WO2000048254A1 - Semi-conducteur au nitrure et procede de fabrication - Google Patents

Semi-conducteur au nitrure et procede de fabrication Download PDF

Info

Publication number
WO2000048254A1
WO2000048254A1 PCT/JP2000/000660 JP0000660W WO0048254A1 WO 2000048254 A1 WO2000048254 A1 WO 2000048254A1 JP 0000660 W JP0000660 W JP 0000660W WO 0048254 A1 WO0048254 A1 WO 0048254A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
gan
substrate
gan substrate
Prior art date
Application number
PCT/JP2000/000660
Other languages
English (en)
French (fr)
Inventor
Shinichi Nagahama
Shuji Nakamura
Original Assignee
Nichia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corporation filed Critical Nichia Corporation
Priority to AU23272/00A priority Critical patent/AU771942B2/en
Priority to EP00902126.2A priority patent/EP1184913B1/en
Publication of WO2000048254A1 publication Critical patent/WO2000048254A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation

Definitions

  • Patent application title Nitride semiconductor device and method for manufacturing the same
  • the present invention is a light emitting diode (LED), laser diode (LD) or other electronic devices, a nitride semiconductor device such as those used to power device (I n x A 1 Y G & 1 _ ⁇ _ ⁇ ⁇ ⁇ 0 ⁇ ⁇ , 0 ⁇ , ⁇ + ⁇ 1).
  • the present invention relates to preventing fine cracks generated in a nitride semiconductor layer in a nitride semiconductor device using a Ga G substrate.
  • the present inventors have proposed a nitride using a GaN substrate in Jap. J. of Appl. Physic s. Vol. 37 (1998) pp. L309-L312.
  • a semiconductor laser device is disclosed.
  • the GaN substrate can be manufactured, for example, as follows. Once grown G a N layer on a sapphire, a S i 0 2 O Li Cheng protective film is partially formed thereon, after growing the single crystal G a N over this, removing the insufflator Aia substrate I do. The regrown single crystal GaN grows preferentially in the lateral direction with respect to the substrate surface, so that the progress of dislocations can be stopped. Therefore, according to this manufacturing method, a GaN substrate with few dislocations can be obtained. And the nitride semiconductor laser device manufactured using the GaN substrate with few dislocations could achieve continuous oscillation of 10,000 hours or more. Disclosure of the invention
  • the occurrence of such fine cracks may be a phenomenon peculiar to the GaN substrate manufactured using lateral growth.However, it is necessary to grow a thin GaN layer on a thick GaN layer. It is also considered to be a problem that occurs when a GaN substrate is used. This fine crack is expected to lead to an increase in the threshold value of the laser element and a decrease in the life characteristics. Also, when a nitride semiconductor device other than a laser device is formed using a GaN substrate, the occurrence of minute cracks hinders improvement in reliability.
  • the present invention provides a nitride semiconductor device using a GaN substrate by suppressing extremely minute cracks generated in the nitride semiconductor device layer in the nitride semiconductor device using the GaN substrate.
  • the purpose is to enhance the life characteristics and thereby enhance the reliability of 1 "life.
  • the nitride semiconductor device of the present invention has a structure in which, among the device forming layers (nitride semiconductor layers) grown on a GaN substrate, a layer directly in contact with the GaN substrate has a compressive strain.
  • the feature of this method is that it suppresses the generation of very fine cracks.
  • Compressive strain can be applied by making the thermal expansion coefficient of the element forming layer directly in contact with the GaN substrate smaller than that of GaN.
  • Al a G ai _ a N (0 ⁇ a ⁇ 1) is preferably used for the element forming layer having a thermal expansion coefficient smaller than G a N. This is because the value of the thermal expansion coefficient of A 1 a G aiêt a N is slightly smaller than that of the GaN substrate, and it is possible to grow a good crystal on the GaN substrate.
  • the device structure formed on the GaN substrate has an n-type cladding layer containing A1, an active layer containing InGaN, and a p-type cladding layer containing A1. Is preferred. This prevents the occurrence of minute cracks and works synergistically. Thus, an element having good characteristics can be obtained.
  • the element forming layer in contact with the GaN substrate for example, the A 1 a G ai mecanic a N (0 ⁇ a ⁇ l) layer has various functions depending on the device structure formed on the GaN substrate.
  • it may be a buffer layer for preventing the generation of fine cracks, or may be an n-type contact layer, and the GaN substrate is the entire substrate. If it is conductive, it can be an n-type cladding layer.
  • the GaN substrate is manufactured using lateral growth of GaN.
  • a GaN substrate grown by using lateral growth is used, not only fine cracks but also propagation of dislocations in the device formation layer can be suppressed, and a good nitride semiconductor device can be obtained.
  • the method for producing a nitride semiconductor according to the present invention comprises:
  • the auxiliary substrate may be further removed to form a GaN substrate.
  • the thermal expansion coefficient of the element forming layer in contact with the GaN substrate smaller than that of GaN, compressive strain can be applied to the element forming layer to suppress generation of minute cracks.
  • This can be explained as follows. For example, if the coefficients of thermal expansion of S i, G a N and sapphire are respectively ⁇ 2 and f 3 ,
  • the grown GaN When GaN is grown on a GaN substrate, the grown GaN should not be subject to tensile or compressive strain, but the grown GaN should have a very small size. Cracks tend to occur.
  • the GaN substrate refers to a substrate having a surface composed of a single-crystal GaN layer having a low dislocation density, and even if it is a substrate composed of a single GaN single-crystal layer, the sapphire Si A substrate in which a GaN single crystal layer having a low transition density is grown on a heterogeneous substrate made of a material different from a nitride semiconductor such as C may be used.
  • Various methods can be used for manufacturing a GaN substrate as long as a single crystal GaN having a dislocation density low enough to form an element can be grown. It is preferable to use a method of growing a crystal layer through a lateral growth process. Through the lateral growth process, the progress of dislocations into the GaN single crystal is suppressed, and a GaN substrate with a low dislocation density can be obtained.
  • the lateral growth process includes all processes that suppress the progress of crystal dislocations in the vertical direction of the substrate by growing the GaN single crystal not only in the vertical direction of the substrate but also in the parallel direction of the substrate. included.
  • the method of growing G a N single crystal layer through the lateral growth process for example, a method of causing the growth of lateral G a N with S I_ ⁇ 2 as described in the aforementioned JJAP
  • USP09 / 202, 141 Japanese Patent Application Laid-Open Nos. 113-12825, 11-340508, Japanese Patent Application No. 11-37827, 111-137826, 1111
  • the ELOG growth method proposed in the specifications of each of the items, such as 168079 and 112-182122, can be used.
  • G aN obtained by ELOG growth described in each of the above specifications becomes a substrate having a reduced dislocation density.By applying the present invention to these substrates, the life characteristics of the device are improved. Become.
  • a nitride semiconductor layer such as a GaN layer or an A1 GaN layer is formed on a heterogeneous substrate such as sapphire, and a GaN single crystal grown on the nitride semiconductor layer is oriented in the lateral direction. Periodic stripe-shaped or island-shaped irregularities are formed so as to grow, and the single crystal GaN is grown by covering the irregularities or the mask. As a result, the GaN layer is grown in the lateral direction to suppress the progress of dislocations, and a GaN substrate with few dislocations can be obtained.
  • a GaN substrate composed of only a nitride semiconductor is used, a GaN single crystal may be grown into a thick film to remove a heterogeneous substrate.
  • nitride semiconductor layer having a smaller coefficient of thermal expansion than GaN By growing a nitride semiconductor layer having a smaller coefficient of thermal expansion than GaN on a substrate having such a laterally grown GaN single crystal layer on the surface, the nitride formed on it Dislocations and fine cracks in the semiconductor element can be prevented well, and the reliability of the nitride semiconductor element can be improved.
  • a specific example in which the present invention is applied to a GaN substrate formed by this method will be described in Examples described later.
  • the manufacturing methods described in each of the above specifications are for removing a heterogeneous substrate after ELOG growth to obtain a GaN substrate composed of only a nitride semiconductor.
  • a nitride semiconductor with reduced dislocations is formed on a heterogeneous substrate by ELOG growth, it can be used as a GaN substrate composed of a heterogeneous substrate and a nitride semiconductor without removing the heterogeneous substrate. .
  • the n-electrode can be formed on the surface opposite to the surface on which the device structure of the GaN substrate is formed, and the chip can be made smaller.
  • the GaN substrate is made only of a nitride semiconductor, there are advantages in terms of heat dissipation and easy formation of a resonance surface by cleavage.
  • the surface on which the device structure is formed by laminating the nitride semiconductor layers is preferably opposite to the surface from which the heterogeneous substrate has been removed, from the viewpoint of device characteristics.
  • the surface of the GaN substrate may be etched. Since the surface of the GaN substrate may have irregularities during the production process, it is preferable to grow the nitride semiconductor after the surface is flattened by etching in order to prevent fine cracks.
  • FIG. 1 is a schematic cross-sectional view showing a manufacturing process of a GaN substrate.
  • FIG. 2 is a schematic cross-sectional view showing a manufacturing step following FIG. 1 of the GaN substrate.
  • F i g. 3 is, 3 ⁇ 4 in a schematic sectional view showing a G a N substrate of F i g. 2 subsequent manufacturing process> Ru.
  • FIG. 4 is a schematic cross-sectional view showing a manufacturing step following FIG. 3 of the GaN substrate.
  • FIG. 5 is a schematic sectional view showing a nitride semiconductor laser device according to one embodiment of the present invention.
  • FIGS. 6A to 6F are partial cross-sectional views showing steps of forming a ridge-shaped stripe.
  • FIG. 5 is a cross-sectional view showing one example of the nitride semiconductor device according to the present invention.
  • element forming layers 1 to 10 made of a nitride semiconductor for constituting a semiconductor laser are laminated.
  • the thermal expansion coefficient of the element forming layer 1 in contact with the GaN substrate 30 is set to be smaller than G a N, so that a compressive stress is applied to the element forming layer 1 to suppress generation of minute cracks. .
  • the element forming layer 1 in contact with the GaN substrate 30 has a smaller coefficient of thermal expansion than GaN and may be made of any nitride semiconductor as long as it is made of a material. Preferably, it is a composition.
  • Al a G ai — a N (0 ⁇ a ⁇ 1) is preferable, more preferably the value of a is 0 ⁇ a ⁇ 0.3, and even more preferably the value of a is 0 and a ⁇ 0. Is one.
  • a l a G ai- a N is the preferred material to prevent small cracks, furthermore, since the crystallinity while preventing cracks and A 1 yarn ⁇ ratio is relatively small becomes better preferred.
  • the surface on which the GaN substrate is formed may be etched. Depending on the method of manufacturing the GaN substrate, etc., the surface of the GaN substrate may be uneven.Therefore, once the surface is etched and flattened, the nitride semiconductor having a small coefficient of thermal expansion is used. Forming a layer is preferable from the viewpoint of preventing fine cracks.
  • the thickness of A 1 a G a t _ a N is not particularly limited, is preferably 1 // m or more, more preferably 3 to 1 0 ⁇ m. Such a film thickness is preferable from the viewpoint of preventing minute cracks.
  • the element forming layer 1 in contact with the GaN substrate can be a layer having various functions depending on the element structure. The thickness of the element forming layer 1 in contact with the GaN substrate is adjusted within the above-mentioned thickness range in consideration of its function. In the nitride semiconductor device shown in FIG.
  • the device forming layer 1 in contact with the GaN substrate functions as a contact layer for attaching the n-type electrode 21 together with the device forming layer 2 thereon.
  • An n-type cladding layer 4 containing A1, an active layer 6 containing InGaN, and a p-type cladding layer 9 containing A1 are formed thereon to form a semiconductor laser.
  • the GaN substrate 30 is electrically conductive as a whole, for example, a substrate in which a single-crystal GaN layer is grown on a SiC substrate or a substrate composed of only a single-crystal GaN layer
  • an ⁇ -type electrode may be attached to the back surface of the GaN substrate, and the element forming layer 1 in contact with the GaN substrate may be used as a cladding layer for confining light.
  • an impurity When growing the element forming layer 1 in contact with the GaN substrate, an impurity may be doped according to its function.
  • the impurity is not particularly limited, and may be n-type or p-type.
  • the doping amount of the impurity is appropriately adjusted according to the functions of the layers such as the cladding layer and the contact layer.
  • the formation layer 1 is an undoped n-type A 1 a G ai — a N contact layer 1, and an ⁇ -type A 1 a G a, — a N contact layer 2 is formed thereon.
  • the impurity-doped n-type A 1 a G ai _ a N is grown on the undoped n-type A l a G ai — a N layer 1, in view of preventing fine cracks and crystallinity, preferable.
  • Undoped n-type A l a G ai _ a N contactor coat layer 1 in this case has both the action as the buffer layer.
  • the film thickness of the completion Ndopu n-type A l a GahN layer is preferably several m.
  • the nitride semiconductor layer doped with an n-type impurity (preferably Si) is Grow over 30.
  • the doping amount of n-type impurity preferably 1 X 10 18 Zc m 3 ⁇ 5 X 1 0 18 Zc m 3.
  • the thickness is preferably from 1 to 1 ⁇ . Within this range, fine cracks can be prevented and the function as an ⁇ -type contact layer can be exhibited, which is preferable.
  • the G a ⁇ substrate 30 may be a substrate composed only of a nitride semiconductor or a substrate composed of a heterogeneous substrate and a nitride semiconductor. However, the G a N single crystal layer undergoes a lateral growth process. It is preferably grown. Manufactured using lateral growth
  • the GaN substrate 30 is preferably manufactured, for example, as follows. First, as shown in FIG. 1, on a heterogeneous substrate 11 made of a material different from a nitride semiconductor, a nitride layer such as a GaN layer or an A1 GaN layer is provided via an appropriate buffer layer. A semiconductor layer 12 is formed. As the heterogeneous substrate, for example, sapphire, SiC, spinel, or the like can be used. Next, as shown in FIG. 2, a periodic stripe or island shape is formed on the nitride semiconductor layer 12 so that a GaN single crystal to be grown thereon may also grow in the lateral direction. Form irregularities.
  • the stripe-shaped or island-shaped irregularities may be formed so as to leave the nitride semiconductor layer 12 as shown in FIG. 2; It may be formed so that part of 1 is removed.
  • the nitride semiconductor layer 12 may have a two-layer structure of A 1 GaN and GaN, and the unevenness may be formed to a depth at which a part of A 1 GaN is removed. Then, as shown in FIGS. 3 and 4, a single crystal GaN 13 is grown to cover the irregularities of the nitride semiconductor layer 12.
  • a GaN substrate composed of a heterogeneous substrate and a nitride semiconductor can be obtained.
  • a 0311 single crystal should be 1 ⁇ ⁇ ?
  • the thickness of the single crystal GaN portion of the GaN substrate 30 is 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. m or less is desirable.
  • the lower limit of the film thickness may be such that the protective film and irregularities are covered by ELOG growth and dislocations can be reduced. For example, number / m or more.
  • the film thickness is in this range, not only is it preferable in terms of reduction of dislocations, but also warpage of the wafer due to a difference in thermal expansion coefficient between the heterogeneous substrate and the nitride semiconductor can be prevented, and the device structure can be favorably grown thereon. be able to.
  • the thickness of the GaN substrate consisting only of the nitride semiconductor is not particularly limited, but is preferably 50 to 500 / m, More preferably, it is 100 to 300 m.
  • the thickness of the GaN substrate is within the above range, dislocation is favorably reduced and mechanical strength is preferably maintained.
  • a single crystal G a N layer 1 3 masks such as S i O 2 onto the forming a periodic stripe-like or island-like, the covering S i 0 2 mask such as a single-crystal GaN layer Is grown laterally by MOCVD (second single-crystal GaN growth).
  • MOCVD second single-crystal GaN growth
  • the single crystal GaN may not have sufficient crystallinity due to the formation of a cavity in the vicinity of the concave portion.
  • the second GaN single crystal growth by the MOCVD method using the SiO 2 mask a single crystal GaN layer with better crystallinity can be obtained.
  • N alone tends to be slightly warped. This indicates that the physical properties of the surface of the removed substrate and the surface of the growth surface of the heterogeneous substrate are different.
  • the fine cracks described as an object of the present invention may be caused by such physical differences in the surfaces.
  • the effect of preventing the occurrence of fine cracks by applying compressive stress to the element forming layer in contact with the GaN substrate can be obtained regardless of the element structure formed on the GaN substrate. It is something that can be done.
  • a device formed on the GaN substrate 30 emits light including an n-type cladding layer containing A1, an active layer containing InGaN, and a p-type cladding layer containing A1. It is preferably an element.
  • the thermal expansion coefficient of the element forming layer in contact with the GaN substrate is made smaller than that of GaN to act synergistically to obtain a highly reliable nitride semiconductor light emitting element.
  • MOVPE Metal Organic Chemical Vapor Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • HVPE Hydrophilic Vapor Deposition
  • MBE Molecular Beam Chemical Vapor Deposition
  • Example 1 a nitride semiconductor laser device shown in FIG. 5 was manufactured.
  • a GaN substrate was manufactured along the steps shown in FIGS. 1 to 4.
  • Sapphire substrate 11 with C face as main face and orientation flat face as A face is set in a reaction vessel, temperature is set to 510 ° C, hydrogen is used as carrier gas, source gas A buffer layer (not shown) made of GaN was grown on the sapphire substrate 11 to a thickness of about 200 ⁇ using ammonia and TMG (trimethylgallium).
  • a first nitride semiconductor layer 12 of undoped GaN was grown to a thickness of 2 / m using TMG and ammonia as source gases (Fig. 1). o
  • a stripe-shaped photomask is formed, and a stripe width (a part to be the upper part of the convex part) 5 / m, a stripe interval (a part to be the lower part of the concave part) by a sputtering apparatus.
  • 1 5 forming a patterned S i 0 2 film Myupaiiota, subsequently, S i 0 2 film first nitride semiconductors layer 1 2 a first nitride portion is not formed in the RIE apparatus
  • the first nitride semiconductor 12 was exposed on the side surface of the concave portion by forming the unevenness by etching halfway to the extent that the semiconductor 12 remained (FIG. 2).
  • the wafer was taken out of the reaction vessel to obtain a GaN substrate 30 made of undoped GaN.
  • the sapphire substrate was removed from the obtained GaN substrate 30 force, and the following device structure was grown on the growth surface opposite to the removed surface, as shown in FIG.
  • the film thickness of the substrate 30 made of GaN was about 300 // m.
  • n-type contactors coat layer 2 A 1 a G ai _ a N of the present invention
  • n-type contact layer 2 of 95 N was grown to a thickness of 3 // m.
  • no fine cracks were generated in the grown n-type contact layer 2 (including the n-type contact layer 1), and the generation of fine cracks was well prevented.
  • the growth of the n- type contact layer 2 can prevent the propagation of the fine cracks and grow an element structure with good crystallinity. .
  • the crystallinity can be improved more by growing the undoped n-type contact layer 1 as described above than in the case of using only the n-type contact layer 2.
  • the temperature was set to 1050 ° C, and TMA, TMG and ammonia were used as source gases, and undoped A1 was used. 14 Ga.
  • a layer of 86 N is grown to a thickness of 25 ⁇ , then TMA is stopped, silane gas is used as impurity gas, and Si is 5 X 10 18 Zcm 3 doped G a N
  • Layer B was grown to a thickness of 25 ⁇ . This operation was repeated 160 times each to laminate the A layer and the B layer, thereby growing the n-type cladding layer 4 composed of a multilayer film (superlattice structure) having a total film thickness of 8000 angstroms.
  • an n-type guide layer made of undoped GaN was grown to a thickness of 0.075 m using TMG and ammonia as source gases.
  • the temperature was set to 800 ° C.
  • TMI, TMG and ammonia were used as source gases
  • silane gas was used as an impurity gas
  • Si was doped with 5 ⁇ 10 18 / cm 3 Inn ()
  • Ga A barrier layer of nqqN was grown to a thickness of 100 ⁇ .
  • the silane gas was stopped, and undoped I n Q 11 G a.
  • a well layer of 89 N was grown to a thickness of 50 ⁇ . This operation was repeated three times, and finally, an active layer 6 of a multiple quantum well structure (MQW) with a total film thickness of 550 ⁇ in which a barrier layer was laminated was grown.
  • MQW multiple quantum well structure
  • a thin-type electron confinement layer 7 was grown to a thickness of 100 ⁇ .
  • a p-type guide layer 8 made of undoped GaN was grown to a thickness of 0.075 / m using TMG and ammonia as source gases.
  • This p-type guide layer 8 was grown as an AND.
  • the Mg concentration became 5 ⁇ 10 16 Zcm 3 , indicating p-type.
  • the contact layer 10 was grown to a thickness of 150 ⁇ .
  • the wafer was subjected to cleaning at 700 ° C. in a nitrogen atmosphere in a reaction vessel to further reduce the resistance of the p-type layer.
  • the wafer is taken out of the reaction vessel and the topmost p-side contact layer Surface to form a protective film made of S i 0 2 of, etched by S i C 1 4 gas using RIE (reactive Ion'etsuchin grayed), as shown in F i g. 5, forming n electrodes
  • RIE reactive Ion'et suchin grayed
  • a mask of a predetermined shape is applied on the first protective film 61, and a third protective film 63 made of photoresist is formed with a stripe width of 1. It was formed with a thickness of 8 ⁇ m and a thickness of 1 / m.
  • the RIE (reactive ion etching) apparatus is used, using CF 4 gas, and using the third protective film 63 as a mask.
  • the first protective film was etched to form a stripe. After that, only the photoresist is removed by processing with an etching solution to form a first protective film having a stripe width of 1.8 1 ⁇ 1 on the P-side contact layer 10 as shown in FIG. 6C. 6 1 can be formed.
  • a ⁇ E one tooth is transferred to a PVD apparatus, the shown Suyo in F i g. 6 E, Z r oxide second protective film 62 made of (mainly Z R_ ⁇ 2), the On the protective film 61 of FIG. 1 and on the p-side cladding layer 9 exposed by the etching, a film thickness of 0.5 / m was continuously formed. Forming a Zr oxide in this way is preferable because it can secure the p_n plane and stabilize the transverse mode!
  • the wafer was immersed in hydrofluoric acid, and as shown in FIG. 6F, the first protective film 61 was removed by a lift-off method.
  • a p-electrode 20 made of NiZAu is formed on the surface of the P-side contact layer exposed by removing the first protective film 61 on the p-side contact layer 10. Formed. However, the p-electrode 20 had a stripe width of 100 m and was formed over the second protective film 62 as shown in this figure. After the formation of the second protective film 62, an n-electrode 21 composed of T i / A 1 is formed on the exposed surface of the n-side contact layer 2 as shown in FIG. 5 in a direction parallel to the stripe. Formed.
  • the GaN substrate of the wafer on which the n-electrode and the p-electrode are formed is polished to approximately 100 / m, and then the substrate is slid from the substrate side in a direction perpendicular to the striped electrodes.
  • the resonator length is desirably 300 to 500 / zm.
  • the obtained laser device was placed on a heat sink, and each electrode was wire-bonded, and laser oscillation was attempted at room temperature.
  • a laser device was manufactured in the same manner as in Example 1, except that the n-type contact layer 2 was grown without growing the n-type contact layer 1.
  • Example 1 Although the obtained device tended to be slightly inferior in crystallinity to Example 1, the occurrence of fine cracks was prevented almost in the same manner as in Example 1, and the device characteristics were good.
  • Example 2 In the same manner as in Example 1, except that the ratio of the A1 composition of the undoped n-type contact layer 1 and the S1 doped n-type contact layer 2 was changed from 0.05 to 0.2. The device was grown.
  • a laser device was manufactured in the same manner as in Example 1, except that the undoped n-type contact layer 1 was A 1 N and the Si-doped n- type contact layer 2 was A 1 N.
  • the obtained laser element has a slightly lower crystallinity because the A1 composition ratio of the n-type contact layer 1 and the n-type contact layer 2 is larger than that in Example 1, the cracks are as fine as in Example 1. , And a good life characteristic almost equivalent to that of Example 1 could be obtained.
  • the sapphire substrate was not removed, and a GaN substrate composed of a heterogeneous substrate and a nitride semiconductor was used. Thus, a laser device was manufactured.
  • the obtained laser device showed a tendency that the warpage was slightly larger than that of Example 1, but fine cracks were prevented as well as Example 1. Further, the laser element of the sixth embodiment has an insulating sapphire substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Formation Of Insulating Films (AREA)

