US20130017199A1 - Simultaneous inhibition of pd-l1/pd-l2 - Google Patents

Simultaneous inhibition of pd-l1/pd-l2 Download PDF

Info

Publication number
US20130017199A1
US20130017199A1 US13/511,879 US201013511879A US2013017199A1 US 20130017199 A1 US20130017199 A1 US 20130017199A1 US 201013511879 A US201013511879 A US 201013511879A US 2013017199 A1 US2013017199 A1 US 2013017199A1
Authority
US
United States
Prior art keywords
cells
polypeptide
cell
seq
immunomodulatory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/511,879
Other languages
English (en)
Inventor
Solomon Langermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amplimmune Inc
Original Assignee
Amplimmune Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amplimmune Inc filed Critical Amplimmune Inc
Priority to US13/511,879 priority Critical patent/US20130017199A1/en
Publication of US20130017199A1 publication Critical patent/US20130017199A1/en
Assigned to AMPLIMMUNE, INC. reassignment AMPLIMMUNE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LANGERMANN, SOLOMON
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the invention generally relates to immunomodulatory compositions and methods for treating diseases such as cancer or infections, in particular to diseases inducing T cell exhaustion, T cell anergy, or both, or diseases where intracellular pathogens e.g., Leishmania , evade immune response by upregulating PD-1 ligands on APCs (e.g. monocytes, dendritic cells, macrophages) or epithelial cells.
  • diseases such as cancer or infections, in particular to diseases inducing T cell exhaustion, T cell anergy, or both, or diseases where intracellular pathogens e.g., Leishmania , evade immune response by upregulating PD-1 ligands on APCs (e.g. monocytes, dendritic cells, macrophages) or epithelial cells.
  • APCs e.g. monocytes, dendritic cells, macrophages
  • epithelial cells e.g. monocytes, dendritic cells, macro
  • Cancer has an enormous physiological and economic impact. For example a total of 1,437,180 new cancer cases and 565,650 deaths from cancer are projected to occur in the United States in 2008 (Jemal, A., Cancer J. Clin., 58:71-96 (2008)). The National Institutes of Health estimate overall costs of cancer in 2007 at $219.2 billion: $89.0 billion for direct medical costs (total of all health expenditures); $18.2 billion for indirect morbidity costs (cost of lost productivity due to illness); and $112.0 billion for indirect mortality costs (cost of lost productivity due to premature death). Although there are several methods for treating cancer, each method has its own degree of effectiveness as well as side-effects. Typical methods for treating cancer include surgery, chemotherapy, radiation, and immunotherapy.
  • T cell costimulatory pathway B7-CD28, in which B7-1 (CD80) and B7-2 (CD86) each can engage the stimulatory CD28 receptor and the inhibitory CTLA-4 (CD152) receptor.
  • CD28 ligation increases antigen-specific proliferation of T cells, enhances production of cytokines, stimulates differentiation and effector function, and promotes survival of T cells (Lenshow, et al., Annu. Rev. Immunol., 14:233-258 (1996); Chambers and Allison, Curr. Opin.
  • B7-DC Tseng, et al., J. Exp. Med., 193:839-846 (2001); and Latchman, et al., Nature Immunol., 2:261-268 (2001)
  • B7-H2 Wang, et al., Blood, 96:2808-2813 (2000); Swallow, et al., Immunity, 11:423-432 (1999); and Yoshinaga, et al., Nature, 402:827-832 (1999)
  • B7-H3 Choapoval, et al., Nature Immunol., 2:269-274 (2001)
  • B7-H4 Choi, et al., J.
  • PD-L1 and PD-L2 are ligands for PD-1 (programmed cell death-1), B7-H2 is a ligand for ICOS, and B7-H3, B7-H4 and B7-H5 remain orphan ligands at this time (Dong, et al., Immunol. Res., 28:39-48 (2003)).
  • PD-1 ligation by its ligands is to inhibit signaling downstream of the T cell Receptor (TCR). Therefore, signal transduction via PD-1 usually provides a suppressive or inhibitory signal to the T cell that results in decreased T cell proliferation or other reduction in T cell activation.
