WO2000048254A1 - Semi-conducteur au nitrure et procede de fabrication - Google Patents
Semi-conducteur au nitrure et procede de fabrication Download PDFInfo
- Publication number
- WO2000048254A1 WO2000048254A1 PCT/JP2000/000660 JP0000660W WO0048254A1 WO 2000048254 A1 WO2000048254 A1 WO 2000048254A1 JP 0000660 W JP0000660 W JP 0000660W WO 0048254 A1 WO0048254 A1 WO 0048254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- nitride semiconductor
- gan
- substrate
- gan substrate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 100
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims description 29
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 98
- 239000000758 substrate Substances 0.000 claims description 69
- 239000013078 crystal Substances 0.000 claims description 49
- 238000005253 cladding Methods 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 230000000737 periodic effect Effects 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 28
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 24
- 230000001681 protective effect Effects 0.000 description 17
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 15
- 229910052594 sapphire Inorganic materials 0.000 description 14
- 239000010980 sapphire Substances 0.000 description 14
- 229910021529 ammonia Inorganic materials 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910000077 silane Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- MGYGFNQQGAQEON-UHFFFAOYSA-N 4-tolyl isocyanate Chemical compound CC1=CC=C(N=C=O)C=C1 MGYGFNQQGAQEON-UHFFFAOYSA-N 0.000 description 1
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 101000574352 Mus musculus Protein phosphatase 1 regulatory subunit 17 Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
- H01L21/0243—Surface structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0421—Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32341—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/17—Semiconductor lasers comprising special layers
- H01S2301/173—The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/04—MOCVD or MOVPE
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/021—Silicon based substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0421—Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
- H01S5/0422—Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3201—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
Definitions
- Patent application title Nitride semiconductor device and method for manufacturing the same
- the present invention is a light emitting diode (LED), laser diode (LD) or other electronic devices, a nitride semiconductor device such as those used to power device (I n x A 1 Y G & 1 _ ⁇ _ ⁇ ⁇ ⁇ 0 ⁇ ⁇ , 0 ⁇ , ⁇ + ⁇ 1).
- the present invention relates to preventing fine cracks generated in a nitride semiconductor layer in a nitride semiconductor device using a Ga G substrate.
- the present inventors have proposed a nitride using a GaN substrate in Jap. J. of Appl. Physic s. Vol. 37 (1998) pp. L309-L312.
- a semiconductor laser device is disclosed.
- the GaN substrate can be manufactured, for example, as follows. Once grown G a N layer on a sapphire, a S i 0 2 O Li Cheng protective film is partially formed thereon, after growing the single crystal G a N over this, removing the insufflator Aia substrate I do. The regrown single crystal GaN grows preferentially in the lateral direction with respect to the substrate surface, so that the progress of dislocations can be stopped. Therefore, according to this manufacturing method, a GaN substrate with few dislocations can be obtained. And the nitride semiconductor laser device manufactured using the GaN substrate with few dislocations could achieve continuous oscillation of 10,000 hours or more. Disclosure of the invention
- the occurrence of such fine cracks may be a phenomenon peculiar to the GaN substrate manufactured using lateral growth.However, it is necessary to grow a thin GaN layer on a thick GaN layer. It is also considered to be a problem that occurs when a GaN substrate is used. This fine crack is expected to lead to an increase in the threshold value of the laser element and a decrease in the life characteristics. Also, when a nitride semiconductor device other than a laser device is formed using a GaN substrate, the occurrence of minute cracks hinders improvement in reliability.
- the present invention provides a nitride semiconductor device using a GaN substrate by suppressing extremely minute cracks generated in the nitride semiconductor device layer in the nitride semiconductor device using the GaN substrate.
- the purpose is to enhance the life characteristics and thereby enhance the reliability of 1 "life.
- the nitride semiconductor device of the present invention has a structure in which, among the device forming layers (nitride semiconductor layers) grown on a GaN substrate, a layer directly in contact with the GaN substrate has a compressive strain.
- the feature of this method is that it suppresses the generation of very fine cracks.
- Compressive strain can be applied by making the thermal expansion coefficient of the element forming layer directly in contact with the GaN substrate smaller than that of GaN.
- Al a G ai _ a N (0 ⁇ a ⁇ 1) is preferably used for the element forming layer having a thermal expansion coefficient smaller than G a N. This is because the value of the thermal expansion coefficient of A 1 a G aiêt a N is slightly smaller than that of the GaN substrate, and it is possible to grow a good crystal on the GaN substrate.
- the device structure formed on the GaN substrate has an n-type cladding layer containing A1, an active layer containing InGaN, and a p-type cladding layer containing A1. Is preferred. This prevents the occurrence of minute cracks and works synergistically. Thus, an element having good characteristics can be obtained.
- the element forming layer in contact with the GaN substrate for example, the A 1 a G ai mecanic a N (0 ⁇ a ⁇ l) layer has various functions depending on the device structure formed on the GaN substrate.
- it may be a buffer layer for preventing the generation of fine cracks, or may be an n-type contact layer, and the GaN substrate is the entire substrate. If it is conductive, it can be an n-type cladding layer.
- the GaN substrate is manufactured using lateral growth of GaN.
- a GaN substrate grown by using lateral growth is used, not only fine cracks but also propagation of dislocations in the device formation layer can be suppressed, and a good nitride semiconductor device can be obtained.
- the method for producing a nitride semiconductor according to the present invention comprises:
- the auxiliary substrate may be further removed to form a GaN substrate.
- the thermal expansion coefficient of the element forming layer in contact with the GaN substrate smaller than that of GaN, compressive strain can be applied to the element forming layer to suppress generation of minute cracks.
- This can be explained as follows. For example, if the coefficients of thermal expansion of S i, G a N and sapphire are respectively ⁇ 2 and f 3 ,
- the grown GaN When GaN is grown on a GaN substrate, the grown GaN should not be subject to tensile or compressive strain, but the grown GaN should have a very small size. Cracks tend to occur.
- the GaN substrate refers to a substrate having a surface composed of a single-crystal GaN layer having a low dislocation density, and even if it is a substrate composed of a single GaN single-crystal layer, the sapphire Si A substrate in which a GaN single crystal layer having a low transition density is grown on a heterogeneous substrate made of a material different from a nitride semiconductor such as C may be used.
- Various methods can be used for manufacturing a GaN substrate as long as a single crystal GaN having a dislocation density low enough to form an element can be grown. It is preferable to use a method of growing a crystal layer through a lateral growth process. Through the lateral growth process, the progress of dislocations into the GaN single crystal is suppressed, and a GaN substrate with a low dislocation density can be obtained.
- the lateral growth process includes all processes that suppress the progress of crystal dislocations in the vertical direction of the substrate by growing the GaN single crystal not only in the vertical direction of the substrate but also in the parallel direction of the substrate. included.
- the method of growing G a N single crystal layer through the lateral growth process for example, a method of causing the growth of lateral G a N with S I_ ⁇ 2 as described in the aforementioned JJAP
- USP09 / 202, 141 Japanese Patent Application Laid-Open Nos. 113-12825, 11-340508, Japanese Patent Application No. 11-37827, 111-137826, 1111
- the ELOG growth method proposed in the specifications of each of the items, such as 168079 and 112-182122, can be used.
- G aN obtained by ELOG growth described in each of the above specifications becomes a substrate having a reduced dislocation density.By applying the present invention to these substrates, the life characteristics of the device are improved. Become.
- a nitride semiconductor layer such as a GaN layer or an A1 GaN layer is formed on a heterogeneous substrate such as sapphire, and a GaN single crystal grown on the nitride semiconductor layer is oriented in the lateral direction. Periodic stripe-shaped or island-shaped irregularities are formed so as to grow, and the single crystal GaN is grown by covering the irregularities or the mask. As a result, the GaN layer is grown in the lateral direction to suppress the progress of dislocations, and a GaN substrate with few dislocations can be obtained.
- a GaN substrate composed of only a nitride semiconductor is used, a GaN single crystal may be grown into a thick film to remove a heterogeneous substrate.
- nitride semiconductor layer having a smaller coefficient of thermal expansion than GaN By growing a nitride semiconductor layer having a smaller coefficient of thermal expansion than GaN on a substrate having such a laterally grown GaN single crystal layer on the surface, the nitride formed on it Dislocations and fine cracks in the semiconductor element can be prevented well, and the reliability of the nitride semiconductor element can be improved.
- a specific example in which the present invention is applied to a GaN substrate formed by this method will be described in Examples described later.
- the manufacturing methods described in each of the above specifications are for removing a heterogeneous substrate after ELOG growth to obtain a GaN substrate composed of only a nitride semiconductor.
- a nitride semiconductor with reduced dislocations is formed on a heterogeneous substrate by ELOG growth, it can be used as a GaN substrate composed of a heterogeneous substrate and a nitride semiconductor without removing the heterogeneous substrate. .
- the n-electrode can be formed on the surface opposite to the surface on which the device structure of the GaN substrate is formed, and the chip can be made smaller.
- the GaN substrate is made only of a nitride semiconductor, there are advantages in terms of heat dissipation and easy formation of a resonance surface by cleavage.
- the surface on which the device structure is formed by laminating the nitride semiconductor layers is preferably opposite to the surface from which the heterogeneous substrate has been removed, from the viewpoint of device characteristics.
- the surface of the GaN substrate may be etched. Since the surface of the GaN substrate may have irregularities during the production process, it is preferable to grow the nitride semiconductor after the surface is flattened by etching in order to prevent fine cracks.
- FIG. 1 is a schematic cross-sectional view showing a manufacturing process of a GaN substrate.
- FIG. 2 is a schematic cross-sectional view showing a manufacturing step following FIG. 1 of the GaN substrate.
- F i g. 3 is, 3 ⁇ 4 in a schematic sectional view showing a G a N substrate of F i g. 2 subsequent manufacturing process> Ru.
- FIG. 4 is a schematic cross-sectional view showing a manufacturing step following FIG. 3 of the GaN substrate.
- FIG. 5 is a schematic sectional view showing a nitride semiconductor laser device according to one embodiment of the present invention.
- FIGS. 6A to 6F are partial cross-sectional views showing steps of forming a ridge-shaped stripe.
- FIG. 5 is a cross-sectional view showing one example of the nitride semiconductor device according to the present invention.
- element forming layers 1 to 10 made of a nitride semiconductor for constituting a semiconductor laser are laminated.
- the thermal expansion coefficient of the element forming layer 1 in contact with the GaN substrate 30 is set to be smaller than G a N, so that a compressive stress is applied to the element forming layer 1 to suppress generation of minute cracks. .
- the element forming layer 1 in contact with the GaN substrate 30 has a smaller coefficient of thermal expansion than GaN and may be made of any nitride semiconductor as long as it is made of a material. Preferably, it is a composition.
- Al a G ai — a N (0 ⁇ a ⁇ 1) is preferable, more preferably the value of a is 0 ⁇ a ⁇ 0.3, and even more preferably the value of a is 0 and a ⁇ 0. Is one.
- a l a G ai- a N is the preferred material to prevent small cracks, furthermore, since the crystallinity while preventing cracks and A 1 yarn ⁇ ratio is relatively small becomes better preferred.
- the surface on which the GaN substrate is formed may be etched. Depending on the method of manufacturing the GaN substrate, etc., the surface of the GaN substrate may be uneven.Therefore, once the surface is etched and flattened, the nitride semiconductor having a small coefficient of thermal expansion is used. Forming a layer is preferable from the viewpoint of preventing fine cracks.
