WO2011111855A1 - 吸水性樹脂の製造方法 - Google Patents

吸水性樹脂の製造方法 Download PDF

Info

Publication number
WO2011111855A1
WO2011111855A1 PCT/JP2011/055944 JP2011055944W WO2011111855A1 WO 2011111855 A1 WO2011111855 A1 WO 2011111855A1 JP 2011055944 W JP2011055944 W JP 2011055944W WO 2011111855 A1 WO2011111855 A1 WO 2011111855A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat treatment
absorbent resin
surface treatment
polymerization
Prior art date
Application number
PCT/JP2011/055944
Other languages
English (en)
French (fr)
Inventor
修二 神▲崎▼
純男 奥田
邦彦 石▲崎▼
智嗣 松本
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2012504554A priority Critical patent/JP5504334B2/ja
Priority to EP11753510.4A priority patent/EP2546284B1/en
Priority to US13/634,151 priority patent/US9233186B2/en
Publication of WO2011111855A1 publication Critical patent/WO2011111855A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/56Wetness-indicators or colourants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing a water absorbent resin. More specifically, the present invention relates to a method for providing a water-absorbing resin having high physical properties by uniform surface cross-linking in a continuous manufacturing method of a giant-scale water-absorbing resin composed of connected continuous processes.
  • Water-absorbent resin (SAP / Super Absorbent Polymer) is a water-swellable, water-insoluble polymer gelling agent, absorbent articles such as paper diapers and sanitary napkins, water retaining agents for agriculture and horticulture, and industrial waterstop materials. As such, it is often used mainly for disposable applications.
  • a water-absorbing resin many monomers and hydrophilic polymers have been proposed as raw materials, and in particular, polyacrylic acid (salt) using acrylic acid and / or a salt thereof as a monomer.
  • the water-absorbing resin is most often used industrially because of its high water absorbing performance.
  • Such a water-absorbing resin can be obtained by finely granulating a water-containing gel-like polymer obtained by polymerizing an aqueous monomer solution at the time of polymerization or after polymerization, and drying the obtained particulate water-containing gel-like polymer. After drying, it includes a pulverization step and a classification step as necessary, and is optionally surface-crosslinked before or after drying.
  • one or more processes such as a fine powder recovery process, a process for removing undried material after drying, a packaging process, and a process for adding other additives (fine particles, deodorant, antibacterial agent, etc.) Further, it may be included.
  • aqueous solution polymerization or reverse phase suspension polymerization is used, and the product form is generally a powder of about 10 to 1000 ⁇ m.
  • a method for producing a water-absorbing resin including many steps is exemplified in Patent Documents 1 to 13 and the like.
  • substantially continuous means that the process is repeated continuously even in the batch process.
  • the hydrated gel or a dried product thereof is stored and continuously supplied to the continuous process (one The process as a whole is a continuous process (including partial batch processes).
  • Patent Documents 9 to 12 disclose such troubles (stopping operation) in the pulverization process, transport process and storage process.
  • the present inventors have intensively studied and found that there is a problem in the surface treatment process and that the above problems can be solved by controlling the method of stopping the surface treatment process.
  • the method for producing a water-absorbent resin of the present invention includes a particulate hydrous gel-like cross-linking obtained in a polymerization step of an unsaturated monomer aqueous solution and a granulation step during or after polymerization.
  • a method for producing a water absorbent resin comprising a polymer drying step, a pulverizing step after drying, a classification step after drying, and a surface treatment step of the water absorbent resin powder after the classification step, wherein the heat treatment machine is heated.
  • the manufacturing method is characterized in that the surface treatment step is interrupted while being held in a state, and then the surface treatment step is resumed.
  • the interruption of the surface treatment step refers to a state in which the water-absorbing resin powder is substantially absent in the heat treatment machine, or a state in which the water treatment resin powder is not charged or discharged into the heat treatment machine in the continuous surface treatment.
  • the method for producing a water-absorbent resin of the present invention is obtained by a polymerization step of an unsaturated monomer aqueous solution and a granulation step during or after polymerization.
  • a method for producing a water absorbent resin comprising: a drying step of the obtained particulate hydrogel crosslinked polymer, a grinding step after drying, a classification step after drying, and a surface treatment step of the water absorbent resin powder after the classification step
  • the surface treatment process is interrupted, the heating of the heat treatment machine is stopped, cleaning in the heat treatment machine is started within 100 hours, and then the surface treatment process is restarted. It is a manufacturing method.
  • the interruption of the surface treatment step refers to a state in which the water-absorbing resin powder is substantially absent in the heat treatment machine, or a state in which the water treatment resin powder is not charged or discharged into the heat treatment machine in the continuous surface treatment.
  • the water-absorbing resin in particular, the continuous surface treatment process in which surface treatment is performed for 1 ton or more per hour, the water-absorbing resin can be stably produced by performing the surface treatment stably without coloring.
  • FIG. 1 is a schematic view showing a flow of continuous production of a typical water absorbent resin.
  • Water-absorbent resin in the present invention means a water-swellable water-insoluble polymer gelling agent.
  • Water swellability means that the CRC (water absorption capacity under no pressure) specified by ERT441.2-02 is essentially 5 [g / g] or more, and “water insolubility” means Ext (water soluble content) specified by ERT470.2-02 is essentially 0 to 50% by mass.
  • the water-absorbent resin can be appropriately designed according to its use and is not particularly limited, but may be a hydrophilic cross-linked polymer obtained by cross-linking an unsaturated monomer having a carboxyl group. preferable. Moreover, the whole quantity (100 mass%) is not limited to the form which is a polymer, In the range which maintains the said performance, the additive etc. may be included. That is, even a water absorbent resin composition is generically referred to as a water absorbent resin in the present invention.
  • the content of the polyacrylic acid (salt) water-absorbing resin is preferably 70 to 99.9% by mass, more preferably 80 to 99.7% by mass, and still more preferably 90 to 99% by mass. 0.5% by mass.
  • water is preferable from the viewpoint of water absorption speed and impact resistance of the powder (particles), and if necessary, additives described later are included.
  • polyacrylic acid (salt) -based water absorbent resin refers to acrylic acid and / or a salt thereof (hereinafter referred to as acrylic acid) as a main repeating unit.
  • (Salt) means a water-absorbent resin having a unit derived from. Specifically, among the total monomers (excluding the crosslinking agent) used in the polymerization, a polymer containing 50 to 100 mol% of acrylic acid (salt) essentially, preferably 70 to 100 mol%, More preferably, it refers to a water-absorbing resin containing 90 to 100 mol%, particularly preferably substantially 100 mol%.
  • the salt as a polymer essentially includes a water-soluble salt, preferably a monovalent salt, more preferably an alkali metal salt or an ammonium salt, particularly an alkali metal salt, and further a sodium salt.
  • the “initial color tone” in the present invention refers to the color tone of the water absorbent resin immediately after production or the water absorbent resin immediately after shipment from the user, and is usually managed with the color tone before shipment from the factory.
  • Examples of the color tone measurement method include the methods described in International Publication No. 2009/005114 (Lab value, YI value, WB value, etc.).
  • coloring with time refers to a change in the color of the water-absorbent resin that occurs during long-term storage or distribution in an unused state. Since the water-absorbent resin is colored over time, the commercial value of the paper diaper can be reduced. Since coloration with time occurs in units of several months to several years, it is verified by an accelerated test (accelerated test under high temperature and high humidity) disclosed in International Publication No. 2009/005114.
  • EDANA European Disposables and Nonwovens Associations
  • ERT is an abbreviation for a method for measuring water-absorbent resin (EDANA Recommended Test Method), which is a European standard (almost world standard). is there.
  • EDANA Recommended Test Method European Standard (almost world standard).
  • CRC is an abbreviation for Centrifugation Retention Capacity (centrifuge retention capacity), and means water absorption capacity without pressure (hereinafter also referred to as “water absorption capacity”). Specifically, it is the water absorption capacity (unit: [g / g]) after 30 minutes of free swelling with respect to a 0.9% by mass sodium chloride aqueous solution and further drained with a centrifuge.
  • AAP is an abbreviation for Absorption against Pressure, which means water absorption capacity under pressure. Specifically, the water absorption capacity after swelling under a load of 2.06 kPa (0.3 psi, 21 [gf / cm 2 ]) for 1 hour with respect to a 0.9% by mass sodium chloride aqueous solution (unit: [g / g]) ). In the present invention, the load condition was 2.06 kPa (0.3 psi, 21 [gf / cm 2 ]) or 4.83 kPa (0.7 psi, 50 [gf / cm 2 ]).
  • Extractables is an abbreviation for Extractables and means a water-soluble component (water-soluble component amount). Specifically, 1 g of a water-absorbing resin was added to 200 g of a 0.9% by mass sodium chloride aqueous solution, and after stirring for 16 hours, the amount of dissolved polymer was measured by pH titration (unit: mass%). is there.
  • FSC Free Well Capacity
  • D water absorption ratio (unit: [g / g]) measured without immersing 0.20 g of the water-absorbing resin in a 0.9 mass% sodium chloride aqueous solution for 30 minutes and then draining with a centrifuge. is there.
  • Residual Monomers (ERT410.2-02) “Residual Monomers” means the amount of monomer remaining in the water-absorbent resin. Specifically, 0.5 g of a water-absorbing resin was added to a 0.9% by mass sodium chloride aqueous solution, stirred for 2 hours, and the amount of monomer eluted in the aqueous solution was measured by high performance liquid chromatography (unit: ppm). is there.
  • PSD is an abbreviation for Particle Size Distribution and means a particle size distribution measured by sieving classification.
  • the mass average particle size (D50) and the particle size distribution width are the same as those described in “(1) Average Particle Diameter and Distillation of Particle Diameter” described in European Patent No. 0349240, page 7, lines 25 to 43. Measure with
  • liquid permeability The flow of liquid flowing between the particles of the swollen gel under load or no load is referred to as “liquid permeability”.
  • Typical measurement methods for this “liquid permeability” include SFC (Saline Flow Conductivity) and GBP (Gel Bed Permeability).
  • SFC saline flow inductivity
  • GBP refers to the permeability of 0.69% by mass physiological saline to the water-absorbent resin under load or free expansion. It is measured according to the GBP test method described in International Publication No. 2005/016393 pamphlet.
  • the “apparatus heating state” means a state in which the apparatus is heated by a heat source such as a heater, water vapor, hot air, etc. by energization, and the heat source is turned off. It does not include the state with residual heat. However, the state (off) in which the heat source is turned off to control to a constant temperature is included.
  • an apparatus means the apparatus used at each process, for example, the dryer in a drying process and the heat processing machine in a surface treatment process are contained.
  • Process interruption in the present invention means a state in which the water-absorbent resin powder is substantially absent in the apparatus, or a state in which the water-absorbing resin powder is not charged or discharged into the apparatus in a continuous process. That is, the “substantially absent state” means that the surface-treated water absorbent resin powder is taken out from the apparatus (heat treatment machine) (usually 95% by mass or more, preferably 98% by mass of the entire apparatus retention amount). Or more, more preferably 99% by mass or more, and particularly preferably substantially 100% by mass). A small amount of the water-absorbent resin powder after the surface treatment may adhere, fall, stay, or scatter in the apparatus.
  • the idle operation of the apparatus is also included in the “interruption of the process” of the present invention.
  • the “state in which the apparatus is not charged or discharged” in the continuous process refers to a state in which the water-absorbent resin powder is stopped in the apparatus, and indicates a stop of the apparatus.
  • Continuous production such as continuous polymerization and continuous drying
  • continuous production means that the water-absorbing resin is continuously charged into the apparatus in each process and continuously discharged.
  • the operating time is preferably 24 hours or longer, more preferably 240 hours (10 days) or longer, and even more preferably 720 hours (30 days) or longer.
  • the present invention is preferably applied to such continuous production (each process such as drying and surface crosslinking).
  • X to Y indicating a range means “X or more and Y or less”.
  • t (ton) which is a unit of mass means “Metric ton (metric ton)”, and unless otherwise noted, “ppm” means “ppm by weight” or “ppm by mass”.
  • ppm means “ppm by weight” or “ppm by mass”.
  • ⁇ acid (salt) means “ ⁇ acid and / or salt thereof”
  • (meth) acryl means “acryl and / or methacryl”.
  • the water-absorbent resin obtained in the present invention uses an aqueous solution containing acrylic acid (salt) as a main component as a raw material (monomer), and is usually polymerized in an aqueous solution state.
  • the monomer concentration (solid content concentration) in the monomer aqueous solution is usually 10 to 90% by mass, preferably 20 to 80% by mass.
  • a surfactant when the monomer is polymerized in an aqueous solution, a surfactant, polyacrylic acid (salt), starch, cellulose, polyvinyl alcohol, and other polymer compounds, various chelating agents, and various additives can be used as necessary. You may add 0-30 mass% with respect to a weight body.
  • the acid groups of the polymer is neutralized in the hydrogel obtained by polymerization of the aqueous solution from the viewpoint of water absorption performance.
  • the neutralization can be performed before the polymerization of acrylic acid (monomer), during the polymerization, or after the polymerization (hydrous gel), but the productivity of the water-absorbent resin, AAP (water absorption capacity under pressure) and SFC (physiology) From the viewpoint of improving the saline flow conductivity), it is preferable to perform neutralization before the polymerization of acrylic acid. That is, it is preferable to use neutralized acrylic acid (that is, a partially neutralized salt of acrylic acid) as a monomer.
  • the neutralization rate of the neutralization is not particularly limited, but is preferably 10 to 100 mol%, more preferably 30 to 95 mol%, further preferably 50 to 90 mol%, more preferably 60 to 80 mol% based on the acid group. Is particularly preferred. When the neutralization rate is less than 10 mol%, CRC (water absorption capacity under no pressure) may be particularly lowered, which is not preferable.
  • a hydrophilic or hydrophobic unsaturated monomer other than acrylic acid (salt) (hereinafter also referred to as “other monomer”).
  • other monomers include, but are not limited to, methacrylic acid, (anhydrous) maleic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, (meth) acryloxyalkanesulfonic acid, N- Vinyl-2-pyrrolidone, N-vinylacetamide, (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate , Polyethylene glycol (meth) acrylate, stearyl acrylate and salts thereof.
  • the amount used is not particularly limited as long as it does not impair the water-absorbing properties of the resulting water-absorbent resin, but is 50% by mass with respect to the mass of all monomers. The following is preferable, and 20% by mass or less is more preferable.
  • (B) Neutralization salt The basic substance used for neutralization of acrylic acid as the monomer or polymer after polymerization (hydrogel) is not particularly limited, but sodium hydroxide, potassium hydroxide, Monovalent basic substances such as alkali metal hydroxides such as lithium hydroxide and carbonate (hydrogen) salts such as sodium carbonate (hydrogen) and potassium carbonate (hydrogen) are preferred, and sodium hydroxide is particularly preferred.
  • the temperature during neutralization is not particularly limited, but is preferably 10 to 100 ° C, more preferably 30 to 90 ° C.
  • neutralization treatment conditions other than the above conditions disclosed in International Publication No. 2006/522181 and US Pat. No. 6388000 are preferably applied to the present invention.
  • crosslinking agent (internal crosslinking agent)
  • a cross-linking agent (hereinafter also referred to as “internal cross-linking agent”) from the viewpoint of the water absorption performance of the resulting water-absorbent resin.
  • the internal cross-linking agent that can be used is a compound having two or more polymerizable double bonds per molecule, or a polyfunctional compound having two or more functional groups per molecule capable of reacting with a carboxyl group to form a covalent bond.
  • a crosslinking agent having a polymerizable crosslinking agent with acrylic acid, a reactive crosslinking agent with a carboxyl group, and a crosslinking agent having them can be exemplified.
  • N, N′-methylenebisacrylamide, (poly) ethylene glycol di (meth) acrylate, (polyoxyethylene) trimethylolpropane tri (meth) acrylate, poly (meth) ary can be used as the polymerizable crosslinking agent.
  • examples thereof include compounds having at least two polymerizable double bonds in the molecule, such as roxyalkane.
  • polyglycidyl ethers such as ethylene glycol diglycidyl ether
  • covalent crosslinking agents such as polyhydric alcohols such as propanediol, glycerin and sorbitol, and ionic bonds that are polyvalent metal compounds such as aluminum salts
  • a polymerizable crosslinking agent with acrylic acid is preferable, and acrylate-based, allyl-based, and acrylamide-based polymerizable crosslinking agents are particularly preferably used.
  • These internal crosslinking agents may be used alone or in combination of two or more.
  • the amount of the internal cross-linking agent used is preferably 0.001 to 5 mol%, more preferably 0.005 to 2 mol%, more preferably 0.01 1 mol% is more preferable, and 0.03 to 0.5 mol% is particularly preferable.
  • the content of protoanemonin and / or furfural in acrylic acid is preferably 0 to 10 ppm, more preferably 0 to 5 ppm, More preferred is ⁇ 1 ppm.
  • the content in acrylic acid is preferably 0 to 5 ppm, more preferably 0 to 3 ppm, further preferably 0 to 1 ppm, and 0 ppm (detection limit). The following is particularly preferable.
  • the aldehyde component other than furfural examples include benzaldehyde, acrolein, acetaldehyde and the like.
  • the acrylic acid dimer content is preferably 0 to 500 ppm, more preferably 0 to 200 ppn, and further preferably 0 to 100 ppm.
  • the unsaturated monomer preferably contains methoxyphenols, more preferably p-methoxyphenol.
  • the content of methoxyphenols is preferably 1 to 250 ppm, more preferably 5 to 200 ppm, still more preferably 10 to 160 ppm, and particularly preferably 20 to 100 ppm based on the monomer (acrylic acid).
  • a water-soluble resin or a water-absorbing resin such as starch, polyacrylic acid (salt), polyvinyl alcohol, and polyethyleneimine is, for example, 0 to 50% by mass, preferably 0 to 20% by mass, based on the monomer.
  • 0 to 10 mass%, more preferably 0 to 3 mass% can be added.
  • foaming agents carbonates, azo compounds, bubbles, etc.
  • surfactants various chelating agents, additives such as hydroxycarboxylic acids and reducing inorganic salts are added to the monomer, for example, 0-5. % By mass, preferably 0 to 1% by mass can be added.
  • chelate Agents hydroxycarboxylic acids, and reducing inorganic salts are preferably used, and chelating agents are particularly preferably used.
  • the amount used is preferably 10 to 5000 ppm, more preferably 10 to 1000 ppm, still more preferably 50 to 1000 ppm, and particularly preferably 100 to 1000 ppm with respect to the water absorbent resin.
  • the compound disclosed by international publication 2009/005114, European patent application publications 20572228, and 1848758 is used.
  • the polymerization initiator used in the present invention is appropriately selected depending on the polymerization form and is not particularly limited.
  • a thermal decomposition polymerization initiator, a photodecomposition polymerization initiator, a redox polymerization initiator, and the like can be given.
  • thermal decomposition type polymerization initiator examples include persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; peroxides such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide; 2 Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride and 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride.
  • the photodegradable polymerization initiator examples include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, and azo compounds.
  • examples of the redox polymerization initiator include a system in which a reducing compound such as L-ascorbic acid or sodium hydrogen sulfite is combined with the persulfate or peroxide.
  • a combination of the thermal decomposition type polymerization initiator and the photodecomposition type polymerization initiator can also be mentioned as a preferred embodiment.
  • the amount of these polymerization initiators used is preferably 0.0001 to 1 mol%, more preferably 0.001 to 0.5 mol%, based on the monomer.
  • the usage-amount of a polymerization initiator exceeds 1 mol%, since coloring of a water absorbing resin may be caused, it is unpreferable.
  • the usage-amount of a polymerization initiator is less than 0.0001 mol%, since there exists a possibility of increasing a residual monomer, it is unpreferable.
  • polymerization may be carried out by irradiating active energy rays such as radiation, electron beam, ultraviolet rays, etc., and polymerization is carried out using these active energy rays and a polymerization initiator in combination. May be.
  • active energy rays such as radiation, electron beam, ultraviolet rays, etc.
  • (G) Polymerization method crosslinking polymerization step
  • aqueous solution polymerization or reverse phase suspension polymerization is usually employed.
  • aqueous solution polymerization more preferably continuous aqueous solution polymerization is employed.
  • it is preferably applied to manufacture on a huge scale with a large production amount per line of water-absorbing resin.
  • the production amount is 0.5 [t / hr] or more, more preferably 1 [t / hr] or more, further preferably 5 [t / hr] or more, particularly preferably 10 [t / hr] or more. It is.
  • continuous belt polymerization (US Pat. Nos. 4,893,999 and 6,241,928, US Patent Application Publication No. 2005/215734, etc.), continuous kneader polymerization (US Pat. No. 6,987,151, 670141 etc.).
  • Polymerization or high monomer concentration polymerization in which the monomer concentration is 35% by mass or more, preferably 40% by mass or more, particularly preferably 45% by mass or more (the upper limit is a saturated concentration) can be exemplified as the most preferable example.
  • the polymerization initiation temperature is defined by the liquid temperature immediately before supplying the monomer aqueous solution to the polymerization machine.
  • the conditions disclosed in US Pat. Nos. 6,906,159 and 7091253 are preferably applied to the present invention. can do.
  • the degree of increase in solid content from the aqueous monomer solution is preferably 1% by mass or more, more preferably 2 to 40% by mass, and more preferably 3 to 30%. More preferred is mass%.
  • a range in which a hydrogel crosslinked polymer having a solid content of 80% by mass or less is obtained is preferable.
  • These polymerizations can also be carried out in an air atmosphere, but are preferably carried out in an atmosphere of an inert gas such as nitrogen or argon (for example, an oxygen concentration of 1% by volume or less) from the viewpoint of preventing coloring.
  • an inert gas such as nitrogen or argon (for example, an oxygen concentration of 1% by volume or less) from the viewpoint of preventing coloring.
  • it can implement under any pressure of pressure reduction, a normal pressure, and pressurization.
  • the water-containing gel obtained in the polymerization step may be dried as it is, but in order to solve the above problems, preferably a crusher (kneader, meat chopper, cutter mill, etc.) is used at the time of polymerization or after polymerization if necessary.
  • the gel is crushed into particles. That is, a hydrated gel refinement (hereinafter also referred to as “gel crushing”) step may be further included between the polymerization step by continuous belt polymerization or continuous kneader polymerization and the drying step.
  • gel crushing a hydrated gel refinement
  • the gel is finely divided by dispersion in a solvent at the time of polymerization, such as reverse phase suspension polymerization, it is included in the finely divided (finely divided during polymerization) step of the present invention. Is crushed using a crusher.
  • the temperature of the water-containing gel at the time of gel crushing is preferably kept at 40 to 95 ° C., more preferably 50 to 80 ° C. from the viewpoint of physical properties.
  • the mass average particle diameter (D50) of the particulate hydrogel after gel crushing is preferably 0.5 to 4 mm, more preferably 0.3 to 3 mm, and even more preferably 0.5 to 2 mm.
  • the mass average particle diameter (D50) of the particulate hydrous gel is preferably within the above range, since drying is performed efficiently.