  • PD-1 signaling is thought to require binding to a PD-1 ligand in close proximity to a peptide antigen presented by major histocompatibility complex (MHC), which is bound to the TCR (Freeman, Proc. Natl. Acad. Sci. U.S.A, 105:10275-10276 (2008)).
  • MHC major histocompatibility complex
  • PD-L1 is the predominant PD-1 ligand causing inhibitory signal transduction in T cells.
  • Tregs T regulatory cells
  • Tregs have been shown to suppress tumor-specific T cell immunity, and may contribute to the progression of human tumors (Liyanage, U. K., et al., J Immunol, 169:2756-2761 (2002).
  • depletion of Treg cells leads to more efficient tumor rejection (Viehl, C. T., et al., Ann Surg Oncol, 13:1252-1258 (2006)).
  • an object of the invention to provide an immunomodulatory composition that blocks both PD-L1 and PD-L2 mediated signal transduction. and enhance immune responses.
  • compositions and methods for increasing IFN ⁇ producing cells and decreasing Treg cells at a tumor site or pathogen infected area in a subject are provided.
  • the compositions can be used to increase frequency and/or percentage of antigen-specific T cells and/or proliferation of antigen-specific T cells, enhance cytokine production by T cells, stimulate differentiation and effector functions of T cells, promote T cell survival, or overcome T cell exhaustion and/or anergy.
  • the compositions simultaneously block both PD-L1 and PD-L2 mediated signal transduction in T cells, which have differential effects on T cell activity.
  • Blocking PD-L1 mediated signal transduction induces robust effector cell responses, such as increasing the number of infiltrating IFN ⁇ producing T cells and M1 macrophages.
  • Blocking PD-L2 mediated signal transduction decreases the number of infiltrating Tregs. This decrease in Tregs can increase the number of Th17 cells and the level of IL-17 production, and also reduce the number of PD-1 positive cells. Therefore, simultaneous blocking of two independent PD-1 ligands can enhance two different beneficial T cell activities.
  • Preferred compositions include immunomodulatory agents that bind directly to PD-1, PD-L1, PD-L2, or a combination thereof and increase or activate T cell responses, such as T cell proliferation or activation.
  • the compounds bind to and block the interaction of PD-1 ligands expressed on antigen presenting cells (APCs, such as monocytes, macrophages, dendritic cells, epithelial cells etc) with PD-1 on T cells.
  • APCs antigen presenting cells
  • compositions include PD-L2 proteins, fragments, variants or fusions thereof.
  • a preferred composition includes an effective amount of a non-antibody agent such as a PD-L2 fusion protein (B7-DC-Ig) to reduce or overcome lack of sufficient T cell responses, T cell exhaustion, T cell anergy, as well as activation of monocytes, macrophages, dendritic cells and other APCs, or all of these effects in a subject.
  • a non-antibody agent such as a PD-L2 fusion protein (B7-DC-Ig) to reduce or overcome lack of sufficient T cell responses, T cell exhaustion, T cell anergy, as well as activation of monocytes, macrophages, dendritic cells and other APCs, or all of these effects in a subject.
  • the compositions also include PD-L1 proteins, fragments, variants or fusions thereof.
  • PD-L2 and PD-L1 polypeptides, fusion proteins, and fragments can inhibit or reduce the inhibitory signal transduction that occurs through PD-1 in T cells by preventing endogenous ligands of PD-1 from interacting with PD-1.
  • Additional preferred compositions include PD-1 or soluble fragments thereof, that bind to ligands of PD-1 and prevent binding to the endogenous PD-1 receptor on T cells. These fragments of PD-1 are also referred to as soluble PD-1 fragments.
  • a preferred embodiment is a PD-1 fusion protein, PD-1-Ig.
  • Other agents include B7.1 or soluble fragments and fusion proteins thereof, that can bind to PD-L1 and prevent binding of PD-L1 to PD-1.
  • compositions include immunomodulatory agents that: (i) bind to and block PD-1 without inducing inhibitory signal transduction through PD-1 and prevents binding of ligands, such as PD-L1 and PD-L2, thereby preventing activation of the PD-1 mediated inhibitory signal; (ii) bind to ligands of PD-1 and prevent binding to the PD-1 receptor, thereby preventing activation of the PD-1 mediated inhibitory signal, or (iii) combinations of (i) and (ii).