- the thickness of A 1 a G a t _ a N is not particularly limited, is preferably 1 // m or more, more preferably 3 to 1 0 ⁇ m. Such a film thickness is preferable from the viewpoint of preventing minute cracks.
- the element forming layer 1 in contact with the GaN substrate can be a layer having various functions depending on the element structure. The thickness of the element forming layer 1 in contact with the GaN substrate is adjusted within the above-mentioned thickness range in consideration of its function. In the nitride semiconductor device shown in FIG.
- the device forming layer 1 in contact with the GaN substrate functions as a contact layer for attaching the n-type electrode 21 together with the device forming layer 2 thereon.
- An n-type cladding layer 4 containing A1, an active layer 6 containing InGaN, and a p-type cladding layer 9 containing A1 are formed thereon to form a semiconductor laser.
- the GaN substrate 30 is electrically conductive as a whole, for example, a substrate in which a single-crystal GaN layer is grown on a SiC substrate or a substrate composed of only a single-crystal GaN layer
- an ⁇ -type electrode may be attached to the back surface of the GaN substrate, and the element forming layer 1 in contact with the GaN substrate may be used as a cladding layer for confining light.
- an impurity When growing the element forming layer 1 in contact with the GaN substrate, an impurity may be doped according to its function.
- the impurity is not particularly limited, and may be n-type or p-type.
- the doping amount of the impurity is appropriately adjusted according to the functions of the layers such as the cladding layer and the contact layer.
- the formation layer 1 is an undoped n-type A 1 a G ai — a N contact layer 1, and an ⁇ -type A 1 a G a, — a N contact layer 2 is formed thereon.
- the impurity-doped n-type A 1 a G ai _ a N is grown on the undoped n-type A l a G ai — a N layer 1, in view of preventing fine cracks and crystallinity, preferable.
- Undoped n-type A l a G ai _ a N contactor coat layer 1 in this case has both the action as the buffer layer.
- the film thickness of the completion Ndopu n-type A l a GahN layer is preferably several m.
- the nitride semiconductor layer doped with an n-type impurity (preferably Si) is Grow over 30.
- the doping amount of n-type impurity preferably 1 X 10 18 Zc m 3 ⁇ 5 X 1 0 18 Zc m 3.
- the thickness is preferably from 1 to 1 ⁇ . Within this range, fine cracks can be prevented and the function as an ⁇ -type contact layer can be exhibited, which is preferable.
- the G a ⁇ substrate 30 may be a substrate composed only of a nitride semiconductor or a substrate composed of a heterogeneous substrate and a nitride semiconductor. However, the G a N single crystal layer undergoes a lateral growth process. It is preferably grown. Manufactured using lateral growth
- the GaN substrate 30 is preferably manufactured, for example, as follows. First, as shown in FIG. 1, on a heterogeneous substrate 11 made of a material different from a nitride semiconductor, a nitride layer such as a GaN layer or an A1 GaN layer is provided via an appropriate buffer layer. A semiconductor layer 12 is formed. As the heterogeneous substrate, for example, sapphire, SiC, spinel, or the like can be used. Next, as shown in FIG. 2, a periodic stripe or island shape is formed on the nitride semiconductor layer 12 so that a GaN single crystal to be grown thereon may also grow in the lateral direction. Form irregularities.
- the stripe-shaped or island-shaped irregularities may be formed so as to leave the nitride semiconductor layer 12 as shown in FIG. 2; It may be formed so that part of 1 is removed.
- the nitride semiconductor layer 12 may have a two-layer structure of A 1 GaN and GaN, and the unevenness may be formed to a depth at which a part of A 1 GaN is removed. Then, as shown in FIGS. 3 and 4, a single crystal GaN 13 is grown to cover the irregularities of the nitride semiconductor layer 12.
- a GaN substrate composed of a heterogeneous substrate and a nitride semiconductor can be obtained.
- a 0311 single crystal should be 1 ⁇ ⁇ ?
- the thickness of the single crystal GaN portion of the GaN substrate 30 is 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. m or less is desirable.
- the lower limit of the film thickness may be such that the protective film and irregularities are covered by ELOG growth and dislocations can be reduced. For example, number / m or more.
- the film thickness is in this range, not only is it preferable in terms of reduction of dislocations, but also warpage of the wafer due to a difference in thermal expansion coefficient between the heterogeneous substrate and the nitride semiconductor can be prevented, and the device structure can be favorably grown thereon. be able to.
- the thickness of the GaN substrate consisting only of the nitride semiconductor is not particularly limited, but is preferably 50 to 500 / m, More preferably, it is 100 to 300 m.
- the thickness of the GaN substrate is within the above range, dislocation is favorably reduced and mechanical strength is preferably maintained.
- a single crystal G a N layer 1 3 masks such as S i O 2 onto the forming a periodic stripe-like or island-like, the covering S i 0 2 mask such as a single-crystal GaN layer Is grown laterally by MOCVD (second single-crystal GaN growth).
- MOCVD second single-crystal GaN growth
- the single crystal GaN may not have sufficient crystallinity due to the formation of a cavity in the vicinity of the concave portion.
- the second GaN single crystal growth by the MOCVD method using the SiO 2 mask a single crystal GaN layer with better crystallinity can be obtained.
- N alone tends to be slightly warped. This indicates that the physical properties of the surface of the removed substrate and the surface of the growth surface of the heterogeneous substrate are different.
- the fine cracks described as an object of the present invention may be caused by such physical differences in the surfaces.
- the effect of preventing the occurrence of fine cracks by applying compressive stress to the element forming layer in contact with the GaN substrate can be obtained regardless of the element structure formed on the GaN substrate. It is something that can be done.
- a device formed on the GaN substrate 30 emits light including an n-type cladding layer containing A1, an active layer containing InGaN, and a p-type cladding layer containing A1. It is preferably an element.
- the thermal expansion coefficient of the element forming layer in contact with the GaN substrate is made smaller than that of GaN to act synergistically to obtain a highly reliable nitride semiconductor light emitting element.
- MOVPE Metal Organic Chemical Vapor Deposition
- MOCVD Metal Organic Chemical Vapor Deposition
- HVPE Hydrophilic Vapor Deposition
- MBE Molecular Beam Chemical Vapor Deposition
- Example 1 a nitride semiconductor laser device shown in FIG. 5 was manufactured.
- a GaN substrate was manufactured along the steps shown in FIGS. 1 to 4.
- Sapphire substrate 11 with C face as main face and orientation flat face as A face is set in a reaction vessel, temperature is set to 510 ° C, hydrogen is used as carrier gas, source gas A buffer layer (not shown) made of GaN was grown on the sapphire substrate 11 to a thickness of about 200 ⁇ using ammonia and TMG (trimethylgallium).
- a first nitride semiconductor layer 12 of undoped GaN was grown to a thickness of 2 / m using TMG and ammonia as source gases (Fig. 1). o
- a stripe-shaped photomask is formed, and a stripe width (a part to be the upper part of the convex part) 5 / m, a stripe interval (a part to be the lower part of the concave part) by a sputtering apparatus.
- 1 5 forming a patterned S i 0 2 film Myupaiiota, subsequently, S i 0 2 film first nitride semiconductors layer 1 2 a first nitride portion is not formed in the RIE apparatus
- the first nitride semiconductor 12 was exposed on the side surface of the concave portion by forming the unevenness by etching halfway to the extent that the semiconductor 12 remained (FIG. 2).
- the wafer was taken out of the reaction vessel to obtain a GaN substrate 30 made of undoped GaN.
- the sapphire substrate was removed from the obtained GaN substrate 30 force, and the following device structure was grown on the growth surface opposite to the removed surface, as shown in FIG.
- the film thickness of the substrate 30 made of GaN was about 300 // m.
- n-type contactors coat layer 2 A 1 a G ai _ a N of the present invention
- n-type contact layer 2 of 95 N was grown to a thickness of 3 // m.
- no fine cracks were generated in the grown n-type contact layer 2 (including the n-type contact layer 1), and the generation of fine cracks was well prevented.
- the growth of the n- type contact layer 2 can prevent the propagation of the fine cracks and grow an element structure with good crystallinity. .
- the crystallinity can be improved more by growing the undoped n-type contact layer 1 as described above than in the case of using only the n-type contact layer 2.
- the temperature was set to 1050 ° C, and TMA, TMG and ammonia were used as source gases, and undoped A1 was used. 14 Ga.
- a layer of 86 N is grown to a thickness of 25 ⁇ , then TMA is stopped, silane gas is used as impurity gas, and Si is 5 X 10 18 Zcm 3 doped G a N
- Layer B was grown to a thickness of 25 ⁇ . This operation was repeated 160 times each to laminate the A layer and the B layer, thereby growing the n-type cladding layer 4 composed of a multilayer film (superlattice structure) having a total film thickness of 8000 angstroms.
- an n-type guide layer made of undoped GaN was grown to a thickness of 0.075 m using TMG and ammonia as source gases.
- the temperature was set to 800 ° C.
- TMI, TMG and ammonia were used as source gases
- silane gas was used as an impurity gas
- Si was doped with 5 ⁇ 10 18 / cm 3 Inn ()
- Ga A barrier layer of nqqN was grown to a thickness of 100 ⁇ .
- the silane gas was stopped, and undoped I n Q 11 G a.
- a well layer of 89 N was grown to a thickness of 50 ⁇ . This operation was repeated three times, and finally, an active layer 6 of a multiple quantum well structure (MQW) with a total film thickness of 550 ⁇ in which a barrier layer was laminated was grown.
- MQW multiple quantum well structure
- a thin-type electron confinement layer 7 was grown to a thickness of 100 ⁇ .
- a p-type guide layer 8 made of undoped GaN was grown to a thickness of 0.075 / m using TMG and ammonia as source gases.
- This p-type guide layer 8 was grown as an AND.
- the Mg concentration became 5 ⁇ 10 16 Zcm 3 , indicating p-type.
- the contact layer 10 was grown to a thickness of 150 ⁇ .
- the wafer was subjected to cleaning at 700 ° C. in a nitrogen atmosphere in a reaction vessel to further reduce the resistance of the p-type layer.
- the wafer is taken out of the reaction vessel and the topmost p-side contact layer Surface to form a protective film made of S i 0 2 of, etched by S i C 1 4 gas using RIE (reactive Ion'etsuchin grayed), as shown in F i g. 5, forming n electrodes
- RIE reactive Ion'et suchin grayed
- a mask of a predetermined shape is applied on the first protective film 61, and a third protective film 63 made of photoresist is formed with a stripe width of 1. It was formed with a thickness of 8 ⁇ m and a thickness of 1 / m.
- the RIE (reactive ion etching) apparatus is used, using CF 4 gas, and using the third protective film 63 as a mask.
- the first protective film was etched to form a stripe. After that, only the photoresist is removed by processing with an etching solution to form a first protective film having a stripe width of 1.8 1 ⁇ 1 on the P-side contact layer 10 as shown in FIG. 6C. 6 1 can be formed.
- a ⁇ E one tooth is transferred to a PVD apparatus, the shown Suyo in F i g. 6 E, Z r oxide second protective film 62 made of (mainly Z R_ ⁇ 2), the On the protective film 61 of FIG. 1 and on the p-side cladding layer 9 exposed by the etching, a film thickness of 0.5 / m was continuously formed. Forming a Zr oxide in this way is preferable because it can secure the p_n plane and stabilize the transverse mode!