Description

明 細 書 窒化物半導体素子及びその製造方法
技術分野
本発明は、 発光ダイオード (LED) 、 レーザダイオード (LD) あるいは他 の電子デバイス、 パワーデバイスなどに使用される窒化物半導体素子 (I nxA 1 YG & 1_χ_γΝΛ 0≤Χ, 0≤Υ、 Χ+Υ≤ 1) に関する。 特に、 G a Ν基板を用い た窒化物半導体素子において、 窒化物半導体層に生じる微細なクラックを防止す ることに関する。 背景技術
近年、 窒化物半導体からなる青色発光ダイオードが実用化されており、 更に、 G a N基板を用いることにより窒化物半導体からなる青色レーザダイォードの実 用化も可能になってきている。
例えば、 本発明者等は、 J a p. J. o f Ap p l . Ph y s i c s. Vo l . 37 (1 998) p p. L 309-L 31 2 に、 G a N基板を用いた窒化物半 導体レーザ素子を開示している。 Ga N基板は、 例えば、 次のようにして製造す ることができる。 サファイア上に G a N層を一旦成長させ、 その上に S i 02よ りなる保護膜を部分的に形成し、 この上から単結晶 G a Nを成長させた後、 サフ アイァ基板を除去する。 再度成長させた単結晶 G a Nは基板面に対して横方向に 優先的に成長するため、 転位の進行を止めることができる。 したがって、 この製 造方法によれば、 転位の少ない GaN基板を得ることができる。 そして、 転位の 少ない G a N基板を用いて製造された窒化物半導体レーザ素子は、 1万時間以上 の連続発振を達成することができた。 発明の開示
1万時間以上連続発振可能な窒化物半導体レーザ素子は実用に耐えるものであ るが、 一部の用途においてはさらなる寿命の延長が望まれている。 そこで、 前述 の方法により得た窒化物半導体レーザ素子を詳細に調べた結果、 G a N基板上に 成長された窒化物半導体層、 特に G a N基板のすぐ上に形成される n型 G a Nコ ンタク ト層内に非常に微細なクラックが発生し易いことが見い出された。 この微 細なクラックは、 一般的な光学顕微鏡では観察することができないが、 蛍光顕微 鏡によって観察することができる。 G a N基板の上に同一組成の G a N層を形成 しているにも関わらず、 G a N層に微細なクラックが発生し易いことは驚くべき 事実である。 こうした微細なクラックの発生は、 横方向成長を利用して製造した G a N基板に特有の現象である可能性もあるが、 厚膜の G a N層に薄膜の G a N を成長させることにより発生する問題であって G a N基板を用いた時に一般的に 生じる問題とも考えられる。 この微細なクラックは、 レーザ素子のしきい値の上 昇や寿命特性の低下につながっていると予想される。 また、 G a N基板を用いて レーザ素子以外の窒化物半導体素子を構成する場合においても、 微細なクラック の発生は信頼性向上の妨げとなる。
そこで、 本発明は、 G a N基板を用いた窒化物半導体素子において、 窒化物半 導体素子層に発生する非常に微細なクラックを抑制することにより G a N基板を 用いた窒化物半導体素子の寿命特性を高め、 もって信頼 1"生を高めることを目的と する。
上記目的を達成するために、 本発明の窒化物半導体素子は、 G a N基板上に成 長した素子形成層 (窒化物半導体層) のうち、 G a N基板に直接接する層に圧縮 歪みをかけることにより、 非常に微細なクラックの発生を抑制することを特徴と するものである。
圧縮歪は、 G a N基板に直接接する素子形成層の熱膨張係数を G a Nよりも小 さくすることにより加えることができる。
熱膨張係数が G a Nよりも小さな素子形成層には、 A l aG a i_aN ( 0 < a≤ 1 ) を用いることが好ましレ、。 A 1 aG a iaNの熱膨張係数の値は G a N基板に 比べて若干小さく、 また、 G a N基板上に良好な結晶として成長させることがで きるからである。
また、 G a N基板の上に形成するデバイス構造は、 A 1を含有する n型クラッ ド層、 I n G a Nを含む活性層、 及び A 1を含有する p型クラッド層を有するこ とが好ましい。 これにより、 微細なクラックの発生を防止することと相乗的に作 用して特性の良好な素子が得られる。
G a N基板に接する素子形成層、 例えば A 1 aG a iaN (0< a≤ l) 層は、 G a N基板の上に形成されるデバイス構造に応じて種々の機能を有した層とする ことができる。 例えば、 微細なクラックの発生を防止するためのバッファ層であ つても良く、 n型コンタク ト層であっても良い。 また、 G a N基板が基板全体と して導電性である場合には、 n型クラッド層とすることもできる。
また、 G a N基板は、 G a Nの横方向成長を利用して製造されたものであるこ とが好ましい。 横方向成長を利用して成長された G a N基板を用いれば、 素子形 成層への微細なクラックだけでなく転位の伝播も抑制して、 良好な窒化物半導体 素子とすることができる。
本発明の窒化物半導体の製造方法は、
(a) 窒化物半導体と異なるサファイアや S i C等の補助基板の上に第 1の窒化 物半導体層を成長する工程と、
(b) 前記第 1の窒化物半導体層にストライプ状又は島状の周期的凹凸を形成す る工程と、
( c ) 前記第 1の窒化物半導体層の上に単結晶 G a N層を成長して G a N基板を 形成する工程と、
( d ) 前記 G a N基板の上に G a Nよりも熱膨張係数の小さな第 2の窒化物半導 体層を成長する工程を備えたことを特徴とする。
また、 前記単結晶 G a N層の成長後、 さらに前記補助基板を除去して Ga N基 板を形成しても良い。
本発明によれば、 G a N基板に接する素子形成層の熱膨張係数を G a Nよりも 小さくすることにより、 素子形成層に圧縮歪みを与えて微細なクラックの発生を 抑制することができる。 このことは、 次のようにして説明することができる。 例 えば、 S i、 G a N, サファイアの熱膨張係数を各々、 £い ί 2、 f 3とすると、
E ,< ε 2< s 3の大小関係がある。 S i C基板上に G a Nを成長させた場合、 G a Nにクラックが発生し易いが、 熱膨張係数 ε iく となるため S i C基板上に成 長させた G a Nには面内方向に引っ張り歪みがかかっている。 一方、 サファイア 基板に G a Nを成長させた場合、 G a Nにクラックが発生しにくレ、が、 熱膨張係 数 E 2< ε 3となるためサファイア基板上に成長させた G a Nには面内方向に圧縮 歪みがかかっている。 つまり、 クラックの発生し易さはその層にかかる歪みが引 つ張り歪みである力圧縮歪みであるかに依存している。 基板上に成長させる層の 熱膨張係数を基板よりも小さくすることにより、 その層に圧縮歪をかけてクラッ クを抑制することができる。
尚、 G a N基板上に G a Nを成長させる場合には、 成長させた G a Nに引っ張 り歪みも圧縮歪みもかかっていないはずであるが、 成長させた G a Nには微細な クラックが発生する傾向がある。
このことから、 G a N基板上に成長させる窒化物半導体層の熱膨張係数が、 G a Nの熱膨張係数と同等以上であると成長させた層内部に微細なクラックが発生 し、 窒化物半導体層の熱膨張係数を基板よりも小さくしてわずかに圧縮歪みをか ければクラックの発生が防止できると推定される。
本発明において G a N基板とは、 転位密度の低い単結晶 G a N層から成る表面 を有する基板を指し、 単体の G a N単結晶層からなる基板であっても、 サフアイ ァゃ S i C等の窒化物半導体と異なる材料から成る異種基板の上に転移密度の低 い G a N単結晶層が成長された基板であっても良い。
また、 G a N基板の製造には、 素子を形成可能な程度に転位密度の低い単結晶 G a Nを成長させることができる方法であれば種々の方法を用いることができる 、 G a N単結晶層を横方向成長過程を経て成長させる方法を用いることが好ま しい。 横方向成長過程を経ることにより G a N単結晶中への転位の進行が抑制さ れ、 低転位密度の G a N基板とすることができる。 ここで横方向成長過程には、 G a N単結晶が基板垂直方向だけでなく基板平行方向にも成長することにより、 基板垂直方向への結晶転位の進行が抑制されるような全ての過程が含まれる。 横方向成長過程を経て G a N単結晶層を成長させる方法には、 例えば、 前述の J. J. A. P. に記載されているような S i〇2を用いて G a Nの横方向の成 長を起こす方法の他に、 US P09/202, 14 1、 特開平 1 1—3 1 282 5号、 同 1 1— 340508号公報、 特願平 1 1—37827、 同 1 1一 378 26、 同 1 1一 1 68079、 同 1 1— 21 81 22各号の明細書等に提案して いる E LOG成長法を用いることができる。 上記各明細書等に記載されている E L O G成長により得られた G a Nは、 転位 密度の低減された基板となり、 これらの基板に本発明を適用することにより、 素 子の寿命特性が良好となる。
中でも、 特願平 1 1一 3 7 8 2 7号明細書に提案した方法を用いることが好ま しい。 サファイア等の異種基板の上に G a N層又は A 1 G a N層等の窒化物半導 体層を形成し、 この窒化物半導体層にその上に成長させる G a N単結晶が横方向 にも成長するように周期的なストライプ状又は島状の凹凸を形成し、 さらにその 凹凸又はマスクを覆って単結晶 G a Nを成長させる。 これにより、 G a N層を横 方向に成長させて転位の進行を抑制し、 転位の少ない G a N基板を得ることがで きる。 尚、 窒化物半導体のみからなる G a N基板とする場合には、 G a N単結晶 を厚膜に成長して異種基板を除去すれば良い。
このような横方向に成長させた G a N単結晶層を表面に有する基板の上に G a Nよりも熱膨張係数の小さな窒化物半導体層を成長させることにより、 その上に 形成する窒化物半導体素子における転位及び微細のクラックの発生を良好に防止 して、 窒化物半導体素子の信頼性を向上することができる。 この方法により形成 した G a N基板に本発明を適用した具体例を後で説明する実施例に示す。
尚、 上記各明細書に記載されている製造方法は、 E L O G成長後に異種基板を 除去して窒化物半導体のみからなる G a N基板とするものである。 しカゝし、 E L O G成長により異種基板上に転位の低減された窒化物半導体を形成した後、 異種 基板を除去せずに異種基板と窒化物半導体とからなる G a N基板として用いるこ ともできる。
窒化物半導体のみからなる G a N基板を用いれば、 G a N基板のデバイス構造 を形成されてなる面とは反対の面に n電極を形成することができ、 チップを小さ くすることができる利点がある。 また G a N基板が窒化物半導体のみからなると、 放熱性や、 劈開による共振面の形成が容易となる等の点でも利点がある。 この場 合、 窒化物半導体層を積層してデバイス構造を形成する面は、 異種基板を除去し た面とは反対の面にすることが素子特性の点で好ましい。
一方、 異種基板と窒化物半導体とからなる G a N基板を用いれば、 ウェハの割 れゃ欠けが防止できハンドリング性の点で利点がある。 さらに、 異種基板を除去 する工程が不要となるので製造時間の短縮化等の点でも利点がある。 尚、 異種基 板と窒化物半導体からなる G a N基板の場合であっても、 異種基板に導電性があ る場合は異種基板の裏面に n電極を形成することができる。
また、 G a N基板上に G a Nより熱膨張係数の小さい窒化物半導体を成長させ る前に、 G a N基板の表面をエッチングしてもよい。 G a N基板は作製される過 程で表面に凹凸ができる場合があるので、 エッチングして表面を平坦にしてから 窒化物半導体を成長させることが微細なクラックを防止する点で好ましい。 図面の簡単な説明
F i g. 1は、 G a N基板の製造工程を示す模式的断面図である。
F i g. 2は、 G a N基板の F i g. 1に続く製造工程を示す模式的断面図で ある。
F i g. 3は、 GaN基板のF i g. 2に続く製造工程を示す模式的断面図で ¾>る。
F i g . 4は、 G a N基板の F i g. 3に続く製造工程を示す模式的断面図で ある。
F i g. 5は、 本発明の一実施の形態である窒化物半導体レーザ素子を示す模 式的断面図である。
F i g. 6A〜Fは、 リッジ形状のストライプを形成する工程を示す部分断 面図である。 発明を実施するための最良の形態
F i g. 5は、 本発明に係る窒化物半導体素子の一例を示す断面図である。 G a N基板 30の上に、 半導体レーザを構成するための窒化物半導体から成る素子 形成層 1〜10が積層されている。 G a N基板 30に接する素子形成層 1の熱膨 張係数は G a Nよりも小さく設定され、 素子形成層 1に圧縮応力が加わって微細 なクラックの発生が抑制されるようになっている。
G a N基板 30に接する素子形成層 1は、 G a Nより熱膨張係数の小さレ、材料 であればいずれの窒化物半導体でも良いが、 さらに、 結晶性を損なわないような 組成であることが好ましい。 例えば、 A l aG a iaN ( 0 < a≤ 1 ) が好ましく、 より好ましくは aの値が 0 < a < 0 . 3であり、 更に好ましくは aの値が 0く a < 0 . 1である。 A l aG a i—aNは微細なクラックを防止するのに好ましい材料 であり、 さらに、 A 1糸且成比が比較的小さいとクラックを防止しながら結晶性も 良好となるので好ましい。
また、 G a N基板上に熱膨張係数の小さい窒化物半導体層を形成する前に、 G a N基板の形成面をエッチングしても良い。 G a N基板の作製の方法などによつ ては、 G a N基板の表面がでこぼこしている場合があるので、 一旦表面をエッチ ングして平坦にしてから熱膨張係数の小さい窒化物半導体層を形成すると微細な クラックの防止の点で好ましい。
G a N基板より熱膨張係数の小さい素子形成層、 例えば A 1 aG a t_aNの膜厚 は、 特に限定されないが、 好ましくは 1 // m以上であり、 より好ましくは 3〜1 0 μ mである。 このような膜厚であると微細なクラックの防止の点で好ましい。 また、 G a N基板に接する素子形成層 1は、 素子構造によって種々の機能の層 とすることができる。 G a N基板に接する素子形成層 1の膜厚は、 その機能を考 慮して上記膜厚の範囲内で膜厚を調整する。 F i g . 5に示す窒化物半導体素子 においては、 G a N基板に接する素子形成層 1は、 その上の素子形成層 2と共に n型電極 2 1をつけるためのコンタク ト層として機能し、 その上に、 A 1を含有 する n型クラッド層 4、 I n G a Nを含む活性層 6、 及び A 1を含有する p型ク ラッド層 9が形成されて半導体レーザが構成されている。 、
尚、 G a N基板 3 0が基板全体として導電性である場合、 例えば S i C基板の 上に単結晶 G a N層が成長された基板や単結晶 G a N層のみから成る基板である 場合には、 η型電極を G a N基板の裏面につけて、 G a N基板に接する素子形成 層 1を、 光を閉じ込めるためのクラッド層とすることもできる。
また、 G a N基板に接する素子形成層 1を成長させる際に、 その機能に応じて 不純物をドープさせてもよい。 不純物としては特に限定されず、 n型でも p型で もよレ、。 不純物のドープ量は、 クラッド層やコンタク ト層などの層の機能に合わ せて適宜調節する。
F i g . 5に示す窒化物半導体素子においては、 G a N基板 3 0に接する素子 形成層 1をアンドープの n型 A 1 aG a iaNコンタク ト層 1とし、 その上に η型 A 1 aG a,— aNコンタク ト層 2を形成している。 このようにアンドープの n型 A laGa iaN層 1の上に不純物ドープした n型 A 1 aGa i_aNを成長させると、 微 細なクラックの防止及び結晶性の点で好ましい。 この場合のアンドープの n型 A laGa i_aNコンタク ト層 1は、 バッファ層のような作用を兼ね備えている。 了 ンドープ n型 A laGahN層の膜厚は、 好ましくは数 mである。
尚、 G a N基板に接する素子形成層 1の上に n型電極 21を直接形成する場合 には、 n型不純物 (好ましくは S i) をドープされた窒化物半導体層を G a N基 板 30上に成長させる。 n型不純物のドープ量としては、 好ましくは 1 X 1018 Zc m3〜5 X 1 018Zc m3である。 素子形成層 1を単独で n型コンタクト層と する場合の膜厚としては、 好ましくは 1〜1 Ο μιτιである。 この範囲であると、 微細なクラックを防止し、 η型コンタクト層としての機能を発揮でき好ましい。
G a Ν基板 30は、 窒化物半導体のみから成る基板であっても、 異種基板と窒 化物半導体から成る基板であっても良いが、 その G a N単結晶層が横方向成長過 程を経て成長されたものであることが好ましい。 横方向成長を用いて製造された
Ga N基板 30を用いることにより、 素子形成層 1〜10における転位の発生を 抑制して素子の諸特性を良好にすることができる。
G a N基板 30は、 例えば、 次のようにして製造されたものであることが好ま しい。 まず、 F i g. 1に示すように、 窒化物半導体と異なる材料から成る異種 基板 1 1の上に、 適当なバッファ層を介して G a N層又は A 1 G a N層等の窒化 物半導体層 1 2を形成する。 異種基板としては、 例えば、 サファイア、 S i C、 スピネルなどを用いることができる。 次に、 F i g. 2に示すように、 この窒化 物半導体層 1 2に、 その上に成長させる G a N単結晶が横方向にも成長するよう に周期的なストライプ状又は島状の凹凸を形成する。 このストライプ状又は島状 の凹凸は、 F i g. 2に示すように窒化物半導体層 1 2を残すように形成しても 良いが、 さらに窒化物半導体層 1 2を貫通して異種基板 1 1の一部を除去するよ うに形成しても良い。 異種基板 1 1の一部を除去する深さに凹凸を形成すること により、 凸部から横方向成長する G a N単結晶が接合する部分における結晶の歪 を緩和してより良好な単結晶 GaNを得ることができる。 また、 窒化物半導体層 1 2を A 1 G a Nと G a Nの 2層構造として、 A 1 G a Nの一部を除去する深さ まで凹凸を形成しても良い。 そして、 F i g. 3及び F i g. 4に示すように、 窒化物半導体層 1 2の凹凸を覆って単結晶 G a N13を成長させる。 こうして異 種基板と窒化物半導体からなる G a N基板を得ることができる。