  • ligands such as PD-L1 and PD-L2
  • An immune response can be modulated by providing immunomodulatory agents which bind with different affinity (i.e., more or less as required) to PD-L1, PD-L2, PD-1, and combinations thereof by varying the dosage of agent which is administered, by intermittent dosing over a regime, and combinations thereof, that provides for dissociation of agent from the molecule to which it is bound prior to being administered again (similar to what occurs with antigen elicitation using priming and boosting). In some cases it may be particularly desirable to stimulate the immune system, and then remove the stimulation.
  • the affinity of the antagonist for its binding partner can be used to determine the period of time required for dissociation—a higher affinity agent will take longer to dissociate than a lower affinity agent.
  • Agents that bind to either PD-L1, PD-L2, PD-1, and combinations thereof or which bind with different affinities to the same molecule can also be used to modulate the degree of immunostimulation.
  • the immunomodulatory agents can be used to treat one or more symptoms related to cancer or infectious disease. Additionally, the immunomodulatory agents can be used to stimulate the immune response of immunosuppressed subjects.
  • Additional embodiments include antibodies that bind to and block either the PD-1 receptor, without causing inhibitory signal transduction, or ligands of the PD-1 receptor, such as PD-L1 and PD-L2, or both ligands, i.e. bispecific agents.
  • ligands of the PD-1 receptor such as PD-L1 and PD-L2, or both ligands, i.e. bispecific agents.
  • the PD-L2 and PD-L1 polypeptides, fusion proteins, and fragments may also activate T cells by binding to another receptor on the T cells or APCs.
  • compositions include the treatment of one or more symptoms of cancer and/or induction of tumor immunity.
  • exemplary tumor cells that can be treated include but not limited to, sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, or carcinoma cells.
  • compositions increase T cell responses and help overcome T cell exhaustion, T cell anergy, or both, as well as activate monocytes, macrophages, dendritic cells and other APCs induced by infections or cancer.
  • Representative infections that can be treated with the immunomodulatory agents include, but are not limited to, infections caused by a virus, bacterium, parasite, protozoan, or fungus.
  • Exemplary viral infections that can be treated include, but are not limited to, infections caused by hepatitis virus, human immunodeficiency virus (HIV), human T-lymphotrophic virus (HTLV), herpes virus, influenza, Epstein-Barr virus, filovirus, or a human papilloma virus.
  • Other infections that can be treated include those caused by Plasmodium, Mycoplasma, M. tuberculosis, Bacillus anthracis, Staphylococcus , and C. trachomitis.
  • compositions can be administered in combination or alternation with a vaccine containing one or more antigens such as viral antigens, bacterial antigens, protozoan antigens, and tumor specific antigens.
  • the compositions can be used as effective adjuvants with vaccines to increase primary immune responses and effector cell responses in subjects.
  • Preferred subjects to be treated have a weakened or compromised immune system, are greater than 65 years old, or are less than 2 years of age.
  • FIG. 1 is a line graph of B7-H1-Ig-APC versus log unlabeled B7-DC-Ig (nM) showing that B7-DC-Ig binds to PD-1 in a PD-1 binding ELISA and inhibits the binding of B7-H1-Ig-APC.
  • APC allophycocyanin.
  • FIG. 2A is a line graph of tumor growth (mm 3 ) versus days post tumor inoculation in mice treated with 100 mg/kg of Cytoxan® (CTX) on day ten. Each line in each graph represents one mouse.
  • FIG. 2B is a line graph of tumor growth (mm 3 ) versus days post tumor inoculation in mice treated with 100 mg/kg CTX Day on day 10 followed by bi-weekly B7-DC-Ig (5 mg/kg) administration starting on day 11. Each line in each graph represents one mouse. Black arrow stands for B7-DC-Ig administration.
  • FIG. 2C is a line graph of tumor volume (mm 3 ) versus days post tumor implantation in mice treated with 100 mg/kg CTX (solid circles) or 100 mg/kg CTX and 5 mg/kg B7-DC-Ig (triangles).