- the wafer was immersed in hydrofluoric acid, and as shown in FIG. 6F, the first protective film 61 was removed by a lift-off method.
- a p-electrode 20 made of NiZAu is formed on the surface of the P-side contact layer exposed by removing the first protective film 61 on the p-side contact layer 10. Formed. However, the p-electrode 20 had a stripe width of 100 m and was formed over the second protective film 62 as shown in this figure. After the formation of the second protective film 62, an n-electrode 21 composed of T i / A 1 is formed on the exposed surface of the n-side contact layer 2 as shown in FIG. 5 in a direction parallel to the stripe. Formed.
- the GaN substrate of the wafer on which the n-electrode and the p-electrode are formed is polished to approximately 100 / m, and then the substrate is slid from the substrate side in a direction perpendicular to the striped electrodes.
- the resonator length is desirably 300 to 500 / zm.
- the obtained laser device was placed on a heat sink, and each electrode was wire-bonded, and laser oscillation was attempted at room temperature.
- a laser device was manufactured in the same manner as in Example 1, except that the n-type contact layer 2 was grown without growing the n-type contact layer 1.
- Example 1 Although the obtained device tended to be slightly inferior in crystallinity to Example 1, the occurrence of fine cracks was prevented almost in the same manner as in Example 1, and the device characteristics were good.
- Example 2 In the same manner as in Example 1, except that the ratio of the A1 composition of the undoped n-type contact layer 1 and the S1 doped n-type contact layer 2 was changed from 0.05 to 0.2. The device was grown.
- a laser device was manufactured in the same manner as in Example 1, except that the undoped n-type contact layer 1 was A 1 N and the Si-doped n- type contact layer 2 was A 1 N.
- the obtained laser element has a slightly lower crystallinity because the A1 composition ratio of the n-type contact layer 1 and the n-type contact layer 2 is larger than that in Example 1, the cracks are as fine as in Example 1. , And a good life characteristic almost equivalent to that of Example 1 could be obtained.
- the sapphire substrate was not removed, and a GaN substrate composed of a heterogeneous substrate and a nitride semiconductor was used. Thus, a laser device was manufactured.
- the obtained laser device showed a tendency that the warpage was slightly larger than that of Example 1, but fine cracks were prevented as well as Example 1. Further, the laser element of the sixth embodiment has an insulating sapphire substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
- Recrystallisation Techniques (AREA)
- Formation Of Insulating Films (AREA)
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU23272/00A AU771942B2 (en) | 1999-02-09 | 2000-02-08 | Nitride semiconductor device and manufacturing method thereof |
EP00902126.2A EP1184913B1 (en) | 1999-02-09 | 2000-02-08 | Nitride semiconductor laser diode |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3099099 | 1999-02-09 | ||
JP11/30990 | 1999-02-09 | ||
JP33179799A JP3770014B2 (ja) | 1999-02-09 | 1999-11-22 | 窒化物半導体素子 |
JP11/331797 | 1999-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000048254A1 true WO2000048254A1 (fr) | 2000-08-17 |
Family
ID=26369449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/000660 WO2000048254A1 (fr) | 1999-02-09 | 2000-02-08 | Semi-conducteur au nitrure et procede de fabrication |
Country Status (8)
Country | Link |
---|---|
US (2) | US6835956B1 (ja) |
EP (1) | EP1184913B1 (ja) |
JP (1) | JP3770014B2 (ja) |
KR (1) | KR100634340B1 (ja) |
CN (1) | CN1157804C (ja) |
AU (1) | AU771942B2 (ja) |
TW (1) | TW443018B (ja) |
WO (1) | WO2000048254A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3767762A1 (en) | 2019-07-14 | 2021-01-20 | Instytut Wysokich Cisnien Polskiej Akademii Nauk | Distributed feedback laser diode and method of making the same |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3587081B2 (ja) | 1999-05-10 | 2004-11-10 | 豊田合成株式会社 | Iii族窒化物半導体の製造方法及びiii族窒化物半導体発光素子 |
JP3555500B2 (ja) | 1999-05-21 | 2004-08-18 | 豊田合成株式会社 | Iii族窒化物半導体及びその製造方法 |
US6580098B1 (en) | 1999-07-27 | 2003-06-17 | Toyoda Gosei Co., Ltd. | Method for manufacturing gallium nitride compound semiconductor |
JP3427047B2 (ja) * | 1999-09-24 | 2003-07-14 | 三洋電機株式会社 | 窒化物系半導体素子、窒化物系半導体の形成方法および窒化物系半導体素子の製造方法 |
JP2001185493A (ja) * | 1999-12-24 | 2001-07-06 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子 |
JP4432180B2 (ja) * | 1999-12-24 | 2010-03-17 | 豊田合成株式会社 | Iii族窒化物系化合物半導体の製造方法、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体 |
US7141444B2 (en) | 2000-03-14 | 2006-11-28 | Toyoda Gosei Co., Ltd. | Production method of III nitride compound semiconductor and III nitride compound semiconductor element |
JP2001267242A (ja) | 2000-03-14 | 2001-09-28 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体及びその製造方法 |
TW518767B (en) | 2000-03-31 | 2003-01-21 | Toyoda Gosei Kk | Production method of III nitride compound semiconductor and III nitride compound semiconductor element |
JP2001313259A (ja) | 2000-04-28 | 2001-11-09 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体基板の製造方法及び半導体素子 |
EP2276059A1 (en) * | 2000-08-04 | 2011-01-19 | The Regents of the University of California | Method of controlling stress in gallium nitride films deposited on substrates |
US7619261B2 (en) | 2000-08-07 | 2009-11-17 | Toyoda Gosei Co., Ltd. | Method for manufacturing gallium nitride compound semiconductor |
JP2002222746A (ja) * | 2001-01-23 | 2002-08-09 | Matsushita Electric Ind Co Ltd | 窒化物半導体ウェーハ及びその製造方法 |
US7052979B2 (en) | 2001-02-14 | 2006-05-30 | Toyoda Gosei Co., Ltd. | Production method for semiconductor crystal and semiconductor luminous element |
JP3679720B2 (ja) | 2001-02-27 | 2005-08-03 | 三洋電機株式会社 | 窒化物系半導体素子および窒化物系半導体の形成方法 |
JP2002280314A (ja) | 2001-03-22 | 2002-09-27 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体の製造方法、及びそれに基づくiii族窒化物系化合物半導体素子 |
JP3690326B2 (ja) | 2001-10-12 | 2005-08-31 | 豊田合成株式会社 | Iii族窒化物系化合物半導体の製造方法 |
KR100427689B1 (ko) * | 2002-02-21 | 2004-04-28 | 엘지전자 주식회사 | 질화물 반도체 기판의 제조방법 |
WO2003085790A1 (fr) | 2002-04-04 | 2003-10-16 | Sharp Kabushiki Kaisha | Dispositif laser a semi-conducteur |
US7485902B2 (en) * | 2002-09-18 | 2009-02-03 | Sanyo Electric Co., Ltd. | Nitride-based semiconductor light-emitting device |
US7078743B2 (en) * | 2003-05-15 | 2006-07-18 | Matsushita Electric Industrial Co., Ltd. | Field effect transistor semiconductor device |
JP4218597B2 (ja) * | 2003-08-08 | 2009-02-04 | 住友電気工業株式会社 | 半導体発光素子の製造方法 |
JP4011569B2 (ja) | 2003-08-20 | 2007-11-21 | 株式会社東芝 | 半導体発光素子 |
JP4540347B2 (ja) | 2004-01-05 | 2010-09-08 | シャープ株式会社 | 窒化物半導体レーザ素子及び、その製造方法 |
JP4201725B2 (ja) | 2004-02-20 | 2008-12-24 | シャープ株式会社 | 窒化物半導体発光素子の製造方法 |
JP2005294753A (ja) * | 2004-04-05 | 2005-10-20 | Toshiba Corp | 半導体発光素子 |
US7157297B2 (en) * | 2004-05-10 | 2007-01-02 | Sharp Kabushiki Kaisha | Method for fabrication of semiconductor device |
JP4651312B2 (ja) | 2004-06-10 | 2011-03-16 | シャープ株式会社 | 半導体素子の製造方法 |
JP4371029B2 (ja) * | 2004-09-29 | 2009-11-25 | サンケン電気株式会社 | 半導体発光素子およびその製造方法 |
JP5155536B2 (ja) * | 2006-07-28 | 2013-03-06 | 一般財団法人電力中央研究所 | SiC結晶の質を向上させる方法およびSiC半導体素子の製造方法 |
TWI341600B (en) * | 2007-08-31 | 2011-05-01 | Huga Optotech Inc | Light optoelectronic device and forming method thereof |
JP2009190936A (ja) * | 2008-02-14 | 2009-08-27 | Sumitomo Electric Ind Ltd | Iii族窒化物結晶の製造方法 |
US20100200880A1 (en) * | 2008-06-06 | 2010-08-12 | Hong Kong Applied Science And Technology Research Institute Co. Ltd. | Semiconductor wafers and semiconductor devices and methods of making semiconductor wafers and devices |
US8395168B2 (en) * | 2008-06-06 | 2013-03-12 | Hong Kong Applied Science And Technology Research Institute Co. Ltd. | Semiconductor wafers and semiconductor devices with polishing stops and method of making the same |
EP2628778B1 (en) | 2008-06-30 | 2016-03-16 | Universal Display Corporation | Hole transport materials having a sulfur-containing group |
US8440326B2 (en) | 2008-06-30 | 2013-05-14 | Universal Display Corporation | Hole transport materials containing triphenylene |
DE102011077542B4 (de) * | 2011-06-15 | 2020-06-18 | Osram Opto Semiconductors Gmbh | Optoelektronischer halbleiterkörper und verfahren zur herstellung eines optoelektronischen halbleiterkörpers |
KR102369933B1 (ko) * | 2015-08-03 | 2022-03-04 | 삼성전자주식회사 | 반도체 발광소자 및 그 제조 방법 |
DE102016125430A1 (de) * | 2016-12-22 | 2018-06-28 | Osram Opto Semiconductors Gmbh | Oberflächenmontierbarer Halbleiterlaser, Anordnung mit einem solchen Halbleiterlaser und Betriebsverfahren hierfür |
CN110783176B (zh) * | 2019-10-30 | 2022-07-12 | 广西大学 | 一种低应力半导体材料制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05243614A (ja) * | 1992-03-03 | 1993-09-21 | Sharp Corp | 化合物半導体の成長方法、化合物半導体発光素子及びその製造方法 |
JPH0864791A (ja) * | 1994-08-23 | 1996-03-08 | Matsushita Electric Ind Co Ltd | エピタキシャル成長方法 |
JPH0983016A (ja) * | 1995-09-18 | 1997-03-28 | Nichia Chem Ind Ltd | 窒化物半導体の成長方法 |
DE19648955A1 (de) * | 1995-11-27 | 1997-05-28 | Sumitomo Chemical Co | III-V-Verbindungshalbleiter und lichtemittierende Vorrichtung |