  • the proportion of the particulate hydrogel having a particle size of 5 mm or more is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, based on the entire particulate hydrogel.
  • the particle diameter of the particulate hydrogel is measured using a wet classification method described in paragraph [0091] of JP-A No. 2000-63527.
  • the drying step is a step of drying the particulate hydrogel crosslinked polymer obtained in the finely pulverizing step during polymerization or after polymerization.
  • aeration band type continuous dryer and a fluidized bed dryer can be preferably used, and more preferably, an aeration band.
  • a continuous dryer can be used. By using an aeration band type continuous dryer, efficient drying can be performed.
  • the continuous drying time is preferably 24 hours or more, more preferably 120 hours or more, further preferably 240 hours or more, and particularly preferably 720 hours or more.
  • a ventilation belt type dryer (belt type dryer) is preferably used.
  • a conduction heat transfer type dryer, a radiation heat transfer type dryer, One type or two or more types such as a hot-air heat transfer dryer and a dielectric heating dryer can be used, and a hot-air heat transfer dryer (hereinafter referred to as a hot-air dryer) is preferable because of the speed of drying.
  • Hot air dryers include aeration belt (band) type, ventilation circuit type, ventilation tank type, parallel flow belt (band) type, ventilation tunnel type, ventilation groove type stirring type, fluidized bed type, airflow type, spraying type, etc. Examples thereof include a drying device.
  • a ventilation belt type is preferable in terms of controlling physical properties. Although other dryers may be used in combination, it is preferably dried only by a ventilation belt type dryer (belt type dryer).
  • Examples of the heat source of the dryer include a heater by energization and various heating gases such as water vapor and hot air.
  • a particularly preferred heat source is heated steam (100 ° C. or higher). Such heated steam is recycled and, if necessary, reheated through a heat exchanger and used in a drying step of the water absorbent resin or in another step.
  • the heating temperature may be constant or changed.
  • the drying temperature is usually 100 to 250 ° C., preferably 100 to 220 ° C., more preferably 120 to 200 ° C., and particularly preferably 150 to 190 ° C. (hot air temperature).
  • the speed of hot air passing through the drying chamber is more efficient if it is as fast as possible within a range where the polymer is not blown off so much, preferably 0.1 to 5 [m / s], more preferably 0.5 to 3 [m / s].
  • the wind speed is less than 0.1 [m / s]
  • the time required for drying to a predetermined moisture content becomes too long, and the dryer becomes huge.
  • the wind speed exceeds 5 [m / s]
  • more polymer jumps out of the drying chamber and stable operation becomes difficult.
  • the drying time (the time from when the particulate hydrogel crosslinked polymer is charged into the dryer until the same particulate hydrogel crosslinked polymer is discharged from the dryer as a dried product) is the surface area of the polymer, Depending on the moisture content, the type of dryer and the air volume, it is selected to achieve the desired moisture content. For example, the drying time may be appropriately selected within the range of 1 minute to 1 hour.
  • the present invention is applied to huge scale continuous drying in which the belt length of the dryer used is 5 to 100 m, more preferably 10 to 70 m, particularly 20 to 60 m.
  • the width of the belt is not limited, it is usually determined appropriately from 0.5 to 10 m, and more preferably from 1 to 5 m.
  • the ratio between the width direction and the length direction may be determined according to the purpose, but the length direction (traveling direction) is preferably longer than the width, and is usually determined appropriately from 3 to 500 times, more preferably from 5 to 100 times. Is done.
  • the drying of the present invention is preferably carried out on a continuous ventilation belt, and examples of the ventilation belt include a wire mesh (for example, openings of 1000 to 45 ⁇ m) and punching metal, but punching metal is preferably used.
  • Punching metal hole shapes can be widely applied, for example, round holes, oval holes, square holes, hexagonal holes, long round holes, long square holes, rhombus holes, cross holes, and combinations of these shapes.
  • the lines may be in a staggered pattern or in a parallel pattern.
  • the hole may be formed in three dimensions such as a louver (bay window), but preferably has a hole having a planar structure.
  • the pitch direction may be vertical, horizontal, or diagonal in the traveling direction of the belt, or they may be used in combination. The size of the punching metal and the hole area ratio will be described later.
  • the transfer speed of the particulate hydrogel crosslinked polymer on the ventilation belt may be appropriately adjusted according to the belt width, belt length, production amount, drying time, from the viewpoint of load of the belt driving device, durability, etc.
  • the dryer has 5 or more rooms, particularly 6 or more rooms, and more preferably 8 or more rooms. Preferably there is.
  • the upper limit is appropriately set by a scale or the like, but about 20 rooms are usually sufficient.
  • the area occupancy on the belt is usually 85 to 100%, preferably 87 to 100%, more preferably 87 to 99%, Particularly preferred is 90 to 98%, and most preferred is 93 to 97%.
  • the area occupancy is defined as the area ratio (percentage) that the laminate of the particulate hydrous gel occupies on the surface of the ventilation belt with respect to the ventilation belt area (A) at the initial stage of the drying process.
  • the ventilation belt area (A) includes the area of the holes.
  • the area (B) in which the laminate of the particulate hydrogel in the initial stage occupies the surface of the ventilation belt is defined by the area occupied by the laminate of the particulate hydrogel in the section.
  • the area occupation ratio (B / A ⁇ 100 (%)) is defined by the ventilation belt area (A) defined above and the occupation area (B) of the laminate of the particulate hydrous gel.
  • the non-occupied portion on the belt is appropriately determined, and a portion where the hydrogel is not laminated may be provided at a central portion, both ends, and a middle fixed position, and preferably a constant region where no hydrogel is installed is provided at both ends. .
  • the punching ratio of the punching metal preferred in the present invention is 15 to 50%, more preferably 20 to 45%, particularly preferably. Is 25-40%.
  • the hole area ratio is determined by the hole, pitch (P), and the like, and when there is no hole in a certain region, for example, when the punching metal has an edge, it is defined by the area including that part.
  • the area of one hole is preferably larger than the cross-sectional area of one particle of the hydrous gel, 2 to 100 times, more preferably 4 to 50 times Range.
  • the maximum opening distance of the pores is preferably larger than the mass average particle diameter of the particulate hydrogel, 2 to 100 times, and more preferably 4 to 50 Double the range.
  • the average opening area of the holes is 5 to 500 mm 2 , preferably 10 to 100 mm 2 , particularly preferably 15 to 50 mm 2 .
  • (D) Resin solid content As described above, in the polymerization step of the production method of the present invention, continuous kneader polymerization or continuous belt polymerization in which polymerization is performed while water is evaporated is preferable.
  • the degree of increase in the solid content is 1% by mass or more, further 2% by mass or more, particularly 5% by mass or more.
  • the fine resin particles may be recycled.
  • the solid content of the particulate hydrogel crosslinked polymer before being introduced into the drying step is preferably 45% by mass or more.
  • the particulate hydrogel crosslinked polymer is dried on a scale of 1 [t / hr] or more. Resin solids can be controlled by monomer concentration, moisture evaporation during polymerization, fine powder recycling, etc., and by increasing the resin solids, not only energy reduction but also adhesion to the dryer can be achieved. Can be reduced.
  • the dried product obtained in the drying step is pulverized and classified to obtain a water-absorbent resin powder.
  • the water absorbent resin powder refers to a water absorbent resin before the following surface cross-linking.
  • the dried product obtained in the drying step can be used as a dry powder as it is, but the particulate hydrous gel may aggregate to form a block-like lump during drying. This phenomenon is particularly observed in a band drier, and requires pulverization or crushing (an operation for releasing aggregation). Furthermore, it is preferable to control to a specific particle size in order to improve physical properties in the surface cross-linking step described later.
  • the particle size control is not limited to the main pulverization step and the classification step, and can be appropriately performed in a polymerization step (particularly, reverse phase suspension polymerization), a fine powder collection step, a granulation step, and the like.
  • the particle size is defined by a standard sieve (JIS Z8801-1 (2000)).
  • the pulverizer that can be used in the pulverization step is not particularly limited, and a conventionally known pulverizer can be used. Specific examples include a roll mill, a hammer mill, a roll granulator, a jaw crusher, a gylet crusher, a cone crusher, a roll crusher, and a cutter mill. Among these, it is preferable to use a multistage roll mill or roll granulator from the viewpoint of particle size control. In the classification step, various classifiers such as sieve classification and airflow classification can be used.
  • the classification step of the present invention is essentially performed before surface crosslinking and / or after surface crosslinking, preferably before surface crosslinking, and more preferably twice before and after surface crosslinking.
  • the mass average particle diameter (D50) of the water absorbent resin powder is preferably 200 to 600 ⁇ m, more preferably 200 to 550 ⁇ m, further preferably 250 to 500 ⁇ m, and particularly preferably 350 to 450 ⁇ m.
  • the ratio of fine particles passing through a sieve having 150 ⁇ m openings is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and more preferably 0 to 1% by mass is more preferable.
  • the ratio of huge particles that do not pass through a sieve having an opening of 850 ⁇ m is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and more preferably 0 to 1% by mass is more preferable.
  • These particle sizes are disclosed in International Publication No. 2004/69915 and EDANA-ERT420.2. Measured by the method disclosed in -02 (Particle Size Distribution).
  • the method for producing a water-absorbent resin according to the present invention comprises a particulate hydrous gel obtained in a polymerization step of an unsaturated monomer aqueous solution and a granulation step during or after polymerization.
  • a method for producing a water-absorbent resin comprising, for example, FIG. 1, characterized in that the surface treatment step is interrupted while the heat treatment machine is kept heated, and then the surface treatment step is restarted. It is a manufacturing method of a water absorbing resin.
  • the interruption of the surface treatment step refers to a state in which the water-absorbing resin powder is substantially absent in the heat treatment machine, or a state in which the water treatment resin powder is not charged or discharged into the heat treatment machine in the continuous surface treatment.
  • the manufacturing process of the water-absorbent resin consists of continuous operation of a number of processes such as a polymerization process, a granulation process, a drying process, a pulverization process, a classification process, and a surface treatment process.
  • a polymerization process such as a polymerization process, a granulation process, a drying process, a pulverization process, a classification process, and a surface treatment process.
  • regular maintenance or temporary troubles operation troubles in some processes
  • colored foreign substances mainly water-absorbent resin discoloration
  • the heat treatment machine used in the surface treatment process (heat treatment process) among the above processes is assumed to be stopped, and the heat treatment machine stop method capable of solving the above-described problems has been focused. That is, in the present invention, it has been found that the above-mentioned problem can be solved by holding the heat treatment machine in a heated state even during the interruption period of the heat treatment process. By performing the above operation, the heat treatment machine operates smoothly when the operation is resumed, and further, the continuous surface treatment can be performed stably without the mixing of colored foreign substances into the water absorbent resin. “Holding the heat treatment machine in a heated state” refers to continuous application of the heat source, and during the suspension period of the heat treatment process, the heat source is not applied, and the state of only residual heat is included in the heating state. I can't.
  • the heat source examples include heaters by energization and various heating gases such as water vapor and hot air, but continuous application of the heating gas is preferable.
  • heated steam 100 ° C. or higher
  • heated steam is recycled and, if necessary, reheated through a heat exchanger and used in a drying step of the water absorbent resin or in another step.
  • the continuous application of the heat source to the dryer may be performed at a desired heating temperature, preferably within a temperature range that maintains the following range. Even with continuous heating, intermittent heating (On / Off) It may be.
  • the heating temperature may be constant or may be changed.
  • the heat treatment machine and the water absorbent resin powder remaining in the heat treatment machine are heated by a method in which air is heated by the heat source and blown into the heat treatment machine, or a method in which the heat treatment machine is heated by tracing.
  • the heat treatment process can be applied to any of continuous, semi-continuous, and batch processes, but is preferably applied to the continuous heat treatment process. That is, when stopping the continuous heat treatment process, the heat treatment is resumed after the heat treatment machine is stopped in a heated state. If the heat treatment is restarted after the heat treatment machine is completely stopped, excessive energy (torque) may be required in the paddle at the start of operation, or colored foreign matter may be mixed.
  • the treatment time for the heat treatment is preferably continuous operation for 24 hours or more, more preferably 120 hours or more, further preferably 240 hours or more, and particularly preferably 720 hours or more.
  • the time from the stop of the heat treatment to the start of the heat treatment is preferably 0.5 hours or more, more preferably 0.5 hours or more and 100 days or less, and 1 hour or more and 50 days. Is more preferably 5 hours or more and 20 days or less, and most preferably 10 hours or more and 15 days or less.
  • the interruption period of the heat treatment process is less than 0.5 hours, the effect of stopping in the heated state is small because the amount of temperature decrease from the heat treatment temperature before the stop is small.
  • the interruption period of the heat treatment process exceeds 100 days, the heat treatment machine is not used for a long period of time, so that the energy use is prolonged and the energy cost is disadvantageous.
  • the temperature of the heat treatment machine (atmosphere temperature in the heat treatment machine) during the interruption period of the heat treatment process is not particularly limited as long as the heating state is continued, but a temperature lower than the heat treatment temperature is preferable from the viewpoint of energy and coloring. .
  • the temperature is preferably lowered by 10 ° C. or more from the heat treatment temperature, and is preferably lowered by 20 ° C. or more, 30 ° C. or more, and 40 ° C. or more in order.
  • the temperature of the heat treatment machine during the interruption period of the heat treatment process may be 40 ° C. or higher, more preferably 60 ° C. or higher, and 80 to 140 ° C. If water-absorbent resin powder remains in the heat treatment machine, such as when trouble occurs after the heat treatment machine, if the heat treatment machine is stopped at the heat treatment temperature during the interruption period, it remains in the heat treatment machine. Since the water absorption ratio of the water-absorbing resin powder is reduced, it may take time to obtain a water-absorbing resin having a desired water absorption ratio when the heat treatment machine is restarted.
  • the stay or the aggregated particles thereof made of the water absorbent resin powder from the heat treatment machine.
  • a water-absorbing resin free from colored foreign matters for example, a water-absorbing resin burned yellow, brown, brown, or black
  • the colored foreign matter is generated when a stay made of water-absorbent resin powder stays in the heat treatment machine for a long time. Therefore, when continuously operating for 5 days or more, 10 days or more, or even 20 days or more, it is preferable to periodically remove and clean the stays made of the water absorbent resin powder.
  • the shape of the staying material is not particularly limited, but is usually in the form of particles, and they stay in the heat treatment machine by dropping, scattering or adhering from the paddle of the heat treatment machine.
  • it may be removed by suction with a vacuum, removal with a brush, or blowing off with (pressurized) air.
  • the heat treatment machine may be in a heated state, but when the worker cleans the inside of the heat treatment machine, after reducing the temperature to about room temperature from the ease of the removal work, It is preferable to perform cleaning promptly. Start cleaning within 100 hours.
  • the start of cleaning is preferably within 48 hours, more preferably within 24 hours, even more preferably within 12 hours, and particularly preferably within 6 hours.
  • the step of modifying the vicinity of the particle surface with respect to the water-absorbing resin powder (particles) having the predetermined particle size is referred to as a surface treatment step.
  • surface treatment is exemplified by surface cross-linking and addition of various additives and polymers to the particle surface, but preferably surface cross-linking by heating reaction is essential.
  • surface treatments other than surface crosslinking include addition of water-soluble or water-insoluble polymers, lubricants, chelating agents, deodorants, antibacterial agents, water, surfactants, water-insoluble fine particles, antioxidants, reducing agents, and the like.
  • These agents can be added and mixed in an amount of preferably 0 to 30% by mass, more preferably 0.01 to 10% by mass, with respect to the water absorbent resin powder and the water absorbent resin particles after surface crosslinking. These agents are mixed and heat-treated at the above upper limit instead of the following surface cross-linking agent.
  • the surface cross-linking process will be described as a representative, the following operations of mixing, heating and stopping can be appropriately applied to the surface treatment process which is a superordinate concept.
  • A Mixing step (surface cross-linking step)
  • a surface cross-linking step is preferably further included for the purpose of improving water absorption performance.
  • the surface cross-linking treatment gives a whiter water-absorbent resin with less coloring.
  • the following steps can be suitably applied to surface cross-linking of a water-absorbent resin, particularly high-temperature surface cross-linking.
  • the surface cross-linking step in the present invention includes a mixing step of the water absorbent resin powder and the surface cross-linking agent, a heat treatment step of the mixture, and a cooling step performed as necessary.
  • Covalent bonding surface cross-linking agent Although it does not specifically limit as a surface crosslinking agent which can be used by this invention, Various organic or inorganic crosslinking agents can be mentioned. Among them, the organic surface cross-linking agent alone or the combined use of the organic surface cross-linking agent and the ion binding surface cross-linking agent is preferable.
  • the organic surface cross-linking agent is preferably a covalent surface cross-linking agent, specifically, a polyhydric alcohol compound, an epoxy compound, a polyvalent amine compound or a condensate thereof with a haloepoxy compound, an oxazoline compound, (mono, di, or Dehydration-reactive crosslinking agents such as polyhydric alcohol compounds, alkylene carbonate compounds and oxazolidinone compounds, which are poly) oxazolidinone compounds and alkylene carbonate compounds and require a reaction at high temperatures, can be preferably used. More specifically, compounds exemplified in US Pat. Nos. 6,228,930, 6071976, 6254990, and the like can be exemplified.
  • mono, di, tri, tetra or propylene glycol 1,3-propanediol, glycerin, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, Polyhydric alcohol compounds such as sorbitol; Epoxy compounds such as ethylene glycol diglycidyl ether and glycidol; Alkylene carbonate compounds such as ethylene carbonate; Oxetane compounds; Dehydrating ester reactive crosslinking agents such as cyclic urea compounds such as 2-imidazolidinone Is mentioned.
  • covalent bond surface cross-linking agents can be used alone or in combination of two or more.
  • the amount of the surface cross-linking agent used is suitably determined within a range of preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the water absorbent resin powder.
  • an inorganic surface crosslinking agent can be used in addition to the organic surface crosslinking agent for the purpose of improving physical properties such as liquid permeability.
  • Bivalent or more Preferably it is a trivalent or tetravalent polyvalent metal salt (organic salt or inorganic salt) or a hydroxide can be illustrated.
  • examples of the polyvalent metal include aluminum and zirconium, and aluminum lactate and aluminum sulfate are preferably used.
  • the ion-binding surface crosslinking agent may be used alone or in combination of two or more, and the amount used is preferably 0.001 to 10 parts by weight, more preferably 100 parts by weight of the water-absorbent resin powder. It is appropriately determined within the range of 0.01 to 5 parts by mass.
  • a polyamine polymer in addition to the organic surface cross-linking agent, may be used simultaneously or separately for the purpose of improving physical properties such as liquid permeability.
  • the polyamine polymer preferably has a mass average molecular weight of about 5,000 to 1,000,000, for example, US Pat. No. 7,098,284, International Publication Nos. 2006 / 082,188, 2006 / 082,189, and 2006/082197. No. 2006/111402, No. 2006/111403, No. 2006/111404, and the like.
  • a highly white water-absorbing resin is provided even by high-temperature heating or heat treatment with air (hot air), which has been intensely colored in the past.
  • air hot air
  • the water absorption capacity under pressure (AAP) described later may be increased to the range described below, preferably 20 g / g or more, by surface cross-linking treatment.
  • water When mixing the surface cross-linking agent, it is preferable to use water as a solvent.
  • the amount of water used is suitably determined within the range of preferably 0.5 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the water absorbent resin powder.
  • a hydrophilic organic solvent may be used in combination, if necessary, and the amount used is preferably 0 to 10 parts by weight, more preferably 100 parts by weight of the water absorbent resin powder. It is appropriately determined within the range of 0 to 5 parts by mass.
  • a water-insoluble fine particle powder or a surfactant may be allowed to coexist to the extent that the effects of the present invention are not hindered.
  • the type and amount of the fine particle powder and the surfactant are exemplified in U.S. Pat. No. 7,473,739.
  • the amount used is preferably 0 with respect to 100 parts by mass of the water absorbent resin powder. It is appropriately determined within a range of ⁇ 10 parts by mass, more preferably 0 to 5 parts by mass, and still more preferably 0 to 1 part by mass.
  • (B) Heat treatment step In the surface cross-linking step, the water-absorbent resin powder and the surface cross-linking agent are mixed, then preferably heat-treated, and then cooled if necessary.
  • a known dryer is used for the heat treatment, and the stopping method of the present invention is also preferably applied.
  • the heating temperature (heating medium temperature or material temperature, particularly the material temperature) during the heat treatment is appropriately determined depending on the type and amount of the surface cross-linking agent to be used, but is preferably 70 to 300 ° C., 120 to 250 ° C is more preferable, 150 to 250 ° C is more preferable, and 170 to 230 ° C is particularly preferable.
  • the heating temperature when using a dehydration-reactive surface crosslinking agent is preferably 150 to 250 ° C., more preferably 170 to 230 ° C.
  • the heating time during the heat treatment is preferably in the range of 1 minute to 2 hours.
  • the said heat processing can be performed with a normal dryer or a heating furnace. European Patent Nos.
  • Heat treatment equipment As the heat treatment apparatus used in the present invention, various heat treatment machines such as a fluidized bed heat treatment machine, a belt type heat treatment machine, a paddle type heat treatment machine, a disk type heat treatment machine, a hot air heat treatment machine, and an infrared heat treatment machine can be used. However, among these, a paddle type heat treatment machine is preferred, and a disk type heat treatment machine is particularly preferred. Specific examples include a Bepex-heat treatment machine and a Nara-heat treatment machine. In this specification, the term “heat treatment machine” is used for convenience, but these are the same as the dryer. The heat treatment can be performed by heating the jacket or blowing hot air in the heat treatment machine itself. Post-connected dryers such as box dryers, rotary tube furnaces or heatable screws are likewise suitable.
  • the heating temperature in this heat treatment step is preferably 70 to 300 ° C, more preferably 120 to 250 ° C, further preferably 150 to 250 ° C, and particularly preferably 170 to 230 ° C.