  • FIG. 3 is a schematic diagram of an experimental design showing that administration of 100 mg/kg CTX and 5 mg/kg B7-DC-Ig eradicates tumors in mice.
  • mice On day zero, mice were subcutaneously injected with 1 ⁇ 10 5 CT26 tumor cells.
  • the mice On day 10 the mice were injected with 100 mg/ml CTX.
  • the start of B7-DC-Ig 100 ug/mouse twice a week for four weeks was begun on day 11.
  • tumors in 75% of the mice treated with B7-DC-Ig were eradicated.
  • the inset is a graph of percent long time survival versus days post inncoluation of mice treated with 100 mg/ml CTX (dashed line) and mice treated with 100 mg/ml CTX and B7-DC-Ig 100 ug/mouse twice a week for four weeks (solid line).
  • FIG. 4 is a schematic diagram of an experimental design to showing that CTX+B7-DC-Ig treatment results in tumor specific, memory cytotoxic T lymphocytes.
  • the graph shows percent (CD8/IFN ⁇ ) positive splenocytes taken from mice treated with 100 mg/mouse CTX and 100 ug/mouse B7-DC-Ig and treated with no peptide (solid circles), 5 ug/ml ovalbumin (OVA) (solid squares), 50 ug/ml OVA (solid triangles), 5 ug/ml AH1, a CT26 specific peptide (solid, inverted triangles), or 500 ug/ml AH1 (solid diamonds).
  • OVA ovalbumin
  • FIG. 4 is a schematic diagram of an experimental design to showing that CTX+B7-DC-Ig treatment results in tumor specific, memory cytotoxic T lymphocytes.
  • the graph shows percent (CD8/IFN ⁇ ) positive splenocytes taken from mice treated with 100 mg/
  • FIGS. 5A-D are line graphs of tumor growth (mm 3 ) versus days post inncoluation in mice treated with 100 mg/ml CTX ( FIG. 5A ), 100 mg/ml CTX+30 ⁇ g B7-DC-Ig ( FIG. 5B ), 100 mg CTX+100 ⁇ g B7-DC-Ig ( FIG. 5C ), or 100 mg/ml CTX+300 ⁇ g B7-DC-Ig ( FIG. 5D ).
  • FIGS. 6A-C are graphs of percent PD-1 + of CD8+ T Cells in treated Balb/C mice.
  • Balb/C mice implanted with 1 ⁇ 10 5 CT26 cells subcutaneously at age of 9 to 11 weeks of age. On Day 9, mice were injected with 100 mg/kg of CTX, IP. Twenty four hours later, on Day 10, mice were treated with 100 ug of B7-DC-Ig. Vehicle injected control (solid circles), CTX alone (solid squares), CTX+B7-DC-Ig (solid triangles) or B7-DC-Ig alone. Mice were continued with B7-DC-Ig injection, 2 times a week. Four mice from other groups were removed from the study on Day 11 (2 days post CTX) ( FIG. 6A ), Day 16 (7 days post CTX) ( FIG. 6B ) and Day 22 (13 days post CTX) ( FIG. 6C ) for T cell analysis.
  • FIG. 7 is a schematic diagram showing B7-DC-Ig breaking immune suppression by blocking PD-1 and B7-H1 interaction.
  • B7-DC-Ig can interact with PD-1 expressed on exhausted T cells and prevent the binding of B7-H1 expressed on tumor cells or pathogen infected cells.
  • B7-DC-Ig can increase IFN ⁇ producing cells and decrease Treg cells at tumor site or pathogen infected area.
  • FIG. 8 is a line graph showing the concentration of serum human B7-DC-Ig as a function of time post-dose (hours) in two Cynomolgus monkeys injected with 10 mg/kg B7-DC-Ig by bolus IV injection.
  • FIG. 9 is a line graph showing the concentration of serum murine B7-DC-Ig ( ⁇ g/ml) as a function of time post-dose (hours) in mice injected intraperitoneally with 100 ⁇ g, 300 ⁇ g or 900 ⁇ g of murine B7-DC-Ig on day 0.