JPH09180998A (ja) * | 1995-12-26 | 1997-07-11 | Fujitsu Ltd | 化合物半導体装置 |
EP0874405A2 (en) * | 1997-03-25 | 1998-10-28 | Mitsubishi Cable Industries, Ltd. | GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof |
Family Cites Families (329)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL6405927A (ja) | 1963-06-07 | 1964-12-08 | ||
DE1614574A1 (de) | 1967-08-04 | 1970-10-29 | Siemens Ag | Halbleiterbauelement,insbesondere Halbleiterbauelement mit pn-UEbergang |
FR1597033A (ja) | 1968-06-19 | 1970-06-22 | ||
DE1789061A1 (de) | 1968-09-30 | 1971-12-23 | Siemens Ag | Laserdiode |
DE1913676A1 (de) | 1969-03-18 | 1970-09-24 | Siemens Ag | Verfahren zum Abscheiden von Schichten aus halbleitendem bzw. isolierendem Material aus einem stroemenden Reaktionsgas auf erhitzte Halbleiterkristalle bzw. zum Dotieren solcher Kristalle aus einem stroemenden dotierenden Gas |
US4020791A (en) | 1969-06-30 | 1977-05-03 | Siemens Aktiengesellschaft | Apparatus for indiffusing dopants into semiconductor material |
US4404265A (en) | 1969-10-01 | 1983-09-13 | Rockwell International Corporation | Epitaxial composite and method of making |
US3853974A (en) | 1970-04-06 | 1974-12-10 | Siemens Ag | Method of producing a hollow body of semiconductor material |
DE2033444C3 (de) | 1970-07-06 | 1979-02-15 | Siemens Ag | Vorrichtung zum Eindiffundieren von Dotierstoffen in Scheiben aus Halbleitermaterial |
US3737737A (en) | 1970-10-09 | 1973-06-05 | Siemens Ag | Semiconductor diode for an injection laser |
DE2125085C3 (de) | 1971-05-19 | 1979-02-22 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Vorrichtung zum Herstellen von einseitig geschlossenen Rohren aus Halbleitermaterial |
DE2158257A1 (de) | 1971-11-24 | 1973-05-30 | Siemens Ag | Anordnung zum herstellen von einseitig geschlossenen rohren aus halbleitermaterial |
US3941647A (en) | 1973-03-08 | 1976-03-02 | Siemens Aktiengesellschaft | Method of producing epitaxially semiconductor layers |
US3819974A (en) | 1973-03-12 | 1974-06-25 | D Stevenson | Gallium nitride metal-semiconductor junction light emitting diode |
DE2346198A1 (de) | 1973-07-27 | 1975-05-07 | Siemens Ag | Verfahren zur herstellung gelb leuchtender galliumphosphid-dioden |
DE2340225A1 (de) | 1973-08-08 | 1975-02-20 | Siemens Ag | Verfahren zum herstellen von aus halbleitermaterial bestehenden, direkt beheizbaren hohlkoerpern |
IE39673B1 (en) | 1973-10-02 | 1978-12-06 | Siemens Ag | Improvements in or relating to semiconductor luminescence diodes |
FR2251104B1 (ja) | 1973-11-14 | 1978-08-18 | Siemens Ag | |
US4062035A (en) | 1975-02-05 | 1977-12-06 | Siemens Aktiengesellschaft | Luminescent diode |
DE2528192C3 (de) | 1975-06-24 | 1979-02-01 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Vorrichtung zum Abscheiden von elementarem Silicium auf einen aus elementarem Silicium bestehenden stabförmigen Trägerkörper |
US4098223A (en) | 1976-05-03 | 1978-07-04 | Siemens Aktiengesellschaft | Apparatus for heat treating semiconductor wafers |
DE2644208C3 (de) | 1976-09-30 | 1981-04-30 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zur Herstellung einer einkristallinen Schicht auf einer Unterlage |
DE2643893C3 (de) | 1976-09-29 | 1981-01-08 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Verfahren zur Herstellung einer mit einer Struktur versehenen Schicht auf einem Substrat |
US4108539A (en) | 1976-11-18 | 1978-08-22 | Hewlett-Packard Company | Reflecting lens system |
US4113381A (en) | 1976-11-18 | 1978-09-12 | Hewlett-Packard Company | Surveying instrument and method |
DE2716143A1 (de) | 1977-04-12 | 1978-10-19 | Siemens Ag | Lichtemittierendes halbleiterbauelement |
US4154625A (en) | 1977-11-16 | 1979-05-15 | Bell Telephone Laboratories, Incorporated | Annealing of uncapped compound semiconductor materials by pulsed energy deposition |
DE2910723A1 (de) | 1979-03-19 | 1980-09-25 | Siemens Ag | Verfahren zum herstellen von epitaktischen halbleitermaterialschichten auf einkristallinen substraten nach der fluessigphasen-schiebe-epitaxie |
DE3003285A1 (de) | 1980-01-30 | 1981-08-06 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zum herstellen niederohmiger, einkristalliner metall- oder legierungsschichten auf substraten |
DE3016778A1 (de) | 1980-04-30 | 1981-11-05 | Siemens AG, 1000 Berlin und 8000 München | Laser-diode |
US4423349A (en) | 1980-07-16 | 1983-12-27 | Nichia Denshi Kagaku Co., Ltd. | Green fluorescence-emitting material and a fluorescent lamp provided therewith |
DE3208638A1 (de) | 1982-03-10 | 1983-09-22 | Siemens AG, 1000 Berlin und 8000 München | Lumineszenzdiode aus siliziumkarbid |
JPS58158972A (ja) | 1982-03-16 | 1983-09-21 | Toshiba Corp | 半導体装置の製造方法 |
DE3210086A1 (de) | 1982-03-19 | 1983-09-22 | Siemens AG, 1000 Berlin und 8000 München | Lumineszenzdiode, geeignet als drucksensor |
DE3227263C2 (de) | 1982-07-21 | 1984-05-30 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zur Herstellung einer planaren Avalanche-Fotodiode mit langwelliger Empfindlichkeitsgrenze über 1,3 μ |
US4568206A (en) | 1983-04-25 | 1986-02-04 | Nichia Seimitsu Kogyo Co., Ltd. | Retainer for ball bearing |
DE3328902A1 (de) | 1983-08-10 | 1985-02-28 | Siemens AG, 1000 Berlin und 8000 München | Display mit einer anzahl lichtemittierender halbleiter-bauelemente |
DE3338335A1 (de) | 1983-10-21 | 1985-05-09 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zum herstellen von grossflaechigen siliziumkristallkoerpern fuer solarzellen |
DE3413667A1 (de) | 1984-04-11 | 1985-10-17 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zum einjustieren einer an einem ende eines optischen wellenleiters vorgesehenen koppeloptik auf einen halbleiterlaser und vorrichtung zur durchfuehrung des verfahrens |
DE3421215A1 (de) | 1984-06-07 | 1985-12-12 | Aeg-Telefunken Ag, 1000 Berlin Und 6000 Frankfurt | Verfahren zur erzeugung von ingaasp und ingaas - doppelheterostrukturlasern und -led's mittels fluessigphasenepitaxie fuer einen wellenlaengenbereich von (lambda) = 1,2 (my)m bis 1,7 (my)m |
US4599244A (en) | 1984-07-11 | 1986-07-08 | Siemens Aktiengesellschaft | Method large-area silicon bodies |
US4722088A (en) | 1984-09-14 | 1988-01-26 | Siemens Aktiengesellschaft | Semiconductor laser for high optical output power with reduced mirror heating |
DE3434741A1 (de) | 1984-09-21 | 1986-04-03 | Siemens AG, 1000 Berlin und 8000 München | Verkoppelte laserdioden-anordnung |
DE3435148A1 (de) | 1984-09-25 | 1986-04-03 | Siemens AG, 1000 Berlin und 8000 München | Laserdiode mit vergrabener aktiver schicht und mit seitlicher strombegrezung durch selbstjustierten pn-uebergang sowie verfahren zur herstellung einer solchen laserdiode |
US4683574A (en) | 1984-09-26 | 1987-07-28 | Siemens Aktiengesellschaft | Semiconductor laser diode with buried hetero-structure |
DE3580738D1 (de) | 1984-10-03 | 1991-01-10 | Siemens Ag | Verfahren zur integrierten herstellung eines dfb-lasers mit angekoppeltem streifenwellenleiter auf einem substrat. |
US4615766A (en) | 1985-02-27 | 1986-10-07 | International Business Machines Corporation | Silicon cap for annealing gallium arsenide |
DE3610333A1 (de) | 1985-04-19 | 1986-11-27 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zur herstellung eines oberflaechengitters mit einer bestimmten gitterkonstanten auf einem tieferliegenden oberflaechenbereich einer mesastruktur |
US4959174A (en) | 1985-05-18 | 1990-09-25 | Nichia Kagaku Kogyo K.K. | Phosphor which emits light by the excitation of X-ray |
JPS62246988A (ja) | 1986-04-18 | 1987-10-28 | Nichia Chem Ind Ltd | X線螢光体及びこれを用いたx線増感紙 |
US5250366A (en) | 1985-05-18 | 1993-10-05 | Nichia Kagaku Kogyo K.K. | Phosphor which emits light by the excitation of X-ray, and a X-ray intensifying screen using the phosphor |
DE3531734A1 (de) | 1985-09-05 | 1987-03-12 | Siemens Ag | Einrichtung zur positionierung eines halbleiterlasers mit selbstjustierender wirkung fuer eine anzukoppelnde glasfaser |
DE3532821A1 (de) | 1985-09-13 | 1987-03-26 | Siemens Ag | Leuchtdiode (led) mit sphaerischer linse |
DE3534017A1 (de) | 1985-09-24 | 1987-03-26 | Siemens Ag | Verfahren zum ankoppeln einer laserdiode an einen monomode-lichtwellenleiter und eine anordnung aus einer laserdiode und einem daran angekoppelten lichtwellenleiter |
EP0236713A3 (de) | 1986-02-10 | 1988-06-29 | Siemens Aktiengesellschaft | Laserdiode |
EP0237812A3 (de) | 1986-03-20 | 1988-06-29 | Siemens Aktiengesellschaft | Halbleiterlaser-Array mit gebündelter Abstrahlung |
DE3611167A1 (de) | 1986-04-03 | 1987-10-08 | Siemens Ag | Array mit verkoppelten optischen wellenleitern |
US4818722A (en) | 1986-09-29 | 1989-04-04 | Siemens Aktiengesellschaft | Method for generating a strip waveguide |
JPH0662943B2 (ja) | 1986-10-06 | 1994-08-17 | 日亜化学工業株式会社 | 放射線増感紙用螢光体 |
US5218216A (en) | 1987-01-31 | 1993-06-08 | Toyoda Gosei Co., Ltd. | Gallium nitride group semiconductor and light emitting diode comprising it and the process of producing the same |
US4911102A (en) | 1987-01-31 | 1990-03-27 | Toyoda Gosei Co., Ltd. | Process of vapor growth of gallium nitride and its apparatus |
JPS63224252A (ja) | 1987-02-06 | 1988-09-19 | シーメンス、アクチエンゲゼルシヤフト | 導波路−ホトダイオードアレー |