  • the heating time is preferably 1 minute to 2 hours, and more preferably 5 minutes to 1 hour.
  • a horizontal continuous stirring device having a water-absorbing resin powder inlet and outlet, and a stirring means and a heating means comprising one or more rotating shafts provided with a plurality of stirring plates
  • the stirring power index of the horizontal continuous stirring device is preferably 3 to 15 [W ⁇ hr / kg].
  • the stirring power index is a value obtained from the following mathematical formula, and is an index for judging the stable productivity of the water-absorbent resin at the time of scale-up (particularly 1 [t / hr] or more).
  • the agitation power index can be easily obtained from the power consumption of the apparatus during surface treatment and the power consumption during idle operation, and is preferably 4 to 13 [W ⁇ hr / kg], more preferably 5 to 11 [W ⁇ hr. / Kg] is more preferable, 5 to 10 [W ⁇ hr / kg] is particularly preferable, and 5 to 9 [W ⁇ hr / kg] is most preferable.
  • the numerical value exceeds 15 [W ⁇ hr / kg]
  • the physical properties particularly liquid permeability
  • the physical properties particularly water absorption under pressure. (Magnification) decreases.
  • the control of the stirring power index is appropriately determined by adjusting the supply amount and discharge amount of the water-absorbent resin, the particle size and bulk specific gravity of the water-absorbent resin, the rotational speed and shape of the apparatus, the composition of the surface treatment agent, the residence time, etc. .
  • the dew point of the air is preferably 0 ° C. or less (minus dew point), preferably ⁇ 100 to ⁇ 5 ° C., more preferably ⁇ 95 to ⁇ 30 ° C., further preferably ⁇ 90 to ⁇ 35 ° C., and ⁇ 85 to ⁇ 40 ° C. is particularly preferred.
  • the method for controlling the dew point of the air is not particularly limited, and may be appropriately dried, and may be dried alone or in combination with a device such as a membrane dryer, a cooling adsorption dryer, or a diaphragm dryer.
  • a heating regeneration type, a non-heating regeneration type, or a non-regeneration type may be used.
  • the temperature of the air having the dew point may be room temperature (25 ° C.), preferably heated, and more preferably within the temperature range of the heat treatment machine during the interruption period described above. Heated.
  • Patent Documents 1 to 9 and Patent Documents described in the items of the above-mentioned covalently-bonded surface crosslinking agent and ion-bondable surface-crosslinking agent disclose conventional surface crosslinking and other heat-absorbing resin heat treatments. However, these documents do not disclose stopping the heat treatment apparatus in a heated state.
  • Cooling step This step is a step that is optionally performed after the heat treatment step, and preferably a polyhydric alcohol compound, alkylene carbonate compound, oxazolidinone compound that requires a reaction at a high temperature in the heat treatment step.
  • a cooling step is provided when a dehydrating reactive crosslinking agent consisting of
  • the cooling device used in the present cooling process is not particularly limited, and an apparatus having the same specifications as the apparatus used in the heat treatment process can be used. That is, the horizontal continuous stirring apparatus described above or an apparatus exemplified in US Pat. No. 7,378,453 may be used.
  • a biaxial stirring device or the like in which cooling water is passed through the inner wall or other heat transfer surface is used.
  • the temperature of the cooling water is less than the heat treatment temperature in the surface treatment step, and is suitably determined preferably within a range of 25 ° C. or more and less than 70 ° C.
  • the stirring power index of the cooling device is preferably 3 to 15 [W ⁇ hr / kg], more preferably 4 to 13 [W ⁇ hr / kg], similarly to the above heat treatment machine, and 5 to 11 [W ⁇ hr / kg].
  • hr / kg] is more preferable, 5 to 10 [W ⁇ hr / kg] is particularly preferable, and 5 to 9 [W ⁇ hr / kg] is most preferable.
  • Japanese Patent Application No. 2009-97063 application date: August 27, 2009
  • Japanese Patent Application No. 2009-196967 application date: August 27, 2009
  • These priority application are disclosed, and the content of the application is the control method of the stirring power index in the present invention.
  • Periodic interruption In view of stability of physical properties and improvement of physical properties in surface cross-linking, it is preferable to perform periodic interruption between the surface cross-linking step and the second classification step.
  • the periodic blocking is preferably performed at intervals of 0.001 to 5 minutes, more preferably at intervals of 0.01 to 1 minute, particularly preferably at intervals of 0.05 to 0.5 minutes.
  • the water-absorbent resin is moved periodically (on / off) between continuous devices (mixer, heat treatment machine, if necessary, cooler). These periodic interruptions can also be made between the heating device and any cooling device (cooling step).
  • the periodic block is disclosed in Japanese Patent Application No. 2009-197022 (application date; August 27, 2009) and its priority claim application, and the contents of the application are the periodic block in the present invention.
  • the fine powder recycling process in the present invention is a fine powder obtained by drying and, if necessary, pulverizing / classifying (particularly a fine powder containing 150 ⁇ m or less as a main component, particularly 70% by mass or more) Alternatively, it is a step of hydration and recycling to a polymerization step or a drying step.
  • pulverizing / classifying particularly a fine powder containing 150 ⁇ m or less as a main component, particularly 70% by mass or more
  • it is a step of hydration and recycling to a polymerization step or a drying step.
  • the methods described in US Patent Application Publication No. 2006/247351, US Pat. No. 6,228,930 and the like can be applied.
  • the particle size can be controlled, and the high solid content essential in the present invention can be easily achieved by adding the water-absorbent resin powder. Further, the water-absorbent resin after drying from the drying belt by adding the fine powder Is preferable because it is easy to peel off.
  • the water-absorbing resin obtained by the manufacturing method including the fine powder recycling step is not suitable for the non-uniform drying accompanying the addition of the fine powder, the increase of residual monomers, the reduction of the water absorption ratio, etc.
  • the fine powder recycling process is included in the production process of the water-absorbent resin, it is excellent in the effect of suppressing deterioration of the absorption physical properties and preventing coloring. That is, it is preferable that the solid content of the water-containing gel is increased to 45 mass% or more, 50 mass% or more, 55 mass% or more, or 60 mass% or more by moisture evaporation in the polymerization process or addition of water-absorbing resin fine powder. .
  • Solid content rise from monomer is 1% by mass or more, more preferably 2 to 40% by mass, especially 3 to 30% by mass Is preferred.
  • a polyvalent metal salt surface treatment step an evaporation monomer recycling step, a granulation step, a fine powder removal step (second classification step) and the like may be provided as necessary.
  • the above additives may be used in part or all of the above steps, if necessary, for the effect of color stability over time and the prevention of gel deterioration.
  • the production method of the present invention preferably includes a fine powder recycling step.
  • water-soluble or water-insoluble polymers In addition, during or after polymerization, water-soluble or water-insoluble polymers, lubricants, chelating agents, deodorants, antibacterial agents, water, surfactants, water-insoluble fine particles, antioxidants, reducing agents, etc. are added to the water-absorbing resin particles. On the other hand, it can be added and mixed in an amount of about 0 to 30% by mass, further about 0.01 to 10% by mass. These additives can also be used as a surface treatment agent.
  • it further includes one or more steps such as a transporting step, a storing step, a packing step, and a step of adding other additives (fine particles, deodorant, antibacterial agent, etc.).
  • steps are exemplified in Patent Documents 1 to 10 and the like, stopping after the drying step is also stopped by heating, preferably 50 ° C. or more, and more preferably 60 ° C. or more.
  • the upper limit of the heating temperature is 140 ° C. or less, further 120 ° C. or less, particularly 100 ° C. or less in view of cost and coloring.
  • the minus dew point is also preferably applied. Stopping these processes refers to an unused state of the apparatus, that is, a state where the water absorbent resin is substantially absent and the water absorbent resin is not supplied to or discharged from the apparatus of each process.
  • the surface treatment step (particularly the surface crosslinking step) is stopped in the heated state, more preferably the drying step and the surface treatment step (particularly the surface crosslinking step) are stopped in the heated state, and particularly preferably the drying step and
  • the surface treatment process especially the surface cross-linking process
  • other processes after the surface treatment process especially all processes are also stopped in the heated state.
  • the water-absorbing resin of the present invention comprises a polyacrylic acid (salt) water-absorbing resin as a main component, and is intended for use in sanitary goods, particularly paper diapers. Or a surface cross-linking method. Further, the obtained water-absorbent resin preferably controls at least one of the physical properties listed in the following (3-1) to (3-6), and more preferably two or more including AAP, In particular, it is preferable to control three or more physical properties. When the water absorbent resin does not satisfy the following physical properties, a high concentration diaper having a water absorbent resin concentration of 40% by mass or more may not exhibit sufficient performance.
  • the CRC (water absorption capacity under no pressure) of the water absorbent resin obtained in the present invention is preferably 10 [g / g] or more, more preferably 20 [g / g] or more, and further preferably 25 [g / g] or more. 30 [g / g] or more is particularly preferable.
  • the upper limit of CRC is not particularly limited, it is preferably 50 [g / g] or less, more preferably 45 [g / g] or less, and still more preferably 40 [g / g] or less.
  • the water-absorbing resin When the CRC is less than 10 [g / g], the water-absorbing resin has a low water absorption amount and may not be suitable for use in absorbent articles such as paper diapers. In addition, when the CRC exceeds 50 [g / g], it is not preferable to use such a water-absorbent resin for the absorbent body because it may not be possible to obtain a sanitary product having an excellent liquid uptake rate.
  • CRC can be appropriately controlled by the internal cross-linking agent and surface cross-linking agent described above.
  • AAP Water absorption capacity under pressure
  • the AAP (water absorption capacity under pressure) of the water-absorbent resin obtained in the present invention is the above heat treatment as means for achieving the above heat treatment in order to prevent leakage in paper diapers, as AAP under pressure of 4.83 kPa (0.7 psi), 20 [g / g] or more is preferable, 22 [g / g] or more is more preferable, and 24 [g / g] or more is more preferable.
  • the upper limit value of AAP is not particularly limited, but is preferably 40 [g / g] or less in view of balance with other physical properties.
  • AAP is less than 20 [g / g]
  • the liquid returns when pressure is applied to the absorber (usually, “Re-Wet”) This is not preferable because there is a possibility that a hygienic product with a small amount of the product may not be obtained.
  • AAP can be appropriately controlled by the above-described surface cross-linking agent, particle size, and the like.
  • the SFC (saline flow inductivity) of the water-absorbent resin obtained in the present invention is an SFC which is a liquid flow characteristic under pressure as a means for achieving the above heat treatment in order to prevent leakage in paper diapers.
  • the upper limit of the SFC is not particularly limited, but is preferably 3000 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or less, and 2000 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ in view of balance with other physical properties. g ⁇ 1 ] or less is more preferable.
  • 3000 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or less is more preferable.
  • the SFC can be appropriately controlled by the above-described drying method or the like.
  • the Ext (water-soluble content) of the water-absorbent resin obtained in the present invention is preferably 35% by mass or less, more preferably 25% by mass or less, further preferably 15% by mass or less, and particularly preferably 10% by mass or less.
  • the gel strength of the obtained water-absorbent resin is weak and the liquid permeability may be inferior.
  • a water absorbing resin with little liquid return (rewetting) when pressure is applied to the absorber cannot be obtained. Note that Ext can be appropriately controlled by the internal cross-linking agent described above.
  • Residual Monomers (residual monomers) of the water-absorbent resin obtained in the present invention are preferably controlled to 0 to 400 ppm, more preferably 0 to 300 ppm, and still more preferably 0 to 200 ppm from the viewpoint of safety. Residual Monomers can be appropriately controlled by the polymerization method described above.
  • the water-absorbent resin obtained by the present invention is excellent in initial color tone. That is, the color tone (initial color tone) of the water-absorbent resin immediately after production obtained in the present invention shows the following numerical values.
  • the initial color tone refers to a color tone immediately after manufacture, but is generally a color tone measured before factory shipment. Further, for example, if stored in an atmosphere of 30 ° C. or lower and a relative humidity of 50% RH or lower, the value is measured within one year after production.
  • the L value (Lightness) is preferably 85 or more, more preferably 87 or more, and even more preferably 89 or more.
  • the b value is preferably -5 to 10, more preferably -5 to 9, further preferably -4 to 8, and particularly preferably -1 to 7.
  • the value a is preferably -2 to 2, more preferably -1 to 1, more preferably -0.5 to 1, particularly preferably 0 to 1.
  • the YI (Yellow Index) value is preferably 10 or less, more preferably 8 or less, and particularly preferably 6 or less.
  • the WB (White Balance) value is preferably 70 or more, more preferably 75 or more, and particularly preferably 77 or more.
  • the water-absorbent resin obtained by the present invention is excellent in coloring over time, and exhibits sufficient whiteness even in accelerated tests conducted under high temperature and high humidity.
  • water-absorbent resin obtained by the production method according to the present invention is not particularly limited, and sanitary products such as paper diapers, sanitary napkins, incontinence pads, agricultural and horticultural water retention agents, waste liquids. It can be used for absorbent articles such as solidifying agents and industrial waterstop materials.
  • the amount of the particulate hydrogel collected was changed to 2 to 4 g and the drying time was changed to 24 hours. .
  • SFC saline flow conductivity
  • SFC saline flow conductivity
  • the particulate hydrogel polymer (A) is continuously applied onto the punching metal of the continuously operating aeration belt by controlling the traverse feeder sequence using a traverse feeder in a continuous aeration belt dryer. Laminated and dried continuously on a vent belt for 35 minutes. The discharge amount (process amount) of the dried product was 1.7 [t / hr].
  • the dryer and drying conditions are the following (a) to (c).
  • the hot air temperature in the drying chamber was heated to 180 ° C. by steam, and the linear velocity of the hot air was set to 1.6 m / second.
  • the wind direction of the first chamber was upward from the bottom surface, and the wind direction of the second chamber to the sixth chamber was downward from the top of the dryer to the bottom surface.
  • (C) Ventilation belt The material is a stainless steel belt (band) made of SUS304.
  • the ventilation belt is a zigzag round hole with a hole width of 1.2 mm and a length of 15 mm, and an aperture ratio of 27%. It was used.
  • the particulate hydrogel polymer (A) was agglomerated in a block shape when dried.
  • the aggregated dried product is loosened to several mm and pulverized by continuously supplying the whole amount to a roll mill (roll gap is 1.0 mm / 0.55 mm / 0.42 mm from above), and then has a metal sieve mesh with an opening of 850 ⁇ m. Classification was performed with a sieving device to obtain a water-absorbent resin powder (A).
  • the surface treating agent solution (1) was sprayed and mixed with a spray (humidified mixing step).
  • This surface treating agent solution (1) was a mixed liquid of 1,4-butanediol, propylene glycol and pure water.
  • This surface treating agent solution (1) is composed of 0.3 parts by mass of 1,4-butanediol, 0.5 parts by mass of propylene glycol and 2.7 parts by mass of pure water with respect to 100 parts by mass of the water absorbent resin powder (A). Part of the mixture was mixed with the water-absorbent resin powder (A) to obtain a mixture (A) which was a wet powder.
  • the obtained mixture (A) has a downward inclination angle of 1 °, an aspect ratio of 2.2, a paddle rotation number of 13 rpm, a lifting blade, and an inner surface roughness (Rz) of 2 of 500 nm.
  • Surface treatment was performed by a horizontal continuous stirring device (paddle type heat treatment machine) (1) comprising a rotating shaft of a book (heat treatment step). At this time, the inside of the device (1) was sucked by a suction / exhaust device equipped with a bag filter, and the pressure inside the device was reduced to 1 kPa. Moreover, the rotary valve (periodic shielding apparatus) was installed in the inlet_port
  • the position of the discharge weir was set so as to obtain an average residence time of 45 minutes and an average filling rate of 75% obtained by a prior test.
  • the heating source used for the surface treatment was 2.5 MPa pressurized steam
  • the ambient temperature in the apparatus was measured by a thermometer provided near the discharge part of the horizontal continuous stirring apparatus (1)
  • the temperature was Heating was performed by controlling the steam flow rate so as to be 198 ° C.
  • the total surface area of the stirring plate and the stirring shaft was 24.4 m 2
  • the mass area ratio calculated from the throughput was 61.5 [kg / m 2 / hr].
  • the stirring power during the surface treatment was 27.8 kW
  • the stirring power in the idling operation was 13.5 kW
  • the average residence time was 45 minutes
  • the stirring power index was 9.5 [W ⁇ hr / kg].
  • the 850 ⁇ m passing material is classified by a sieving device, the 850 ⁇ m on-product (850 ⁇ m non-passing material) is pulverized again, and then mixed with the 850 ⁇ m passing material, so that the total amount of the sized water absorption is 850 ⁇ m passing material.
  • Resin (A) was obtained.
  • Table 2 shows the physical properties of the water absorbent resin (A) obtained.
  • Example 1 In Comparative Example 1, the ambient temperature was 120 ° C. during the stop period of the paddle type heat treatment machine (horizontal continuous stirring device). That is, when continuous production is stopped, the heating temperature of the paddle type heat treatment machine (horizontal continuous stirring device) in a stopped state (atmospheric temperature measured by a thermometer provided near the discharge section) is adjusted by adjusting the steam flow rate. Control was performed from 180 ° C. to 120 ° C., and the operation similar to that of Comparative Example 1 was repeated except that the continuous operation was resumed after the ambient temperature in the heat treatment machine was raised from 120 ° C. to 198 ° C. after 48 hours had elapsed from the stop of the process. went.
  • Example 2 In Example 1, the same operation as in Example 1 was performed except that dry air having a dew point of ⁇ 30 ° C. was further injected into the heat treatment machine when the paddle type heat treatment machine (horizontal continuous stirring apparatus) was stopped. There was no foreign matter generated at the beginning of operation, and no overload (increased power consumption) was observed when the heat treatment machine resumed operation.
  • Table 1 summarizes the operating conditions of Comparative Example 1 and Examples 1 and 2 and the presence or absence of defects.
  • Example 3 In Comparative Example 2, the temperature during the stop period of the paddle type heat treatment machine (horizontal continuous stirring device) was 120 ° C. That is, the same operation as in Comparative Example 2 was performed except that the heating temperature of the heat treatment machine (horizontal continuous stirring device) was lowered from 198 ° C. to 120 ° C. when continuous production was stopped. After the lapse of 48 hours, the ambient temperature in the heat treatment machine was raised from 120 ° C. to 198 ° C. and then the continuous operation was resumed, and the continuous production of the water-absorbent resin was carried out. No overload (increased power consumption) was observed when restarting the operation of the horizontal continuous stirring device. Table 2 shows the physical properties of the water-absorbent resin (3) as a product at the time when 5 hours had elapsed after restarting the operation.
  • Example 4 the temperature during the stop period of the paddle type heat treatment machine (horizontal continuous stirring device) was 198 ° C. That is, the same operation as in Example 3 was performed except that the heating temperature of the heat treatment machine (horizontal continuous stirring device) was maintained at 198 ° C. when continuous production was stopped. After 48 hours, the continuous operation was resumed at 198 ° C in the heat treatment machine, and continuous production of the water-absorbent resin was carried out. There was no foreign matter at the beginning of the operation, and the heat treatment machine (horizontal continuous stirring device) resumed operation. Sometimes overload (increased power consumption) was not seen. However, the water absorbent resin inside the heat treatment machine was yellowed. Table 2 shows the physical properties of the water-absorbent resin (4) as a product at the time when 5 hours had elapsed after the restart of operation.
  • Production Example 2 In Production Example 1, the same operation as in Production Example 1 was performed except that the surface treatment agent solution (2) obtained by adding 1 part by weight of 27% aluminum sulfate aqueous solution to the surface treatment agent solution (1) was used. B) was obtained. Table 2 shows the physical properties of the water absorbent resin (B) obtained.
  • Example 5 In Comparative Example 3, the temperature during the stop period of the paddle type heat treatment machine (horizontal continuous stirring device) was 120 ° C. That is, the same operation as in Comparative Example 3 was performed except that the heating temperature of the heat treatment machine (horizontal continuous stirring device) was lowered from 198 ° C. to 120 ° C. when continuous production was stopped. After the lapse of 48 hours, the ambient temperature in the heat treatment machine was raised from 120 ° C. to 198 ° C. and then the continuous operation was resumed, and the continuous production of the water-absorbent resin was carried out. No overload (increased power consumption) was observed when restarting the operation of the horizontal continuous stirring device. Table 2 shows the physical properties of the water-absorbent resin (5) as a product at the time when 5 hours had elapsed after the restart of operation.
  • Production Example 3 In Production Example 1, instead of the surface treating agent solution (1), a surface treating agent solution (3) composed of 1.0 part by mass of ethylene carbonate and 3.0 parts by mass of pure water was used, and the average in a heat treatment machine was used. Except having changed the residence time into 50 minutes, operation similar to manufacture example 1 was performed and the water absorbing resin (C) was obtained. Table 2 shows the physical properties of the water absorbent resin (C) thus obtained.
  • Example 6 In Comparative Example 4, the temperature during the stop period of the paddle type heat treatment machine (horizontal continuous stirring device) was 120 ° C. That is, the same operation as in Comparative Example 4 was performed except that the heating temperature of the heat treatment machine (horizontal continuous stirring device) was lowered from 198 ° C. to 120 ° C. when continuous production was stopped. After 60 hours had passed, the ambient temperature in the heat treatment machine was raised from 120 ° C. to 198 ° C. and then the continuous operation was resumed, and the continuous production of the water-absorbent resin was carried out. No overload (increased power consumption) was observed when restarting the operation of the horizontal continuous stirring device. Table 2 shows the physical properties of the water-absorbent resin (6) as a product at the time when 5 hours had elapsed after the restart of operation.
  • the physical properties after resuming operation can be quickly stabilized by heating the device when the operation is stopped, so that water absorption of a huge scale (preferably 1 [t / hr] or more) is achieved. Can be continuously produced (preferably 10 days or more).
  • the conventional production methods described in Patent Documents 1 to 9 and Patent Documents described in the items of the above-mentioned covalently-bonded surface-crosslinking agent and ionic-bondable surface-crosslinking agent do not suggest any stopping method or effect of the present invention. .
  • the water-absorbing resin of the present invention can be produced in various ways including paper diapers and sanitary napkins because it can stably produce water-absorbing resins free of coloring and foreign matters by continuous production on a huge scale (especially 1 [t / hr] or more). It can be used for hygiene materials and other water-absorbing resin applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 不飽和単量体水溶液の重合工程と、重合中または重合後の細粒化工程で得られた粒子状含水ゲル状架橋重合体の乾燥工程と、乾燥後の粉砕工程と、乾燥後の分級工程と、分級工程後の吸水性樹脂粉末の表面処理工程とを含む吸水性樹脂の製造方法において、熱処理機を加熱状態で保持したまま、上記表面処理工程の中断を行い、その後表面処理工程を再開することを特徴とする製造方法である。