  • FIG. 10 is a series of line graphs showing the C max or C min of murine B7-DC-Ig ( ⁇ g/ml) as a function the number of doses in mice injected intraperitoneally with 100 ⁇ g, 300 ⁇ g or 900 ⁇ g of murine B7-DC-Ig.
  • C max was measured 6 hours after each dose and C min was determined 2-3 days after each dose. Five mice were used for each data point.
  • isolated is meant to describe a compound of interest (e.g., either a polynucleotide or a polypeptide) that is in an environment different from that in which the compound naturally occurs e.g. separated from its natural milieu such as by concentrating a peptide to a concentration at which it is not found in nature. “Isolated” is meant to include compounds that are within samples that are significantly enriched for the compound of interest and/or in which the compound of interest is partially or significantly purified. “Significantly” means statistically signficantly greater.
  • polypeptide refers to a chain of amino acids of any length, regardless of modification (e.g., phosphorylation or glycosylation).
  • a “variant” polypeptide contains at least one amino acid sequence alteration as compared to the amino acid sequence of the corresponding wild-type polypeptide.
  • amino acid sequence alteration can be, for example, a substitution, a deletion, or an insertion of one or more amino acids.
  • a “vector” is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
  • the vectors described herein can be expression vectors.
  • an “expression vector” is a vector that includes one or more expression control sequences
  • an “expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
  • operably linked means incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest.
  • fragment of a polypeptide refers to any subset of the polypeptide that is a shorter polypeptide of the full length protein. Generally, fragments will be five or more amino acids in length.
  • valency refers to the number of binding sites available per molecule.
  • “conservative” amino acid substitutions are substitutions wherein the substituted amino acid has similar structural or chemical properties.
  • non-conservative amino acid substitutions are those in which the charge, hydrophobicity, or bulk of the substituted amino acid is significantly altered.
  • the term “host cell” refers to prokaryotic and eukaryotic cells into which a recombinant expression vector can be introduced.
  • transformed and transfected encompass the introduction of a nucleic acid (e.g., a vector) into a cell by a number of techniques known in the art.
  • antibody is meant to include both intact molecules as well as fragments thereof that include the antigen-binding site. These include Fab and F(ab′) 2 fragments which lack the Fc fragment of an intact antibody.
  • Immune cell is meant a cell of hematopoietic origin and that plays a role in the immune response.
  • Immune cells include lymphocytes (e.g., B cells and T cells), natural killer cells, and myeloid cells (e.g., monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes).
  • T cell refers to a CD4+ T cell or a CD8+ T cell.
  • the term T cell includes both TH1 cells, TH2 cells and Th17 cells.
  • T cell cytoxicity includes any immune response that is mediated by CD8+ T cell activation.
  • exemplary immune responses include cytokine production, CD8+ T cell proliferation, granzyme or perforin production, and clearance of an infectious agent.
  • inhibitory signal transduction refers to signaling through the PD-1 receptor by endogenous PD-L1 or PD-L2, or any other ligand, having the effect of suppressing, or otherwise reducing, T cell responses, whether by reducing T cell proliferation or by any other inhibitory mechanism.
  • maximum plasma concentration or “Cmax” means the highest observed concentration of a substance (for example, an immunomudulatory agent) in mammalian plasma after administration of the substance to the mammal.
  • AUC Absolute Under the Curve
  • AUC is the area under the curve in a plot of the concentration of a substance in plasma against time.
  • AUC can be a measure of the integral of the instantaneous concentrations during a time interval and has the units mass ⁇ time/volume, which can also be expressed as molar concentration ⁇ time such as nM ⁇ day.
  • AUC is typically calculated by the trapezoidal method (e.g., linear, linear-log). AUC is usually given for the time interval zero to infinity, and other time intervals are indicated (for example AUC (t 1 ,t 2 ) where t 1 and t 2 are the starting and finishing times for the interval).
  • AUC 0-24h refers to an AUC over a 24-hour period
  • AUC 0-4h refers to an AUC over a 4-hour period.
  • weighted mean AUC is the AUC divided by the time interval over which the time AUC is calculated. For instance, weighted mean AUC 0-24h would represent the AUC 0-24h divided by 24 hours.
