Nippon Shokubai Co., Ltd. | Wasserabsorbierendes partikelförmiges element und herstellungsverfahren dafür |
CN101970316B (zh) | 2008-03-13 | 2013-06-12 | 株式会社日本触媒 | 吸水性树脂的制造方法 |
JP5710966B2 (ja) | 2008-03-28 | 2015-04-30 | 株式会社日本触媒 | 吸水性樹脂粉体の輸送方法 |
EP2291416A1 (de) * | 2008-06-19 | 2011-03-09 | Basf Se | Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel |
CN102378778A (zh) | 2009-03-31 | 2012-03-14 | 株式会社日本触媒 | 颗粒状吸水性树脂的制造方法 |
WO2011034147A1 (ja) | 2009-09-16 | 2011-03-24 | 株式会社日本触媒 | 吸水性樹脂粉末の製造方法 |
CN102574941B (zh) | 2009-10-09 | 2015-09-16 | 巴斯夫欧洲公司 | 用于再润湿表面后交联吸水性聚合物颗粒的方法 |
WO2011042429A1 (de) | 2009-10-09 | 2011-04-14 | Basf Se | Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel |
EP2535369B1 (de) | 2010-02-10 | 2021-03-24 | Nippon Shokubai Co., Ltd. | Herstellungsverfahren für ein wasserabsorbierendes harzpulver |
WO2012119969A1 (de) * | 2011-03-08 | 2012-09-13 | Basf Se | Verfahren zur herstellung von wasserabsorbierenden polymerpartikeln mit verbesserter permeabilität |
WO2014032949A1 (en) | 2012-08-27 | 2014-03-06 | Basf Se | Process for producing water-absorbing polymer particles |
WO2017207330A1 (de) | 2016-05-31 | 2017-12-07 | Basf Se | Verfahren zur herstellung von superabsorbern |
DE102017206842A1 (de) * | 2017-04-24 | 2018-10-25 | Coperion Gmbh | Verfahren zur pneumatischen Förderung von Kunststoffgranulat |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4927582A (en) * | 1986-08-22 | 1990-05-22 | Kimberly-Clark Corporation | Method and apparatus for creating a graduated distribution of granule materials in a fiber mat |
US5102585A (en) * | 1990-01-09 | 1992-04-07 | Kimberly-Clark Corporation | Method for intermittently depositing particulate material in a substrate |
JPH08337954A (ja) | 1995-06-07 | 1996-12-24 | Kao Corp | 吸収体の製造方法及び製造装置 |
JP2000160197A (ja) | 1998-11-30 | 2000-06-13 | Lion Corp | 高嵩密度粒状洗剤の製造方法 |
JP2002265053A (ja) | 2001-03-06 | 2002-09-18 | Hitachi Plant Eng & Constr Co Ltd | 輸送管の減速装置 |
JP2003155120A (ja) | 2001-11-16 | 2003-05-27 | Osaka Gas Co Ltd | 水素吸蔵材の搬送方法とその装置 |
JP2004345804A (ja) | 2003-05-22 | 2004-12-09 | Nippon Shokubai Co Ltd | 吸水性樹脂粉体の輸送方法 |
WO2004108795A1 (de) | 2003-06-06 | 2004-12-16 | Basf Aktiengesellschaft | (meth)acrylester von alkylenylenglycolen und deren verwendung |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3384420A (en) * | 1966-08-02 | 1968-05-21 | Cargill Inc | Transfer system |
JPS61106693U (de) * | 1984-12-18 | 1986-07-07 | ||
US4908175A (en) * | 1986-05-28 | 1990-03-13 | The Procter & Gamble Company | Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components |
US5028224A (en) * | 1990-01-09 | 1991-07-02 | Kimberly-Clark Corporation | Apparatus for intermittently depositing particulate material in a substrate |
JP3706442B2 (ja) * | 1996-08-30 | 2005-10-12 | 三菱重工業株式会社 | 輸送管切替装置 |
CA2269626C (en) * | 1996-10-22 | 2007-01-30 | Frederic Dietrich | Pneumatically conveying powdery substances |
CN1197751C (zh) * | 2003-09-01 | 2005-04-20 | 上海博隆粉体工程有限公司 | 固体粉粒体气力输送及掺混装置 |
-
2007
- 2007-03-02 JP JP2008558769A patent/JP2009529477A/ja active Pending