JPH01209776A (ja) | 1987-02-20 | 1989-08-23 | Siemens Ag | レーザ送信器装置 |
JPH0630242B2 (ja) | 1987-03-04 | 1994-04-20 | 陽一 峰松 | 高分子材料の人工促進暴露試験用の紫外線螢光ランプ |
DE3810245A1 (de) | 1987-03-27 | 1988-10-06 | Japan Incubator Inc | Lichtemittierendes element und verfahren zu seiner herstellung |
DE3711617A1 (de) | 1987-04-07 | 1988-10-27 | Siemens Ag | Monolithisch integrierte wellenleiter-fotodioden-fet-kombination |
US4855118A (en) | 1987-04-15 | 1989-08-08 | Nichia Kagaku Kogyo K.K. | Method of producing fluorapatite |
US5011550A (en) * | 1987-05-13 | 1991-04-30 | Sharp Kabushiki Kaisha | Laminated structure of compound semiconductors |
JPH0774333B2 (ja) | 1987-06-29 | 1995-08-09 | 日亜化学工業株式会社 | 発光組成物 |
DE3727546A1 (de) | 1987-08-18 | 1989-03-02 | Siemens Ag | Lichtverstaerker mit ringfoermig gefuehrter strahlung, insbesondere ringlaser-diode |
DE3731312C2 (de) | 1987-09-17 | 1997-02-13 | Siemens Ag | Verfahren zum Vereinzeln von monolithisch hergestellten Laserdioden |
EP0309744A3 (de) | 1987-09-29 | 1989-06-28 | Siemens Aktiengesellschaft | Anordnung mit einem flächig sich erstreckenden Dünnfilmwellenleiter |
US4960728A (en) | 1987-10-05 | 1990-10-02 | Texas Instruments Incorporated | Homogenization anneal of II-VI compounds |
DE8713875U1 (de) | 1987-10-15 | 1988-02-18 | Siemens AG, 1000 Berlin und 8000 München | Optisches Senderbauelement |
US4945394A (en) | 1987-10-26 | 1990-07-31 | North Carolina State University | Bipolar junction transistor on silicon carbide |
US4947218A (en) | 1987-11-03 | 1990-08-07 | North Carolina State University | P-N junction diodes in silicon carbide |
GB2212658B (en) | 1987-11-13 | 1992-02-12 | Plessey Co Plc | Solid state light source |
JP2663483B2 (ja) | 1988-02-29 | 1997-10-15 | 勝 西川 | レジストパターン形成方法 |
DE3867834D1 (de) | 1988-03-09 | 1992-02-27 | Hewlett Packard Gmbh | Ausgangsverstaerker. |
US4864369A (en) | 1988-07-05 | 1989-09-05 | Hewlett-Packard Company | P-side up double heterojunction AlGaAs light-emitting diode |
US4904618A (en) | 1988-08-22 | 1990-02-27 | Neumark Gertrude F | Process for doping crystals of wide band gap semiconductors |
EP0356059B1 (en) | 1988-08-15 | 2000-01-26 | Gertrude F. Neumark | Process for doping crystals of wide band gap semiconductors |
US5252499A (en) | 1988-08-15 | 1993-10-12 | Rothschild G F Neumark | Wide band-gap semiconductors having low bipolar resistivity and method of formation |
DE3836802A1 (de) | 1988-10-28 | 1990-05-03 | Siemens Ag | Halbleiterlaseranordnung fuer hohe ausgangsleistungen im lateralen grundmodus |
US4990466A (en) | 1988-11-01 | 1991-02-05 | Siemens Corporate Research, Inc. | Method for fabricating index-guided semiconductor laser |
DE3838016A1 (de) | 1988-11-09 | 1990-05-10 | Siemens Ag | Halbleiterlaser im system gaa1inas |
US4987576A (en) | 1988-11-30 | 1991-01-22 | Siemens Aktiengesellschaft | Electrically tunable semiconductor laser with ridge waveguide |
US4982314A (en) | 1988-12-09 | 1991-01-01 | Nichia Kagaku Kogyo K.K. | Power source circuit apparatus for electro-luminescence device |
US4907534A (en) | 1988-12-09 | 1990-03-13 | Siemens Aktiengesellschaft | Gas distributor for OMVPE Growth |
US4918497A (en) | 1988-12-14 | 1990-04-17 | Cree Research, Inc. | Blue light emitting diode formed in silicon carbide |
US5027168A (en) | 1988-12-14 | 1991-06-25 | Cree Research, Inc. | Blue light emitting diode formed in silicon carbide |
US5061972A (en) | 1988-12-14 | 1991-10-29 | Cree Research, Inc. | Fast recovery high temperature rectifying diode formed in silicon carbide |
CA2008176A1 (en) | 1989-01-25 | 1990-07-25 | John W. Palmour | Silicon carbide schottky diode and method of making same |
JP2704181B2 (ja) | 1989-02-13 | 1998-01-26 | 日本電信電話株式会社 | 化合物半導体単結晶薄膜の成長方法 |
JPH0636349B2 (ja) | 1989-02-22 | 1994-05-11 | 日亜化学工業株式会社 | 紫外線反射層を有する蛍光ランプ |
JP3026087B2 (ja) | 1989-03-01 | 2000-03-27 | 豊田合成株式会社 | 窒化ガリウム系化合物半導体の気相成長方法 |
EP0393600B1 (de) | 1989-04-19 | 1995-11-29 | Siemens Aktiengesellschaft | Vorrichtung mit einem Tiegel in einer Effusionszelle einer Molekularstrahlepitaxieanlage |
US5160492A (en) | 1989-04-24 | 1992-11-03 | Hewlett-Packard Company | Buried isolation using ion implantation and subsequent epitaxial growth |
JP2809691B2 (ja) | 1989-04-28 | 1998-10-15 | 株式会社東芝 | 半導体レーザ |
JP2809692B2 (ja) | 1989-04-28 | 1998-10-15 | 株式会社東芝 | 半導体発光素子およびその製造方法 |
US5049779A (en) | 1989-05-02 | 1991-09-17 | Nichia Kagaku Kogyo K.K. | Phosphor composition used for fluorescent lamp and fluorescent lamp using the same |
EP0405214A3 (en) | 1989-06-27 | 1991-06-05 | Siemens Aktiengesellschaft | Pin-fet combination with buried p-type layer |
US4985742A (en) | 1989-07-07 | 1991-01-15 | University Of Colorado Foundation, Inc. | High temperature semiconductor devices having at least one gallium nitride layer |
JPH0357288A (ja) | 1989-07-17 | 1991-03-12 | Siemens Ag | 半導体レーザーを有するデバイスおよびその使用方法 |
US5119540A (en) | 1990-07-24 | 1992-06-09 | Cree Research, Inc. | Apparatus for eliminating residual nitrogen contamination in epitaxial layers of silicon carbide and resulting product |
JPH07116429B2 (ja) | 1989-08-25 | 1995-12-13 | 日亜化学工業株式会社 | 顔料付き蛍光体 |
US4966862A (en) | 1989-08-28 | 1990-10-30 | Cree Research, Inc. | Method of production of light emitting diodes |
US4946547A (en) | 1989-10-13 | 1990-08-07 | Cree Research, Inc. | Method of preparing silicon carbide surfaces for crystal growth |
US5366834A (en) | 1989-11-15 | 1994-11-22 | Nichia Kagaku Kogyo K.K. | Method of manufacturing a cathode ray tube phosphor screen |
US5019746A (en) | 1989-12-04 | 1991-05-28 | Hewlett-Packard Company | Prefabricated wire leadframe for optoelectronic devices |
US5008735A (en) | 1989-12-07 | 1991-04-16 | General Instrument Corporation | Packaged diode for high temperature operation |
US5077145A (en) | 1989-12-26 | 1991-12-31 | Nichia Kagaku Kogyo K.K. | Phosphor for x-ray intensifying screen and x-ray intensifying screen |
US5278433A (en) | 1990-02-28 | 1994-01-11 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer |
CA2037198C (en) | 1990-02-28 | 1996-04-23 | Katsuhide Manabe | Light-emitting semiconductor device using gallium nitride group compound |
US5210051A (en) | 1990-03-27 | 1993-05-11 | Cree Research, Inc. | High efficiency light emitting diodes from bipolar gallium nitride |
JPH075883B2 (ja) | 1990-04-21 | 1995-01-25 | 日亜化学工業株式会社 | 蛍光体の再生方法 |
ATE119678T1 (de) | 1990-05-28 | 1995-03-15 | Siemens Ag | Optoelektronischer schaltkreis. |
JP3078821B2 (ja) | 1990-05-30 | 2000-08-21 | 豊田合成株式会社 | 半導体のドライエッチング方法 |
US5185207A (en) | 1990-08-12 | 1993-02-09 | Nichia Kagaku Kogyo K.K. | Phosphor for cathode ray tube and surface treatment method for the phosphor |
JP2784255B2 (ja) | 1990-10-02 | 1998-08-06 | 日亜化学工業株式会社 | 蛍光体及びそれを用いた放電ランプ |
DE69111733T2 (de) | 1990-10-02 | 1996-04-18 | Nichia Kagaku Kogyo Kk | Phosphorzusammensetzung, Phosphor-Überzugszusammensetzung, Entladungslampe und Herstellungsverfahren derselben. |
US5200022A (en) | 1990-10-03 | 1993-04-06 | Cree Research, Inc. | Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product |
US5334277A (en) | 1990-10-25 | 1994-08-02 | Nichia Kagaky Kogyo K.K. | Method of vapor-growing semiconductor crystal and apparatus for vapor-growing the same |
US5433169A (en) | 1990-10-25 | 1995-07-18 | Nichia Chemical Industries, Ltd. | Method of depositing a gallium nitride-based III-V group compound semiconductor crystal layer |
US5281830A (en) | 1990-10-27 | 1994-01-25 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US5208878A (en) | 1990-11-28 | 1993-05-04 | Siemens Aktiengesellschaft | Monolithically integrated laser-diode-waveguide combination |
US5155062A (en) | 1990-12-20 | 1992-10-13 | Cree Research, Inc. | Method for silicon carbide chemical vapor deposition using levitated wafer system |
JP3160914B2 (ja) | 1990-12-26 | 2001-04-25 | 豊田合成株式会社 | 窒化ガリウム系化合物半導体レーザダイオード |
US5290393A (en) | 1991-01-31 | 1994-03-01 | Nichia Kagaku Kogyo K.K. | Crystal growth method for gallium nitride-based compound semiconductor |
US5146465A (en) | 1991-02-01 | 1992-09-08 | Apa Optics, Inc. | Aluminum gallium nitride laser |
JP2786952B2 (ja) | 1991-02-27 | 1998-08-13 | 株式会社豊田中央研究所 | 窒化ガリウム系化合物半導体発光素子およびその製造方法 |
US5093576A (en) | 1991-03-15 | 1992-03-03 | Cree Research | High sensitivity ultraviolet radiation detector |
US5202777A (en) | 1991-05-31 | 1993-04-13 | Hughes Aircraft Company | Liquid crystal light value in combination with cathode ray tube containing a far-red emitting phosphor |
US5270554A (en) | 1991-06-14 | 1993-12-14 | Cree Research, Inc. | High power high frequency metal-semiconductor field-effect transistor formed in silicon carbide |
US5264713A (en) | 1991-06-14 | 1993-11-23 | Cree Research, Inc. | Junction field-effect transistor formed in silicon carbide |
US5164798A (en) | 1991-07-05 | 1992-11-17 | Hewlett-Packard Company | Diffusion control of P-N junction location in multilayer heterostructure light emitting devices |
US5260960A (en) | 1991-07-26 | 1993-11-09 | Siemens Aktiengesellschaft | Tunable semiconductor laser on a semi-insulating substrate |
US5182670A (en) | 1991-08-30 | 1993-01-26 | Apa Optics, Inc. | Narrow band algan filter |