Description

吸水性樹脂の製造方法
 本発明は、吸水性樹脂の製造方法に関する。さらに詳しくは連結された連続工程からなる巨大スケールの吸水性樹脂の連続製造方法において、均一な表面架橋による高物性の吸水性樹脂を提供する方法に関する。
 吸水性樹脂(SAP/Super Absorbent Polymer)は水膨潤性水不溶性の高分子ゲル化剤であり、紙オムツ、生理用ナプキン等の吸収物品、さらには、農園芸用保水剤、工業用止水材等として、主に使い捨て用途に多用されている。このような吸水性樹脂としては、原料として多くの単量体や親水性高分子が提案されているが、特に、アクリル酸および/またはその塩を単量体として用いたポリアクリル酸(塩)系吸水性樹脂がその吸水性能の高さから工業的に最も多く用いられている。
 かかる吸水性樹脂は、単量体水溶液を重合して得られた含水ゲル状重合体を重合時または重合後に細粒化し、得られた粒子状含水ゲル状重合体を乾燥して得られる。乾燥後は必要に粉砕工程、さらに分級工程を含み、任意に乾燥前または乾燥後に表面架橋される。また、任意に微粉回収工程、乾燥後の未乾燥物の除去工程、梱包工程、その他の添加剤(微粒子、消臭剤、抗菌剤等)の添加工程等、1種または2種以上の工程をさらに含んでもよい。一般的な重合方法としては、水溶液重合や逆相懸濁重合が使用され、製品形態は10~1000μm程度の粉末が一般的である。かかる多くの工程を含む吸水性樹脂の製造方法は、特許文献1~13等に例示される。
国際公開第2009/113679号パンフレット 国際公開第2009/113678号パンフレット 国際公開第2009/113671号パンフレット 国際公開第2009/113672号パンフレット 国際公開第2009/119754号パンフレット 国際公開第2009/123197号パンフレット 米国特許第6716894号明細書 米国特許第6727345号明細書 米国特許第6164455号明細書 米国特許第6817557号明細書 米国特許第6641064号明細書 米国特許第6291635号明細書 欧州特許第1949011号明細書
 近年、紙オムツ等の需要増のため、吸水性樹脂の生産規模がますます拡大しており、製造装置1ラインあたりのスケールアップや重合濃度アップ(単量体水溶液の高濃度化、例えば、特許文献7に開示)が図られる傾向にある。また、吸水性樹脂は、ユーザーからの多種多様で、かつ高度な要求に答えるべく、多様な製品が開発されている。そのため、乾燥工程以降も粉砕工程、分級工程、表面処理工程(特に表面架橋工程)、輸送工程、造粒工程、添加剤の添加工程、微粉回収工程等、上記特許文献等に例示の多くの工程や添加剤が使用されているのが実情である。
 そのため、ひとつのプラントでも多くの工程を経て多くの品番が製造されているのが実情である。これら各工程は回分式で行われることもあるが、一般には連続工程が主流であり、たとえ一部の工程が回分式であっても各工程が連結されたプロセス全体としては実質的には連続生産される。なお、実質連続とは回分工程であっても繰り返し連続的に行うことを指し、例えば、繰返される回分工程後に含水ゲルやその乾燥物の貯蔵工程を行って連続工程に連続供給することで(一部の回分工程を含んでも)プロセス全体としては連続工程となる形態をさす。
 多くの工程が含まれる吸水性樹脂の製造方法において、製造プラントでも定期的なメンテナンスや一時的なトラブル(一部の工程での運転トラブル)時に、吸水性樹脂やその含水ゲルの連続フローが停止することがあった。特許文献9~12は粉砕工程、輸送工程や貯蔵工程でのかかるトラブル(運転停止)を開示する。
 連結された工程では一部の工程でも停止すると、連結された全プラントを停止する必要があるが、運転再開時には、品質が安定しない、運転再開に過度のエネルギーが必要になる、あるいは、装置に過負荷(例えば、消費電力の増大で確認される)が掛かる等の問題があり、最悪な場合は、運転が停止することもあった。さらに、運転再開時に吸水性樹脂に着色異物(主に吸水性樹脂の変色物)が混入することもあった。
 上記課題を解決するため、本発明者等は鋭意検討した結果、表面処理工程に問題があり、表面処理工程の停止方法を制御することで上記課題が解決できることを見いだした。
 すなわち、本発明の吸水性樹脂の製造方法(第1の発明)は、不飽和単量体水溶液の重合工程と、重合中または重合後の細粒化工程で得られた粒子状含水ゲル状架橋重合体の乾燥工程と、乾燥後の粉砕工程と、乾燥後の分級工程と、分級工程後の吸水性樹脂粉末の表面処理工程とを含む吸水性樹脂の製造方法であって、熱処理機を加熱した状態で保持したまま、上記表面処理工程の中断を行い、その後表面処理工程を再開することを特徴とする製造方法である。ただし、上記表面処理工程の中断とは、吸水性樹脂粉末が熱処理機内に実質不存在の状態、あるいは、連続表面処理において熱処理機に投入または排出されない状態をいう。
 また、上記課題を解決するために、本発明の吸水性樹脂の製造方法(第2の発明)は、不飽和単量体水溶液の重合工程と、重合中または重合後の細粒化工程で得られた粒子状含水ゲル状架橋重合体の乾燥工程と、乾燥後の粉砕工程と、乾燥後の分級工程と、分級工程後の吸水性樹脂粉末の表面処理工程とを含む吸水性樹脂の製造方法であって、上記表面処理工程の中断を行い、熱処理機の加熱を停止した後、100時間以内に熱処理機内の清掃を開始し、その後表面処理工程を再開することを特徴とする、吸水性樹脂の製造方法である。ただし、上記表面処理工程の中断とは、吸水性樹脂粉末が熱処理機内に実質不存在の状態、あるいは、連続表面処理において熱処理機に投入または排出されない状態をいう。
 吸水性樹脂の連続生産、特に1時間あたり1ton以上表面処理を行う連続表面処理工程において、着色なく安定的に表面処理することで、吸水性樹脂を安定的に製造できる。
図1は、代表的な吸水性樹脂の連続生産のフローを示す概略図である。
 以下、本発明に係る吸水性樹脂の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更、実施し得る。具体的には、本発明は下記の各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 〔1〕用語の定義
 (1-1)吸水性樹脂
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味する。なお、「水膨潤性」とは、ERT441.2-02で規定するCRC(無加圧下吸水倍率)が必須に5[g/g]以上であることをいい、また、「水不溶性」とは、ERT470.2-02で規定するExt(水可溶分)が必須に0~50質量%であることをいう。
 上記吸水性樹脂は、その用途に応じて適宜設計可能であり、特に限定されるものではないが、カルボキシル基を有する不飽和単量体を架橋重合させた、親水性架橋重合体であることが好ましい。また、全量(100質量%)が重合体である形態に限定されず、上記性能を維持する範囲内において、添加剤等を含んでいてもよい。すなわち、吸水性樹脂組成物であっても、本発明では吸水性樹脂と総称する。ポリアクリル酸(塩)系吸水性樹脂の含有量は、好ましくは全体に対して70~99.9質量%であり、より好ましくは80~99.7質量%であり、さらに好ましくは90~99.5質量%である。吸水性樹脂以外のその他の成分としては、吸水速度や粉末(粒子)の耐衝撃性の観点から水が好ましく、必要により後述の添加剤が含まれる。
 (1-2)ポリアクリル酸(塩)系吸水性樹脂
 本発明における「ポリアクリル酸(塩)系吸水性樹脂」とは、主たる繰り返し単位として、アクリル酸および/またはその塩(以下、アクリル酸(塩)と称する)由来の単位を有する吸水性樹脂を意味する。具体的には、重合に用いられる総単量体(架橋剤を除く)のうち、アクリル酸(塩)を必須に50~100モル%を含む重合体をいい、好ましくは70~100モル%、より好ましくは90~100モル%、特に好ましくは実質100モル%を含む吸水性樹脂をいう。重合体としての塩は、必須に水溶性塩を含み、好ましくは一価塩、さらに好ましくはアルカリ金属塩またはアンモニウム塩、特にアルカリ金属塩、さらにはナトリウム塩を含む。
 (1-3)初期色調および経時着色
 本発明における「初期色調」とは、製造直後の吸水性樹脂またはユーザー出荷直後の吸水性樹脂の色調をいい、通常、工場出荷前の色調で管理する。色調の測定方法については、国際公開第2009/005114号に記載される方法(Lab値、YI値、WB値等)を例示することができる。
 また、「経時着色」とは、未使用状態で長期間の保管、あるいは、流通時に生じる吸水性樹脂の色調変化をいう。経時によって吸水性樹脂が着色するため、紙オムツの商品価値の低下となりうる。経時着色は数ヶ月~数年単位で生じるため、国際公開第2009/005114号に開示される促進試験(高温・高湿下での促進試験)で検証する。
 (1-4)EDANAおよびERT
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」は、欧州標準(ほぼ世界標準)である吸水性樹脂の測定方法(EDANA Recommended Test Method)の略称である。なお、本発明においては、特に断りのない限り、ERT原本(公知文献:2002年改定)に準拠して、吸水性樹脂等の物性を測定する。
 (a)「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、無加圧下吸水倍率(以下、「吸水倍率」と称することもある)を意味する。具体的には、0.9質量%塩化ナトリウム水溶液に対する30分間の自由膨潤後さらに遠心分離機で水切りした後の吸水倍率(単位;[g/g])である。
 (b)「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、加圧下吸水倍率を意味する。具体的には、0.9質量%塩化ナトリウム水溶液に対する1時間、2.06kPa(0.3psi、21[gf/cm])での荷重下膨潤後の吸水倍率(単位;[g/g])である。なお、本発明においては、荷重条件を2.06kPa(0.3psi、21[gf/cm])、または、4.83kPa(0.7psi、50[gf/cm])で測定した。
 (c)「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、水可溶分(水可溶成分量)を意味する。具体的には、0.9質量%塩化ナトリウム水溶液200gに対して、吸水性樹脂1gを添加し、16時間攪拌した後、溶解したポリマー量をpH滴定で測定した値(単位;質量%)である。
 (d)「FSC」(ERT440.2-02)
 「FSC」は、Free Swell Capacityの略称であり、自由膨潤倍率を意味する。具体的には、0.9質量%塩化ナトリウム水溶液に吸水性樹脂0.20gを30分浸漬した後、遠心分離機で水切りを行わないで測定した吸水倍率(単位;[g/g])である。
 (e)「Residual Monomers」(ERT410.2-02)
 「Residual Monomers」とは、吸水性樹脂中に残存しているモノマー量を意味する。具体的には、0.9質量%塩化ナトリウム水溶液に吸水性樹脂0.5gを投入し2時間攪拌後、該水溶液に溶出したモノマー量を高速液体クロマトグラフィーで測定した値(単位;ppm)である。
 (f)「PSD」(ERT420.2-02)
 「PSD」とは、Particle Size Distributionの略称であり、ふるい分級により測定される粒度分布を意味する。なお、質量平均粒子径(D50)および粒子径分布幅は欧州公告特許第0349240号明細書7頁25~43行に記載された「(1) Average Particle Diameter and Distribution of Particle Diameter」と同様の方法で測定する。
 (g)その他、EDANAで規定される吸水性樹脂の物性
 「pH」(ERT400.2-02) : 吸水性樹脂のpHを意味する。
 「Moisture Content」(ERT430.2-02) : 吸水性樹脂の含水率を意味する。
 「Flow Rate」(ERT450.2-02) : 吸水性樹脂の流下速度を意味する。
 「Density」(ERT460.2-02) : 吸水性樹脂の嵩比重を意味する。
 「Respirable Particles」(ERT480.2-02) : 吸水性樹脂の呼吸域粉塵を意味する。
 「Dust」(ERT490.2-02) : 吸水性樹脂中に含まれる粉塵を意味する。
 (1-5)通液性
 荷重下または無荷重下における膨潤ゲルの粒子間を流れる液の流れを「通液性」という。この「通液性」の代表的な測定方法として、SFC(Saline Flow Conductivity)や、GBP(Gel Bed Permeability)がある。
 「SFC(生理食塩水流れ誘導性)」は、荷重0.3psiにおける吸水性樹脂0.9gに対する0.69質量%塩化ナトリウム水溶液の通液性をいう。米国特許第5669894号明細書に記載されたSFC試験方法に準じて測定される。
 「GBP」は、荷重下または自由膨張における吸水性樹脂に対する0.69質量%生理食塩水の通液性をいう。国際公開第2005/016393号パンフレットに記載されたGBP試験方法に準じて測定される。
 (1-6)装置の加熱状態
 本発明における「装置の加熱状態」とは、通電によるヒーター、水蒸気、熱風等の熱源により装置が加熱されている状態をさし、上記熱源が切られた状態で余熱を有する状態は含まない。ただし、一定温度に制御するために熱源が切られた状態(off)は含む。なお、装置とは各工程で用いられる装置をいい、例えば、乾燥工程での乾燥機、表面処理工程での熱処理機が含まれる。
 (1-7)工程の中断
 本発明における「工程の中断」とは、吸水性樹脂粉末が装置内に実質不存在の状態、あるいは、連続工程において装置に投入または排出されない状態をいう。すなわち、上記「実質不存在の状態」とは、表面処理後の吸水性樹脂粉末を、装置(熱処理機)から取り出した状態(通常、装置滞留量全体の95質量%以上、好ましくは98質量%以上、さらに好ましくは99質量%以上、特に好ましくは実質100質量%)を指す。装置内に少量の表面処理後の吸水性樹脂粉末が付着、落下、滞留、飛散していてもかまわない。なお、装置の空運転も本発明の「工程の中断」に含まれるものとする。また、連続工程における「装置に投入または排出されない状態」とは、該装置内で吸水性樹脂粉末が停止している状態を指し、装置の停止を指す。
 (1-8)連続重合、連続乾燥等の連続生産
 本発明における「連続重合、連続乾燥等の連続生産」とは、各工程における装置に吸水性樹脂が連続的に投入され、連続的に排出される状態をいい、その稼働時間(期間)としては24時間以上が好ましく、240時間(10日間)以上がより好ましく、720時間(30日間)以上がさらに好ましい。本発明はこのような連続生産(乾燥、表面架橋等の各工程)に好ましく適用される。
 (1-9)その他
 本明細書において、範囲を示す「X~Y」は、「X以上、Y以下」であることを意味する。また、質量の単位である「t(トン)」は、「Metric ton(メトリック トン)」であることを意味し、さらに、特に注釈のない限り、「ppm」は「重量ppm」または「質量ppm」を意味する。また、「~酸(塩)」は「~酸および/またはその塩」を意味し、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」を意味する。
 〔2〕吸水性樹脂の製造方法
 (2-1)重合工程
 本工程は、アクリル酸および/またはその塩(以下、「アクリル酸(塩)」と称する)を主成分として含む水溶液を重合して、含水ゲル状架橋重合体を得る工程である。
 (a)単量体(架橋剤を除く)
 本発明で得られる吸水性樹脂は、その原料(単量体)として、アクリル酸(塩)を主成分として含む水溶液を使用し、通常、水溶液状態で重合される。該単量体水溶液中の単量体濃度(固形分濃度)は、通常10~90質量%であり、好ましくは20~80質量%である。また、高単量体濃度(35質量%以上、さらに好ましくは40質量%以上、特に好ましくは45質量%以上であり、上限は飽和濃度、さらに好ましくは80質量%以下、特に好ましくは70質量%以下である)での重合が最も好ましい一例として例示される。
 さらに、単量体を水溶液で重合するときには、必要に応じて、界面活性剤、ポリアクリル酸(塩)、澱粉、セルロース、ポリビニルアルコール等の高分子化合物、各種キレート剤、各種添加剤を、単量体に対して0~30質量%添加してもよい。
 また、該水溶液の重合により得られる含水ゲルは、吸水性能の観点から、重合体の酸基の少なくとも一部が中和されていることが好ましい。上記中和は、アクリル酸の重合前(単量体)、重合中または重合後(含水ゲル)に行うことができるが、吸水性樹脂の生産性、AAP(加圧下吸水倍率)やSFC(生理食塩水流れ誘導性)の向上等の観点から、アクリル酸の重合前に中和を行うことが好ましい。つまり、中和されたアクリル酸(すなわち、アクリル酸の部分中和塩)を単量体として使用することが好ましい。
 上記中和の中和率は、特に制限されないが、酸基に対して10~100モル%が好ましく、30~95モル%がより好ましく、50~90モル%がさらに好ましく、60~80モル%が特に好ましい。中和率が10モル%未満の場合、特に、CRC(無加圧下吸水倍率)が著しく低下することがあり好ましくない。
 また、本発明においてアクリル酸(塩)を主成分として使用する場合、アクリル酸(塩)以外の親水性または疎水性の不飽和単量体(以下、「他の単量体」と称することもある)を使用することもできる。このような他の単量体としては、特に限定されないが、メタクリル酸、(無水)マレイン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリロキシアルカンスルホン酸、N-ビニル-2-ピロリドン、N-ビニルアセトアミド、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ステアリルアクリレートやそれらの塩等が挙げられる。これら他の単量体を使用する場合、その使用量は、得られる吸水性樹脂の吸水特性を損なわない程度であれば、特に限定されないが、全単量体の質量に対して、50質量%以下が好ましく、20質量%以下がより好ましい。
 (b)中和の塩
 上記単量体としてのアクリル酸または重合後の重合体(含水ゲル)の中和に用いられる塩基性物質としては、特に限定されないが、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物や炭酸(水素)ナトリウム、炭酸(水素)カリウム等の炭酸(水素)塩等の一価の塩基性物質が好ましく、水酸化ナトリウムが特に好ましい。また、中和時の温度(中和温度)についても、特に制限されず、10~100℃が好ましく、30~90℃がより好ましい。なお、上記以外の中和処理条件等については、国際公開第2006/522181号や米国特許第6388000号に開示されている条件等が、本発明に好ましく適用される。
 (c)架橋剤(内部架橋剤)
 本発明においては、得られる吸水性樹脂の吸水性能の観点から、架橋剤(以下、「内部架橋剤」と称することもある)を使用することが特に好ましい。使用できる内部架橋剤としては、重合性二重結合を1分子あたり2つ以上有する化合物や、カルボキシル基と反応して共有結合を形成することができる官能基を1分子あたり2つ以上有する多官能化合物が挙げられる。例えば、アクリル酸との重合性架橋剤や、カルボキシル基との反応性架橋剤、それらを併せ持った架橋剤の1種以上を例示することができる。具体的には、重合性架橋剤として、N,N’-メチレンビスアクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリオキシエチレン)トリメチロールプロパントリ(メタ)アクリレート、ポリ(メタ)アリロキシアルカン等、分子内に重合性二重結合を少なくとも2個有する化合物が例示できる。また、反応性架橋剤として、エチレングリコールジグリシジルエーテル等のポリグリシジルエーテル;プロパンジオール、グリセリン、ソルビトール等の多価アルコール等の共有結合性架橋剤、アルミニウム塩等の多価金属化合物であるイオン結合性架橋剤が例示できる。これらの中でも、吸水性能の観点から、アクリル酸との重合性架橋剤が好ましく、特に、アクリレート系、アリル系、アクリルアミド系の重合性架橋剤が好適に使用される。これらの内部架橋剤は1種のみを単独で用いてもよいし、2種以上を併用してもよい。上記内部架橋剤の使用量は、物性面から、架橋剤を除く上記単量体に対して、0.001~5モル%が好ましく、0.005~2モル%がより好ましく、0.01~1モル%がさらに好ましく、0.03~0.5モル%が特に好ましい。
 (d)その他の微量成分
 本発明では、色調安定性や残存モノマーの観点から、アクリル酸中のプロトアネモニンおよび/またはフルフラールの含有量は0~10ppmが好ましく、0~5ppmがより好ましく、0~1ppmがさらに好ましい。さらに、フルフラール以外のアルデヒド分および/またはマレイン酸についても同様の理由により、アクリル酸中の含有量は0~5ppmが好ましく、0~3ppmがより好ましく、0~1ppmがさらに好ましく、0ppm(検出限界以下)が特に好ましい。なお、フルフラール以外のアルデヒド分としては、ベンズアルデヒド、アクロレイン、アセトアルデヒド等が挙げられる。また、残存モノマーの低減のため、アクリル酸ダイマーの含有量は0~500ppmが好ましく、0~200ppnがより好ましく、0~100ppmがさらに好ましい。
 本発明では、重合安定性の観点から、不飽和単量体にメトキシフェノール類が含まれることが好ましく、p-メトキシフェノールが含まれることがより好ましい。メトキシフェノール類の含有量は、単量体(アクリル酸)に対して、1~250ppmが好ましく、5~200ppmがより好ましく、10~160ppmがさらに好ましく、20~100ppmが特に好ましい。
 (e)単量体水溶液中のその他の成分
 本発明で得られる吸水性樹脂の諸物性を改善するために、任意成分として、上記単量体水溶液に、以下の物質を添加することができる。すなわち、澱粉、ポリアクリル酸(塩)、ポリビニルアルコール、ポリエチレンイミン等の水溶性樹脂あるいは吸水性樹脂を、単量体に対して、例えば0~50質量%、好ましくは0~20質量%、より好ましくは0~10質量%、さらに好ましくは0~3質量%添加することができる。さらに、各種の発泡剤(炭酸塩、アゾ化合物、気泡等)、界面活性剤、各種キレート剤、ヒドロキシカルボン酸や還元性無機塩等の添加剤を、単量体に対して、例えば0~5質量%、好ましくは0~1質量%添加することができる。
 これらの中でも、吸水性樹脂の経時着色の抑制(高温高湿下で長期間保存した際の色調安定性の向上)や耐尿性(ゲル劣化防止)の向上を目的とする場合には、キレート剤、ヒドロキシカルボン酸、還元性無機塩が好ましく使用され、キレート剤が特に好ましく使用される。この場合の使用量は、吸水性樹脂に対して、10~5000ppmが好ましく、10~1000ppmがより好ましく、50~1000ppmがさらに好ましく、100~1000ppmが特に好ましい。なお、上記キレート剤、ヒドロキシカルボン酸、還元性無機塩については、国際公開第2009/005114号、欧州特許出願公開第2057228号、同第1848758号に開示される化合物が使用される。
 (f)重合開始剤
 本発明において使用される重合開始剤は、重合形態によって適宜選択され、特に限定されない。例えば、熱分解型重合開始剤、光分解型重合開始剤、レドックス系重合開始剤等が挙げられる。具体的には、熱分解型重合開始剤としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド等のアゾ化合物等が挙げられる。また、光分解型重合開始剤としては、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、アゾ化合物等が挙げられる。さらに、レドックス系重合開始剤としては、上記過硫酸塩や過酸化物に、L-アスコルビン酸、亜硫酸水素ナトリウム等の還元性化合物を組み合わせた系が挙げられる。上記熱分解型重合開始剤と光分解型重合開始剤とを併用することも、好ましい態様として挙げることができる。これらの重合開始剤の使用量は、上記単量体に対して、0.0001~1モル%が好ましく、0.001~0.5モル%がより好ましい。重合開始剤の使用量が1モル%を超える場合、吸水性樹脂の着色を引き起こすことがあるため好ましくない。また、重合開始剤の使用量が0.0001モル%を下回る場合、残存モノマーを増加させるおそれがあるため好ましくない。
 なお、上記重合開始剤を使用する代わりに、放射線、電子線、紫外線等の活性エネルギー線を照射することにより重合を行ってもよく、これらの活性エネルギー線と重合開始剤とを併用して重合してもよい。
 (g)重合方法(架橋重合工程)
 本発明においては、上記単量体水溶液を重合するに際して、得られる吸水性樹脂の吸水性能や重合制御の容易性等の観点から、通常、水溶液重合または逆相懸濁重合が採用されるが、好ましくは水溶液重合、より好ましくは連続水溶液重合が採用される。中でも、吸水性樹脂の1ラインあたりの生産量が多い巨大スケールでの製造に好ましく適用される。該生産量としては、0.5[t/hr]以上であり、より好ましくは1[t/hr]以上、さらに好ましくは5[t/hr]以上、特に好ましくは10[t/hr]以上である。
 また、上記連続水溶液重合の好ましい形態として、連続ベルト重合(米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号等)、連続ニーダー重合(米国特許第6987151号、同第670141号等)が挙げられる。
 上記連続水溶液重合においては、重合開始温度を30℃以上、好ましくは35℃以上、より好ましくは40℃以上、さらに好ましくは50℃以上、特に好ましくは60℃以上(上限は沸点)とする高温開始重合、あるいは、単量体濃度を35質量%以上、好ましくは40質量%以上、特に好ましくは45質量%以上(上限は飽和濃度)とする高単量体濃度重合が、最も好ましい一例として例示できる。なお、上記重合開始温度は、単量体水溶液の重合機供給直前の液温で規定されるが、米国特許第6906159号および同第7091253号等に開示された条件等を、本発明に好ましく適用することができる。
 さらに、得られる吸水性樹脂の物性向上と乾燥効率との観点から、重合時に水分を蒸発させ、より高固形分濃度の吸水性樹脂を得ることが好ましい。単量体水溶液からの固形分上昇度(重合後の含水ゲルの固形分-重合前の単量体の固形分)は1質量%以上が好ましく、2~40質量%がより好ましく、3~30質量%がさらに好ましい。ただし、80質量%以下の固形分を有する含水ゲル状架橋重合体が得られる範囲が好ましい。
 また、これらの重合は、空気雰囲気下でも実施可能であるが、着色防止の観点から窒素やアルゴン等の不活性ガス雰囲気下(例えば、酸素濃度1容積%以下)で実施することが好ましい。また、単量体または単量体を含む溶液中の溶存酸素を不活性ガスで置換(例えば、溶存酸素濃度;1mg/L未満)した後に、重合することが好ましい。また、減圧、常圧、加圧のいずれの圧力下でも実施することができる。
 (2-2)含水ゲル状架橋重合体の細粒化工程(ゲル解砕工程)
 本工程は、上記重合工程で得られた含水ゲル状架橋重合体を解砕し、粒子状の含水ゲル状架橋重合体(以下、「粒子状含水ゲル」と称する)を得る工程である。
 上記重合工程で得られた含水ゲルはそのまま乾燥を行ってもよいが、上記課題の解決のため、好ましくは重合時または重合後、必要により解砕機(ニーダー、ミートチョッパー、カッターミル等)を用いてゲル解砕され粒子状にされる。すなわち、連続ベルト重合または連続ニーダー重合による重合工程と乾燥工程との間に、含水ゲルの細粒化(以下、「ゲル解砕」とも称する)工程をさらに含んでもよい。なお、逆相懸濁重合等、重合時に溶媒中での分散よってゲルが細粒化されている場合も、本発明の細粒化(重合中の細粒化)工程に含むものとするが、好適には解砕機を用いて解砕される。