  • CI is an interval in which a measurement or trial falls corresponding to a given probability p where p refers to a 90% or 95% CI and are calculated around either an arithmetic mean, a geometric mean, or a least squares mean.
  • a geometric mean is the mean of the natural log-transformed values back-transformed through exponentiation, and the least squares mean may or may not be a geometric mean as well but is derived from the analysis of variance (ANOVA) model using fixed effects.
  • CV coefficient of variation
  • Tmax refers to the observed time for reaching the maximum concentration of a substance in plasma of a mammal after administration of that substance to the mammal.
  • serum or plasma half life refers to the time required for half the quantity of a substance administered to a mammal to be metabolized or eliminated from the serum or plasma of the mammal by normal biological processes.
  • Immune responses can be enhanced using one or more of the immunomodulatory agents described herein.
  • Preferred immunomodulatory agents interfere with or inhibit the interaction between the endogenous ligands of PD-1 and PD-1.
  • the immunomodulatory agent interferes with, inhibits, or blocks PD-L1 (also known as B7-H1), PD-L2 (also known as B7-DC), or both ligands from interacting with PD-1.
  • a preferred immunomodulatory agent interferes with the interaction of both PD-L1 and PD-L2 with PD-1.
  • the PD-1 ligands are inhibited from binding to PD-1 on T cells, B cells, natural killer (NK) cells, monocytes, dendritic cells or macrophages.
  • PD-1 ligands are inhibited from binding to PD-1 on activated T cells.
  • Suitable immunomodulatory agents include, but are not limited to PD-L2, the extracellular domain of PD-L2, fusion proteins of PD-L2, and variants thereof which prevent binding of both PD-L1 and PD-L2 to PD-1.
  • Additional immunomodulatory agents include PD-L1, the extracellular domain of PD-L1, fusion proteins of PD-L1, fragments of PD-L1 and variants thereof which prevent binding of both PD-L1 and PD-L2 to PD-1.
  • the compositions bind to PD-1 without triggering inhibitory signal transduction through PD-1.
  • the immunomodulatory agents increase IFN ⁇ producing cells and decrease Treg cells at a tumor site or pathogen infected area. This decrease in Tregs can increase the number of Th17 cells and the level of IL-17 production, and also reduce the number of PD-1 positive cells.
  • the immunomodulatory agents increase T cell cytotoxicity in a subject, induce a robust immune response in subjects and overcome T cell exhaustion and T cell anergy in the subject.
  • the immunomodulatory agents bind to ligands of PD-1 and interfere with or inhibit the binding of the ligands to PD-1, or bind directly to PD-1 without engaging in signal transduction through PD-1.
  • the immunomodulatory agents bind to ligands of PD-1 and reduce or inhibit the ligands from triggering inhibitory signal transduction through PD-1.
  • the immunomodulatory agents bind directly to PD-1 and block PD-1 inhibitory signal transduction.
  • the immunomodulatory agents can activate T cells by binding to a receptor other than the PD-1 receptor.
  • the immunomodulatory agents can be small molecule antagonists.
  • small molecule refers to small organic compounds having a molecular weight of more than 100 and less than about 2,500 daltons, preferably between 100 and 2000, more preferably between about 100 and about 1250, more preferably between about 100 and about 1000, more preferably between about 100 and about 750, more preferably between about 200 and about 500 daltons.
  • the small molecules often include cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more functional groups.
  • the small molecule antagonists reduce or interfere with PD-1 receptor signal transduction by binding to ligands of PD-1 such as PD-L1 and PD-L2 and prevent the ligand from interacting with PD-1 or by binding directly to PD-1 without triggering signal transduction through PD-1.
  • Additional embodiments include antibodies that bind to PD-L2, PD-L1, PD-1 or B7-1 polypeptides, and variants and/or fragments thereof.
  • the disclosed immunomodulatory agents preferably bind to PD-1, or a ligand thereof, for a period of less than three months, two months, one month, three weeks, two weeks, one week, or 5 days after in vivo administration to a mammal.
  • immunomodulatory agents bind to PD-1 on immune cells and block inhibitory PD-1 signaling by preventing endogenous ligands of PD-1 from interacting with PD-1.