窒化物半導体のみからなる G a N基板とする場合には、 0311単結晶を1^¥?
E成長法等の成長方法によつて厚膜に成長し、 その後にサフアイァ等の異種基板 1 1を除去すれば良い。
G a N基板 30に、 異種基板 1 1を残す場合、 G a N基板 30の単結晶 G a N の部分の膜厚は、 100 μ m以下、 好ましくは 50 μ m以下、 より好ましくは 2 0 m以下であることが望ましい。 膜厚の下限は、 ELOG成長により保護膜や 凹凸が覆われて転位の低減できる程度の膜厚であればよい。 例えば、 数 / m以上 である。 膜厚がこの範囲であると、 転位の低減の点で好ましいだけでなく、 異種 基板と窒化物半導体の熱膨張係数差によるウェハの反りが防止でき、 更にこの上 にデバイス構造を良好に成長させることができる。
また、 G a N基板 30から異種基板 1 1を除去する場合、 窒化物半導体のみか らなる G a N基板の膜厚としては、 特に限定されないが、 好ましくは 50〜 50 0 / mであり、 より好ましくは 100〜 300 mである。 G a N基板の膜厚が 上記範囲であると、 転位の良好な低減と共に機械的強度が保たれ好ましい。
また、 さらに結晶性の良好な単結晶 G a N層を形成するためには、 上記の方法 に代えて、 次のような方法を用いることが好ましい。 まず、 上記の方法と同様に、 異種基板 1 1の上に成長させた窒化物半導体層 1 2に凹凸を形成し、 その上に単 結晶 GaN層 1 3を H VP E成長によって厚膜に成長させる (1回目の単結晶 G a N成長) 。 次に、 単結晶 G a N層 1 3の上に S i O 2等のマスクを周期的なス トライプ状又は島状に形成し、 その S i 02等のマスクを覆って単結晶 GaN層 を MOCVD法によって横方向に成長させる (2回目の単結晶 G a N成長) 。 異 種基板 1 1を除去する場合には、 1回目の G a N単結晶 1 3の成長が終わった後 に行うことが好ましい。 また、 1回目の G a N単結晶 13の成長が終わった後、 エッチングを行って表面を平坦化した後に 2回目の G a N単結晶成長を行っても 良い。 凹凸形成と HVPEによる 1回目の単結晶 GaN成長によって、 容易に厚 膜の単結晶 G a Nを得ることができるが、 この単結晶 G a Nは、 凹部近傍に空洞 が生じるなどして結晶性が十分とならない場合がある。 そこで、 こうして S i O 2マスクを用いて MOCVD法によって 2回目の G a N単結晶成長を行うことに より、 より結晶性の良好な単結晶 G a N層を得ることができる。
尚、 横方向成長させた G a N基板 30から異種基板 1 1を除去した場合、 Ga
N単体にやや反りが入る傾向がある。 このことは、 異種基板の除去面と成長面と の表面の物理的性質が異なることを示している。 本発明の課題として説明した微 細なクラックは、 このような表面の物理的な相違により発生している可能性もあ る。 し力 し、 原因がいずれにあるにせよ、 G a N基板上に熱膨張係数の小さな層、 例えば A 1 aG a i_aN層を成長させることにより、 微細なクラックの発生を防止 でき、 結晶性の良好なデバィス構造を形成することができる。
本発明において、 G a N基板に接する素子形成層に圧縮応力を加えることによ り微細なクラックの発生を防止するという効果は、 G a N基板の上に形成される 素子構造に依らず得られるものである。 し力 し、 G a N基板 30の上に形成する 素子が、 A 1を含有する n型クラッド層、 I n G a Nを含む活性層、 及び A 1を 含有する p型クラッド層を含む発光素子であることが好ましい。 この素子構造を 採用することにより、 G a N基板に接する素子形成層の熱膨張係数を G a Nより も小さくすることと相乗的に作用して、 信頼性の高い窒化物半導体発光素子を得 ることができる。 素子形成層となる窒化物半導体の成長には、 MOVPE (有機 金属気相成長法) MOCVD (有機金属化学気相成長法) 、 HVPE (ハライ ド 気相成長法) 、 MBE (分子線気相成長法) 等、 窒化物半導体を成長させるのに 知られている全ての方法を適用できる。
以下に本発明の実施例を示す。 しかし本発明はこれに限定されない。
[実施例 1 ]
実施例 1として、 F i g. 5に示される窒化物半導体レーザ素子を製造した。
(G a N基板の製造方法)
F i g. 1 ~F i g. 4に示されている各工程に沿って G a N基板を製造した。
2インチ 0、 C面を主面とし、 オリフラ面を A面とするサファイア基板 1 1を 反応容器内にセットし、 温度を 510°Cにして、 キャリアガスに水素、 原料ガス にアンモニアと TMG (トリメチルガリウム) とを用い、 サファイア基板 1 1上 に G a Nよりなるバッファ層 (図示されていない) を約 200オングス トローム の膜厚で成長させた。
バッファ層を成長後、 TMGのみ止めて、 温度を 1050°Cまで上昇させた。 1050°Cになったら、 原料ガスに TMG、 アンモニアを用い、 アンドープの G a Nよりなる第 1の窒化物半導体層 1 2を 2 / mの膜厚で成長させた (F i g. 1) o
第 1の窒化物半導体層 1 2を成長後、 ストライプ状のフォトマスクを形成し、 スパッタ装置によりストライプ幅 (凸部の上部になる部) 5 / m、 ストライプ間 隔 (凹部底部となる部分) 1 5 μπιにパターニングされた S i 02膜を形成し、 続いて、 R I E装置により S i 02膜の形成されていない部分の第 1の窒化物半 導体層 1 2を第 1の窒化物半導体 12が残る程度に途中までエッチングして凹凸 を形成することにより、 凹部側面に第 1の窒化物半導体 1 2を露出させた (F i g. 2) 。 F i g. 2のように凹凸を形成した後、 凸部上部の S i 02を除去し た。 なお、 ストライプ方向は、 オリフラ面に対して垂直な方向で形成した。 次に、 反応容器内にセッ卜し、 温度を 1050°Cで、 原料ガスに TMG、 アン モユアを用い、 アンド一プの G a Nよりなる第 2の窒化物半導体層 1 3を約 32 0 mの膜厚で成長させた (F i g. 3及び F i g. 4) 。
第 2の窒化物半導体層 1 3を成長後、 ゥエーハを反応容器から取り出し、 アン ドープの G a Nよりなる G a N基板 30を得た。 この得られた G a N基板 30力 らサファイア基板を除去し、 除去した面とは反対の成長面上に、 F i g. 5に示 されるように、 下記のデバイス構造を成長させた。 G a Nからなる基板 30の膜 厚は約 300 //mであった。
(アンドープ n型コンタク ト層 1 :本発明の A 1 aG a ^N)
G aN基板 30上に、 1 050 °Cで原料ガスに TM A (トリメチルアルミニゥ ム) 、 TMG、 アンモニアガスを用いアンドープの A 1。。5G a。95Nよりなるァ ンドープ n型コンタク ト層 1を 1 μιηの膜厚で成長させた。
(n型コンタク ト層 2 :本発明の A 1 aG a i_aN)
次に、 同様の温度で、 原料ガスに TMA、 TMG及びアンモニアガスを用い、 不純物ガスにシランガス (S i H4) を用い、 S iを 3 X 1018/cm3ドープし た A 1。。5G a。95Nよりなる n型コンタク ト層 2を 3 // mの膜厚で成長させた。 ここで、 上記の成長された n型コンタク ト層 2 (n型コンタク ト層 1を含む) には、 微細なクラックが発生しておらず、 微細なクラックの発生が良好に防止さ れていた。 また、 G a N基板 30に微細なクラックが生じていても、 n型コンタ クト層 2を成長させることで微細なクラックの伝播を防止でき結晶性の良好な素 子構造を成長さることができる。 結晶性の改善は、 n型コンタク ト層 2のみの場 合より、 上記のようにアンドープ n型コンタク ト層 1を成長させることにより、 より良好となる。
(クラック防止層 3)
次に、 温度を 800°Cにして、 原料ガスに TMG、 TM I (トリメチルインジ ゥム) 及びアンモニアを用い、 不純物ガスにシランガスを用い、 ≤ 1を5 1 018/cm3ドープした I n。。8Ga。92Nよりなるクラック防止層 3を 0. 1 5 / mの膜厚で成長させた。
(n型クラッド層 4)
次に、 温度を 1050°Cにして、 原料ガスに TMA、 TMG及びアンモニアを 用い、 アンドープの A 1。14Ga。86Nよりなる A層を 25オングストロームの膜 厚で成長させ、 続いて、 TMAを止め、 不純物ガスとしてシランガスを用い、 S iを 5 X 1 018Zc m3ド一プした G a Nよりなる B層を 25オングストロームの 膜厚で成長させた。 そして、 この操作をそれぞれ 1 60回繰り返して A層と B層 とを積層し、 総膜厚 8000オングストロームの多層膜 (超格子構造) よりなる n型クラッド層 4を成長させた。
(n型ガイド層 5)
次に、 同様の温度で、 原料ガスに TMG及びアンモニアを用い、 アンドープの G a Nよりなる n型ガイド層を 0. 075 mの膜厚で成長させた。
(活性層 6 )
次に、 温度を 800°Cにして、 原料ガスに TMI、 TMG及びアンモニアを用 レヽ、 不純物ガスとしてシランガスを用い、 S iを 5 X 1018/cm3ドープした I nn(),G anqqNよりなる障壁層を 100オングストロームの膜厚で成長させた。 続いて、 シランガスを止め、 アンドープの I nQ 11G a。89Nよりなる井戸層を 5 0オングストロームの膜厚で成長させた。 この操作を 3回繰り返し、 最後に障壁 層を積層した総膜厚 5 50オングストロームの多重量子井戸構造 (MQW) の活 性層 6を成長させた。
(p型電子閉じ込め層 7)
次に、 同様の温度で、 原料ガスに TMA、 TMG及びアンモニアを用い、 不純 物ガスとして C p2Mg (シクロペンタジェニルマグネシウム) を用い、 Mgを 1 X 1 019Zcm3ドープした A 1。403。 ょりなる 型電子閉じ込め層7を1 0 0オングストロームの膜厚で成長させた。
( p型ガイド層 8 )
次に、 温度を 1 0 5 0°Cにして、 原料ガスに TMG及びアンモニアを用い、 ァ ンドープの G a Nよりなる p型ガイド層 8を 0. 0 7 5 / mの膜厚で成長させた。 この p型ガイド層 8は、 アンド一プとして成長させたが、 p型電子閉じ込め層 7からの Mgの拡散により、 Mg濃度が 5 X 1 016Zcm3となり p型を示す。 (p型クラッド層 9)
次に、 同様の温度で、 原料ガスに TMA、 TMG及びアンモニアを用い、 アン ドープの A 10 1G a。9Nよりなる A層を 2 5オングストロームの膜厚で成長させ、 続いて、 TMAを止め、 不純物ガスとして C p2Mgを用い、 Mgを 5 X 1 018Z 。!113ドープした0 & 1^ょりなる8層を2 5オングストロームの膜厚で成長させ た。 そして、 この操作をそれぞれ 1 0 0回繰り返して A層と B層とを積層し、 総 膜厚 5 0 00オングスト口ームの多層膜 (超格子構造) よりなる p型クラッド層 9を成長させた。
(p型コンタク ト層 1 0)
次に、 同様の温度で、 原料ガスに TMG及びアンモニアを用い、 不純物ガスと して C p2Mgを用い、 Mgを 1 X 1 020/c m3ド一プした G a Nよりなる p型 コンタク ト層 1 0を 1 5 0オングストロームの膜厚で成長させた。
反応終了後、 反応容器内において、 ウェハを窒素雰囲気中、 70 0°Cでァ二一 リングを行い、 p型層を更に低抵抗化した。
アニーリング後、 ウェハを反応容器から取り出し、 最上層の p側コンタク ト層 の表面に S i 02よりなる保護膜を形成して、 R I E (反応性イオンエツチン グ) を用い S i C 14ガスによりエッチングし、 F i g. 5に示すように、 n電 極を形成すべき n側コンタク ト層 2の表面を露出させた。
次に F i g. 6 Aに示すように、 最上層の p側コンタク ト層 10のほぼ全面に PVD装置により、 S i酸化物 (主として、 S i 02) よりなる第 1の保護膜 6
1を 0. 5 /X mの膜厚で形成した後、 第 1の保護膜 61の上に所定の形状のマス クをかけ、 フォトレジストよりなる第 3の保護膜 63を、 ストライプ幅 1. 8 μ m、 厚さ 1 / mで形成した。
次に、 F i g. 6 Bに示すように第 3の保護膜 63形成後、 R I E (反応性ィ オンエッチング) 装置により、 CF4ガスを用い、 第 3の保護膜 63をマスクと して、 前記第 1の保護膜をエッチングして、 ストライプ状とした。 その後エッチ ング液で処理してフォトレジストのみを除去することにより、 F i g. 6Cに示 すように P側コンタク ト層 10の上にストライプ幅 1. 8 1^1の第1の保護膜6 1が形成できる。
さらに、 F i g. 6 Dに示すように、 ストライプ状の第 1の保護膜 61形成後、 再度 R I Eにより S i C 14ガスを用いて、 p側コンタク ト層 10、 および p側 クラッド層 9をエッチングして、 ストライプ幅 1. 8 //mのリッジ形状のストラ イブを形成した。
リッジストライプ形成後、 ゥェ一ハを PVD装置に移送し、 F i g. 6 Eに示 すように、 Z r酸化物 (主として Z r〇2) よりなる第 2の保護膜 62を、 第 1 の保護膜 61の上と、 エッチングにより露出された p側クラッド層9の上に 0. 5 / mの膜厚で連続して形成した。 このように Z r酸化物を形成すると、 p_n 面の絶縁をとるためと、 横モードの安定を図ることができ好まし!、。
次に、 ゥユーハをフッ酸に浸潰し、 F i g. 6 Fに示すように、 第 1の保護膜 61をリフトオフ法により除去した。
次に、 F i g. 5に示すように p側コンタク ト層 10の上の第 1の保護膜 61 が除去されて露出したその P側コンタクト層の表面に N i ZAuよりなる p電極 20を形成した。 但し p電極 20は 1 00 mのストライプ幅として、 この図に 示すように、 第 2の保護膜 62の上に渡って形成した。 第 2の保護膜 6 2形成後、 F i g . 5に示されるように露出させた n側コンタ クト層 2の表面には T i /A 1よりなる n電極 2 1をストライプと平行な方向で 形成した。
以上のようにして、 n電極と p電極とを形成したウェハの G a N基板を研磨し てほぼ 1 0 0 / mとした後、 ストライプ状の電極に垂直な方向で、 基板側からバ 一状に劈開し、 劈開面 (1 1一 0 0面、 六角柱状の結晶の側面に相当する面 =M 面) に共振器を作製した。 共振器面に S i 02と T i 02よりなる誘電体多層膜を 形成し、 最後に P電極に平行な方向で、 バーを切断して F i g . 5に示すような レーザ素子とした。 なお共振器長は 3 0 0〜5 0 0 /z mとすることが望ましい。 得られたレーザ素子をヒートシンクに設置し、 それぞれの電極をワイヤ一ボン デイングして、 室温でレーザ発振を試みた。
その結果、 室温においてしきい値 2 . 5 k A/ c m しきいィ直電圧 5 Vで、 発振波長 4 0 0 n mの連続発振が確認され、 室温で 1万時間以上の寿命を示した。
[実施例 2 ]
実施例 1において、 アンド一プ n型コンタク ト層 1を成長させずに n型コンタ クト層 2を成長させた他は同様にしてレーザ素子を製造した。
得られた素子は、 実施例 1に比べやや結晶性が劣る傾向が見られるものの、 実 施例 1とほぼ同様に微細なクラックの発生が防止され、 素子特性も良好であった。
[実施例 3 ]
実施例 1において、 アンドープ n型コンタク ト層 1及び S 1 ド一プの n型コン タク ト層 2の A 1組成の比を 0 . 0 5から0 . 2に変更する他は同様にしてレー ザ素子を成長させた。
得られた素子は、 実施例 1とほぼ同様に良好な結果が得られた。
[実施例 4 ]
実施例 1において、 アンドープ n型コンタク ト層 1及び S i ドープの n型コン タク ト層 2の A 1組成の比を 0 . 0 5から0 . 5に変更する他は同様にしてレー ザ素子を成長させた。
得られた素子は、 実施例 1に比べ A 1組成の比が大きくなったため結晶性がや や劣る傾向が見られるものの、 実施例 1と同様に微細なクラックを防止でき、 素 子特性も良好であった。
[実施例 5 ]
実施例 1において、 アンドープの n型コンタク ト層 1を A 1 Nとし、 S i ド一 プの n型コンタク ト層 2を A 1 Nとする他は同様にしてレーザ素子を作製した。 得られたレ一ザ素子は、 実施例 1より n型コンタクト層 1及び n型コンタク ト 層 2の A 1組成比が大きいのでやや結晶性が劣るが、 実施例 1と同等に微細なク ラックを防止でき、 実施例 1とほぼ同等に良好な寿命特性を得ることができた。
[実施例 6 ]
実施例 1において、 第 2の窒化物半導体層 1 3の膜厚を 1 5 / mとし、 さらに サファイア基板を除去しない、 異種基板と窒化物半導体からなる G a N基板とす る他は同様にしてレーザ素子を作製した。
得られたレーザ素子は、 実施例 1に比べて反りがやや大きい傾向が見られるが、 微細なクラックは実施例 1と同等に防止されていた。 また、 実施例 6のレーザ素 子は、 絶縁性のサファイア基板を有しているので、 実施例 1に比べるとやや放熱 性の点で劣るものの、 実施例 1とほぼ同等の寿命特性を有していた。 本発明は、 添付図面を参照しながら好ましい実施形態に関連して充分に記載さ れているが、 この技術の熟練した人々にとつては種々の変形や修正は明白である そのような変形や修正は、 添付した請求の範囲による本発明の範囲から外れない 限りにおいて、 その中に含まれると理解されるべきである。