- 2007-03-02 CN CN200780009250XA patent/CN101405207B/zh not_active Expired - Fee Related
- 2007-03-02 WO PCT/EP2007/051985 patent/WO2007104657A2/de active Application Filing
- 2007-03-02 US US12/281,731 patent/US20090060661A1/en not_active Abandoned
- 2007-03-02 EP EP07712422A patent/EP1996492A2/de not_active Ceased
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4927582A (en) * | 1986-08-22 | 1990-05-22 | Kimberly-Clark Corporation | Method and apparatus for creating a graduated distribution of granule materials in a fiber mat |
US5102585A (en) * | 1990-01-09 | 1992-04-07 | Kimberly-Clark Corporation | Method for intermittently depositing particulate material in a substrate |
JPH08337954A (ja) | 1995-06-07 | 1996-12-24 | Kao Corp | 吸収体の製造方法及び製造装置 |
JP2000160197A (ja) | 1998-11-30 | 2000-06-13 | Lion Corp | 高嵩密度粒状洗剤の製造方法 |
JP2002265053A (ja) | 2001-03-06 | 2002-09-18 | Hitachi Plant Eng & Constr Co Ltd | 輸送管の減速装置 |
JP2003155120A (ja) | 2001-11-16 | 2003-05-27 | Osaka Gas Co Ltd | 水素吸蔵材の搬送方法とその装置 |
JP2004345804A (ja) | 2003-05-22 | 2004-12-09 | Nippon Shokubai Co Ltd | 吸水性樹脂粉体の輸送方法 |
WO2004108795A1 (de) | 2003-06-06 | 2004-12-16 | Basf Aktiengesellschaft | (meth)acrylester von alkylenylenglycolen und deren verwendung |
Also Published As
Publication number | Publication date |
---|---|
US20090060661A1 (en) | 2009-03-05 |
CN101405207B (zh) | 2013-07-17 |
JP2009529477A (ja) | 2009-08-20 |
WO2007104657A3 (de) | 2007-11-22 |
CN101405207A (zh) | 2009-04-08 |
WO2007104657A2 (de) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1996492A2 (de) | Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel | |
WO2007104676A1 (de) | Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel | |
EP1996493A2 (de) | Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel | |
EP1919609B1 (de) | Verfahren zur herstellung wasserabsorbierender polymerpartikel | |
EP1926754B1 (de) | Polymerisationsverfahren | |
EP1931616B1 (de) | Neutralisationsverfahren | |
EP2137262B1 (de) | Verfahren zum beschichten wasserabsorbierender polymerpartikel | |
EP1926756B1 (de) | Polymerisationsverfahren | |
EP1926758B1 (de) | Polymerisationsverfahren | |
EP2069121B1 (de) | Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel | |
EP2238181B1 (de) | Verfahren zur herstellung wasserabsorbierender polymerpartikel | |
EP2222398B1 (de) | Verfahren zur herstellung wasserabsorbierender polymerpartikel | |
EP2225284B2 (de) | Verfahren zur herstellung wasserabsorbierender polymerpartikel | |
EP2274087A1 (de) | Verfahren zur herstellung wasserabsorbierender polymerpartikel | |
EP1965905B1 (de) | Verfahren zum kontinuierlichen mischen von polymerpartikeln | |
EP2129706B1 (de) | Verfahren zum beschichten wasserabsorbierender polymerpartikel | |
DE102005058631A1 (de) | Verfahren zum kontinuierlichen Mischen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081014 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20100804 |
|
DAX | Request for extension of the european patent (deleted) | ||
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20150505 |