 ゲル解砕時の含水ゲルの温度は、物性の面から、好ましくは40~95℃、より好ましくは50~80℃に保温または加熱される。ゲル解砕後の粒子状含水ゲルの質量平均粒子径(D50)は、0.5~4mmが好ましく、0.3~3mmがより好ましく、0.5~2mmがさらに好ましい。上記粒子状含水ゲルの質量平均粒子径(D50)が、上記範囲内となることで、乾燥が効率的に行われるため好ましい。また、5mm以上の粒径を有する粒子状含水ゲルの割合は、粒子状含水ゲル全体の0~10質量%が好ましく、0~5質量%がより好ましい。ここで、粒子状含水ゲルの粒子径は、特開2000-63527号公報の段落〔0091〕に記載の、湿式の分級方法を用いて測定する。
 (2-3)乾燥工程
 乾燥工程は、重合中または重合後の細粒化工程で得られた粒子状含水ゲル状架橋重合体を乾燥する工程である。
 本発明における乾燥工程で用いられる乾燥機は、各種の乾燥機を使用することができ、特に制限されないが、通気バンド式連続乾燥機、流動床乾燥機が好ましく使用でき、さらに好ましくは、通気バンド式連続乾燥機が使用できる。通気バンド式連続乾燥機を用いることで、効率的な乾燥が行える。
 上記乾燥の稼働時間としては24時間以上の連続乾燥が好ましく、120時間以上がより好ましく、240時間以上がさらに好ましく、720時間以上が特に好ましい。
 (a)乾燥装置
 本発明で用いられる乾燥装置としては、通気ベルト式乾燥機(ベルト式乾燥機)が好ましく用いられ、その他、必要により、伝導伝熱型乾燥機、輻射伝熱型乾燥機、熱風伝熱型乾燥機、誘電加熱乾燥機等の1種または2種以上が挙げられ、乾燥の速さから熱風伝熱型乾燥機(以下、熱風乾燥機という。)が好ましい。熱風乾燥機としては、通気ベルト(バンド)式、通気回路式、通気竪型式、並行流ベルト(バンド)式、通気トンネル式、通気溝型攪拌式、流動層式、気流式、噴霧式等の乾燥装置が挙げられ、本発明では物性制御の点で通気ベルト式が好ましい。他の乾燥機を併用してもよいが、好ましくは、通気ベルト式乾燥機(ベルト式乾燥機)のみで乾燥される。
 乾燥機の熱源としては、通電によるヒーターや、水蒸気、熱風等の各種の加熱気体が例示される。特に好ましい熱源は加熱蒸気(100℃以上)である。かかる加熱蒸気はリサイクルされ、必要により、熱交換機を通じて再加熱されて、吸水性樹脂の乾燥工程または別の工程で使用される。加熱温度は一定でも、変化させてもよい。
 乾燥温度は、通常100~250℃、好ましくは100~220℃、より好ましくは120~200℃、特に好ましくは150~190℃の温度範囲(熱風温度)である。乾燥室を通過する熱風の風速は、重合体があまり吹き飛ばされないような範囲で、できるだけ速い方が効率的であり、好ましくは0.1~5[m/s]、より好ましくは0.5~3[m/s]である。風速が0.1[m/s]を下回ると、所定の含水率まで乾燥するのに必要な時間が長くなりすぎて、乾燥機が巨大になる。一方、風速が5[m/s]を超えると乾燥室から飛び出す重合体が多くなり、安定的な運転が難しくなる。乾燥時間(粒子状含水ゲル状架橋重合体の乾燥機への投入から、同一の粒子状含水ゲル状架橋重合体が乾燥物として乾燥機から排出されるまでの時間)は、重合体の表面積、含水率、および乾燥機の種類、風量に依存し、目的とする含水率になるよう選択される。例えば、乾燥時間は、1分~1時間の範囲内で適宜選択すればよい。
 本発明は、用いられる乾燥機のベルト長さが5~100m、さらには10~70m、特に20~60mの範囲である巨大スケールの連続乾燥に適用される。ベルトの幅も制限されないが、通常0.5~10m、さらには1~5mで適宜決定される。なお、幅方向と長さ方向の比も目的に応じて決めればよいが、幅より長さ方向(進行方向)が長いことが好ましく、通常3~500倍、さらには5~100倍で適宜決定される。
 本発明の乾燥は、連続通気ベルト上で行われることが好ましく、通気ベルトとしては、金網(例;目開き1000~45μm)やパンチングメタルが例示されるが、好ましくはパンチングメタルが使用される。パンチングメタルの孔の形状は広く適用でき、例えば、丸穴,楕円穴,角穴,六角穴,長丸穴,長角穴,菱穴,十字穴やそれら複数形状の併用が例示でき、それら穴の並びも千鳥状でもよく並列状でもよい。さらに、孔がルーバー(出窓)など立体的に形成されてもよいが、好ましくは平面構造の孔を有する。また、ピッチ方向はベルトの進行方向に縦でもよく、横でもよく、斜めでもよく、それらが併用されてもよい。なお、パンチングメタルの孔の大きさや開孔率は後述する。
 通気ベルト上での粒子状含水ゲル状架橋重合体の移送速度は、ベルト幅、ベルト長、生産量、乾燥時間により適宜調整すればよいが、ベルト駆動装置の負荷、耐久性等の観点から、好ましくは0.3~5[m/min]、より好ましくは0.5~2.5[m/min]、さらに好ましくは0.5~2[m/min]、特に好ましくは0.7~1.5[m/min]である。
 本発明を達成するうえで、温度、露点、風量を多段階に変化させることが好ましく、そのために、乾燥機が5室以上、特に6室以上、さらには8室以上の通気ベルト式乾燥機であることが好ましい。上限はスケールなどで適宜設定されるが、通常、20室程度で十分である。
 (b)面積占有率
 本発明の製造方法において、通気バンド乾燥機を使用する場合、ベルト上の面積占有率は通常85~100%、好ましくは87~100%、より好ましくは87~99%、特に好ましくは90~98%、最も好ましくは93~97%である。面積占有率とは、乾燥工程初期の通気ベルト面積(A)に対する粒子状含水ゲルの積層物が通気ベルト面上を占める面積比(百分率)として規定する。なお、通気ベルト面積(A)には孔の面積も含まれるものとする。該区間における粒子状含水ゲルの積層物の占有面積により、乾燥初期の粒子状含水ゲルの積層物が通気ベルト面上を占める面積(B)が規定される。前記により規定された通気ベルト面積(A)と、粒子状含水ゲルの積層物の占有面積(B)により、面積占有率(B/A×100(%))を規定する。上記面積占有率が99%を超える場合、または85%未満の場合、吸水性樹脂の物性が低下することが見いだされ、さらに、落下飛散率、乾燥効率や連続乾燥性が低下する傾向にある。ベルト上での非占有箇所は適宜決定され、中央部、両端部、中間の一定位置に含水ゲルを積層しない部分を設ければよく、好ましくは両端部に含水ゲルを設置しない一定領域が設けられる。
 (c)開孔率および孔
 本発明の製造方法において、通気バンド乾燥機を使用する場合、本発明で好ましいパンチングメタルの開孔率は15~50%、より好ましくは20~45%、特に好ましくは25~40%である。ここで、開孔率は孔、ピッチ(P)などで決定され、一定領域に孔を有しない場合、例えば、パンチングメタルが縁を有する場合、その部分も含んだ面積で規定される。開孔率が上記から外れる場合、吸水性樹脂の物性が低下することが見いだされ、さらに、乾燥効率や連続乾燥性が低下する傾向にある。
 孔ひとつの面積(複数種類の穴の場合は平均面積で平均開孔面積として規定)は粒子状含水ゲルの一粒の断面積より大きいことが好ましく、2~100倍、さらには4~50倍の範囲である。また、孔の最大開孔距離(例えば、円形であれば直径、楕円形であれば長径)は粒子状含水ゲルの質量平均粒子径より大きいことが好ましく、2~100倍、さらには4~50倍の範囲である。さらに、孔の平均開孔面積は5~500mm、好ましくは10~100mm、特に好ましくは15~50mmとされる。前記範囲の規定より小さい場合、乾燥効率が低下し、大きい場合は乾燥物の収率が低下するので好ましくない。
 (d)樹脂固形分
 上記したように、本発明の製造方法の重合工程においては、水分を蒸発させながら重合を行う連続ニーダー重合または連続ベルト重合が好ましい。本重合工程において、固形分の上昇度(単量体水溶液の固形分とゲル固形分との差)は1質量%以上、さらには2質量%以上、特に5質量%以上であり、かかる固形分上昇によって、高物性の吸水性樹脂が高生産性でかつ低エネルギーで得られる。さらに乾燥工程においても、同様に、樹脂固形分の上昇がエネルギー削減のみならず、乾燥機への付着低減に好影響を及ぼす。
 なお、乾燥工程での固形分の上昇、乾燥機への含水ゲルの付着防止、製品の粒度制御等の観点から、乾燥前の粒子状含水ゲル状架橋重合体に、分級工程で得られた吸水性樹脂微粒子をリサイクルしてもよい。また、乾燥工程に導入される前の粒子状含水ゲル状架橋重合体の固形分は45質量%以上であることが好ましい。また、粒子状含水ゲル状架橋重合体は1[t/hr]以上の規模で乾燥される。なお、樹脂固形分の制御は、単量体濃度、重合時の水分蒸発、微粉リサイクル等で行うことができ、樹脂固形分を上昇させることで、エネルギー削減のみならず、乾燥機への付着も低減できる。
 (2-4)粉砕工程、分級工程(乾燥後の粒度調整)
 本工程は、上記乾燥工程で得られた乾燥物を、粉砕、分級して、吸水性樹脂粉末を得る工程である。なお、吸水性樹脂粉末は下記の表面架橋を施す前の吸水性樹脂をさす。上記乾燥工程で得られた乾燥物をそのまま乾燥粉末として使用することもできるが、乾燥時に粒子状含水ゲルが凝集しブロック状の塊状物となることもある。この現象は特にバンド乾燥機で見られ、粉砕または粗砕(凝集を解す操作)が必要となる。さらに、後述する表面架橋工程での物性向上のため、特定の粒度に制御することが好ましい。なお、粒度制御は、本粉砕工程、分級工程に限らず、重合工程(特に逆相懸濁重合)、微粉回収工程、造粒工程等で適宜実施することができる。以下、粒度は標準篩(JIS Z8801-1(2000))で規定する。
 本粉砕工程で使用できる粉砕機は、特に限定されず、従来から知られている粉砕機を使用することができる。具体的には、ロールミル、ハンマーミル、ロールグラニュレーター、ジョークラッシャー、ジャイレクトリークラッシャー、コーンクラッシャー、ロールクラッシャー、カッターミル等を挙げることができる。これらの中でも、粒度制御の観点から、多段のロールミルまたはロールグラニュレーターを使用することが好ましい。また、分級工程においては、ふるい分級や気流分級等、各種の分級機を使用することができる。
 本発明の分級工程は、表面架橋前および/または表面架橋後に必須に行われ、好ましくは表面架橋前、さらに好ましくは表面架橋前および表面架橋後の合計2回行われる。
 本工程で得られる吸水性樹脂の物性向上の観点から、以下の粒度となるように制御することが好ましい。すなわち、吸水性樹脂粉末(表面架橋前)の質量平均粒子径(D50)は、200~600μmが好ましく、200~550μmがより好ましく、250~500μmがさらに好ましく、350~450μmが特に好ましい。また、目開き150μmの篩(JIS標準篩)を通過する微細な粒子の割合は、吸水性樹脂粉末全体に対して、0~5質量%が好ましく、0~3質量%がより好ましく、0~1質量%がさらに好ましい。また、目開き850μmの篩(JIS標準篩)を通過しない巨大な粒子の割合は、吸水性樹脂粉末全体に対して、0~5質量%が好ましく、0~3質量%がより好ましく、0~1質量%がさらに好ましい。これらの粒度は、国際公開第2004/69915号やEDANA-ERT420.2.-02(Particle Size Distribution)に開示された方法で測定される。
 (2-5)表面処理工程
 本発明に係る吸水性樹脂の製造方法は、不飽和単量体水溶液の重合工程と、重合中または重合後の細粒化工程で得られた粒子状含水ゲル状架橋重合体の乾燥工程と、乾燥後の粉砕工程と、乾燥後の分級工程と、分級工程後の吸水性樹脂粉末の表面処理工程と、および、必要により表面処理工程後の第2分級工程とを含む吸水性樹脂の製造方法(例えば図1)であって、熱処理機を加熱した状態で保持したまま、上記表面処理工程の中断を行い、その後表面処理工程を再開することを特徴とする、吸水性樹脂の製造方法である。ただし、上記表面処理工程の中断とは、吸水性樹脂粉末が熱処理機内に実質不存在の状態、あるいは、連続表面処理において熱処理機に投入または排出されない状態をいう。
 上記の通り、吸水性樹脂の製造工程は、重合工程、細粒化工程、乾燥工程、粉砕工程、分級工程、表面処理工程等、数多くの工程の連続稼働によって成り立っている。定期的なメンテナンスや一時的なトラブル(一部の工程での運転トラブル)時には、全工程を停止させ、吸水性樹脂の連続製造フローを停止させる必要がある。これらの対処を行った後、運転を再開するが、その際、得られる吸水性樹脂の品質が安定しないことや、運転再開に過度のエネルギーが必要のため、装置の故障を招き、再度運転が停止することもあった。さらに、運転再開時に着色異物(主に吸水性樹脂の変色物)が混入することもあった。
 本発明では、上記工程のうち、表面処理工程(加熱処理工程)に用いられる熱処理機が停止したことを想定し、上記課題を解決できる熱処理機の停止方法に着目した。すなわち、本発明では、加熱処理工程の中断期間中であっても熱処理機を加熱した状態で保持しておくことで上記課題が解決することを見出した。上記操作を行うことで、運転再開の際には順調に熱処理機が稼働し、さらに着色異物の吸水性樹脂への混入もなく、安定的に連続表面処理が行える。なお、「熱処理機を加熱した状態で保持する」とは、熱源の継続的な付与を指し、加熱処理工程の停止期間中、熱源の付与が行われず、余熱のみの状態は、加熱状態に含まれない。
 上記熱源としては、通電によるヒーターや、水蒸気、熱風等の各種の加熱気体が例示されるが、加熱気体の継続的な付与が好ましい。特に好ましくは熱源として加熱蒸気(100℃以上)が用いられる。かかる加熱蒸気はリサイクルされ、必要により、熱交換機を通じて再加熱されて、吸水性樹脂の乾燥工程または別の工程で使用される。なお、乾燥機へ熱源の継続的な付与は、所望する加熱温度、好ましくは下記範囲を維持する温度範囲となるようにすればよく、連続加熱であっても、断続的加熱(On/Off)であってもよい。また、上記加熱温度は一定でも、変化させてもよい。
 好ましくは上記熱源により空気を温めて熱処理機内に吹き込む方法や、トレースにより熱処理機を温める方法により、熱処理機と、熱処理機内に残留する吸水性樹脂粉末を加熱する。
 ここで、加熱処理工程は連続式、半連続式、回分式のいずれであっても本発明を適用することができるが、中でも連続式加熱処理工程に適用することが好ましい。すなわち、連続式加熱処理工程を停止する際に、熱処理機を加熱状態で停止したのちに加熱処理を再開する。完全に熱処理機を停止した後に熱処理を再開すると、運転起動時パドルに過度のエネルギー(トルク)が必要となったり、着色異物が混入したりすることもある。
 上記熱処理の処理時間としては24時間以上の連続運転が好ましく、120時間以上がより好ましく、240時間以上がさらに好ましく、720時間以上が特に好ましい。また、熱処理の停止から熱処理開始までの時間(本発明でいう加熱処理工程の中断期間)は、0.5時間以上が好ましく、0.5時間以上100日間以内がより好ましく、1時間以上50日間以内がさらに好ましく、5時間以上20日間以内が特に好ましく、10時間以上15日間以内が最も好ましい。熱処理工程の中断期間が0.5時間未満の場合、停止前の熱処理温度からの温度低下量が少ないため、加熱状態で停止する効果が小さい。一方、加熱処理工程の中断期間が100日間を越える場合、熱処理機を長期間に亘って未使用となるため、エネルギー使用が長期間となり、エネルギーコストが不利となる。
 熱処理工程の中断期間中における熱処理機の温度(熱処理機内の雰囲気温度)については、加熱状態が継続していればよく、特に制限されないが、エネルギーや着色の問題から熱処理温度よりも低い温度が好ましい。具体的には、熱処理温度より10℃以上低下させることが好ましく、以下順に、20℃以上、30℃以上、40℃以上、低下させることが好ましい。また、熱処理工程の中断期間中における熱処理機の温度の下限としては、40℃以上であることが好ましく、50℃以上がより好ましく、60℃以上がさらに好ましい。上記熱処理機の温度が40℃未満の場合、パドルの起動に過度のエネルギーが必要であり、また、着色異物が混入するおそれがあり好ましくない。従って、加熱処理工程の中断期間中の熱処理機の温度としては、40℃以上、さらには60℃以上、80~140℃であればよい。なお、熱処理機より後ろでトラブルが発生した場合など、熱処理機内に吸水性樹脂粉末が残留している場合、中断期間中に熱処理温度のまま熱処理機を停止させておくと、熱処理機内に残留している吸水性樹脂粉末の吸水倍率が低下するので、熱処理機を再稼働させる際、所望の吸水倍率の吸水性樹脂を得るために時間がかかることがある。一方、40℃未満で熱処理機を停止させた場合、上記問題点以外に、熱処理機を再稼働させる際、吸水性樹脂の物性がロットごとに振れを生じ、多くの場合、吸水倍率や通液性に劣った吸水性樹脂になる。この原因は、熱処理機内部の吸水性樹脂粉末が凝集し、さらに熱処理機を再稼働させた後も排出されず熱処理機内に残って、均一な熱処理を阻害し続けるためと推測される。
 上記熱処理工程の中断期間中に、吸水性樹脂粉末からなる滞留物(またはその凝集粒子)を、熱処理機から除去することが好ましい。滞留物(落下滞留物を含む)を除去することで、着色異物(例えば、黄色、茶色、茶褐色、黒色に焦げた吸水性樹脂)のない吸水性樹脂が得られる。該着色異物は、吸水性樹脂粉末からなる滞留物が、熱処理機内に長時間滞留することによって生成する。したがって、5日間以上、10日間以上、さらには20日間以上連続稼働する場合には、吸水性樹脂粉末からなる滞留物を定期的に除去、清掃することが好ましい。上記滞留物の形状は特に問わないが、通常、粒子状であり、それらは熱処理機のパドル上から落下、飛散または付着することで、熱処理機内に滞留する。該滞留物の除去方法としては、バキュームで吸引したり、ブラシで除去したり、(加圧)エアーで吹き飛ばしたりして除去すればよい。滞留物(の粒子)を熱処理機から除去する際には、熱処理機は加熱状態でもよいが、作業者が熱処理機内部の清掃を行う場合は除去作業の容易性から室温程度まで下げた後、速やかに清掃を行うことが好ましい。100時間以内に清掃を開始する。清掃の開始は、48時間以内が好ましく、24時間以内がより好ましく、12時間以内がさらに好ましく、6時間以内が特に好ましい。加熱を停止したまま時間が経過すると、上記の通り滞留物の付着が激しくなり、清掃が困難になる場合がある。
 本発明において、上記所定粒度の吸水性樹脂粉末(粒子)に対して、粒子表面近傍を改質する工程を表面処理工程という。ここで、「表面処理」には、表面架橋やその他、粒子表面への各種添加剤やポリマーの添加が例示されるが、好ましくは加熱反応による表面架橋が必須に行われる。表面架橋以外の表面処理としては、水溶性または水不溶性ポリマー、滑剤、キレート剤、消臭剤、抗菌剤、水、界面活性剤、水不溶性微粒子、酸化防止剤、還元剤等の添加が例示できる。これらの剤は、吸水性樹脂粉末や表面架橋後の吸水性樹脂粒子に対して、好ましくは0~30質量%、より好ましくは0.01~10質量%で添加混合されうる。これらの剤は、下記表面架橋剤に代わって、上記の上限で混合され加熱処理される。以下、表面架橋工程を代表して説明するが、下記の混合、加熱および停止の各操作は上位概念である表面処理工程にも適宜適用することができる。
 (a)混合工程(表面架橋工程)
 本発明では、吸水性能向上を目的として、好ましくは表面架橋工程をさらに含む。本発明では、表面架橋処理によって、着色が少なく、より白色の吸水性樹脂が得られる。以下の各工程は、吸水性樹脂の表面架橋、特に高温表面架橋に、好適に適用できる。
 本発明における表面架橋工程は、吸水性樹脂粉末と表面架橋剤との混合工程、該混合物の加熱処理工程、必要により行われる冷却工程からなる。
 (共有結合性表面架橋剤)
 本発明で用いることができる表面架橋剤としては、特に限定されないが、種々の有機または無機架橋剤を挙げることができる。中でも有機表面架橋剤単独か、有機表面架橋剤とイオン結合性表面架橋剤との併用が好ましい。有機表面架橋剤としては共有結合性表面架橋剤が好ましく、具体的には、多価アルコール化合物、エポキシ化合物、多価アミン化合物またはそのハロエポキシ化合物との縮合物、オキサゾリン化合物、(モノ、ジ、またはポリ)オキサゾリジノン化合物、アルキレンカーボネート化合物であり、特に高温での反応が必要な、多価アルコール化合物、アルキレンカーボネート化合物、オキサゾリジノン化合物等の脱水反応性架橋剤が好ましく使用できる。より具体的には、米国特許第6228930号、同第6071976号、同第6254990号等に例示されている化合物を挙げることが出来る。例えば、モノ,ジ,トリ,テトラまたはプロピレングリコール、1,3-プロパンジオール、グリセリン、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ソルビトール等の多価アルコール化合物;エチレングリコールジグリシジルエーテルやグリシドール等のエポキシ化合物;エチレンカーボネート等のアルキレンカーボネート化合物;オキセタン化合物;2-イミダゾリジノンのような環状尿素化合物等の脱水エステル反応性架橋剤が挙げられる。これらの共有結合性表面架橋剤(特に脱水反応性表面架橋剤)は1種または2種以上を併用することができる。上記表面架橋剤の使用量は、吸水性樹脂粉末100質量部に対して、好ましくは0.001~10質量部、より好ましくは0.01~5質量部の範囲内で適宜決定される。
 (イオン結合性表面架橋剤)
 本発明においては、通液性等の物性向上を目的に、上記有機表面架橋剤以外に無機表面架橋剤を使用することができる。使用される無機表面架橋剤としては、特に限定されないが、2価以上、好ましくは3価または4価の多価金属塩(有機塩または無機塩)若しくは水酸化物を例示することができる。具体的には、多価金属としてはアルミニウム、ジルコニウム等が挙げられ、乳酸アルミニウム、硫酸アルミニウムが好ましく使用される。これらの無機表面架橋剤は、有機表面架橋剤と同時または別途に使用される。なお、多価金属による表面架橋については、国際公開第2007/121037号、同第2008/09843号、同第2008/09642号、米国特許第7157141号、同第6605673号、同第6620889号、米国特許出願公開第2005/0288182号、同第2005/0070671号、同第2007/0106013号、同第2006/0073969号等に示されている。上記イオン結合性表面架橋剤は1種または2種以上を併用することができ、その使用量は、吸水性樹脂粉末100質量部に対して、好ましくは0.001~10質量部、より好ましくは0.01~5質量部の範囲内で適宜決定される。
 また、本発明においては、通液性等の物性向上を目的に、上記有機表面架橋剤以外にポリアミンポリマーを同時にまたは別途に使用してもよい。該ポリアミンポリマーは、質量平均分子量が5000~100万程度を有するものが特に好ましく、例えば、米国特許第7098284号、国際公開第2006/082188号、同第2006/082189号、同第2006/082197号、同第2006/111402号、同第2006/111403号、同第2006/111404号等に例示されている。
 本発明では、従来着色が激しかった高温加熱や空気(熱風)での熱処理でも、高度に白色の吸水性樹脂を提供する。特に衛生材料(特に紙おむつ)を目的とする場合、表面架橋処理によって、後述の加圧下吸水倍率(AAP)を後述の範囲、好ましくは20g/g以上に高めれば良い。
 上記表面架橋剤を混合する際、溶媒として水を用いることが好ましい。上記水の使用量は、吸水性樹脂粉末100質量部に対して、好ましくは0.5~20質量部、より好ましくは0.5~10質量部の範囲内で適宜決定される。さらに、上記水以外に、必要に応じて、親水性有機溶媒を併用してもよく、その使用量は、吸水性樹脂粉末100質量部に対して、好ましくは0~10質量部、より好ましくは0~5質量部の範囲内で適宜決定される。
 さらに、表面架橋剤溶液の混合に際し、水不溶性の微粒子粉体や界面活性剤を本発明の効果を妨げない程度に共存させてもよい。該微粒子粉体や界面活性剤の種類や使用量等については、米国特許第7473739号等に例示されているが、該使用量としては、吸水性樹脂粉末100質量部に対して、好ましくは0~10質量部、より好ましくは0~5質量部、さらに好ましくは0~1質量部の範囲内で適宜決定される。
 (b)加熱処理工程
 表面架橋工程では、吸水性樹脂粉末と表面架橋剤とを混合した後、好ましくは加熱処理され、その後必要により冷却処理される。加熱処理には公知の乾燥機が使用され、上記本発明の停止方法も好ましく適用される。上記加熱処理時の加熱温度(熱媒温度または材料温度、特に材料温度を指す)は、使用する表面架橋剤の種類・量等によって適宜決定されるが、70~300℃が好ましく、120~250℃がより好ましく、150~250℃がさらに好ましく、170~230℃が特に好ましい。なお、脱水反応性の表面架橋剤を使用する場合の加熱温度は、150~250℃が好ましく、170~230℃がより好ましい。上記処理温度が70℃未満の場合、加熱処理時間が延び生産性の低下を招来する上に、均一な表面架橋層を形成することができないため好ましくない。また、上記処理温度が300℃を超える場合、吸水性樹脂粉末が劣化するため好ましくない。また、上記加熱処理時の加熱時間は、1分~2時間の範囲が好ましい。上記加熱処理は、通常の乾燥機または加熱炉で行うことができる。なお、欧州特許第0349240号、同第0605150号、同第0450923号、同第0812873号、同第0450924号、同第0668080号、日本国特開平7-242709号、同平7-224304号、米国特許第5409771号、同第5597873号、同第5385983号、同第5610220号、同第5633316号、同第5674633号、同第5462972号、国際公開第99/42494号、同第99/43720号、同第99/42496号等に開示された表面架橋方法についても、本発明に好ましく適用することができる。
 (熱処理装置)
 本発明で用いられる熱処理装置としては、流動床熱処理機、ベルト型熱処理機、パドル型熱処理機、ディスク型熱処理機、熱風熱処理機、赤外線熱処理機等、各種の加熱処理機を使用することができるが、これらの中でも、パドル型熱処理機が好ましく、ディスク型熱処理機が殊に好ましい。具体的には、Bepex-熱処理機、Nara-熱処理機が挙げられる。なお、本明細書では「熱処理機」と便宜上表現しているが、これらは乾燥機と同一のものである。加熱処理は、熱処理機自体中で、ジャケットの加熱または熱風の吹き込みによって行うことができる。後接続された乾燥機、例えば、箱型乾燥機、回転管炉または加熱可能なスクリューは、同様に適当である。
 本加熱処理工程における加熱温度は、70~300℃が好ましく、120~250℃がより好ましく、150~250℃がさらに好ましく、170~230℃が特に好ましい。また、加熱時間は、1分~2時間が好ましく、5分~1時間がより好ましい。
 加熱処理工程においては、熱処理機として、吸水性樹脂粉末の投入口と排出口、および、複数の攪拌盤を備えた1本以上の回転軸からなる攪拌手段と加熱手段とを有する横型連続攪拌装置を用いることもできる。その場合、該横型連続攪拌装置の攪拌動力指数が3~15[W・hr/kg]であることが好ましい。なお、攪拌動力指数とは、以下の数式から求められる値であって、スケールアップ時(特に1[t/hr]以上)における吸水性樹脂の安定的生産性を判断する指標となる。
Figure JPOXMLDOC01-appb-M000001