Claims

請 求 の 範 囲
1 . 単結晶 G a N層を少なくとも表面に有する G a N基板の上に、 窒化物半導体 から成る複数の素子形成層を積層した窒化物半導体素子において、
前記 G a N基板に接する素子形成層に圧縮歪みがかかっていることを特徴とす る特徴とする窒化物半導体素子。
2 . 前記 G a N基板に接する素子形成層の熱膨張係数が、 G a Nよりも小さなこ と特徴とする請求項 1記載の窒化物半導体素子。
3 . 前記 G a N基板に接する素子形成層が、 A l aG a iaN ( 0 < a≤ 1 ) から 成ることを特徴とする請求項 1に記載の窒化物半導体素子。
4 . 前記素子形成層が、 A 1を含有する n型クラッド層、 I n G a Nを含む活性 層、 及び A 1を含有する p型クラッド層を含むことを特徴とする請求項 3記載の 窒化物半導体素子。
5 . 前記 A 1 aG a i_aN ( 0 < a≤ 1 ) 層が、 n型コンタク ト層であることを特 徴とする請求項 4記載の窒化物半導体素子。
6 . 前記 G a N基板の単結晶 G a N層が、 横方向成長法によって成長した単結晶 層であることを特徴とする請求項 1記載の窒化物半導体素子。
7 . 単結晶 G a N層を少なくとも表面に有する G a N基板と、 前記 G a N基板の 上に積層した複数の窒化物半導体層から成る素子形成層とを備えた窒化物半導体 素子の製造方法であって、
窒化物半導体と異なる補助基板の上に第 1の窒化物半導体層を成長する工程と、 前記第 1の窒化物半導体層にストライプ状又は島状の周期的凹凸を形成するェ 程と、
前記第 1の窒化物半導体層の上に単結晶 G a N層を成長して G a N基板を形成 する工程と、
前記 G a N基板の上に G a Nよりも熱膨張係数の小さな第 2の窒化物半導体層 を成長する工程を備えた窒化物半導体素子の製造方法。
8 . 前記単結晶 G a N層の成長後、 さらに前記補助基板を除去して G a N基板を 形成することを特徴とする請求項 7記載の窒化物半導体素子の製造方法。
PCT/JP2000/000660 1999-02-09 2000-02-08 Semi-conducteur au nitrure et procede de fabrication WO2000048254A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU23272/00A AU771942B2 (en) 1999-02-09 2000-02-08 Nitride semiconductor device and manufacturing method thereof
EP00902126.2A EP1184913B1 (en) 1999-02-09 2000-02-08 Nitride semiconductor laser diode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3099099 1999-02-09
JP11/30990 1999-02-09
JP33179799A JP3770014B2 (ja) 1999-02-09 1999-11-22 窒化物半導体素子
JP11/331797 1999-11-22

Publications (1)

Publication Number Publication Date
WO2000048254A1 true WO2000048254A1 (fr) 2000-08-17

Family

ID=26369449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000660 WO2000048254A1 (fr) 1999-02-09 2000-02-08 Semi-conducteur au nitrure et procede de fabrication

Country Status (8)

Country Link
US (2) US6835956B1 (ja)
EP (1) EP1184913B1 (ja)
JP (1) JP3770014B2 (ja)
KR (1) KR100634340B1 (ja)
CN (1) CN1157804C (ja)
AU (1) AU771942B2 (ja)
TW (1) TW443018B (ja)
WO (1) WO2000048254A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767762A1 (en) 2019-07-14 2021-01-20 Instytut Wysokich Cisnien Polskiej Akademii Nauk Distributed feedback laser diode and method of making the same

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587081B2 (ja) 1999-05-10 2004-11-10 豊田合成株式会社 Iii族窒化物半導体の製造方法及びiii族窒化物半導体発光素子
JP3555500B2 (ja) 1999-05-21 2004-08-18 豊田合成株式会社 Iii族窒化物半導体及びその製造方法
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP3427047B2 (ja) * 1999-09-24 2003-07-14 三洋電機株式会社 窒化物系半導体素子、窒化物系半導体の形成方法および窒化物系半導体素子の製造方法
JP2001185493A (ja) * 1999-12-24 2001-07-06 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP4432180B2 (ja) * 1999-12-24 2010-03-17 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2001267242A (ja) 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体及びその製造方法
TW518767B (en) 2000-03-31 2003-01-21 Toyoda Gosei Kk Production method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2001313259A (ja) 2000-04-28 2001-11-09 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体基板の製造方法及び半導体素子
EP2276059A1 (en) * 2000-08-04 2011-01-19 The Regents of the University of California Method of controlling stress in gallium nitride films deposited on substrates
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP2002222746A (ja) * 2001-01-23 2002-08-09 Matsushita Electric Ind Co Ltd 窒化物半導体ウェーハ及びその製造方法
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
JP3679720B2 (ja) 2001-02-27 2005-08-03 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
JP2002280314A (ja) 2001-03-22 2002-09-27 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法、及びそれに基づくiii族窒化物系化合物半導体素子
JP3690326B2 (ja) 2001-10-12 2005-08-31 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法
KR100427689B1 (ko) * 2002-02-21 2004-04-28 엘지전자 주식회사 질화물 반도체 기판의 제조방법
WO2003085790A1 (fr) 2002-04-04 2003-10-16 Sharp Kabushiki Kaisha Dispositif laser a semi-conducteur
US7485902B2 (en) * 2002-09-18 2009-02-03 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device
US7078743B2 (en) * 2003-05-15 2006-07-18 Matsushita Electric Industrial Co., Ltd. Field effect transistor semiconductor device
JP4218597B2 (ja) * 2003-08-08 2009-02-04 住友電気工業株式会社 半導体発光素子の製造方法
JP4011569B2 (ja) 2003-08-20 2007-11-21 株式会社東芝 半導体発光素子
JP4540347B2 (ja) 2004-01-05 2010-09-08 シャープ株式会社 窒化物半導体レーザ素子及び、その製造方法
JP4201725B2 (ja) 2004-02-20 2008-12-24 シャープ株式会社 窒化物半導体発光素子の製造方法
JP2005294753A (ja) * 2004-04-05 2005-10-20 Toshiba Corp 半導体発光素子
US7157297B2 (en) * 2004-05-10 2007-01-02 Sharp Kabushiki Kaisha Method for fabrication of semiconductor device
JP4651312B2 (ja) 2004-06-10 2011-03-16 シャープ株式会社 半導体素子の製造方法
JP4371029B2 (ja) * 2004-09-29 2009-11-25 サンケン電気株式会社 半導体発光素子およびその製造方法
JP5155536B2 (ja) * 2006-07-28 2013-03-06 一般財団法人電力中央研究所 SiC結晶の質を向上させる方法およびSiC半導体素子の製造方法
TWI341600B (en) * 2007-08-31 2011-05-01 Huga Optotech Inc Light optoelectronic device and forming method thereof
JP2009190936A (ja) * 2008-02-14 2009-08-27 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法
US20100200880A1 (en) * 2008-06-06 2010-08-12 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Semiconductor wafers and semiconductor devices and methods of making semiconductor wafers and devices
US8395168B2 (en) * 2008-06-06 2013-03-12 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Semiconductor wafers and semiconductor devices with polishing stops and method of making the same
EP2628778B1 (en) 2008-06-30 2016-03-16 Universal Display Corporation Hole transport materials having a sulfur-containing group
US8440326B2 (en) 2008-06-30 2013-05-14 Universal Display Corporation Hole transport materials containing triphenylene
DE102011077542B4 (de) * 2011-06-15 2020-06-18 Osram Opto Semiconductors Gmbh Optoelektronischer halbleiterkörper und verfahren zur herstellung eines optoelektronischen halbleiterkörpers
KR102369933B1 (ko) * 2015-08-03 2022-03-04 삼성전자주식회사 반도체 발광소자 및 그 제조 방법
DE102016125430A1 (de) * 2016-12-22 2018-06-28 Osram Opto Semiconductors Gmbh Oberflächenmontierbarer Halbleiterlaser, Anordnung mit einem solchen Halbleiterlaser und Betriebsverfahren hierfür
CN110783176B (zh) * 2019-10-30 2022-07-12 广西大学 一种低应力半导体材料制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243614A (ja) * 1992-03-03 1993-09-21 Sharp Corp 化合物半導体の成長方法、化合物半導体発光素子及びその製造方法
JPH0864791A (ja) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd エピタキシャル成長方法
JPH0983016A (ja) * 1995-09-18 1997-03-28 Nichia Chem Ind Ltd 窒化物半導体の成長方法
DE19648955A1 (de) * 1995-11-27 1997-05-28 Sumitomo Chemical Co III-V-Verbindungshalbleiter und lichtemittierende Vorrichtung
JPH09180998A (ja) * 1995-12-26 1997-07-11 Fujitsu Ltd 化合物半導体装置
EP0874405A2 (en) * 1997-03-25 1998-10-28 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof

Family Cites Families (329)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6405927A (ja) 1963-06-07 1964-12-08
DE1614574A1 (de) 1967-08-04 1970-10-29 Siemens Ag Halbleiterbauelement,insbesondere Halbleiterbauelement mit pn-UEbergang
FR1597033A (ja) 1968-06-19 1970-06-22
DE1789061A1 (de) 1968-09-30 1971-12-23 Siemens Ag Laserdiode
DE1913676A1 (de) 1969-03-18 1970-09-24 Siemens Ag Verfahren zum Abscheiden von Schichten aus halbleitendem bzw. isolierendem Material aus einem stroemenden Reaktionsgas auf erhitzte Halbleiterkristalle bzw. zum Dotieren solcher Kristalle aus einem stroemenden dotierenden Gas
US4020791A (en) 1969-06-30 1977-05-03 Siemens Aktiengesellschaft Apparatus for indiffusing dopants into semiconductor material
US4404265A (en) 1969-10-01 1983-09-13 Rockwell International Corporation Epitaxial composite and method of making
US3853974A (en) 1970-04-06 1974-12-10 Siemens Ag Method of producing a hollow body of semiconductor material
DE2033444C3 (de) 1970-07-06 1979-02-15 Siemens Ag Vorrichtung zum Eindiffundieren von Dotierstoffen in Scheiben aus Halbleitermaterial
US3737737A (en) 1970-10-09 1973-06-05 Siemens Ag Semiconductor diode for an injection laser
DE2125085C3 (de) 1971-05-19 1979-02-22 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum Herstellen von einseitig geschlossenen Rohren aus Halbleitermaterial
DE2158257A1 (de) 1971-11-24 1973-05-30 Siemens Ag Anordnung zum herstellen von einseitig geschlossenen rohren aus halbleitermaterial
US3941647A (en) 1973-03-08 1976-03-02 Siemens Aktiengesellschaft Method of producing epitaxially semiconductor layers
US3819974A (en) 1973-03-12 1974-06-25 D Stevenson Gallium nitride metal-semiconductor junction light emitting diode
DE2346198A1 (de) 1973-07-27 1975-05-07 Siemens Ag Verfahren zur herstellung gelb leuchtender galliumphosphid-dioden
DE2340225A1 (de) 1973-08-08 1975-02-20 Siemens Ag Verfahren zum herstellen von aus halbleitermaterial bestehenden, direkt beheizbaren hohlkoerpern
IE39673B1 (en) 1973-10-02 1978-12-06 Siemens Ag Improvements in or relating to semiconductor luminescence diodes
FR2251104B1 (ja) 1973-11-14 1978-08-18 Siemens Ag
US4062035A (en) 1975-02-05 1977-12-06 Siemens Aktiengesellschaft Luminescent diode
DE2528192C3 (de) 1975-06-24 1979-02-01 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum Abscheiden von elementarem Silicium auf einen aus elementarem Silicium bestehenden stabförmigen Trägerkörper
US4098223A (en) 1976-05-03 1978-07-04 Siemens Aktiengesellschaft Apparatus for heat treating semiconductor wafers
DE2644208C3 (de) 1976-09-30 1981-04-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Herstellung einer einkristallinen Schicht auf einer Unterlage
DE2643893C3 (de) 1976-09-29 1981-01-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Herstellung einer mit einer Struktur versehenen Schicht auf einem Substrat
US4108539A (en) 1976-11-18 1978-08-22 Hewlett-Packard Company Reflecting lens system
US4113381A (en) 1976-11-18 1978-09-12 Hewlett-Packard Company Surveying instrument and method
DE2716143A1 (de) 1977-04-12 1978-10-19 Siemens Ag Lichtemittierendes halbleiterbauelement
US4154625A (en) 1977-11-16 1979-05-15 Bell Telephone Laboratories, Incorporated Annealing of uncapped compound semiconductor materials by pulsed energy deposition
DE2910723A1 (de) 1979-03-19 1980-09-25 Siemens Ag Verfahren zum herstellen von epitaktischen halbleitermaterialschichten auf einkristallinen substraten nach der fluessigphasen-schiebe-epitaxie
DE3003285A1 (de) 1980-01-30 1981-08-06 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen niederohmiger, einkristalliner metall- oder legierungsschichten auf substraten
DE3016778A1 (de) 1980-04-30 1981-11-05 Siemens AG, 1000 Berlin und 8000 München Laser-diode
US4423349A (en) 1980-07-16 1983-12-27 Nichia Denshi Kagaku Co., Ltd. Green fluorescence-emitting material and a fluorescent lamp provided therewith
DE3208638A1 (de) 1982-03-10 1983-09-22 Siemens AG, 1000 Berlin und 8000 München Lumineszenzdiode aus siliziumkarbid
JPS58158972A (ja) 1982-03-16 1983-09-21 Toshiba Corp 半導体装置の製造方法
DE3210086A1 (de) 1982-03-19 1983-09-22 Siemens AG, 1000 Berlin und 8000 München Lumineszenzdiode, geeignet als drucksensor
DE3227263C2 (de) 1982-07-21 1984-05-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Herstellung einer planaren Avalanche-Fotodiode mit langwelliger Empfindlichkeitsgrenze über 1,3 &mu;
US4568206A (en) 1983-04-25 1986-02-04 Nichia Seimitsu Kogyo Co., Ltd. Retainer for ball bearing
DE3328902A1 (de) 1983-08-10 1985-02-28 Siemens AG, 1000 Berlin und 8000 München Display mit einer anzahl lichtemittierender halbleiter-bauelemente
DE3338335A1 (de) 1983-10-21 1985-05-09 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von grossflaechigen siliziumkristallkoerpern fuer solarzellen
DE3413667A1 (de) 1984-04-11 1985-10-17 Siemens AG, 1000 Berlin und 8000 München Verfahren zum einjustieren einer an einem ende eines optischen wellenleiters vorgesehenen koppeloptik auf einen halbleiterlaser und vorrichtung zur durchfuehrung des verfahrens
DE3421215A1 (de) 1984-06-07 1985-12-12 Aeg-Telefunken Ag, 1000 Berlin Und 6000 Frankfurt Verfahren zur erzeugung von ingaasp und ingaas - doppelheterostrukturlasern und -led's mittels fluessigphasenepitaxie fuer einen wellenlaengenbereich von (lambda) = 1,2 (my)m bis 1,7 (my)m
US4599244A (en) 1984-07-11 1986-07-08 Siemens Aktiengesellschaft Method large-area silicon bodies
US4722088A (en) 1984-09-14 1988-01-26 Siemens Aktiengesellschaft Semiconductor laser for high optical output power with reduced mirror heating
DE3434741A1 (de) 1984-09-21 1986-04-03 Siemens AG, 1000 Berlin und 8000 München Verkoppelte laserdioden-anordnung
DE3435148A1 (de) 1984-09-25 1986-04-03 Siemens AG, 1000 Berlin und 8000 München Laserdiode mit vergrabener aktiver schicht und mit seitlicher strombegrezung durch selbstjustierten pn-uebergang sowie verfahren zur herstellung einer solchen laserdiode
US4683574A (en) 1984-09-26 1987-07-28 Siemens Aktiengesellschaft Semiconductor laser diode with buried hetero-structure
DE3580738D1 (de) 1984-10-03 1991-01-10 Siemens Ag Verfahren zur integrierten herstellung eines dfb-lasers mit angekoppeltem streifenwellenleiter auf einem substrat.
US4615766A (en) 1985-02-27 1986-10-07 International Business Machines Corporation Silicon cap for annealing gallium arsenide
DE3610333A1 (de) 1985-04-19 1986-11-27 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung eines oberflaechengitters mit einer bestimmten gitterkonstanten auf einem tieferliegenden oberflaechenbereich einer mesastruktur
US4959174A (en) 1985-05-18 1990-09-25 Nichia Kagaku Kogyo K.K. Phosphor which emits light by the excitation of X-ray
JPS62246988A (ja) 1986-04-18 1987-10-28 Nichia Chem Ind Ltd X線螢光体及びこれを用いたx線増感紙
US5250366A (en) 1985-05-18 1993-10-05 Nichia Kagaku Kogyo K.K. Phosphor which emits light by the excitation of X-ray, and a X-ray intensifying screen using the phosphor
DE3531734A1 (de) 1985-09-05 1987-03-12 Siemens Ag Einrichtung zur positionierung eines halbleiterlasers mit selbstjustierender wirkung fuer eine anzukoppelnde glasfaser
DE3532821A1 (de) 1985-09-13 1987-03-26 Siemens Ag Leuchtdiode (led) mit sphaerischer linse
DE3534017A1 (de) 1985-09-24 1987-03-26 Siemens Ag Verfahren zum ankoppeln einer laserdiode an einen monomode-lichtwellenleiter und eine anordnung aus einer laserdiode und einem daran angekoppelten lichtwellenleiter
EP0236713A3 (de) 1986-02-10 1988-06-29 Siemens Aktiengesellschaft Laserdiode
EP0237812A3 (de) 1986-03-20 1988-06-29 Siemens Aktiengesellschaft Halbleiterlaser-Array mit gebündelter Abstrahlung
DE3611167A1 (de) 1986-04-03 1987-10-08 Siemens Ag Array mit verkoppelten optischen wellenleitern
US4818722A (en) 1986-09-29 1989-04-04 Siemens Aktiengesellschaft Method for generating a strip waveguide
JPH0662943B2 (ja) 1986-10-06 1994-08-17 日亜化学工業株式会社 放射線増感紙用螢光体
US5218216A (en) 1987-01-31 1993-06-08 Toyoda Gosei Co., Ltd. Gallium nitride group semiconductor and light emitting diode comprising it and the process of producing the same
US4911102A (en) 1987-01-31 1990-03-27 Toyoda Gosei Co., Ltd. Process of vapor growth of gallium nitride and its apparatus
JPS63224252A (ja) 1987-02-06 1988-09-19 シーメンス、アクチエンゲゼルシヤフト 導波路−ホトダイオードアレー
JPH01209776A (ja) 1987-02-20 1989-08-23 Siemens Ag レーザ送信器装置
JPH0630242B2 (ja) 1987-03-04 1994-04-20 陽一 峰松 高分子材料の人工促進暴露試験用の紫外線螢光ランプ
DE3810245A1 (de) 1987-03-27 1988-10-06 Japan Incubator Inc Lichtemittierendes element und verfahren zu seiner herstellung
DE3711617A1 (de) 1987-04-07 1988-10-27 Siemens Ag Monolithisch integrierte wellenleiter-fotodioden-fet-kombination
US4855118A (en) 1987-04-15 1989-08-08 Nichia Kagaku Kogyo K.K. Method of producing fluorapatite
US5011550A (en) * 1987-05-13 1991-04-30 Sharp Kabushiki Kaisha Laminated structure of compound semiconductors
JPH0774333B2 (ja) 1987-06-29 1995-08-09 日亜化学工業株式会社 発光組成物
DE3727546A1 (de) 1987-08-18 1989-03-02 Siemens Ag Lichtverstaerker mit ringfoermig gefuehrter strahlung, insbesondere ringlaser-diode
DE3731312C2 (de) 1987-09-17 1997-02-13 Siemens Ag Verfahren zum Vereinzeln von monolithisch hergestellten Laserdioden
EP0309744A3 (de) 1987-09-29 1989-06-28 Siemens Aktiengesellschaft Anordnung mit einem flächig sich erstreckenden Dünnfilmwellenleiter
US4960728A (en) 1987-10-05 1990-10-02 Texas Instruments Incorporated Homogenization anneal of II-VI compounds
DE8713875U1 (de) 1987-10-15 1988-02-18 Siemens AG, 1000 Berlin und 8000 München Optisches Senderbauelement
US4945394A (en) 1987-10-26 1990-07-31 North Carolina State University Bipolar junction transistor on silicon carbide
US4947218A (en) 1987-11-03 1990-08-07 North Carolina State University P-N junction diodes in silicon carbide
GB2212658B (en) 1987-11-13 1992-02-12 Plessey Co Plc Solid state light source
JP2663483B2 (ja) 1988-02-29 1997-10-15 勝 西川 レジストパターン形成方法
DE3867834D1 (de) 1988-03-09 1992-02-27 Hewlett Packard Gmbh Ausgangsverstaerker.
US4864369A (en) 1988-07-05 1989-09-05 Hewlett-Packard Company P-side up double heterojunction AlGaAs light-emitting diode
US4904618A (en) 1988-08-22 1990-02-27 Neumark Gertrude F Process for doping crystals of wide band gap semiconductors
EP0356059B1 (en) 1988-08-15 2000-01-26 Gertrude F. Neumark Process for doping crystals of wide band gap semiconductors
US5252499A (en) 1988-08-15 1993-10-12 Rothschild G F Neumark Wide band-gap semiconductors having low bipolar resistivity and method of formation
DE3836802A1 (de) 1988-10-28 1990-05-03 Siemens Ag Halbleiterlaseranordnung fuer hohe ausgangsleistungen im lateralen grundmodus
US4990466A (en) 1988-11-01 1991-02-05 Siemens Corporate Research, Inc. Method for fabricating index-guided semiconductor laser
DE3838016A1 (de) 1988-11-09 1990-05-10 Siemens Ag Halbleiterlaser im system gaa1inas
US4987576A (en) 1988-11-30 1991-01-22 Siemens Aktiengesellschaft Electrically tunable semiconductor laser with ridge waveguide
US4982314A (en) 1988-12-09 1991-01-01 Nichia Kagaku Kogyo K.K. Power source circuit apparatus for electro-luminescence device
US4907534A (en) 1988-12-09 1990-03-13 Siemens Aktiengesellschaft Gas distributor for OMVPE Growth
US4918497A (en) 1988-12-14 1990-04-17 Cree Research, Inc. Blue light emitting diode formed in silicon carbide
US5027168A (en) 1988-12-14 1991-06-25 Cree Research, Inc. Blue light emitting diode formed in silicon carbide
US5061972A (en) 1988-12-14 1991-10-29 Cree Research, Inc. Fast recovery high temperature rectifying diode formed in silicon carbide
CA2008176A1 (en) 1989-01-25 1990-07-25 John W. Palmour Silicon carbide schottky diode and method of making same
JP2704181B2 (ja) 1989-02-13 1998-01-26 日本電信電話株式会社 化合物半導体単結晶薄膜の成長方法
JPH0636349B2 (ja) 1989-02-22 1994-05-11 日亜化学工業株式会社 紫外線反射層を有する蛍光ランプ
JP3026087B2 (ja) 1989-03-01 2000-03-27 豊田合成株式会社 窒化ガリウム系化合物半導体の気相成長方法
EP0393600B1 (de) 1989-04-19 1995-11-29 Siemens Aktiengesellschaft Vorrichtung mit einem Tiegel in einer Effusionszelle einer Molekularstrahlepitaxieanlage
US5160492A (en) 1989-04-24 1992-11-03 Hewlett-Packard Company Buried isolation using ion implantation and subsequent epitaxial growth
JP2809691B2 (ja) 1989-04-28 1998-10-15 株式会社東芝 半導体レーザ
JP2809692B2 (ja) 1989-04-28 1998-10-15 株式会社東芝 半導体発光素子およびその製造方法
US5049779A (en) 1989-05-02 1991-09-17 Nichia Kagaku Kogyo K.K. Phosphor composition used for fluorescent lamp and fluorescent lamp using the same
EP0405214A3 (en) 1989-06-27 1991-06-05 Siemens Aktiengesellschaft Pin-fet combination with buried p-type layer
US4985742A (en) 1989-07-07 1991-01-15 University Of Colorado Foundation, Inc. High temperature semiconductor devices having at least one gallium nitride layer
JPH0357288A (ja) 1989-07-17 1991-03-12 Siemens Ag 半導体レーザーを有するデバイスおよびその使用方法