US5467291A (en) | 1991-09-09 | 1995-11-14 | Hewlett-Packard Company | Measurement-based system for modeling and simulation of active semiconductor devices over an extended operating frequency range |
JP2666228B2 (ja) | 1991-10-30 | 1997-10-22 | 豊田合成株式会社 | 窒化ガリウム系化合物半導体発光素子 |
US5306662A (en) | 1991-11-08 | 1994-04-26 | Nichia Chemical Industries, Ltd. | Method of manufacturing P-type compound semiconductor |
US5465249A (en) | 1991-11-26 | 1995-11-07 | Cree Research, Inc. | Nonvolatile random access memory device having transistor and capacitor made in silicon carbide substrate |
JP3352712B2 (ja) | 1991-12-18 | 2002-12-03 | 浩 天野 | 窒化ガリウム系半導体素子及びその製造方法 |
JP2770629B2 (ja) | 1991-12-26 | 1998-07-02 | 日亜化学工業株式会社 | 陰極線管用蛍光体及びその表面処理方法 |
US5233204A (en) | 1992-01-10 | 1993-08-03 | Hewlett-Packard Company | Light-emitting diode with a thick transparent layer |
US5312560A (en) | 1992-03-19 | 1994-05-17 | Nichia Chemical Industries, Ltd. | Rare earth phosphor |
EP0562143B1 (en) | 1992-03-27 | 1997-06-25 | Nichia Kagaku Kogyo K.K. | Solid-state image converting device |
JP3244529B2 (ja) | 1992-04-16 | 2002-01-07 | アジレント・テクノロジーズ・インク | 面発光型第2高調波生成素子 |
US5394005A (en) | 1992-05-05 | 1995-02-28 | General Electric Company | Silicon carbide photodiode with improved short wavelength response and very low leakage current |
US6344663B1 (en) | 1992-06-05 | 2002-02-05 | Cree, Inc. | Silicon carbide CMOS devices |
US5612260A (en) | 1992-06-05 | 1997-03-18 | Cree Research, Inc. | Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures |
US5459107A (en) | 1992-06-05 | 1995-10-17 | Cree Research, Inc. | Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures |
US5252839A (en) | 1992-06-10 | 1993-10-12 | Hewlett-Packard Company | Superluminescent light-emitting diode with reverse biased absorber |
US5343316A (en) | 1992-06-30 | 1994-08-30 | Nichia Chemical Industries, Ltd. | Phosphor for use in a cathode-ray tube and display device using one |
DE69333250T2 (de) | 1992-07-23 | 2004-09-16 | Toyoda Gosei Co., Ltd. | Lichtemittierende Vorrichtung aus einer Verbindung der Galliumnitridgruppe |
US5724062A (en) | 1992-08-05 | 1998-03-03 | Cree Research, Inc. | High resolution, high brightness light emitting diode display and method and producing the same |
US5359345A (en) | 1992-08-05 | 1994-10-25 | Cree Research, Inc. | Shuttered and cycled light emitting diode display and method of producing the same |
US5265792A (en) | 1992-08-20 | 1993-11-30 | Hewlett-Packard Company | Light source and technique for mounting light emitting diodes |
DE59308636D1 (de) | 1992-08-28 | 1998-07-09 | Siemens Ag | Leuchtdiode |
US5323022A (en) | 1992-09-10 | 1994-06-21 | North Carolina State University | Platinum ohmic contact to p-type silicon carbide |
DE4323814A1 (de) | 1992-09-25 | 1994-03-31 | Siemens Ag | MIS-Feldeffekttransistor |
US5381103A (en) | 1992-10-13 | 1995-01-10 | Cree Research, Inc. | System and method for accelerated degradation testing of semiconductor devices |
JP2657743B2 (ja) | 1992-10-29 | 1997-09-24 | 豊田合成株式会社 | 窒素−3族元素化合物半導体発光素子 |
US5578839A (en) | 1992-11-20 | 1996-11-26 | Nichia Chemical Industries, Ltd. | Light-emitting gallium nitride-based compound semiconductor device |
US5506421A (en) | 1992-11-24 | 1996-04-09 | Cree Research, Inc. | Power MOSFET in silicon carbide |
US5687391A (en) | 1992-12-11 | 1997-11-11 | Vibrametrics, Inc. | Fault tolerant multipoint control and data collection system |
US5858277A (en) | 1992-12-23 | 1999-01-12 | Osram Sylvania Inc. | Aqueous phosphor coating suspension for lamps |
JPH06264054A (ja) | 1993-03-11 | 1994-09-20 | Nichia Chem Ind Ltd | 陰極線管用蛍光体の製造方法 |
US5376580A (en) | 1993-03-19 | 1994-12-27 | Hewlett-Packard Company | Wafer bonding of light emitting diode layers |
DE69425186T3 (de) | 1993-04-28 | 2005-04-14 | Nichia Corp., Anan | Halbleitervorrichtung aus einer galliumnitridartigen III-V-Halbleiterverbindung und Verfahren zu ihrer Herstellung |
JPH06326350A (ja) | 1993-05-12 | 1994-11-25 | Nichia Chem Ind Ltd | 赤外可視変換素子 |
US5416342A (en) | 1993-06-23 | 1995-05-16 | Cree Research, Inc. | Blue light-emitting diode with high external quantum efficiency |
US5539217A (en) | 1993-08-09 | 1996-07-23 | Cree Research, Inc. | Silicon carbide thyristor |
US5404282A (en) | 1993-09-17 | 1995-04-04 | Hewlett-Packard Company | Multiple light emitting diode module |
US5338944A (en) | 1993-09-22 | 1994-08-16 | Cree Research, Inc. | Blue light-emitting diode with degenerate junction structure |
US5363390A (en) | 1993-11-22 | 1994-11-08 | Hewlett-Packard Company | Semiconductor laser that generates second harmonic light by means of a nonlinear crystal in the laser cavity |
US5390210A (en) | 1993-11-22 | 1995-02-14 | Hewlett-Packard Company | Semiconductor laser that generates second harmonic light with attached nonlinear crystal |
US5846844A (en) | 1993-11-29 | 1998-12-08 | Toyoda Gosei Co., Ltd. | Method for producing group III nitride compound semiconductor substrates using ZnO release layers |
US5393993A (en) | 1993-12-13 | 1995-02-28 | Cree Research, Inc. | Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices |
US5433533A (en) | 1993-12-20 | 1995-07-18 | Nichia Precision Industry Co., Ltd. | Shield plate for bearing |
JPH07202265A (ja) | 1993-12-27 | 1995-08-04 | Toyoda Gosei Co Ltd | Iii族窒化物半導体の製造方法 |
TW289837B (ja) | 1994-01-18 | 1996-11-01 | Hwelett Packard Co | |
DE59500334D1 (de) | 1994-01-19 | 1997-07-31 | Siemens Ag | Abstimmbare Laserdiode |
US5514627A (en) | 1994-01-24 | 1996-05-07 | Hewlett-Packard Company | Method and apparatus for improving the performance of light emitting diodes |
JPH07240561A (ja) | 1994-02-23 | 1995-09-12 | Hewlett Packard Co <Hp> | Ii−vi族系半導体レーザおよびその製造方法 |
US5656832A (en) | 1994-03-09 | 1997-08-12 | Kabushiki Kaisha Toshiba | Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness |
US5923118A (en) | 1997-03-07 | 1999-07-13 | Osram Sylvania Inc. | Neon gas discharge lamp providing white light with improved phospher |
JPH07263748A (ja) | 1994-03-22 | 1995-10-13 | Toyoda Gosei Co Ltd | 3族窒化物半導体発光素子及びその製造方法 |
EP0678945B1 (en) | 1994-04-20 | 1998-07-08 | Toyoda Gosei Co., Ltd. | Gallium nitride group compound semiconductor laser diode and method of manufacturing the same |
JP2698796B2 (ja) | 1994-04-20 | 1998-01-19 | 豊田合成株式会社 | 3族窒化物半導体発光素子 |
US5604763A (en) | 1994-04-20 | 1997-02-18 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor laser diode and method for producing same |
JP3426699B2 (ja) | 1994-04-27 | 2003-07-14 | 住友化学工業株式会社 | 不飽和カルボン酸及びその誘導体からなる重合体の製造方法 |
US5808592A (en) | 1994-04-28 | 1998-09-15 | Toyoda Gosei Co., Ltd. | Integrated light-emitting diode lamp and method of producing the same |
US5376303A (en) | 1994-06-10 | 1994-12-27 | Nichia Chemical Industries, Ltd. | Long Decay phoaphors |
US5497012A (en) | 1994-06-15 | 1996-03-05 | Hewlett-Packard Company | Unipolar band minima devices |
JP3717196B2 (ja) | 1994-07-19 | 2005-11-16 | 豊田合成株式会社 | 発光素子 |
JPH0832112A (ja) | 1994-07-20 | 1996-02-02 | Toyoda Gosei Co Ltd | 3族窒化物半導体発光素子 |
US5604135A (en) | 1994-08-12 | 1997-02-18 | Cree Research, Inc. | Method of forming green light emitting diode in silicon carbide |
US5650641A (en) | 1994-09-01 | 1997-07-22 | Toyoda Gosei Co., Ltd. | Semiconductor device having group III nitride compound and enabling control of emission color, and flat display comprising such device |
DE69529378T2 (de) | 1994-09-14 | 2003-10-09 | Matsushita Electric Industrial Co., Ltd. | Verfahren zur Stabilisierung der Ausgangsleistung von höheren harmonischen Wellen und Laserlichtquelle mit kurzer Wellenlänge die dasselbe benutzt |
US5686737A (en) | 1994-09-16 | 1997-11-11 | Cree Research, Inc. | Self-aligned field-effect transistor for high frequency applications |
US5523589A (en) | 1994-09-20 | 1996-06-04 | Cree Research, Inc. | Vertical geometry light emitting diode with group III nitride active layer and extended lifetime |
JP2666237B2 (ja) | 1994-09-20 | 1997-10-22 | 豊田合成株式会社 | 3族窒化物半導体発光素子 |
US5592501A (en) | 1994-09-20 | 1997-01-07 | Cree Research, Inc. | Low-strain laser structures with group III nitride active layers |
US5631190A (en) | 1994-10-07 | 1997-05-20 | Cree Research, Inc. | Method for producing high efficiency light-emitting diodes and resulting diode structures |
GB9421329D0 (en) | 1994-10-22 | 1994-12-07 | Bt & D Technologies Ltd | Laser bias control system |
FR2726126A1 (fr) | 1994-10-24 | 1996-04-26 | Mitsubishi Electric Corp | Procede de fabrication de dispositifs a diodes electroluminescentes a lumiere visible |
US5892787A (en) | 1994-10-27 | 1999-04-06 | Hewlett-Packard Company | N-drive, p-common light-emitting devices fabricated on an n-type substrate and method of making same |
US5892784A (en) | 1994-10-27 | 1999-04-06 | Hewlett-Packard Company | N-drive p-common surface emitting laser fabricated on n+ substrate |
US5491712A (en) | 1994-10-31 | 1996-02-13 | Lin; Hong | Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser |
US5679153A (en) | 1994-11-30 | 1997-10-21 | Cree Research, Inc. | Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures |
US5777350A (en) | 1994-12-02 | 1998-07-07 | Nichia Chemical Industries, Ltd. | Nitride semiconductor light-emitting device |
JP2846477B2 (ja) | 1994-12-27 | 1999-01-13 | シーメンス アクチエンゲゼルシヤフト | 炭化シリコン単結晶の製造方法 |