 上記攪拌動力指数は、表面処理時の装置の消費電力と空運転時の消費電力で容易に求めることができ、4~13[W・hr/kg]がより好ましく、5~11[W・hr/kg]がさらに好ましく、5~10[W・hr/kg]が特に好ましく、5~9[W・hr/kg]が最も好ましい。該数値が15[W・hr/kg]を超える場合、物性(特に通液性)が低下し、また、該数値が3[W・hr/kg]を下回る場合でも、物性(特に加圧下吸水倍率)が低下する。なお、攪拌動力指数の制御は、吸水性樹脂の供給量や排出量の調整、吸水性樹脂の粒度やかさ比重、装置の回転数、形状、表面処理剤の組成、滞留時間等で適宜決定される。
 (乾燥空気)
 本発明における加熱処理工程の中断時には、吸水性樹脂の物性維持および閉塞現象を抑制するという観点から、乾燥された空気を加熱処理工程の中断期間中の熱処理機内に注入することが好ましい。該空気の露点としては、0℃以下(マイナス露点)がよく、-100~-5℃が好ましく、-95~-30℃がより好ましく、-90~-35℃がさらに好ましく、-85~-40℃が特に好ましい。該空気の露点を制御する方法としては、特に制限されないが、適宜乾燥すればよく、メンブレンドライヤー、冷却吸着式ドライヤー、ダイヤフラムドライヤー等の機器を単独でまたは併用して乾燥すればよい。上記冷却吸着式ドライヤーを使用する場合、加熱再生式でもよく、非加熱再生式でもよく、非再生式でもよい。本発明の効果を奏するには、上記露点を有する空気の温度が室温(25℃)であればよく、好ましくは加熱してもよく、さらに好ましくは上述した中断期間中の熱処理機の温度範囲に加熱される。
 (従来の加熱処理方法)
 上記特許文献1~9や、上記共有結合性表面架橋剤およびイオン結合性表面架橋剤の項目に記載した特許文献等に、従来の表面架橋やその他吸水性樹脂の加熱処理が開示されている。しかし、これらの文献は、加熱処理装置を加熱状態で停止することについては開示しない。
 (c)冷却工程
 本工程は、加熱処理工程の後、任意に実施される工程であり、好ましくは上記加熱処理工程において高温での反応が必要な、多価アルコール化合物、アルキレンカーボネート化合物、オキサゾリジノン化合物からなる脱水反応性架橋剤を使用する場合に、冷却工程が設けられる。
 本冷却工程において用いられる冷却装置としては、特に制限されないが、上記加熱処理工程で用いられる装置と同一仕様の装置を用いることができる。すなわち、上記横型連続攪拌装置でもよいし、米国特許第7378453号等に例示されている装置でもよい。例えば、内壁その他の伝熱面の内部に、冷却水が通水されている2軸攪拌装置等が用いられる。また、上記冷却水の温度としては、表面処理工程における加熱処理温度未満とされ、好ましくは25℃以上70℃未満の範囲内で適宜決定される。さらに冷却装置の攪拌動力指数についても、上記加熱処理機と同様、3~15[W・hr/kg]が好ましく、4~13[W・hr/kg]がより好ましく、5~11[W・hr/kg]がさらに好ましく、5~10[W・hr/kg]が特に好ましく、5~9[W・hr/kg]が最も好ましい。
 なお、攪拌動力指数や冷却工程の好ましい形態については、特願2009-197063号(出願日;2009年8月27日)や特願2009-196967号(出願日;2009年8月27日)およびそれらの優先権主張出願に開示されており、該出願内容は、本発明における攪拌動力指数の制御方法とする。
 (d)周期的遮断
 表面架橋での物性安定や物性向上の面から、表面架橋工程と第2の分級工程との間で周期的遮断を行うことが好ましい。該周期的遮断は、0.001~5分間隔で行われるのが好ましく、さらには0.01~1分間隔、特に0.05~0.5分間隔が好ましい。吸水性樹脂が連続装置間(混合機、加熱処理機、必要により冷却機)を周期的、すなわち間欠的(On/Off)に移動される。これらの周期的遮断は、加熱装置と任意の冷却装置(冷却工程)との間でも行える。
 なお、周期的遮断については、特願2009-197022号(出願日;2009年8月27日)およびその優先権主張出願に開示されており、該出願内容は本発明における周期的遮断とする。
 (2-6)微粉リサイクル工程
 本発明における微粉リサイクル工程とは、乾燥および必要により粉砕・分級で得られた微粉(特に150μm以下を主成分、特に70質量%以上含む微粉)を分離後、そのまま、あるいは水和して、重合工程や乾燥工程にリサイクルする工程であり、例えば、米国特許出願公開第2006/247351号、米国特許第6228930号等に記載の方法が適用できる。
 リサイクルした微粉を含むことで、粒度が制御できるとともに、吸水性樹脂粉末の添加によって本発明で必須の高固形分が容易に達成され、さらに微粉の添加で乾燥ベルトからの乾燥後の吸水性樹脂の剥離が容易になるので好ましい。
 従来の製造方法では、微粉リサイクル工程を含む製造方法により得られた吸水性樹脂は、微粉添加に伴う不均一乾燥、残存モノマーの増加、吸水倍率の低下等のため、高物性の吸水性樹脂を得ることが困難であったが、本発明の製造方法では、特に吸水性樹脂の製造工程において微粉リサイクル工程を含む場合に、吸収物性低下の抑止や着色防止の効果に優れる。すなわち、重合工程での水分蒸発または吸水性樹脂微粉の添加で、含水ゲルの固形分が45質量%以上、50質量%以上、55質量%以上、60質量%以上に高められてなることが好ましい。単量体からの固形分上昇(重合後の含水ゲルの固形分-重合前の単量体の質量%)は1質量%以上、さらには2~40質量%、特に3~30質量%の範囲が好ましい。また、乾燥後の吸水性樹脂微粉末またはその水添加物を重合工程または乾燥工程にリサイクルする工程を含むことが好ましい。
 (2-7)その他の工程(およびその加熱停止)
 上記各連続工程以外に、必要により、多価金属塩の表面処理工程、蒸発モノマーのリサイクル工程、造粒工程、微粉除去工程(第2分級工程)等を設けてもよい。さらに、経時色安定性効果やゲル劣化防止等のために、上記各工程の一部または全部に上記添加剤を、必要により使用してもよい。さらに、本発明の製造方法においては、好ましくは微粉リサイクル工程を含む。
 また、重合中または重合後に、水溶性または水不溶性ポリマー、滑剤、キレート剤、消臭剤、抗菌剤、水、界面活性剤、水不溶性微粒子、酸化防止剤、還元剤等が吸水性樹脂粒子に対して、0~30質量%、さらには0.01~10質量%程度で添加混合されうる。これら添加剤は表面処理剤としても使用できる。
 また、好ましくは、輸送工程、貯蔵工程、梱包工程、その他の添加剤(微粒子、消臭剤、抗菌剤等)の添加工程等の1種または2種以上の工程をさらに含む。これらの工程は特許文献1~10等に例示されるが、乾燥工程以降の停止も加熱状態、好ましくは特に50℃以上、さらには60℃以上の加熱で停止される。加熱温度の上限はコスト面や着色面から140℃以下、さらには120℃以下、特に100℃以下でである。上記マイナス露点も好ましく適用される。これら工程の停止は、装置の未使用状態、すなわち、吸水性樹脂が実質不存在で、各工程の装置に吸水性樹脂が供給も排出もされない状態を指す。
 すなわち、本発明では表面処理工程(特に表面架橋工程)が加熱状態で停止され、さらに好ましくは乾燥工程および表面処理工程(特に表面架橋工程)が加熱状態で停止され、特に好ましくは、乾燥工程および表面処理工程(特に表面架橋工程)に加えて、表面処理工程以降のその他の工程(特に全工程)も加熱状態で停止される。かかる加熱状態で停止することで、運転再開時にトラブルもなく、安定的な運転が可能となる。
 〔3〕吸水性樹脂の物性
 本発明の吸水性樹脂は、ポリアクリル酸(塩)系吸水性樹脂を主成分とし、衛生用品、特に紙オムツへの使用を目的とする場合、上述した重合方法や表面架橋方法等によって得られる。さらに得られる吸水性樹脂は、下記(3-1)~(3-6)に挙げられた各物性のうち、少なくとも1以上の物性を制御することが好ましく、さらにはAAPを含めた2以上、特に3以上の物性を制御することが好ましい。吸水性樹脂が下記の各物性を満たさない場合、吸水性樹脂濃度が40質量%以上の高濃度オムツでは十分な性能を発揮しないおそれがある。
 (3-1)CRC(無加圧下吸水倍率)
 本発明で得られる吸水性樹脂のCRC(無加圧下吸水倍率)は、10[g/g]以上が好ましく、20[g/g]以上がより好ましく、25[g/g]以上がさらに好ましく、30[g/g]以上が特に好ましい。CRCの上限値は、特に限定されないが、50[g/g]以下が好ましく、45[g/g]以下がより好ましく、40[g/g]以下がさらに好ましい。上記CRCが10[g/g]未満の場合、吸水性樹脂の吸水量が低く、紙オムツ等、衛生用品中の吸収体への使用に適さないおそれがある。また、上記CRCが50[g/g]を超える場合、かような吸水性樹脂を吸収体に使用すると、液の取り込み速度に優れる衛生用品を得ることができないおそれがあるため、好ましくない。なお、CRCは、上述した内部架橋剤や表面架橋剤等で適宜制御することができる。
 (3-2)AAP(加圧下吸水倍率)
 本発明で得られる吸水性樹脂のAAP(加圧下吸水倍率)は、紙オムツでのモレを防止するため、上記熱処理を達成手段として、4.83kPa(0.7psi)の加圧下におけるAAPとして、20[g/g]以上が好ましく、22[g/g]以上がより好ましく、24[g/g]以上がさらに好ましい。AAPの上限値は、特に限定されないが、他の物性とのバランスから40[g/g]以下が好ましい。上記AAPが20[g/g]未満の場合、かような吸水性樹脂を吸収体に使用すると、吸収体に圧力が加わった際の液の戻り(通常、「リウェット(Re-Wet)」とも称される)が少ない衛生用品を得ることができないおそれがあるため、好ましくない。なお、AAPは、上述した表面架橋剤や粒度等で適宜制御することができる。
 (3-3)SFC(生理食塩水流れ誘導性)
 本発明で得られる吸水性樹脂のSFC(生理食塩水流れ誘導性)は、紙オムツでのモレを防止するため、上記熱処理を達成手段として、加圧下での液の通液特性であるSFCとして、1[×10-7・cm・s・g-1]以上が好ましく、10[×10-7・cm・s・g-1]以上がより好ましく、50[×10-7・cm・s・g-1]以上がさらに好ましく、70[×10-7・cm・s・g-1]以上が特に好ましく、100[×10-7・cm・s・g-1]以上が最も好ましい。SFCの上限値は、特に限定されないが、他の物性とのバランスから3000[×10-7・cm・s・g-1]以下が好ましく、2000[×10-7・cm・s・g-1]以下がより好ましい。上記SFCが3000[×10-7・cm・s・g-1]を超える場合、かような吸水性樹脂を吸収体に使用すると、吸収体で液漏れが発生するおそれがあるため、好ましくない。なお、SFCは、上述した乾燥方法等で適宜制御することができる。
 (3-4)Ext(水可溶分)
 本発明で得られる吸水性樹脂のExt(水可溶分)は、35質量%以下が好ましく、25質量%以下がより好ましく、15質量%以下がさらに好ましく、10質量%以下が特に好ましい。上記Extが35質量%を超える場合、得られる吸水性樹脂のゲル強度が弱く、液透過性に劣ったものとなるおそれがある。また、かような吸水性樹脂を吸収体に使用すると、吸収体に圧力が加わった際の液の戻り(リウェット)が少ない吸水性樹脂を得ることができないおそれがあるため、好ましくない。なお、Extは、上述した内部架橋剤等で適宜制御することができる。
 (3-5)Residual Monomers(残存モノマー)
 本発明で得られる吸水性樹脂のResidual Monomers(残存モノマー)は、安全性の観点から、好ましくは0~400ppm、より好ましくは0~300ppm、さらに好ましくは0~200ppmに制御される。なお、Residual Monomersは、上述した重合方法等で適宜制御することができる。
 (3-6)初期色調
 本発明で得られる吸水性樹脂は、初期色調に優れている。すなわち、本発明で得られる、製造直後の吸水性樹脂の色調(初期色調)が、以下の数値を示す。なお、初期色調は、製造直後の色調をいうが、一般的には工場出荷前に測定される色調とされる。また、例えば、30℃以下、相対湿度50%RH以下の雰囲気下での保存であれば製造後1年以内に測定される値である。具体的には、ハンターLab表色系において、L値(Lightness)が好ましくは85以上、より好ましくは87以上、さらに好ましくは89以上である。また、b値は-5~10が好ましく、-5~9がより好ましく、-4~8がさらに好ましく、-1~7が特に好ましい。さらに、a値は-2~2が好ましく、-1~1が好ましく、より好ましくは-0.5~1、特に好ましくは0~1である。また、別の色度として、YI(Yellow Index)値は、10以下が好ましく、8以下がより好ましく、6以下が特に好ましい。さらに、別の色度として、WB(White Balance)値は、70以上が好ましく、75以上がより好ましく、77以上が特に好ましい。さらに、本発明で得られる吸水性樹脂は経時着色にも優れ、高温多湿下で行う促進試験においても十分な白色度を示す。
 〔4〕吸水性樹脂の用途
 本発明にかかる製造方法により得られる吸水性樹脂の用途は、特に限定されず、紙オムツ、生理用ナプキン、失禁パット等の衛生用品、農園芸用保水剤、廃液固化剤や、工業用止水材等、吸収性物品に使用することができる。
 以下、実施例および比較例に従って本発明を説明するが、本発明はこれらに限定され解釈されるものではない。また、便宜上、「リットル」を「L」、「質量%」を「wt%」と記すことがある。なお、本発明で得られる吸水性樹脂の、特許請求の範囲や実施例に記載した諸物性は、特に記載のない限り、室温(20~25℃)、湿度50RH%の条件下で、EDANA法および以下の測定例に従って求めた。
 1.初期色調および経時着色
 国際公開第2009/005114号パンフレットに開示する測定方法により、本発明の吸水性樹脂の初期色調および経時着色を測定した。
 2.樹脂固形分(固形分)
 底面の直径が約50mmのアルミカップに、吸水性樹脂1.00gを量り取り、試料(吸水性樹脂およびアルミカップ)の総重量W1[g]を正確に秤量した。
 次に、雰囲気温度180℃のオーブン中に上記試料を静置し、吸水性樹脂を乾燥させた。3時間経過後オーブンから該試料をアルミカップごと取り出し、デシケーター中で室温まで冷却した。その後、乾燥後の試料(吸水性樹脂およびアルミカップ)の総重量W2[g]を秤量し、次式にしたがって固形分(単位;[重量%])を算出した。
Figure JPOXMLDOC01-appb-M000002
 なお、粒子状含水ゲル状架橋重合体(粒子状含水ゲル)の樹脂固形分を測定する際には、粒子状含水ゲルの採取量を2~4g、乾燥時間を24時間に変更して行った。
 3.SFC(生理食塩水流れ誘導性)
 本発明で得られる吸水性樹脂のSFC(生理食塩水流れ誘導性)は、米国特許第5669894号明細書の記載に従って測定した。
 4.その他の物性
 本発明で得られる吸水性樹脂のCRC(無加圧下吸水倍率)、粒度分布、pH可溶分、残存アクリル酸量等の物性については、上述したEDANAのERT、または米国特許出願公開第2006/204755号明細書に準じて測定した。
 [製造例1]
 連続重合工程、バンド乾燥機による乾燥工程、粉砕工程、分級工程、表面処理工程(加湿混合工程、加熱工程および冷却工程)、整粒工程および各工程間を連結する輸送工程からなる連続製造装置を用いて、吸水性樹脂(A)を製造した。
 すなわち、内部架橋剤としてポリエチレングリコールジアクリレート(平均分子量478)を0.03モル%(対単量体)を含む70モル%が中和されたアクリル酸部分ナトリウム塩水溶液(単量体濃度53質量%)に、過硫酸ナトリウム0.04g(単量体1molに対して)およびジエチレントリアミン5酢酸・五ナトリウム100ppmをラインミキシングで連続混合し、ベルト重合機に供給して、水溶液重合を行った。こうして得られた含水ゲルを竪型粉砕機(オリエント粉砕機(株)社製 スクリーン12mm)で粉砕して、固形分70質量%の流動性のある粒子状の含水ゲル状重合体(A)を得た。
 粒子状の含水ゲル状重合体(A)を、連続通気ベルト式乾燥機にトラバースフィーダーを用い、トラバースフィーダーのシーケンスを制御することで、連続稼働している通気ベルトのパンチングメタル上に連続的に積層し、通気ベルト上で35分間連続乾燥した。乾燥物の排出量(処理量)は1.7[t/hr]であった。乾燥機および乾燥条件は下記(a)~(c)とする。
 (a)ベルト式乾燥機
 合計6室の互いに独立して熱風温度を調整できる、同じ大きさの乾燥室を通気ベルトが通過する連続式通気乾燥機を使用した。6つの各乾燥室は各々約5.8分(=ベルト上で35分/6室)で通過する。
 (b)熱風温度と線速
 乾燥室の熱風温度は水蒸気によって180℃に加熱され、熱風の線速は1.6m/秒に設定した。なお、第一室の風向きは底面から上向き、第二室から第六室の風向きは乾燥機上部から底面への下向きとした。
 (c)通気ベルト
 材質がSUS304製のステンレス鋼製ベルト(バンド)であり、孔の幅が1.2mm、長さが15mmの長丸孔千鳥型で、開孔率が27%である通気ベルトを使用した。上記粒子状の含水ゲル状重合体(A)は乾燥時にブロック状に凝集していた。当該凝集乾燥物を数mmにほぐして全量をロールミル(ロールギャップが上から1.0mm/0.55mm/0.42mm)に連続供給することで粉砕した後、目開き850μmの金属篩網を有する篩い分け装置で分級し、吸水性樹脂粉末(A)を得た。
 吸水性樹脂粉末(A)を分級機から空気輸送(温度35℃、露点-15℃)で高速連続混合機(タービュライザー/1000rpm)に1.5[t/hr]で連続供給しつつ、表面処理剤溶液(1)をスプレーで噴霧し混合した(加湿混合工程)。この表面処理剤溶液(1)は、1,4-ブタンジオール、プロピレングリコール及び純水の混合液であった。この表面処理剤溶液(1)は、吸水性樹脂粉末(A)100質量部に対して、1,4-ブタンジオール0.3質量部、プロピレングリコール0.5質量部及び純水2.7質量部の割合で吸水性樹脂粉末(A)に混合され、湿潤粉体である混合物(A)とされた。
 次いで、得られた混合物(A)を1°の下向き傾斜角を有し、縦横比2.2、パドル回転数13rpm、かき上げ羽根を有し、内面の表面粗さ(Rz)は500nmの2本の回転軸からなる横型連続攪拌装置(パドル型熱処理機)(1)により表面処理を行った(加熱処理工程)。この際、装置(1)内はバグフィルターを備えた吸引排気装置により吸引され、該装置内は1kPaの減圧とされていた。また、上記装置(1)の入口および出口にはロータリーバルブ(周期的遮蔽装置)を設置した。事前のテストによって得られた、平均滞留時間45分、平均充填率75%となるように排出堰の位置を設定した。表面処理に用いた加熱源は、2.5MPaの加圧蒸気であり、上記横型連続攪拌装置(1)の排出部付近に設けられた温度計により装置内の雰囲気温度を測定し、その温度が198℃になるように蒸気流量を制御して加熱を行った。攪拌盤と攪拌軸の総表面積は24.4mであり、処理量とから計算される質量面積比は61.5[kg/m/hr]であった。また、表面処理時の攪拌動力は27.8kW、空運転での攪拌動力は13.5kW、平均滞留時間45分であり、攪拌動力指数は9.5[W・hr/kg]であった。次いで、同様の横型連続攪拌装置を用いて60℃まで強制冷却した(冷却工程)。
 さらに、篩い分け装置で850μm通過物を分級し、850μm on品(850μm非通過物)は再度粉砕したのち、前記850μm通過物と混合することで、全量が850μm通過物である整粒された吸水性樹脂(A)を得た。得られた吸水性樹脂(A)の物性を表2に示す。
 [比較例1]
 製造例1における連続重合、連続乾燥、連続粉砕分級、および連続表面処理を20日間連続で行ったのち、製品変更(内部架橋剤の変更)のため、パドル型熱処理機(横型連続攪拌装置)の加熱(198℃)を含め、すべての装置の運転を48時間停止した。48時間経過後に熱処理機内の雰囲気温度を室温(25℃)から198℃まで昇温させてから連続運転を再開し、吸水性樹脂の連続生産を行ったところ、運転開始当初、吸水性樹脂に異物が混入し、さらにパドル型熱処理機(横型連続攪拌装置)の運転再開時に過負荷(消費電力の増大)が見られた。
 [実施例1]
 比較例1において、パドル型熱処理機(横型連続攪拌装置)の停止期間中の雰囲気温度を120℃で行った。すなわち、連続生産の停止時に、蒸気流量を調整することで停止状態のパドル型熱処理機(横型連続攪拌装置)の加熱温度(上記排出部付近に設けられた温度計で測定される雰囲気温度)を180℃から120℃に制御し、さらに工程の停止から48時間経過後に熱処理機内の雰囲気温度を120℃から198℃まで昇温させてから連続運転を再開した以外は比較例1と同様の操作を行った。内部架橋剤0.1モル%の吸水性樹脂の連続生産を行ったところ、運転開始当初に異物の発生もなく、さらに横型連続攪拌装置の運転再開時に過負荷(消費電力の増大)も見られなかった。
 [実施例2]
 実施例1において、パドル型熱処理機(横型連続攪拌装置)の停止時にさらに露点が-30℃の乾燥した空気を熱処理機に注入した以外は実施例1と同様の操作を行った。運転開始当初に異物の発生もなく、さらに熱処理機の運転再開時に過負荷(消費電力の増大)も見られなかった。
 下記表1に、比較例1、実施例1および2の運転条件と不具合の有無をまとめた。
Figure JPOXMLDOC01-appb-T000003
 [比較例2]
 製造例1において、連続運転開始後10日目に、パドル型熱処理機のあとに配置された冷却機でのトラブルのため、当該熱処理機(横型連続攪拌装置)内部に吸水性樹脂粉末を残したまま、加熱(198℃)を含め、すべての装置の運転を停止した。48時間経過後に熱処理機内の雰囲気温度を室温(25℃)から198℃まで昇温させてから連続運転を再開し、吸水性樹脂の連続生産を行ったところ、運転開始当初に異物が混入し、さらに熱処理機(横型連続攪拌装置)の運転再開時に過負荷(消費電力の増大)が見られた。さらに850μm on品(850μm非通過物)が増加した。運転再開後5時間が経過した時点での比較吸水性樹脂(2)の物性を表2に示す。
 [実施例3]
 比較例2において、パドル型熱処理機(横型連続攪拌装置)の停止期間中の温度を120℃で行った。すなわち、連続生産の停止時に、当該熱処理機(横型連続攪拌装置)の加熱温度を198℃から120℃に下げた以外は、比較例2と同様に操作した。48時間経過後に熱処理機内の雰囲気温度を120℃から198℃まで昇温させてから連続運転を再開し、吸水性樹脂の連続生産を行ったところ、運転開始当初に異物もなく、さらに熱処理機(横型連続攪拌装置)の運転再開時に過負荷(消費電力の増大)も見られなかった。運転再開後5時間が経過した時点での製品としての吸水性樹脂(3)の物性を表2に示す。
 [実施例4]
 実施例3において、パドル型熱処理機(横型連続攪拌装置)の停止期間中の温度を198℃で行った。すなわち、連続生産の停止時に、当該熱処理機(横型連続攪拌装置)の加熱温度を198℃のまま保持した以外は、実施例3と同様に操作した。48時間経過後に熱処理機内の雰囲気温度を198℃で連続運転を再開し、吸水性樹脂の連続生産を行ったところ、運転開始当初に異物もなく、さらに熱処理機(横型連続攪拌装置)の運転再開時に過負荷(消費電力の増大)も見られなかった。ただし、熱処理機内部の吸水性樹脂は黄変していた。運転再開後5時間が経過した時点での製品としての吸水性樹脂(4)の物性を表2に示す。
 [製造例2]
 製造例1において、表面処理剤溶液(1)に27%硫酸アルミニウム水溶液1質量部を追加した表面処理剤溶液(2)を使用した以外は製造例1と同様の操作を行い、吸水性樹脂(B)を得た。得られた吸水性樹脂(B)の物性を表2に示す。
 [比較例3]
 製造例2において、連続運転開始後10日目に、パドル型熱処理機のあとに配置された冷却機でのトラブルのため、当該熱処理機(横型連続攪拌装置)内部に吸水性樹脂粉末を残したまま、加熱(198℃)を含め、すべての装置の運転を停止した。48時間経過後に熱処理機内の雰囲気温度を室温(25℃)から198℃まで昇温させてから連続運転を再開し、吸水性樹脂の連続生産を行ったところ、運転開始当初に異物が混入し、さらに熱処理機(横型連続攪拌装置)の運転再開時に過負荷(消費電力の増大)が見られた。さらに850μm on品(850μm非通過物)が増加した。運転再開後5時間が経過した時点での比較吸水性樹脂(3)の物性を表2に示す。
 [実施例5]
 比較例3において、パドル型熱処理機(横型連続攪拌装置)の停止期間中の温度を120℃で行った。すなわち、連続生産の停止時に、当該熱処理機(横型連続攪拌装置)の加熱温度を198℃から120℃に下げた以外は、比較例3と同様に操作した。48時間経過後に熱処理機内の雰囲気温度を120℃から198℃まで昇温させてから連続運転を再開し、吸水性樹脂の連続生産を行ったところ、運転開始当初に異物もなく、さらに熱処理機(横型連続攪拌装置)の運転再開時に過負荷(消費電力の増大)も見られなかった。運転再開後5時間が経過した時点での製品としての吸水性樹脂(5)の物性を表2に示す。
 [製造例3]
 製造例1において、表面処理剤溶液(1)の代わりに、エチレンカーボネート1.0質量部、純水3.0質量部からなる表面処理剤溶液(3)を使用し、さらに熱処理機での平均滞留時間を50分に変更した以外は製造例1と同様の操作を行い、吸水性樹脂(C)を得た。得られた吸水性樹脂(C)の物性を表2に示す。
 [比較例4]
 製造例3において、連続運転開始後20日目に、パドル型熱処理機のあとに配置された冷却機でのトラブルのため、当該熱処理機(横型連続攪拌装置)内部に吸水性樹脂粉末を残したまま、加熱(198℃)を含め、すべての装置の運転を停止した。60時間経過後に熱処理機内の雰囲気温度を室温(25℃)から198℃まで昇温させてから連続運転を再開し、吸水性樹脂の連続生産を行ったところ、運転開始当初に異物が混入し、さらに熱処理機(横型連続攪拌装置)の運転再開時に過負荷(消費電力の増大)が見られた。さらに850μm on品(850μm非通過物)が増加した。運転再開後5時間が経過した時点での比較吸水性樹脂(4)の物性を表2に示す。
 [実施例6]
 比較例4において、パドル型熱処理機(横型連続攪拌装置)の停止期間中の温度を120℃で行った。すなわち、連続生産の停止時に、当該熱処理機(横型連続攪拌装置)の加熱温度を198℃から120℃に下げた以外は、比較例4と同様に操作した。60時間経過後に熱処理機内の雰囲気温度を120℃から198℃まで昇温させてから連続運転を再開し、吸水性樹脂の連続生産を行ったところ、運転開始当初に異物もなく、さらに熱処理機(横型連続攪拌装置)の運転再開時に過負荷(消費電力の増大)も見られなかった。運転再開後5時間が経過した時点での製品としての吸水性樹脂(6)の物性を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表1および表2に示すように、比較例2(停止時の温度が室温)では、運転再開後の吸水性樹脂の物性(特に生理食塩水流れ誘導性)の低下が見られ、物性が安定するまでに1日から数日間を要した。一方、実施例3(停止時の温度が120℃)や実施例4(停止時の温度が190℃)のように加熱状態で停止したのち運転を再開することで、運転再開時の物性低下が実質的に見られなかった。この効果は、表面架橋剤の変更(比較例3と実施例5との比較、比較例4と実施例6との比較)でも確認された。
 本発明に係る製造方法では、運転停止時に装置を加熱しておくことで、運転再開後の物性を速やかに安定させることができるため、巨大スケール(好ましくは1[t/hr]以上)の吸水性樹脂の連続製造(好ましくは10日間以上)が可能となる。特許文献1~9や、上記共有結合性表面架橋剤およびイオン結合性表面架橋剤の項目に記載した特許文献等に記載の従来の製造方法は、なんら本発明の停止方法やその効果について示唆しない。
 巨大スケールの連続生産(特に1[t/hr]以上)によって、着色や異物のない吸水性樹脂を安価に安定的に製造できるため、本発明の吸水性樹脂は紙おむつや生理用ナプキンをはじめ各種衛生材料やその他、各種吸水性樹脂の用途に使用できる。