US5119540A (en) 1990-07-24 1992-06-09 Cree Research, Inc. Apparatus for eliminating residual nitrogen contamination in epitaxial layers of silicon carbide and resulting product
JPH07116429B2 (ja) 1989-08-25 1995-12-13 日亜化学工業株式会社 顔料付き蛍光体
US4966862A (en) 1989-08-28 1990-10-30 Cree Research, Inc. Method of production of light emitting diodes
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
US5366834A (en) 1989-11-15 1994-11-22 Nichia Kagaku Kogyo K.K. Method of manufacturing a cathode ray tube phosphor screen
US5019746A (en) 1989-12-04 1991-05-28 Hewlett-Packard Company Prefabricated wire leadframe for optoelectronic devices
US5008735A (en) 1989-12-07 1991-04-16 General Instrument Corporation Packaged diode for high temperature operation
US5077145A (en) 1989-12-26 1991-12-31 Nichia Kagaku Kogyo K.K. Phosphor for x-ray intensifying screen and x-ray intensifying screen
US5278433A (en) 1990-02-28 1994-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
CA2037198C (en) 1990-02-28 1996-04-23 Katsuhide Manabe Light-emitting semiconductor device using gallium nitride group compound
US5210051A (en) 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
JPH075883B2 (ja) 1990-04-21 1995-01-25 日亜化学工業株式会社 蛍光体の再生方法
ATE119678T1 (de) 1990-05-28 1995-03-15 Siemens Ag Optoelektronischer schaltkreis.
JP3078821B2 (ja) 1990-05-30 2000-08-21 豊田合成株式会社 半導体のドライエッチング方法
US5185207A (en) 1990-08-12 1993-02-09 Nichia Kagaku Kogyo K.K. Phosphor for cathode ray tube and surface treatment method for the phosphor
JP2784255B2 (ja) 1990-10-02 1998-08-06 日亜化学工業株式会社 蛍光体及びそれを用いた放電ランプ
DE69111733T2 (de) 1990-10-02 1996-04-18 Nichia Kagaku Kogyo Kk Phosphorzusammensetzung, Phosphor-Überzugszusammensetzung, Entladungslampe und Herstellungsverfahren derselben.
US5200022A (en) 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
US5334277A (en) 1990-10-25 1994-08-02 Nichia Kagaky Kogyo K.K. Method of vapor-growing semiconductor crystal and apparatus for vapor-growing the same
US5433169A (en) 1990-10-25 1995-07-18 Nichia Chemical Industries, Ltd. Method of depositing a gallium nitride-based III-V group compound semiconductor crystal layer
US5281830A (en) 1990-10-27 1994-01-25 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US5208878A (en) 1990-11-28 1993-05-04 Siemens Aktiengesellschaft Monolithically integrated laser-diode-waveguide combination
US5155062A (en) 1990-12-20 1992-10-13 Cree Research, Inc. Method for silicon carbide chemical vapor deposition using levitated wafer system
JP3160914B2 (ja) 1990-12-26 2001-04-25 豊田合成株式会社 窒化ガリウム系化合物半導体レーザダイオード
US5290393A (en) 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US5146465A (en) 1991-02-01 1992-09-08 Apa Optics, Inc. Aluminum gallium nitride laser
JP2786952B2 (ja) 1991-02-27 1998-08-13 株式会社豊田中央研究所 窒化ガリウム系化合物半導体発光素子およびその製造方法
US5093576A (en) 1991-03-15 1992-03-03 Cree Research High sensitivity ultraviolet radiation detector
US5202777A (en) 1991-05-31 1993-04-13 Hughes Aircraft Company Liquid crystal light value in combination with cathode ray tube containing a far-red emitting phosphor
US5270554A (en) 1991-06-14 1993-12-14 Cree Research, Inc. High power high frequency metal-semiconductor field-effect transistor formed in silicon carbide
US5264713A (en) 1991-06-14 1993-11-23 Cree Research, Inc. Junction field-effect transistor formed in silicon carbide
US5164798A (en) 1991-07-05 1992-11-17 Hewlett-Packard Company Diffusion control of P-N junction location in multilayer heterostructure light emitting devices
US5260960A (en) 1991-07-26 1993-11-09 Siemens Aktiengesellschaft Tunable semiconductor laser on a semi-insulating substrate
US5182670A (en) 1991-08-30 1993-01-26 Apa Optics, Inc. Narrow band algan filter
US5467291A (en) 1991-09-09 1995-11-14 Hewlett-Packard Company Measurement-based system for modeling and simulation of active semiconductor devices over an extended operating frequency range
JP2666228B2 (ja) 1991-10-30 1997-10-22 豊田合成株式会社 窒化ガリウム系化合物半導体発光素子
US5306662A (en) 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
US5465249A (en) 1991-11-26 1995-11-07 Cree Research, Inc. Nonvolatile random access memory device having transistor and capacitor made in silicon carbide substrate
JP3352712B2 (ja) 1991-12-18 2002-12-03 浩 天野 窒化ガリウム系半導体素子及びその製造方法
JP2770629B2 (ja) 1991-12-26 1998-07-02 日亜化学工業株式会社 陰極線管用蛍光体及びその表面処理方法
US5233204A (en) 1992-01-10 1993-08-03 Hewlett-Packard Company Light-emitting diode with a thick transparent layer
US5312560A (en) 1992-03-19 1994-05-17 Nichia Chemical Industries, Ltd. Rare earth phosphor
EP0562143B1 (en) 1992-03-27 1997-06-25 Nichia Kagaku Kogyo K.K. Solid-state image converting device
JP3244529B2 (ja) 1992-04-16 2002-01-07 アジレント・テクノロジーズ・インク 面発光型第2高調波生成素子
US5394005A (en) 1992-05-05 1995-02-28 General Electric Company Silicon carbide photodiode with improved short wavelength response and very low leakage current
US6344663B1 (en) 1992-06-05 2002-02-05 Cree, Inc. Silicon carbide CMOS devices
US5612260A (en) 1992-06-05 1997-03-18 Cree Research, Inc. Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
US5459107A (en) 1992-06-05 1995-10-17 Cree Research, Inc. Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
US5252839A (en) 1992-06-10 1993-10-12 Hewlett-Packard Company Superluminescent light-emitting diode with reverse biased absorber
US5343316A (en) 1992-06-30 1994-08-30 Nichia Chemical Industries, Ltd. Phosphor for use in a cathode-ray tube and display device using one
DE69333250T2 (de) 1992-07-23 2004-09-16 Toyoda Gosei Co., Ltd. Lichtemittierende Vorrichtung aus einer Verbindung der Galliumnitridgruppe
US5724062A (en) 1992-08-05 1998-03-03 Cree Research, Inc. High resolution, high brightness light emitting diode display and method and producing the same
US5359345A (en) 1992-08-05 1994-10-25 Cree Research, Inc. Shuttered and cycled light emitting diode display and method of producing the same
US5265792A (en) 1992-08-20 1993-11-30 Hewlett-Packard Company Light source and technique for mounting light emitting diodes
DE59308636D1 (de) 1992-08-28 1998-07-09 Siemens Ag Leuchtdiode
US5323022A (en) 1992-09-10 1994-06-21 North Carolina State University Platinum ohmic contact to p-type silicon carbide
DE4323814A1 (de) 1992-09-25 1994-03-31 Siemens Ag MIS-Feldeffekttransistor
US5381103A (en) 1992-10-13 1995-01-10 Cree Research, Inc. System and method for accelerated degradation testing of semiconductor devices
JP2657743B2 (ja) 1992-10-29 1997-09-24 豊田合成株式会社 窒素−3族元素化合物半導体発光素子
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
US5506421A (en) 1992-11-24 1996-04-09 Cree Research, Inc. Power MOSFET in silicon carbide
US5687391A (en) 1992-12-11 1997-11-11 Vibrametrics, Inc. Fault tolerant multipoint control and data collection system
US5858277A (en) 1992-12-23 1999-01-12 Osram Sylvania Inc. Aqueous phosphor coating suspension for lamps
JPH06264054A (ja) 1993-03-11 1994-09-20 Nichia Chem Ind Ltd 陰極線管用蛍光体の製造方法
US5376580A (en) 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
DE69425186T3 (de) 1993-04-28 2005-04-14 Nichia Corp., Anan Halbleitervorrichtung aus einer galliumnitridartigen III-V-Halbleiterverbindung und Verfahren zu ihrer Herstellung
JPH06326350A (ja) 1993-05-12 1994-11-25 Nichia Chem Ind Ltd 赤外可視変換素子
US5416342A (en) 1993-06-23 1995-05-16 Cree Research, Inc. Blue light-emitting diode with high external quantum efficiency
US5539217A (en) 1993-08-09 1996-07-23 Cree Research, Inc. Silicon carbide thyristor
US5404282A (en) 1993-09-17 1995-04-04 Hewlett-Packard Company Multiple light emitting diode module
US5338944A (en) 1993-09-22 1994-08-16 Cree Research, Inc. Blue light-emitting diode with degenerate junction structure
US5363390A (en) 1993-11-22 1994-11-08 Hewlett-Packard Company Semiconductor laser that generates second harmonic light by means of a nonlinear crystal in the laser cavity
US5390210A (en) 1993-11-22 1995-02-14 Hewlett-Packard Company Semiconductor laser that generates second harmonic light with attached nonlinear crystal
US5846844A (en) 1993-11-29 1998-12-08 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor substrates using ZnO release layers
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
US5433533A (en) 1993-12-20 1995-07-18 Nichia Precision Industry Co., Ltd. Shield plate for bearing
JPH07202265A (ja) 1993-12-27 1995-08-04 Toyoda Gosei Co Ltd Iii族窒化物半導体の製造方法
TW289837B (ja) 1994-01-18 1996-11-01 Hwelett Packard Co
DE59500334D1 (de) 1994-01-19 1997-07-31 Siemens Ag Abstimmbare Laserdiode
US5514627A (en) 1994-01-24 1996-05-07 Hewlett-Packard Company Method and apparatus for improving the performance of light emitting diodes
JPH07240561A (ja) 1994-02-23 1995-09-12 Hewlett Packard Co <Hp> Ii−vi族系半導体レーザおよびその製造方法
US5656832A (en) 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US5923118A (en) 1997-03-07 1999-07-13 Osram Sylvania Inc. Neon gas discharge lamp providing white light with improved phospher
JPH07263748A (ja) 1994-03-22 1995-10-13 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子及びその製造方法
EP0678945B1 (en) 1994-04-20 1998-07-08 Toyoda Gosei Co., Ltd. Gallium nitride group compound semiconductor laser diode and method of manufacturing the same
JP2698796B2 (ja) 1994-04-20 1998-01-19 豊田合成株式会社 3族窒化物半導体発光素子
US5604763A (en) 1994-04-20 1997-02-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor laser diode and method for producing same
JP3426699B2 (ja) 1994-04-27 2003-07-14 住友化学工業株式会社 不飽和カルボン酸及びその誘導体からなる重合体の製造方法
US5808592A (en) 1994-04-28 1998-09-15 Toyoda Gosei Co., Ltd. Integrated light-emitting diode lamp and method of producing the same
US5376303A (en) 1994-06-10 1994-12-27 Nichia Chemical Industries, Ltd. Long Decay phoaphors
US5497012A (en) 1994-06-15 1996-03-05 Hewlett-Packard Company Unipolar band minima devices
JP3717196B2 (ja) 1994-07-19 2005-11-16 豊田合成株式会社 発光素子
JPH0832112A (ja) 1994-07-20 1996-02-02 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
US5604135A (en) 1994-08-12 1997-02-18 Cree Research, Inc. Method of forming green light emitting diode in silicon carbide
US5650641A (en) 1994-09-01 1997-07-22 Toyoda Gosei Co., Ltd. Semiconductor device having group III nitride compound and enabling control of emission color, and flat display comprising such device
DE69529378T2 (de) 1994-09-14 2003-10-09 Matsushita Electric Industrial Co., Ltd. Verfahren zur Stabilisierung der Ausgangsleistung von höheren harmonischen Wellen und Laserlichtquelle mit kurzer Wellenlänge die dasselbe benutzt
US5686737A (en) 1994-09-16 1997-11-11 Cree Research, Inc. Self-aligned field-effect transistor for high frequency applications
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
JP2666237B2 (ja) 1994-09-20 1997-10-22 豊田合成株式会社 3族窒化物半導体発光素子
US5592501A (en) 1994-09-20 1997-01-07 Cree Research, Inc. Low-strain laser structures with group III nitride active layers
US5631190A (en) 1994-10-07 1997-05-20 Cree Research, Inc. Method for producing high efficiency light-emitting diodes and resulting diode structures
GB9421329D0 (en) 1994-10-22 1994-12-07 Bt & D Technologies Ltd Laser bias control system
FR2726126A1 (fr) 1994-10-24 1996-04-26 Mitsubishi Electric Corp Procede de fabrication de dispositifs a diodes electroluminescentes a lumiere visible
US5892787A (en) 1994-10-27 1999-04-06 Hewlett-Packard Company N-drive, p-common light-emitting devices fabricated on an n-type substrate and method of making same
US5892784A (en) 1994-10-27 1999-04-06 Hewlett-Packard Company N-drive p-common surface emitting laser fabricated on n+ substrate
US5491712A (en) 1994-10-31 1996-02-13 Lin; Hong Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser
US5679153A (en) 1994-11-30 1997-10-21 Cree Research, Inc. Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
JP2846477B2 (ja) 1994-12-27 1999-01-13 シーメンス アクチエンゲゼルシヤフト 炭化シリコン単結晶の製造方法
US5661074A (en) 1995-02-03 1997-08-26 Advanced Technology Materials, Inc. High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
US5585648A (en) 1995-02-03 1996-12-17 Tischler; Michael A. High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same
DE19508222C1 (de) 1995-03-08 1996-06-05 Siemens Ag Optoelektronischer Wandler und Herstellverfahren
JPH08264833A (ja) 1995-03-10 1996-10-11 Hewlett Packard Co <Hp> 発光ダイオード
US5850410A (en) 1995-03-16 1998-12-15 Fujitsu Limited Semiconductor laser and method for fabricating the same
DE69637304T2 (de) 1995-03-17 2008-08-07 Toyoda Gosei Co., Ltd. Lichtemittierende Halbleitervorrichtung bestehend aus einer III-V Nitridverbindung
JP3773282B2 (ja) 1995-03-27 2006-05-10 豊田合成株式会社 窒化ガリウム系化合物半導体の電極形成方法
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
DE19511593C2 (de) 1995-03-29 1997-02-13 Siemens Ag Mikrooptische Vorrichtung
JP3691544B2 (ja) 1995-04-28 2005-09-07 アジレント・テクノロジーズ・インク 面発光レーザの製造方法