US5661074A (en) | 1995-02-03 | 1997-08-26 | Advanced Technology Materials, Inc. | High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same |
US5585648A (en) | 1995-02-03 | 1996-12-17 | Tischler; Michael A. | High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same |
DE19508222C1 (de) | 1995-03-08 | 1996-06-05 | Siemens Ag | Optoelektronischer Wandler und Herstellverfahren |
JPH08264833A (ja) | 1995-03-10 | 1996-10-11 | Hewlett Packard Co <Hp> | 発光ダイオード |
US5850410A (en) | 1995-03-16 | 1998-12-15 | Fujitsu Limited | Semiconductor laser and method for fabricating the same |
DE69637304T2 (de) | 1995-03-17 | 2008-08-07 | Toyoda Gosei Co., Ltd. | Lichtemittierende Halbleitervorrichtung bestehend aus einer III-V Nitridverbindung |
JP3773282B2 (ja) | 1995-03-27 | 2006-05-10 | 豊田合成株式会社 | 窒化ガリウム系化合物半導体の電極形成方法 |
US5670798A (en) * | 1995-03-29 | 1997-09-23 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same |
DE19511593C2 (de) | 1995-03-29 | 1997-02-13 | Siemens Ag | Mikrooptische Vorrichtung |
JP3691544B2 (ja) | 1995-04-28 | 2005-09-07 | アジレント・テクノロジーズ・インク | 面発光レーザの製造方法 |
US5739554A (en) | 1995-05-08 | 1998-04-14 | Cree Research, Inc. | Double heterojunction light emitting diode with gallium nitride active layer |
US5659568A (en) | 1995-05-23 | 1997-08-19 | Hewlett-Packard Company | Low noise surface emitting laser for multimode optical link applications |
JP3405049B2 (ja) | 1995-05-29 | 2003-05-12 | 日亜化学工業株式会社 | 残光性ランプ |
TW304310B (ja) | 1995-05-31 | 1997-05-01 | Siemens Ag | |
US5625202A (en) | 1995-06-08 | 1997-04-29 | University Of Central Florida | Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth |
US5596595A (en) | 1995-06-08 | 1997-01-21 | Hewlett-Packard Company | Current and heat spreading transparent layers for surface-emitting lasers |
JP2839077B2 (ja) | 1995-06-15 | 1998-12-16 | 日本電気株式会社 | 窒化ガリウム系化合物半導体発光素子 |
US5785404A (en) | 1995-06-29 | 1998-07-28 | Siemens Microelectronics, Inc. | Localized illumination device |
US5903016A (en) | 1995-06-30 | 1999-05-11 | Siemens Components, Inc. | Monolithic linear optocoupler |
DE19524655A1 (de) | 1995-07-06 | 1997-01-09 | Huang Kuo Hsin | LED-Struktur |
US5999552A (en) | 1995-07-19 | 1999-12-07 | Siemens Aktiengesellschaft | Radiation emitter component |
DE19527536A1 (de) | 1995-07-27 | 1997-01-30 | Siemens Ag | Verfahren zum Herstellen von Siliciumcarbid-Einkristallen |
US5919422A (en) | 1995-07-28 | 1999-07-06 | Toyoda Gosei Co., Ltd. | Titanium dioxide photo-catalyzer |
DE19629920B4 (de) | 1995-08-10 | 2006-02-02 | LumiLeds Lighting, U.S., LLC, San Jose | Licht-emittierende Diode mit einem nicht-absorbierenden verteilten Braggreflektor |
US5900650A (en) | 1995-08-31 | 1999-05-04 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US5621749A (en) | 1995-09-06 | 1997-04-15 | Hewlett-Packard Company | Praseodymium-doped fluoride fiber upconversion laser for the generation of blue light |
DE19533116A1 (de) | 1995-09-07 | 1997-03-13 | Siemens Ag | Treiberschaltung für eine Leuchtdiode |
DE19536438A1 (de) | 1995-09-29 | 1997-04-03 | Siemens Ag | Halbleiterbauelement und Herstellverfahren |
DE19536463C2 (de) | 1995-09-29 | 2002-02-07 | Infineon Technologies Ag | Verfahren zum Herstellen einer Mehrzahl von Laserdiodenbauelementen |
US5986317A (en) | 1995-09-29 | 1999-11-16 | Infineon Technologies Corporation | Optical semiconductor device having plural encapsulating layers |
US5642375A (en) | 1995-10-26 | 1997-06-24 | Hewlett-Packard Company | Passively-locked external optical cavity |
US5727014A (en) | 1995-10-31 | 1998-03-10 | Hewlett-Packard Company | Vertical-cavity surface-emitting laser generating light with a defined direction of polarization |
US5592578A (en) | 1995-11-01 | 1997-01-07 | Hewlett-Packard Company | Peripheral optical element for redirecting light from an LED |
US5707139A (en) | 1995-11-01 | 1998-01-13 | Hewlett-Packard Company | Vertical cavity surface emitting laser arrays for illumination |
US5972801A (en) | 1995-11-08 | 1999-10-26 | Cree Research, Inc. | Process for reducing defects in oxide layers on silicon carbide |
JP3752739B2 (ja) * | 1996-03-22 | 2006-03-08 | 住友化学株式会社 | 発光素子 |
US5724376A (en) | 1995-11-30 | 1998-03-03 | Hewlett-Packard Company | Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding |
US5635146A (en) | 1995-11-30 | 1997-06-03 | Osram Sylvania Inc. | Method for the dissolution and purification of tantalum pentoxide |
EP0781619A1 (en) | 1995-12-15 | 1997-07-02 | Cree Research, Inc. | Method of making silicone carbide wafers from silicon carbide bulk crystals |
US5917202A (en) | 1995-12-21 | 1999-06-29 | Hewlett-Packard Company | Highly reflective contacts for light emitting semiconductor devices |
FR2742926B1 (fr) | 1995-12-22 | 1998-02-06 | Alsthom Cge Alcatel | Procede et dispositif de preparation de faces de laser |
US5855924A (en) | 1995-12-27 | 1999-01-05 | Siemens Microelectronics, Inc. | Closed-mold for LED alphanumeric displays |
US5991160A (en) | 1995-12-27 | 1999-11-23 | Infineon Technologies Corporation | Surface mount LED alphanumeric display |
US5828684A (en) | 1995-12-29 | 1998-10-27 | Xerox Corporation | Dual polarization quantum well laser in the 200 to 600 nanometers range |
US5812105A (en) | 1996-06-10 | 1998-09-22 | Cree Research, Inc. | Led dot matrix drive method and apparatus |
DE19600306C1 (de) | 1996-01-05 | 1997-04-10 | Siemens Ag | Halbleiter-Bauelement, insb. mit einer optoelektronischen Schaltung bzw. Anordnung |
WO1997027629A1 (en) | 1996-01-24 | 1997-07-31 | Cree Research, Inc. | Mesa schottky diode with guard ring |
US5809050A (en) | 1996-01-25 | 1998-09-15 | Hewlett-Packard Company | Integrated controlled intensity laser-based light source using diffraction, scattering and transmission |
US5923690A (en) | 1996-01-25 | 1999-07-13 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser device |
US5835514A (en) | 1996-01-25 | 1998-11-10 | Hewlett-Packard Company | Laser-based controlled-intensity light source using reflection from a convex surface and method of making same |
US5761229A (en) | 1996-01-25 | 1998-06-02 | Hewlett-Packard Company | Integrated controlled intensity laser-based light source |
US5771254A (en) | 1996-01-25 | 1998-06-23 | Hewlett-Packard Company | Integrated controlled intensity laser-based light source |
US5718760A (en) | 1996-02-05 | 1998-02-17 | Cree Research, Inc. | Growth of colorless silicon carbide crystals |
US5811931A (en) | 1996-03-04 | 1998-09-22 | Hewlett Packard Company | Capped edge emitter |
US5867516A (en) | 1996-03-12 | 1999-02-02 | Hewlett-Packard Company | Vertical cavity surface emitting laser with reduced turn-on jitter and increased single-mode output |
US5684623A (en) | 1996-03-20 | 1997-11-04 | Hewlett Packard Company | Narrow-band tunable optical source |
US5779924A (en) | 1996-03-22 | 1998-07-14 | Hewlett-Packard Company | Ordered interface texturing for a light emitting device |
US5861190A (en) | 1996-03-25 | 1999-01-19 | Hewlett-Packard Co. | Arrangement for growing a thin dielectric layer on a semiconductor wafer at low temperatures |
JP3727106B2 (ja) | 1996-04-17 | 2005-12-14 | 豊田合成株式会社 | 3族窒化物半導体レーザダイオードの製造方法 |
JP3209096B2 (ja) | 1996-05-21 | 2001-09-17 | 豊田合成株式会社 | 3族窒化物化合物半導体発光素子 |
DE19621124A1 (de) | 1996-05-24 | 1997-11-27 | Siemens Ag | Optoelektronischer Wandler und dessen Herstellungsverfahren |
US5719409A (en) | 1996-06-06 | 1998-02-17 | Cree Research, Inc. | Silicon carbide metal-insulator semiconductor field effect transistor |
JP2919362B2 (ja) | 1996-06-26 | 1999-07-12 | 日本電気株式会社 | 低速電子線励起蛍光表示装置およびその製造方法 |
DE29724543U1 (de) | 1996-06-26 | 2002-02-28 | OSRAM Opto Semiconductors GmbH & Co. oHG, 93049 Regensburg | Lichtabstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement |
DE19638667C2 (de) | 1996-09-20 | 2001-05-17 | Osram Opto Semiconductors Gmbh | Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement |
US5777433A (en) | 1996-07-11 | 1998-07-07 | Hewlett-Packard Company | High refractive index package material and a light emitting device encapsulated with such material |
US5925898A (en) | 1996-07-18 | 1999-07-20 | Siemens Aktiengesellschaft | Optoelectronic transducer and production methods |
US5818861A (en) | 1996-07-19 | 1998-10-06 | Hewlett-Packard Company | Vertical cavity surface emitting laser with low band gap highly doped contact layer |
TW383508B (en) | 1996-07-29 | 2000-03-01 | Nichia Kagaku Kogyo Kk | Light emitting device and display |
US5805624A (en) | 1996-07-30 | 1998-09-08 | Hewlett-Packard Company | Long-wavelength infra-red vertical cavity surface-emitting laser on a gallium arsenide substrate |
JPH1056236A (ja) | 1996-08-08 | 1998-02-24 | Toyoda Gosei Co Ltd | 3族窒化物半導体レーザ素子 |
US5729029A (en) | 1996-09-06 | 1998-03-17 | Hewlett-Packard Company | Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices |
DE59712346D1 (de) | 1996-09-19 | 2005-07-21 | Infineon Technologies Ag | Optischer Wellenleiter und Verfahren zu seiner Herstellung |
DE19645035C1 (de) | 1996-10-31 | 1998-04-30 | Siemens Ag | Mehrfarbiges Licht abstrahlende Bildanzeigevorrichtung |
US5724373A (en) | 1996-11-15 | 1998-03-03 | Hewlett-Packard Company | Microphotonic acousto-optic tunable laser |