Claims (15)

  1.  不飽和単量体水溶液の重合工程と、重合中または重合後の細粒化工程で得られた粒子状含水ゲル状架橋重合体の乾燥工程と、乾燥後の粉砕工程と、乾燥後の分級工程と、分級工程後の吸水性樹脂粉末の表面処理工程とを含む吸水性樹脂の製造方法であって、
     熱処理機を加熱した状態で保持したまま、上記表面処理工程の中断を行い、その後表面処理工程を再開することを特徴とする、吸水性樹脂の製造方法。
     ただし、上記表面処理工程の中断とは、吸水性樹脂粉末が熱処理機内に実質不存在の状態、あるいは、連続表面処理において熱処理機に投入または排出されない状態をいう。
  2.  上記表面処理工程が加熱反応による表面架橋である、請求項1に記載の製造方法。
  3.  上記熱処理機が、表面処理工程を吸水性樹脂粉末の投入口と排出口、および、複数の撹拌盤を備えた1本以上の回転軸からなる撹拌手段と加熱手段とを有する横型連続撹拌装置である、該装置を加熱状態で停止する、請求項1または2に記載の製造方法。
  4.  上記表面処理工程の中断期間が0.5時間以上100日間以内である、請求項1~3のいずれか1項に記載の製造方法。
  5.  上記表面処理工程の中断期間中における熱処理機の温度が加熱処理温度より10℃以上低い、請求項1~4のいずれか1項に記載の製造方法。
  6.  上記表面処理工程の中断期間中における熱処理機の温度が80~140℃である、請求項1~5のいずれか1項に記載の製造方法。
  7.  上記乾燥前の粒子状含水ゲル状架橋重合体に、上記分級工程で得られる吸水性樹脂微粒子をリサイクルする、請求項1~6のいずれか1項に記載の製造方法。
  8.  上記表面処理工程において、吸水性樹脂粉末を1[t/hr]で表面処理する、請求項1~7のいずれか1項に記載の製造方法。
  9.  上記表面処理工程において、中断期間中の熱処理機の加熱を加熱蒸気または熱風で行う、請求項1~8のいずれか1項に記載の製造方法。
  10.  上記加熱蒸気をリサイクルする、請求項9に記載の製造方法。
  11.  上記表面処理工程以降に、表面架橋後の第2分級工程、および/または分級工程後の微粉回収工程を含む、請求項1~10のいずれか1項に記載の製造方法。
  12.  上記表面処理工程の中断期間中に、-100~-5℃の露点を有する気体を熱処理機に注入する、請求項1~11のいずれか1項に記載の製造方法。
  13.  上記表面処理工程が24時間以上の連続表面処理である、請求項1~12のいずれか1項に記載の製造方法。
  14.  不飽和単量体水溶液の重合工程と、重合中または重合後の細粒化工程で得られた粒子状含水ゲル状架橋重合体の乾燥工程と、乾燥後の粉砕工程と、乾燥後の分級工程と、分級工程後の吸水性樹脂粉末の表面処理工程とを含む吸水性樹脂の製造方法であって、
     上記表面処理工程の中断を行い、熱処理機の加熱を停止した後、100時間以内に熱処理機内の清掃を開始し、その後表面処理工程を再開することを特徴とする、吸水性樹脂の製造方法。
     ただし、上記表面処理工程の中断とは、吸水性樹脂粉末が熱処理機内に実質不存在の状態、あるいは、連続表面処理において熱処理機に投入または排出されない状態をいう。
  15.  上記表面処理工程において、使用する表面架橋剤が脱水反応性架橋剤である、請求項1~14のいずれか1項に記載の製造方法。
PCT/JP2011/055944 2010-03-12 2011-03-14 吸水性樹脂の製造方法 WO2011111855A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012504554A JP5504334B2 (ja) 2010-03-12 2011-03-14 吸水性樹脂の製造方法
EP11753510.4A EP2546284B1 (en) 2010-03-12 2011-03-14 Method for manufacturing a water-absorbing resin
US13/634,151 US9233186B2 (en) 2010-03-12 2011-03-14 Process for producing water-absorbing resin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010055238 2010-03-12
JP2010055236 2010-03-12
JP2010-055236 2010-03-12
JP2010055237 2010-03-12
JP2010-055237 2010-03-12
JP2010-055238 2010-03-12

Publications (1)

Publication Number Publication Date
WO2011111855A1 true WO2011111855A1 (ja) 2011-09-15

Family

ID=44563648

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2011/055944 WO2011111855A1 (ja) 2010-03-12 2011-03-14 吸水性樹脂の製造方法
PCT/JP2011/055977 WO2011111856A1 (ja) 2010-03-12 2011-03-14 吸水性樹脂の製造方法
PCT/JP2011/055979 WO2011111857A1 (ja) 2010-03-12 2011-03-14 吸水性樹脂の製造方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/055977 WO2011111856A1 (ja) 2010-03-12 2011-03-14 吸水性樹脂の製造方法
PCT/JP2011/055979 WO2011111857A1 (ja) 2010-03-12 2011-03-14 吸水性樹脂の製造方法

Country Status (4)

Country Link
US (3) US9272068B2 (ja)
EP (3) EP2546284B1 (ja)
JP (3) JP5632906B2 (ja)
WO (3) WO2011111855A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977839B2 (ja) * 2012-12-03 2016-08-24 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
WO2022075258A1 (ja) * 2020-10-07 2022-04-14 住友精化株式会社 吸水性樹脂粒子を製造する方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2135669B1 (en) * 2007-03-29 2019-10-30 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for producing the same
KR101595037B1 (ko) * 2013-01-15 2016-02-17 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20150024767A (ko) 2013-08-27 2015-03-09 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR101495845B1 (ko) * 2013-09-30 2015-02-25 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
JP2017006808A (ja) * 2013-11-14 2017-01-12 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
KR20150082123A (ko) * 2014-01-06 2015-07-15 한화케미칼 주식회사 고흡수성 수지 제조 방법
KR102432559B1 (ko) * 2014-09-22 2022-08-17 도쿄 오카 고교 가부시키가이샤 금속 2차 전지용 세퍼레이터
WO2016104962A1 (ko) * 2014-12-22 2016-06-30 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102011926B1 (ko) 2014-12-22 2019-08-20 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
JP6508947B2 (ja) * 2015-01-15 2019-05-08 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法
US10285866B2 (en) 2015-01-16 2019-05-14 Lg Chem, Ltd. Super absorbent polymer
JP2020500693A (ja) * 2016-10-26 2020-01-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超吸収体粒子をサイロから排出して、バルクコンテナに充填する方法
CN112969529B (zh) * 2018-11-14 2023-11-10 巴斯夫欧洲公司 制备超吸收剂的方法
WO2020112952A1 (en) * 2018-11-28 2020-06-04 White Ii Locke Method of absorbing precipitation
KR102461120B1 (ko) * 2018-12-07 2022-10-28 주식회사 엘지화학 고흡수성 수지의 제조 방법

Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US670141A (en) 1900-11-20 1901-03-19 William Otis Shepard Policeman's club.
EP0349240A2 (en) 1988-06-28 1990-01-03 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
EP0450924A2 (en) 1990-04-02 1991-10-09 Nippon Shokubai Co., Ltd. Method for treating the surface of an absorbent resin
EP0450923A2 (en) 1990-04-02 1991-10-09 Nippon Shokubai Co., Ltd. Method of treating the surface of an absorbent resin
EP0605150A1 (en) 1992-12-16 1994-07-06 Nippon Shokubai Co., Ltd. Method for production of absorbent resin
US5385983A (en) 1992-11-12 1995-01-31 The Dow Chemical Company Process for preparing a water-absorbent polymer
US5409771A (en) 1990-06-29 1995-04-25 Chemische Fabrik Stockhausen Gmbh Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles
JPH07224304A (ja) 1994-02-10 1995-08-22 Toyo Alum Kk ホウ素含有アルミニウム合金の製造方法
EP0668080A2 (en) 1994-02-17 1995-08-23 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition
JPH07242709A (ja) 1994-03-03 1995-09-19 Toagosei Co Ltd 吸水性樹脂の製造方法
US5462972A (en) 1993-09-17 1995-10-31 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
US5597873A (en) 1994-04-11 1997-01-28 Hoechst Celanese Corporation Superabsorbent polymers and products therefrom
US5610220A (en) 1992-12-30 1997-03-11 Chemische Fabrik Stockhausen Gmbh Powder-form polymers which absorb, even under pressure, aqueous liquids and blood, a method of producing them and their use in textile articles for body-hygiene applications
US5633316A (en) 1991-04-15 1997-05-27 The Dow Chemical Company Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
US5674633A (en) 1986-04-25 1997-10-07 Weirton Steel Corporation Light-gage composite-coated flat-rolled steel manufacture and product
EP0812873A1 (en) 1995-12-27 1997-12-17 Nippon Shokubai Co., Ltd. Water absorbent and process and equipment for the production thereof
WO1999042494A1 (de) 1998-02-21 1999-08-26 Basf Aktiengesellschaft Nachvernetzung von hydrogelen mit 2-oxazolidinonen
WO1999042496A1 (de) 1998-02-21 1999-08-26 Basf Aktiengesellschaft Vernetzte quellfähige polymere
WO1999043720A1 (de) 1998-02-26 1999-09-02 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit bis- und poly-2-oxazolidinonen
JP2000063527A (ja) 1998-08-12 2000-02-29 Nippon Shokubai Co Ltd 含水ゲル状架橋重合体の細粒化方法
US6164455A (en) 1997-01-27 2000-12-26 Nippon Shokubai Co., Ltd. Process for classifying particulate hydrophilic polymer and sieving device
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6254990B1 (en) 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin
US6291635B1 (en) 1999-04-09 2001-09-18 Central Glass Company, Limited Fluorine-containing polybenzoxazole
US6388000B1 (en) 1992-06-10 2002-05-14 Nippon Shokubai Co., Ltd. Method for production of hydrophilic resin
US6605673B1 (en) 1999-03-05 2003-08-12 Stockhausen Gmbh & Co., Kg Powdery, cross-linked polymers which absorb aqueous liquids and blood, method for the production thereof and their use
US6620889B1 (en) 1999-03-05 2003-09-16 Stockhausen Gmbh & Co. Kg Powdery, crosslinked absorbent polymers, method for the production thereof, and their use
US6641064B1 (en) 1998-10-27 2003-11-04 Basf Aktiengesellschaft Complete drying method for hydrogels
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
WO2004069915A2 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
US6817557B2 (en) 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
WO2005016393A1 (en) 2003-07-31 2005-02-24 Kimberly-Clark Worldwide, Inc. Absorbent materials and articles
US20050070671A1 (en) 2003-09-19 2005-03-31 Kazushi Torii Water-absorbent resin having treated surface and process for producing the same
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US20050288182A1 (en) 2004-06-18 2005-12-29 Kazushi Torii Water absorbent resin composition and production method thereof
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US20060073969A1 (en) 2003-02-10 2006-04-06 Kazushi Torii Vater-absorbent resin composition and its production process
WO2006082197A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082188A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082189A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
WO2006111404A2 (de) 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
WO2006111402A2 (de) 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
WO2006111403A1 (de) 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Mit polykationen oberflächenbehandeltes wasserabsorbierende polymergebilde
US20060247351A1 (en) 2005-03-14 2006-11-02 Kazushi Torii Water-absorbing agent and its production process
US7157141B2 (en) 2000-03-31 2007-01-02 Stockhausen Gmbh Pulverulent polymers crosslinked on the surface
US20070106013A1 (en) 2003-06-24 2007-05-10 Yoshifumi Adachi Water absorbent resin composition and production method thereof
WO2007121037A2 (en) 2006-04-13 2007-10-25 Motorola Inc. Method and apparatus for reordering fragments within a mac layer service data unit within a downlink frame
EP1848758A1 (en) 2005-02-15 2007-10-31 Nippon Shokubai Co., Ltd. Water absorbing agent, water absorbing article and method for production of water absorbing agent
WO2008009642A1 (en) 2006-07-17 2008-01-24 Novozymes A/S Cell culture media
WO2008009843A2 (fr) 2006-07-18 2008-01-24 Arkema France Procede de preparation de polymeres (meth) acryliques
US7378453B2 (en) 2003-03-14 2008-05-27 Nippon Shokubai Co., Ltd. Surface crosslinking treatment method of water-absorbing resin powder
EP1949011A1 (de) 2005-11-16 2008-07-30 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
WO2009005114A1 (ja) 2007-07-04 2009-01-08 Nippon Shokubai Co., Ltd. 粒子状吸水剤およびその製造方法
EP2057228A1 (en) 2006-08-31 2009-05-13 Nippon Shokubai Co., Ltd. Particulate water absorbing agent and production method thereof
JP2009197063A (ja) 2008-02-19 2009-09-03 Bridgestone Corp ゴム組成物
JP2009196967A (ja) 2008-02-25 2009-09-03 Kikkoman Corp 血中多価不飽和脂肪酸相対量増加剤並びにこれを含有する医薬組成物、医薬部外品、化粧品、可食性組成物及び動物用飼料
JP2009197022A (ja) 1996-12-23 2009-09-03 Sanofi-Aventis テトラヒドロピリジン誘導体を結晶化する方法及び得られる結晶形
WO2009113672A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂の製造方法
WO2009119754A1 (ja) 2008-03-28 2009-10-01 株式会社日本触媒 吸水性樹脂の製造方法
WO2009123197A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置
JP2009256687A (ja) * 2002-12-06 2009-11-05 Nippon Shokubai Co Ltd 吸水性樹脂製品およびその連続製造方法
JP2009545635A (ja) * 2006-07-31 2009-12-24 株式会社日本触媒 吸水性樹脂粉末の製造方法および吸水性樹脂粉末の包装物

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453165U (ja) 1977-09-22 1979-04-12
JPS5453165A (en) 1977-10-05 1979-04-26 Sanyo Chem Ind Ltd Production of water absorbing resin
US4755562A (en) 1986-06-10 1988-07-05 American Colloid Company Surface treated absorbent polymers
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
ES2026653T3 (es) 1987-04-30 1992-05-01 Nippon Shokubai Kagaku Kogyo Co., Ltd Metodo para la produccion de un polimero hidrofilo.
JP2600193B2 (ja) 1987-08-31 1997-04-16 住友化学工業株式会社 水膨潤性シーリング材
CA2001590A1 (en) 1988-10-28 1990-04-28 Tsuneo Tsubakimoto Method for metered supply of material, apparatus therefor, and method for production of hydrophilic polymer by use thereof
DE3905806A1 (de) 1989-01-30 1990-09-06 Lentia Gmbh Verfahren zur kontinuierlichen trocknung von hydrophilen polymergelen
US5074633A (en) 1990-08-03 1991-12-24 At&T Bell Laboratories Optical communication system comprising a fiber amplifier
US5342899A (en) * 1991-05-16 1994-08-30 The Dow Chemical Company Process for recycling aqueous fluid absorbents fines to a polymerizer
US5206205A (en) 1991-08-15 1993-04-27 Kimberly-Clark Corporation Thermal treatment of superabsorbents to enhance their rate of absorbency under load
EP0603292A1 (en) 1991-09-09 1994-06-29 The Dow Chemical Company Superabsorbent polymers and process for producing
DE4131045C1 (ja) 1991-09-18 1992-11-19 Cassella Ag, 6000 Frankfurt, De
DE4333056C2 (de) 1993-09-29 1998-07-02 Stockhausen Chem Fab Gmbh Pulverförmige, wäßrige Flüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung als Absorptionsmittel
JP3297192B2 (ja) 1994-03-31 2002-07-02 三洋化成工業株式会社 含水ゲル状重合体の搬送方法及び乾燥方法並びにコンベア式乾燥装置
SK56896A3 (en) 1994-08-04 1997-05-07 Sumitomo Chemical Co Dihalopropene compounds, insecticidal/acaricidal agents containing same, and intermediates for their production
JP2700531B2 (ja) 1994-09-05 1998-01-21 三洋化成工業株式会社 含水ゲル状重合体の連続的乾燥方法
FR2730090B1 (fr) 1995-01-30 1997-04-04 Framatome Sa Tube en alliage a base de zirconium pour assemblage combustible nucleaire et procede de fabrication d'un tel tube
US5981070A (en) 1995-07-07 1999-11-09 Nippon Shokubai Co., Ltd Water-absorbent agent powders and manufacturing method of the same
DE19601763A1 (de) 1996-01-19 1997-07-24 Hoechst Ag Verwendung von Tensiden bei der Trocknung von hydrophilen, hochquellfähigen Hydrogelen
JPH1059534A (ja) 1996-08-14 1998-03-03 Nippon Shokubai Co Ltd 粘着性粉粒状物群用ならし装置
US6187902B1 (en) 1997-12-25 2001-02-13 Nippon Shokubai Co., Ltd. Production process of hydrophilic crosslinked polymer
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
JPH11279287A (ja) 1998-03-31 1999-10-12 Nippon Shokubai Co Ltd 吸水剤組成物および吸水剤の製造方法
KR20010075635A (ko) 1998-10-15 2001-08-09 메리 이. 보울러 플루오로사이클로부틸 환을 함유하는 중합체 및 그의 제법
JP2000143720A (ja) 1998-11-11 2000-05-26 Sanyo Chem Ind Ltd 吸水性樹脂の製造法
US6207796B1 (en) 1998-11-18 2001-03-27 Nippon Shokubai Co., Ltd. Production process for hydrophilic polymer
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
US6514615B1 (en) 1999-06-29 2003-02-04 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having delayed water absorption characteristics
JP4455693B2 (ja) 1999-07-08 2010-04-21 日本曹達株式会社 吸水性高分子重合体の乾燥方法
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
DE19955861A1 (de) 1999-11-20 2001-05-23 Basf Ag Verfahren zur kontinuierlichen Herstellung von vernetzten feinteiligen gelförmigen Polymerisaten
US6297139B1 (en) 2000-01-10 2001-10-02 United Microelectronics Corp. Method of forming a contact hole in a semiconductor wafer
US6720389B2 (en) 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
JP2002226599A (ja) 2001-02-05 2002-08-14 Sanyo Chem Ind Ltd 吸水性樹脂の製造法
DE60216911T2 (de) 2001-06-08 2007-09-06 Nippon Shokubai Co. Ltd. Wasserabsorbierendes miitel, dessen herstellung und sanitärartikel
JP2003012812A (ja) 2001-06-27 2003-01-15 San-Dia Polymer Ltd 吸水性樹脂の製造法
JP4157333B2 (ja) 2001-07-03 2008-10-01 株式会社日本触媒 表面改質された吸水性樹脂粉末の連続製造方法
TWI378955B (en) 2002-10-25 2012-12-11 Evonik Stockhausen Gmbh Absorbent polymer structure with improved retention capacity and permeabilty
JP4642343B2 (ja) 2002-12-06 2011-03-02 株式会社日本触媒 吸水性樹脂製品の連続製造方法
JP2004345804A (ja) 2003-05-22 2004-12-09 Nippon Shokubai Co Ltd 吸水性樹脂粉体の輸送方法
JP4266710B2 (ja) 2003-05-30 2009-05-20 株式会社日本触媒 吸水性樹脂の製造方法および鋤型混合装置
JP4342213B2 (ja) 2003-05-30 2009-10-14 株式会社日本触媒 吸水性樹脂の製造法
US20050029352A1 (en) 2003-08-08 2005-02-10 Spears Kurt E. System and method for automatic correction of illumination noise caused by ambient light
EP2156850A1 (en) 2003-08-27 2010-02-24 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
BRPI0417388B1 (pt) 2003-12-12 2014-11-18 Nippon Catalytic Chem Ind Agente para absorção de água e método de fabricação do mesmo
DE102004009438A1 (de) 2004-02-24 2005-09-15 Basf Ag Verfahren zur Oberflächennachvernetzung wasserabsorbierender Polymere
TW200536871A (en) 2004-03-29 2005-11-16 Nippon Catalytic Chem Ind Particulate water absorbing agent with water-absorbing resin as main component
DE102004019264B4 (de) 2004-04-21 2008-04-10 Stockhausen Gmbh Verfahren zur Herstellung eines absorbierenden Polymers mittels Spreittrocknung
WO2006034806A1 (de) 2004-09-28 2006-04-06 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
DE102004057874A1 (de) 2004-11-30 2006-06-01 Basf Ag Verfahren zur Nachvernetzung wasserabsorbierender Polymerpartikel
JP4681289B2 (ja) 2004-12-02 2011-05-11 サンダイヤポリマー株式会社 吸水性樹脂の製造法
US20090298963A1 (en) 2004-12-10 2009-12-03 Nippon Shokubai Co., Ltd Method for production of modified water absorbent resin
DE102005001789A1 (de) 2005-01-13 2006-07-27 Basf Ag Verfahren zum Klassieren eines teilchenförmigen wasserabsorbierenden Harzes
JP4634158B2 (ja) 2005-01-20 2011-02-16 株式会社テクノ菱和 除電装置付き粉体用篩装置
DE102005014291A1 (de) 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
TWI383008B (zh) 2005-08-17 2013-01-21 Nippon Catalytic Chem Ind 吸水性樹脂之製造方法及吸水性樹脂以及其利用
TW200712114A (en) 2005-09-30 2007-04-01 Nippon Catalytic Chem Ind Method for manufacturing particulate water-absorbing agent and particulate water-absorbing agent
US20070123624A1 (en) 2005-11-30 2007-05-31 Otten Jay G Method of drying an absorbent polymer with a surfactant
JP5697846B2 (ja) 2005-12-07 2015-04-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリマー粒子の連続的な混合のための方法
TWI377222B (en) 2005-12-22 2012-11-21 Nippon Catalytic Chem Ind Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
JP2007224224A (ja) 2006-02-27 2007-09-06 San-Dia Polymer Ltd 吸湿性ポリマー粒子の製造方法
JP2009529478A (ja) 2006-03-14 2009-08-20 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子を空気により搬送する方法
US8591152B2 (en) 2006-03-14 2013-11-26 Basf Se Method for the pneumatic conveying of water-absorbent polymer particles
DE102006019157A1 (de) 2006-04-21 2007-10-25 Stockhausen Gmbh Herstellung von hochpermeablen, superabsorbierenden Polymergebilden
US8907017B2 (en) 2006-04-21 2014-12-09 Evonik Degussa Gmbh Water-absorbing polymer structure having improved permeability and absorption under pressure
FR2903402B1 (fr) 2006-07-04 2008-10-10 Beissier Enduit en poudre a indication de sechage
DE102006031514A1 (de) 2006-07-07 2008-01-10 Robert Bosch Gmbh Anschlusselement für ein Wischblatt
FR2904059B1 (fr) 2006-07-21 2010-06-18 Peugeot Citroen Automobiles Sa Fourchette de maintien d'un porte-injecteur de moteur thermique.
JP5167263B2 (ja) 2006-09-19 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア 中和度の低い、色安定性の吸水性ポリマー粒子の製造方法
EP2073943B2 (de) 2006-09-25 2020-09-02 Basf Se Verfahren zum klassieren wasserabsorbierender polymerpartikel
CN101516924B (zh) 2006-09-25 2012-06-13 巴斯夫欧洲公司 连续生产吸水性聚合物颗粒的方法
CN101516531B (zh) 2006-09-25 2014-05-21 巴斯夫欧洲公司 吸水性聚合物颗粒的分级方法
ATE474858T1 (de) 2007-01-16 2010-08-15 Basf Se Herstellung von superabsorbierenden polymeren
EP2137238B1 (en) 2007-03-26 2017-04-19 Nippon Shokubai Co., Ltd. Classification method of particulate water absorbent resin
SA08290542B1 (ar) 2007-08-28 2012-11-14 نيبون شوكوباي كو. ، ليمتد طريقة لإنتاج راتنج ماص للماء
JP2010053296A (ja) 2008-08-29 2010-03-11 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
CN102124039B (zh) 2008-09-16 2013-04-24 株式会社日本触媒 吸水性树脂的制造方法和通液性提高方法
EP2471846B1 (en) 2009-08-27 2016-12-21 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water absorbent resin and method for producing same
US8481159B2 (en) * 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
EP2479196B1 (en) 2009-09-16 2021-10-27 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin powder

Patent Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US670141A (en) 1900-11-20 1901-03-19 William Otis Shepard Policeman's club.
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US5674633A (en) 1986-04-25 1997-10-07 Weirton Steel Corporation Light-gage composite-coated flat-rolled steel manufacture and product
EP0349240A2 (en) 1988-06-28 1990-01-03 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process
EP0450924A2 (en) 1990-04-02 1991-10-09 Nippon Shokubai Co., Ltd. Method for treating the surface of an absorbent resin
EP0450923A2 (en) 1990-04-02 1991-10-09 Nippon Shokubai Co., Ltd. Method of treating the surface of an absorbent resin
US5409771A (en) 1990-06-29 1995-04-25 Chemische Fabrik Stockhausen Gmbh Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles
US5633316A (en) 1991-04-15 1997-05-27 The Dow Chemical Company Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
US6388000B1 (en) 1992-06-10 2002-05-14 Nippon Shokubai Co., Ltd. Method for production of hydrophilic resin
US5385983A (en) 1992-11-12 1995-01-31 The Dow Chemical Company Process for preparing a water-absorbent polymer
EP0605150A1 (en) 1992-12-16 1994-07-06 Nippon Shokubai Co., Ltd. Method for production of absorbent resin
US5610220A (en) 1992-12-30 1997-03-11 Chemische Fabrik Stockhausen Gmbh Powder-form polymers which absorb, even under pressure, aqueous liquids and blood, a method of producing them and their use in textile articles for body-hygiene applications
US5462972A (en) 1993-09-17 1995-10-31 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
JPH07224304A (ja) 1994-02-10 1995-08-22 Toyo Alum Kk ホウ素含有アルミニウム合金の製造方法
EP0668080A2 (en) 1994-02-17 1995-08-23 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition
JPH07242709A (ja) 1994-03-03 1995-09-19 Toagosei Co Ltd 吸水性樹脂の製造方法
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
US5597873A (en) 1994-04-11 1997-01-28 Hoechst Celanese Corporation Superabsorbent polymers and products therefrom
US6071976A (en) 1995-12-27 2000-06-06 Nippon Shokubai Co., Ltd. Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof
EP0812873A1 (en) 1995-12-27 1997-12-17 Nippon Shokubai Co., Ltd. Water absorbent and process and equipment for the production thereof
JP2009197022A (ja) 1996-12-23 2009-09-03 Sanofi-Aventis テトラヒドロピリジン誘導体を結晶化する方法及び得られる結晶形
US6164455A (en) 1997-01-27 2000-12-26 Nippon Shokubai Co., Ltd. Process for classifying particulate hydrophilic polymer and sieving device
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6254990B1 (en) 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin
WO1999042494A1 (de) 1998-02-21 1999-08-26 Basf Aktiengesellschaft Nachvernetzung von hydrogelen mit 2-oxazolidinonen
WO1999042496A1 (de) 1998-02-21 1999-08-26 Basf Aktiengesellschaft Vernetzte quellfähige polymere
WO1999043720A1 (de) 1998-02-26 1999-09-02 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit bis- und poly-2-oxazolidinonen
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JP2000063527A (ja) 1998-08-12 2000-02-29 Nippon Shokubai Co Ltd 含水ゲル状架橋重合体の細粒化方法
US6641064B1 (en) 1998-10-27 2003-11-04 Basf Aktiengesellschaft Complete drying method for hydrogels
US6605673B1 (en) 1999-03-05 2003-08-12 Stockhausen Gmbh & Co., Kg Powdery, cross-linked polymers which absorb aqueous liquids and blood, method for the production thereof and their use
US6620889B1 (en) 1999-03-05 2003-09-16 Stockhausen Gmbh & Co. Kg Powdery, crosslinked absorbent polymers, method for the production thereof, and their use
US6291635B1 (en) 1999-04-09 2001-09-18 Central Glass Company, Limited Fluorine-containing polybenzoxazole
US6817557B2 (en) 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
US7157141B2 (en) 2000-03-31 2007-01-02 Stockhausen Gmbh Pulverulent polymers crosslinked on the surface
US7091253B2 (en) 2000-08-03 2006-08-15 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
JP2009256687A (ja) * 2002-12-06 2009-11-05 Nippon Shokubai Co Ltd 吸水性樹脂製品およびその連続製造方法
US20060073969A1 (en) 2003-02-10 2006-04-06 Kazushi Torii Vater-absorbent resin composition and its production process
US20060204755A1 (en) 2003-02-10 2006-09-14 Kazushi Torii Walter-absorbing agent
WO2004069915A2 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
US7378453B2 (en) 2003-03-14 2008-05-27 Nippon Shokubai Co., Ltd. Surface crosslinking treatment method of water-absorbing resin powder
US20070106013A1 (en) 2003-06-24 2007-05-10 Yoshifumi Adachi Water absorbent resin composition and production method thereof
WO2005016393A1 (en) 2003-07-31 2005-02-24 Kimberly-Clark Worldwide, Inc. Absorbent materials and articles
US20050070671A1 (en) 2003-09-19 2005-03-31 Kazushi Torii Water-absorbent resin having treated surface and process for producing the same
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US20050288182A1 (en) 2004-06-18 2005-12-29 Kazushi Torii Water absorbent resin composition and production method thereof
WO2006082197A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082189A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082188A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
EP1848758A1 (en) 2005-02-15 2007-10-31 Nippon Shokubai Co., Ltd. Water absorbing agent, water absorbing article and method for production of water absorbing agent
US20060247351A1 (en) 2005-03-14 2006-11-02 Kazushi Torii Water-absorbing agent and its production process
WO2006111402A2 (de) 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
WO2006111404A2 (de) 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Oberflächennachvernetzte superabsorber behandelt mit metallsalz und metalloxid
WO2006111403A1 (de) 2005-04-22 2006-10-26 Evonik Stockhausen Gmbh Mit polykationen oberflächenbehandeltes wasserabsorbierende polymergebilde
EP1949011A1 (de) 2005-11-16 2008-07-30 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2007121037A2 (en) 2006-04-13 2007-10-25 Motorola Inc. Method and apparatus for reordering fragments within a mac layer service data unit within a downlink frame
WO2008009642A1 (en) 2006-07-17 2008-01-24 Novozymes A/S Cell culture media
WO2008009843A2 (fr) 2006-07-18 2008-01-24 Arkema France Procede de preparation de polymeres (meth) acryliques
JP2009545635A (ja) * 2006-07-31 2009-12-24 株式会社日本触媒 吸水性樹脂粉末の製造方法および吸水性樹脂粉末の包装物
EP2057228A1 (en) 2006-08-31 2009-05-13 Nippon Shokubai Co., Ltd. Particulate water absorbing agent and production method thereof
WO2009005114A1 (ja) 2007-07-04 2009-01-08 Nippon Shokubai Co., Ltd. 粒子状吸水剤およびその製造方法
JP2009197063A (ja) 2008-02-19 2009-09-03 Bridgestone Corp ゴム組成物
JP2009196967A (ja) 2008-02-25 2009-09-03 Kikkoman Corp 血中多価不飽和脂肪酸相対量増加剤並びにこれを含有する医薬組成物、医薬部外品、化粧品、可食性組成物及び動物用飼料
WO2009113672A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂の製造方法
WO2009113671A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の充填方法
WO2009113679A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009113678A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009119754A1 (ja) 2008-03-28 2009-10-01 株式会社日本触媒 吸水性樹脂の製造方法
WO2009123197A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977839B2 (ja) * 2012-12-03 2016-08-24 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
JPWO2014088012A1 (ja) * 2012-12-03 2017-01-05 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
WO2022075258A1 (ja) * 2020-10-07 2022-04-14 住友精化株式会社 吸水性樹脂粒子を製造する方法

Also Published As

Publication number Publication date
JPWO2011111855A1 (ja) 2013-06-27
EP2546284A4 (en) 2014-11-26
EP2546285B1 (en) 2019-06-12
WO2011111857A1 (ja) 2011-09-15
JP5605862B2 (ja) 2014-10-15
US20130005904A1 (en) 2013-01-03
US10307506B2 (en) 2019-06-04
JP5504334B2 (ja) 2014-05-28
EP2546284B1 (en) 2019-07-10
EP2546286B1 (en) 2019-09-25
US20130005919A1 (en) 2013-01-03
US9272068B2 (en) 2016-03-01
EP2546284A1 (en) 2013-01-16
JPWO2011111857A1 (ja) 2013-06-27
EP2546285A4 (en) 2014-11-19
US20130005926A1 (en) 2013-01-03
JP5632906B2 (ja) 2014-11-26
JPWO2011111856A1 (ja) 2013-06-27
EP2546286A4 (en) 2014-11-19
EP2546285A1 (en) 2013-01-16
US9233186B2 (en) 2016-01-12
WO2011111856A1 (ja) 2011-09-15
EP2546286A1 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5504334B2 (ja) 吸水性樹脂の製造方法
JP5616347B2 (ja) 吸水性樹脂の製造方法
JP5619010B2 (ja) ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
JP5658229B2 (ja) 粒子状含水ゲル状架橋重合体の乾燥方法
JP5718817B2 (ja) 吸水性樹脂粉末の製造方法
JP5587348B2 (ja) 吸水性樹脂の製造方法
JP5514841B2 (ja) 吸水性樹脂の製造方法
JP5587409B2 (ja) 粒子状吸水性樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504554

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13634151

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011753510

Country of ref document: EP