US5739554A (en) 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US5659568A (en) 1995-05-23 1997-08-19 Hewlett-Packard Company Low noise surface emitting laser for multimode optical link applications
JP3405049B2 (ja) 1995-05-29 2003-05-12 日亜化学工業株式会社 残光性ランプ
TW304310B (ja) 1995-05-31 1997-05-01 Siemens Ag
US5625202A (en) 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
US5596595A (en) 1995-06-08 1997-01-21 Hewlett-Packard Company Current and heat spreading transparent layers for surface-emitting lasers
JP2839077B2 (ja) 1995-06-15 1998-12-16 日本電気株式会社 窒化ガリウム系化合物半導体発光素子
US5785404A (en) 1995-06-29 1998-07-28 Siemens Microelectronics, Inc. Localized illumination device
US5903016A (en) 1995-06-30 1999-05-11 Siemens Components, Inc. Monolithic linear optocoupler
DE19524655A1 (de) 1995-07-06 1997-01-09 Huang Kuo Hsin LED-Struktur
US5999552A (en) 1995-07-19 1999-12-07 Siemens Aktiengesellschaft Radiation emitter component
DE19527536A1 (de) 1995-07-27 1997-01-30 Siemens Ag Verfahren zum Herstellen von Siliciumcarbid-Einkristallen
US5919422A (en) 1995-07-28 1999-07-06 Toyoda Gosei Co., Ltd. Titanium dioxide photo-catalyzer
DE19629920B4 (de) 1995-08-10 2006-02-02 LumiLeds Lighting, U.S., LLC, San Jose Licht-emittierende Diode mit einem nicht-absorbierenden verteilten Braggreflektor
US5900650A (en) 1995-08-31 1999-05-04 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5621749A (en) 1995-09-06 1997-04-15 Hewlett-Packard Company Praseodymium-doped fluoride fiber upconversion laser for the generation of blue light
DE19533116A1 (de) 1995-09-07 1997-03-13 Siemens Ag Treiberschaltung für eine Leuchtdiode
DE19536438A1 (de) 1995-09-29 1997-04-03 Siemens Ag Halbleiterbauelement und Herstellverfahren
DE19536463C2 (de) 1995-09-29 2002-02-07 Infineon Technologies Ag Verfahren zum Herstellen einer Mehrzahl von Laserdiodenbauelementen
US5986317A (en) 1995-09-29 1999-11-16 Infineon Technologies Corporation Optical semiconductor device having plural encapsulating layers
US5642375A (en) 1995-10-26 1997-06-24 Hewlett-Packard Company Passively-locked external optical cavity
US5727014A (en) 1995-10-31 1998-03-10 Hewlett-Packard Company Vertical-cavity surface-emitting laser generating light with a defined direction of polarization
US5592578A (en) 1995-11-01 1997-01-07 Hewlett-Packard Company Peripheral optical element for redirecting light from an LED
US5707139A (en) 1995-11-01 1998-01-13 Hewlett-Packard Company Vertical cavity surface emitting laser arrays for illumination
US5972801A (en) 1995-11-08 1999-10-26 Cree Research, Inc. Process for reducing defects in oxide layers on silicon carbide
JP3752739B2 (ja) * 1996-03-22 2006-03-08 住友化学株式会社 発光素子
US5724376A (en) 1995-11-30 1998-03-03 Hewlett-Packard Company Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
US5635146A (en) 1995-11-30 1997-06-03 Osram Sylvania Inc. Method for the dissolution and purification of tantalum pentoxide
EP0781619A1 (en) 1995-12-15 1997-07-02 Cree Research, Inc. Method of making silicone carbide wafers from silicon carbide bulk crystals
US5917202A (en) 1995-12-21 1999-06-29 Hewlett-Packard Company Highly reflective contacts for light emitting semiconductor devices
FR2742926B1 (fr) 1995-12-22 1998-02-06 Alsthom Cge Alcatel Procede et dispositif de preparation de faces de laser
US5855924A (en) 1995-12-27 1999-01-05 Siemens Microelectronics, Inc. Closed-mold for LED alphanumeric displays
US5991160A (en) 1995-12-27 1999-11-23 Infineon Technologies Corporation Surface mount LED alphanumeric display
US5828684A (en) 1995-12-29 1998-10-27 Xerox Corporation Dual polarization quantum well laser in the 200 to 600 nanometers range
US5812105A (en) 1996-06-10 1998-09-22 Cree Research, Inc. Led dot matrix drive method and apparatus
DE19600306C1 (de) 1996-01-05 1997-04-10 Siemens Ag Halbleiter-Bauelement, insb. mit einer optoelektronischen Schaltung bzw. Anordnung
WO1997027629A1 (en) 1996-01-24 1997-07-31 Cree Research, Inc. Mesa schottky diode with guard ring
US5809050A (en) 1996-01-25 1998-09-15 Hewlett-Packard Company Integrated controlled intensity laser-based light source using diffraction, scattering and transmission
US5923690A (en) 1996-01-25 1999-07-13 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device
US5835514A (en) 1996-01-25 1998-11-10 Hewlett-Packard Company Laser-based controlled-intensity light source using reflection from a convex surface and method of making same
US5761229A (en) 1996-01-25 1998-06-02 Hewlett-Packard Company Integrated controlled intensity laser-based light source
US5771254A (en) 1996-01-25 1998-06-23 Hewlett-Packard Company Integrated controlled intensity laser-based light source
US5718760A (en) 1996-02-05 1998-02-17 Cree Research, Inc. Growth of colorless silicon carbide crystals
US5811931A (en) 1996-03-04 1998-09-22 Hewlett Packard Company Capped edge emitter
US5867516A (en) 1996-03-12 1999-02-02 Hewlett-Packard Company Vertical cavity surface emitting laser with reduced turn-on jitter and increased single-mode output
US5684623A (en) 1996-03-20 1997-11-04 Hewlett Packard Company Narrow-band tunable optical source
US5779924A (en) 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
US5861190A (en) 1996-03-25 1999-01-19 Hewlett-Packard Co. Arrangement for growing a thin dielectric layer on a semiconductor wafer at low temperatures
JP3727106B2 (ja) 1996-04-17 2005-12-14 豊田合成株式会社 3族窒化物半導体レーザダイオードの製造方法
JP3209096B2 (ja) 1996-05-21 2001-09-17 豊田合成株式会社 3族窒化物化合物半導体発光素子
DE19621124A1 (de) 1996-05-24 1997-11-27 Siemens Ag Optoelektronischer Wandler und dessen Herstellungsverfahren
US5719409A (en) 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
JP2919362B2 (ja) 1996-06-26 1999-07-12 日本電気株式会社 低速電子線励起蛍光表示装置およびその製造方法
DE29724543U1 (de) 1996-06-26 2002-02-28 OSRAM Opto Semiconductors GmbH & Co. oHG, 93049 Regensburg Lichtabstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
DE19638667C2 (de) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
US5777433A (en) 1996-07-11 1998-07-07 Hewlett-Packard Company High refractive index package material and a light emitting device encapsulated with such material
US5925898A (en) 1996-07-18 1999-07-20 Siemens Aktiengesellschaft Optoelectronic transducer and production methods
US5818861A (en) 1996-07-19 1998-10-06 Hewlett-Packard Company Vertical cavity surface emitting laser with low band gap highly doped contact layer
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US5805624A (en) 1996-07-30 1998-09-08 Hewlett-Packard Company Long-wavelength infra-red vertical cavity surface-emitting laser on a gallium arsenide substrate
JPH1056236A (ja) 1996-08-08 1998-02-24 Toyoda Gosei Co Ltd 3族窒化物半導体レーザ素子
US5729029A (en) 1996-09-06 1998-03-17 Hewlett-Packard Company Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices
DE59712346D1 (de) 1996-09-19 2005-07-21 Infineon Technologies Ag Optischer Wellenleiter und Verfahren zu seiner Herstellung
DE19645035C1 (de) 1996-10-31 1998-04-30 Siemens Ag Mehrfarbiges Licht abstrahlende Bildanzeigevorrichtung
US5724373A (en) 1996-11-15 1998-03-03 Hewlett-Packard Company Microphotonic acousto-optic tunable laser
US5835522A (en) 1996-11-19 1998-11-10 Hewlett-Packard Co. Robust passively-locked optical cavity system
DE19649650B4 (de) 1996-11-29 2005-02-24 Siemens Ag Oberflächenmontierbares strahlungsemittierendes Halbleiterbauelement
US6177292B1 (en) * 1996-12-05 2001-01-23 Lg Electronics Inc. Method for forming GaN semiconductor single crystal substrate and GaN diode with the substrate
US5966393A (en) 1996-12-13 1999-10-12 The Regents Of The University Of California Hybrid light-emitting sources for efficient and cost effective white lighting and for full-color applications
DE19652548C1 (de) 1996-12-17 1998-03-12 Siemens Ag Verfahren zur Herstellung stickstoffhaltiger III-V-Halbleiterschichten
DE19652528A1 (de) 1996-12-17 1998-06-18 Siemens Ag LED mit allseitiger Lichtauskopplung
US5741724A (en) 1996-12-27 1998-04-21 Motorola Method of growing gallium nitride on a spinel substrate
US5838707A (en) 1996-12-27 1998-11-17 Motorola, Inc. Ultraviolet/visible light emitting vertical cavity surface emitting laser and method of fabrication
US6677619B1 (en) * 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US5868837A (en) 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
JPH10215031A (ja) 1997-01-30 1998-08-11 Hewlett Packard Co <Hp> 半導体レーザ素子
JPH10242074A (ja) 1997-02-21 1998-09-11 Hewlett Packard Co <Hp> 窒化物半導体素子製造方法
TW353202B (en) 1997-02-28 1999-02-21 Hewlett Packard Co Scribe and break of hard-to-scribe materials
SG63757A1 (en) 1997-03-12 1999-03-30 Hewlett Packard Co Adding impurities to improve the efficiency of allngan quantum well led's
US5927995A (en) 1997-04-09 1999-07-27 Hewlett-Packard Company Reduction of threading dislocations by amorphization and recrystallization
EP0942459B1 (en) * 1997-04-11 2012-03-21 Nichia Corporation Method of growing nitride semiconductors
US5923946A (en) 1997-04-17 1999-07-13 Cree Research, Inc. Recovery of surface-ready silicon carbide substrates
US6011279A (en) 1997-04-30 2000-01-04 Cree Research, Inc. Silicon carbide field controlled bipolar switch
US5741431A (en) 1997-05-15 1998-04-21 Industrial Technology Research Institute Laser assisted cryoetching
US6100586A (en) 1997-05-23 2000-08-08 Agilent Technologies, Inc. Low voltage-drop electrical contact for gallium (aluminum, indium) nitride
US5969378A (en) 1997-06-12 1999-10-19 Cree Research, Inc. Latch-up free power UMOS-bipolar transistor
US6121633A (en) 1997-06-12 2000-09-19 Cree Research, Inc. Latch-up free power MOS-bipolar transistor
US5847507A (en) 1997-07-14 1998-12-08 Hewlett-Packard Company Fluorescent dye added to epoxy of light emitting diode lens
KR100651145B1 (ko) 1997-08-29 2006-11-28 크리 인코포레이티드 표준 응용에서 고신뢰성을 위한 강한 3족 질화물 발광다이오드
US5879587A (en) 1997-09-24 1999-03-09 Osram Sylvania Inc. Terbium-activated rare earth oxysulfide phosphor with enhanced green:blue emission ratio
US5879588A (en) 1997-09-24 1999-03-09 Osram Sylvania Inc. Terbium-activated gadolinium oxysulfide phosphor with reduced blue emission
US5958295A (en) 1997-09-24 1999-09-28 Osram Sylvania Inc. Terbium-activated rare earth oxysulfide phosphor with enhanced blue emission
JP3283802B2 (ja) * 1997-09-29 2002-05-20 日本電気株式会社 選択成長法を用いた半導体層及びその成長方法、選択成長法を用いた窒化物系半導体層及びその成長方法、窒化物系半導体発光素子とその製造方法
US5972781A (en) 1997-09-30 1999-10-26 Siemens Aktiengesellschaft Method for producing semiconductor chips
JP3955367B2 (ja) 1997-09-30 2007-08-08 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 光半導体素子およびその製造方法
US6201262B1 (en) 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
US5935705A (en) 1997-10-15 1999-08-10 National Science Council Of Republic Of China Crystalline Six Cy Nz with a direct optical band gap of 3.8 eV
JP3036495B2 (ja) 1997-11-07 2000-04-24 豊田合成株式会社 窒化ガリウム系化合物半導体の製造方法
JP3589000B2 (ja) * 1997-12-26 2004-11-17 松下電器産業株式会社 窒化ガリウム系化合物半導体発光素子
US5920766A (en) 1998-01-07 1999-07-06 Xerox Corporation Red and blue stacked laser diode array by wafer fusion
US6051849A (en) * 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
JPH11251685A (ja) * 1998-03-05 1999-09-17 Toshiba Corp 半導体レーザ
US6194742B1 (en) * 1998-06-05 2001-02-27 Lumileds Lighting, U.S., Llc Strain engineered and impurity controlled III-V nitride semiconductor films and optoelectronic devices
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6645885B2 (en) * 2001-09-27 2003-11-11 The National University Of Singapore Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD)
EP1363318A1 (en) * 2001-12-20 2003-11-19 Matsushita Electric Industrial Co., Ltd. Method for making nitride semiconductor substrate and method for making nitride semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243614A (ja) * 1992-03-03 1993-09-21 Sharp Corp 化合物半導体の成長方法、化合物半導体発光素子及びその製造方法
JPH0864791A (ja) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd エピタキシャル成長方法
JPH0983016A (ja) * 1995-09-18 1997-03-28 Nichia Chem Ind Ltd 窒化物半導体の成長方法
DE19648955A1 (de) * 1995-11-27 1997-05-28 Sumitomo Chemical Co III-V-Verbindungshalbleiter und lichtemittierende Vorrichtung
JPH09180998A (ja) * 1995-12-26 1997-07-11 Fujitsu Ltd 化合物半導体装置
EP0874405A2 (en) * 1997-03-25 1998-10-28 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUJI NAKAMURA ET AL.: "High power, long-lifetime InGaN/GaN/A1GaN-based laser diodes grown on pure GaN substrates", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 37, 1998, pages L309 - L312, XP002932562 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767762A1 (en) 2019-07-14 2021-01-20 Instytut Wysokich Cisnien Polskiej Akademii Nauk Distributed feedback laser diode and method of making the same