US5835522A (en) | 1996-11-19 | 1998-11-10 | Hewlett-Packard Co. | Robust passively-locked optical cavity system |
DE19649650B4 (de) | 1996-11-29 | 2005-02-24 | Siemens Ag | Oberflächenmontierbares strahlungsemittierendes Halbleiterbauelement |
US6177292B1 (en) * | 1996-12-05 | 2001-01-23 | Lg Electronics Inc. | Method for forming GaN semiconductor single crystal substrate and GaN diode with the substrate |
US5966393A (en) | 1996-12-13 | 1999-10-12 | The Regents Of The University Of California | Hybrid light-emitting sources for efficient and cost effective white lighting and for full-color applications |
DE19652548C1 (de) | 1996-12-17 | 1998-03-12 | Siemens Ag | Verfahren zur Herstellung stickstoffhaltiger III-V-Halbleiterschichten |
DE19652528A1 (de) | 1996-12-17 | 1998-06-18 | Siemens Ag | LED mit allseitiger Lichtauskopplung |
US5741724A (en) | 1996-12-27 | 1998-04-21 | Motorola | Method of growing gallium nitride on a spinel substrate |
US5838707A (en) | 1996-12-27 | 1998-11-17 | Motorola, Inc. | Ultraviolet/visible light emitting vertical cavity surface emitting laser and method of fabrication |
US6677619B1 (en) * | 1997-01-09 | 2004-01-13 | Nichia Chemical Industries, Ltd. | Nitride semiconductor device |
US5868837A (en) | 1997-01-17 | 1999-02-09 | Cornell Research Foundation, Inc. | Low temperature method of preparing GaN single crystals |
JPH10215031A (ja) | 1997-01-30 | 1998-08-11 | Hewlett Packard Co <Hp> | 半導体レーザ素子 |
JPH10242074A (ja) | 1997-02-21 | 1998-09-11 | Hewlett Packard Co <Hp> | 窒化物半導体素子製造方法 |
TW353202B (en) | 1997-02-28 | 1999-02-21 | Hewlett Packard Co | Scribe and break of hard-to-scribe materials |
SG63757A1 (en) | 1997-03-12 | 1999-03-30 | Hewlett Packard Co | Adding impurities to improve the efficiency of allngan quantum well led's |
US5927995A (en) | 1997-04-09 | 1999-07-27 | Hewlett-Packard Company | Reduction of threading dislocations by amorphization and recrystallization |
EP0942459B1 (en) * | 1997-04-11 | 2012-03-21 | Nichia Corporation | Method of growing nitride semiconductors |
US5923946A (en) | 1997-04-17 | 1999-07-13 | Cree Research, Inc. | Recovery of surface-ready silicon carbide substrates |
US6011279A (en) | 1997-04-30 | 2000-01-04 | Cree Research, Inc. | Silicon carbide field controlled bipolar switch |
US5741431A (en) | 1997-05-15 | 1998-04-21 | Industrial Technology Research Institute | Laser assisted cryoetching |
US6100586A (en) | 1997-05-23 | 2000-08-08 | Agilent Technologies, Inc. | Low voltage-drop electrical contact for gallium (aluminum, indium) nitride |
US5969378A (en) | 1997-06-12 | 1999-10-19 | Cree Research, Inc. | Latch-up free power UMOS-bipolar transistor |
US6121633A (en) | 1997-06-12 | 2000-09-19 | Cree Research, Inc. | Latch-up free power MOS-bipolar transistor |
US5847507A (en) | 1997-07-14 | 1998-12-08 | Hewlett-Packard Company | Fluorescent dye added to epoxy of light emitting diode lens |
KR100651145B1 (ko) | 1997-08-29 | 2006-11-28 | 크리 인코포레이티드 | 표준 응용에서 고신뢰성을 위한 강한 3족 질화물 발광다이오드 |
US5879587A (en) | 1997-09-24 | 1999-03-09 | Osram Sylvania Inc. | Terbium-activated rare earth oxysulfide phosphor with enhanced green:blue emission ratio |
US5879588A (en) | 1997-09-24 | 1999-03-09 | Osram Sylvania Inc. | Terbium-activated gadolinium oxysulfide phosphor with reduced blue emission |
US5958295A (en) | 1997-09-24 | 1999-09-28 | Osram Sylvania Inc. | Terbium-activated rare earth oxysulfide phosphor with enhanced blue emission |
JP3283802B2 (ja) * | 1997-09-29 | 2002-05-20 | 日本電気株式会社 | 選択成長法を用いた半導体層及びその成長方法、選択成長法を用いた窒化物系半導体層及びその成長方法、窒化物系半導体発光素子とその製造方法 |
US5972781A (en) | 1997-09-30 | 1999-10-26 | Siemens Aktiengesellschaft | Method for producing semiconductor chips |
JP3955367B2 (ja) | 1997-09-30 | 2007-08-08 | フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー | 光半導体素子およびその製造方法 |
US6201262B1 (en) | 1997-10-07 | 2001-03-13 | Cree, Inc. | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
US5935705A (en) | 1997-10-15 | 1999-08-10 | National Science Council Of Republic Of China | Crystalline Six Cy Nz with a direct optical band gap of 3.8 eV |
JP3036495B2 (ja) | 1997-11-07 | 2000-04-24 | 豊田合成株式会社 | 窒化ガリウム系化合物半導体の製造方法 |
JP3589000B2 (ja) * | 1997-12-26 | 2004-11-17 | 松下電器産業株式会社 | 窒化ガリウム系化合物半導体発光素子 |
US5920766A (en) | 1998-01-07 | 1999-07-06 | Xerox Corporation | Red and blue stacked laser diode array by wafer fusion |
US6051849A (en) * | 1998-02-27 | 2000-04-18 | North Carolina State University | Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer |
JPH11251685A (ja) * | 1998-03-05 | 1999-09-17 | Toshiba Corp | 半導体レーザ |
US6194742B1 (en) * | 1998-06-05 | 2001-02-27 | Lumileds Lighting, U.S., Llc | Strain engineered and impurity controlled III-V nitride semiconductor films and optoelectronic devices |
US5959316A (en) | 1998-09-01 | 1999-09-28 | Hewlett-Packard Company | Multiple encapsulation of phosphor-LED devices |
US6645885B2 (en) * | 2001-09-27 | 2003-11-11 | The National University Of Singapore | Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD) |
EP1363318A1 (en) * | 2001-12-20 | 2003-11-19 | Matsushita Electric Industrial Co., Ltd. | Method for making nitride semiconductor substrate and method for making nitride semiconductor device |
-
1999
- 1999-11-22 JP JP33179799A patent/JP3770014B2/ja not_active Expired - Lifetime
-
2000
- 2000-02-08 WO PCT/JP2000/000660 patent/WO2000048254A1/ja active IP Right Grant
- 2000-02-08 CN CNB008035571A patent/CN1157804C/zh not_active Expired - Fee Related
- 2000-02-08 EP EP00902126.2A patent/EP1184913B1/en not_active Expired - Lifetime
- 2000-02-08 AU AU23272/00A patent/AU771942B2/en not_active Ceased
- 2000-02-08 KR KR1020017009965A patent/KR100634340B1/ko active IP Right Grant
- 2000-02-08 US US09/500,288 patent/US6835956B1/en not_active Expired - Fee Related
- 2000-02-09 TW TW089102140A patent/TW443018B/zh not_active IP Right Cessation
-
2004
- 2004-09-29 US US10/951,767 patent/US7083996B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05243614A (ja) * | 1992-03-03 | 1993-09-21 | Sharp Corp | 化合物半導体の成長方法、化合物半導体発光素子及びその製造方法 |
JPH0864791A (ja) * | 1994-08-23 | 1996-03-08 | Matsushita Electric Ind Co Ltd | エピタキシャル成長方法 |
JPH0983016A (ja) * | 1995-09-18 | 1997-03-28 | Nichia Chem Ind Ltd | 窒化物半導体の成長方法 |
DE19648955A1 (de) * | 1995-11-27 | 1997-05-28 | Sumitomo Chemical Co | III-V-Verbindungshalbleiter und lichtemittierende Vorrichtung |
JPH09180998A (ja) * | 1995-12-26 | 1997-07-11 | Fujitsu Ltd | 化合物半導体装置 |
EP0874405A2 (en) * | 1997-03-25 | 1998-10-28 | Mitsubishi Cable Industries, Ltd. | GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof |
Non-Patent Citations (1)
Title |
---|
SHUJI NAKAMURA ET AL.: "High power, long-lifetime InGaN/GaN/A1GaN-based laser diodes grown on pure GaN substrates", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 37, 1998, pages L309 - L312, XP002932562 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3767762A1 (en) | 2019-07-14 | 2021-01-20 | Instytut Wysokich Cisnien Polskiej Akademii Nauk | Distributed feedback laser diode and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
KR100634340B1 (ko) | 2006-10-17 |
KR20010110430A (ko) | 2001-12-13 |
US20050054132A1 (en) | 2005-03-10 |
US6835956B1 (en) | 2004-12-28 |
CN1157804C (zh) | 2004-07-14 |
EP1184913A4 (en) | 2007-07-04 |
EP1184913A1 (en) | 2002-03-06 |
AU2327200A (en) | 2000-08-29 |
JP3770014B2 (ja) | 2006-04-26 |
AU771942B2 (en) | 2004-04-08 |
TW443018B (en) | 2001-06-23 |
EP1184913B1 (en) | 2018-10-10 |
US7083996B2 (en) | 2006-08-01 |
CN1340215A (zh) | 2002-03-13 |
JP2000299497A (ja) | 2000-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100634340B1 (ko) | 질화물 반도체 소자 및 그 제조방법 | |
JP3876518B2 (ja) | 窒化物半導体基板の製造方法および窒化物半導体基板 | |
JP4288743B2 (ja) | 窒化物半導体の成長方法 | |
JP4304750B2 (ja) | 窒化物半導体の成長方法及び窒化物半導体素子 | |
KR100874077B1 (ko) | 질화물 반도체 레이저 소자 및 그 제조 방법 | |
JP2000357843A (ja) | 窒化物半導体の成長方法 | |
JP2001060719A (ja) | 窒化物半導体発光ダイオード | |
JP2001007447A (ja) | 窒化物半導体レーザ素子 | |
JP3446660B2 (ja) | 窒化物半導体発光素子 | |
JP2000252219A (ja) | GaN基板の製造方法 | |
JP2001039800A (ja) | 窒化物半導体の成長方法及び窒化物半導体素子 | |
JP3847000B2 (ja) | 窒化物半導体基板上に活性層を備えた窒化物半導体層を有する窒化物半導体素子及びその成長方法 | |
JP2001044570A (ja) | 窒化物半導体レーザ素子 | |
JP3329753B2 (ja) | 窒化物半導体レーザ素子 | |
JP2000196199A (ja) | 窒化物半導体レーザ素子 | |
JP4211358B2 (ja) | 窒化物半導体、窒化物半導体素子及びそれらの製造方法 | |
JP4628651B2 (ja) | 窒化物半導体発光素子の製造方法 | |
JP2008034862A (ja) | 窒化物半導体の成長方法 | |
JP4637503B2 (ja) | 窒化物半導体レーザ素子の製造方法 | |
JP4442093B2 (ja) | 窒化物半導体積層用基板の製造方法 | |
JP3438675B2 (ja) | 窒化物半導体の成長方法 | |
JP2005101536A (ja) | 窒化物半導体レーザ素子 | |
JP4826052B2 (ja) | 窒化物半導体レーザ素子 | |
JP2002141282A (ja) | 窒化物半導体の成長方法と窒化物半導体基板 | |
JPH11191658A (ja) | 窒化物半導体素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 00803557.1 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 23272/00 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017009965 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000902126 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017009965 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2000902126 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 23272/00 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020017009965 Country of ref document: KR |