Also Published As

Publication number Publication date
KR100634340B1 (ko) 2006-10-17
KR20010110430A (ko) 2001-12-13
US20050054132A1 (en) 2005-03-10
US6835956B1 (en) 2004-12-28
CN1157804C (zh) 2004-07-14
EP1184913A4 (en) 2007-07-04
EP1184913A1 (en) 2002-03-06
AU2327200A (en) 2000-08-29
JP3770014B2 (ja) 2006-04-26
AU771942B2 (en) 2004-04-08
TW443018B (en) 2001-06-23
EP1184913B1 (en) 2018-10-10
US7083996B2 (en) 2006-08-01
CN1340215A (zh) 2002-03-13
JP2000299497A (ja) 2000-10-24

Similar Documents

Publication Publication Date Title
KR100634340B1 (ko) 질화물 반도체 소자 및 그 제조방법
JP3876518B2 (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
JP4288743B2 (ja) 窒化物半導体の成長方法
JP4304750B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
KR100874077B1 (ko) 질화물 반도체 레이저 소자 및 그 제조 방법
JP2000357843A (ja) 窒化物半導体の成長方法
JP2001060719A (ja) 窒化物半導体発光ダイオード
JP2001007447A (ja) 窒化物半導体レーザ素子
JP3446660B2 (ja) 窒化物半導体発光素子
JP2000252219A (ja) GaN基板の製造方法
JP2001039800A (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP3847000B2 (ja) 窒化物半導体基板上に活性層を備えた窒化物半導体層を有する窒化物半導体素子及びその成長方法
JP2001044570A (ja) 窒化物半導体レーザ素子
JP3329753B2 (ja) 窒化物半導体レーザ素子
JP2000196199A (ja) 窒化物半導体レーザ素子
JP4211358B2 (ja) 窒化物半導体、窒化物半導体素子及びそれらの製造方法
JP4628651B2 (ja) 窒化物半導体発光素子の製造方法
JP2008034862A (ja) 窒化物半導体の成長方法
JP4637503B2 (ja) 窒化物半導体レーザ素子の製造方法
JP4442093B2 (ja) 窒化物半導体積層用基板の製造方法
JP3438675B2 (ja) 窒化物半導体の成長方法
JP2005101536A (ja) 窒化物半導体レーザ素子
JP4826052B2 (ja) 窒化物半導体レーザ素子
JP2002141282A (ja) 窒化物半導体の成長方法と窒化物半導体基板
JPH11191658A (ja) 窒化物半導体素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00803557.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 23272/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020017009965

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000902126

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017009965

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000902126

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 23272/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020017009965

Country of ref document: KR