  • PD-1 signal transduction is thought to require binding to PD-1 by a PD-1 ligand (PD-L2 or PD-L1; typically PD-L1) in close proximity to the TCR:MHC complex within the immune synapse. Therefore, proteins, antibodies or small molecules that block inhibitory signal transduction through PD-1 and optionally prevent co-ligation of PD-1 and TCR on the T cell membrane are useful immunomodulatory agents.
  • Representative polypeptide immunomodulatory agents include, but are not limited to, PD-L2 polypeptides, fragments thereof, fusion proteins thereof, and variants thereof.
  • PD-L2 polypeptides that bind to PD-1 and block inhibitory signal transduction through PD-1 are one of the preferred embodiments.
  • Other embodiments include immunomodulatory agents that prevent native ligands of PD-1 from binding and triggering signal transduction.
  • the disclosed PD-L2 polypeptides have reduced or no ability to trigger signal transduction through the PD-1 receptor because there is no co-ligation of the TCR by the peptide-MHC complex in the context of the immune synapse. Because signal transduction through the PD-1 receptor transmits a negative signal that attenuates T-cell activation and T-cell proliferation, inhibiting the PD-1 signal transduction pathway allows cells to be activated that would otherwise be attenuated.
  • Murine PD-L2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • Human PD-L2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • Non-human primate ( Cynomolgus ) PD-L2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • SEQ ID NOs: 1, 3 and 5 each contain a signal peptide.
  • immunomodulatory agents that bind to the PD-1 receptor include, but are not limited to, PD-L1 polypeptides, fragments thereof, fusion proteins thereof, and variants thereof. These immunomodulatory agents bind to and block the PD-1 receptor and have reduced or no ability to trigger inhibitory signal transduction through the PD-1 receptor. In one embodiment, it is believed that the PD-L1 polypeptides have reduced or no ability to trigger signal transduction through the PD-1 receptor because there is no co-ligation of the TCR by the peptide-MHC complex in the context of the immune synapse.
  • Murine PD-L1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • Human PD-L1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • SEQ ID NOs: 7 and 9 each contain a signal peptide.
  • polypeptides include the PD-1 receptor protein, or soluble fragments thereof, fusion proteins thereof, and variants thereof, which can bind to the PD-1 ligands, such as PD-L1 or PD-L2, and prevent binding to the endogenous PD-1 receptor, thereby preventing inhibitory signal transduction.
  • Such fragments also include the soluble ECD portion of the PD-1 protein that optionally includes mutations, such as the A99L mutation, that increases binding to the natural ligands.
  • PD-L1 has also been shown to bind the protein B7.1 (Butte, et al., Immunity, 27(1): 111-122 (2007); Butte, et al., Mol. Immunol. 45: 3567-3572 (2008))). Therefore, B7.1 or soluble fragments thereof, which can bind to the PD-L1 ligand and prevent binding to the endogenous PD-1 receptor, thereby preventing inhibitory signal transduction, are also useful.
  • Murine B7.1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • Human B7.1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • SEQ ID NOs: 11 and 13 each contain a signal peptide.
  • Human PD-1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • Non-human primate ( Cynomolgus ) PD-1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • Murine PD-1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • SEQ ID NOs: 15-17 each contain a signal peptide.
  • polypeptide immunomodulatory agents can be full-length polypeptides, or can be a fragment of a full length polypeptide.
  • a fragment of a polypeptide immunomodulatory agent refers to any subset of the polypeptide that is a shorter polypeptide of the full length protein.
  • a polypeptide immunomodulatory agent that is a fragment of full-length polypeptide typically has at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 98 percent, 99 percent, 100 percent, or even more than 100 percent of the ability to bind its natural ligand(s) as compared to the full-length polypeptide.
  • useful fragments of PD-L2 and PD-L1 are those that retain the ability to bind to PD-1.
  • PD-L2 and PD-L1 fragments typically have at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 98 percent, 99 percent, 100 percent, or even more than 100 percent of the ability to bind to PD-1 as compared to full length PD-L2 and PD-L1.
  • Fragments of polypeptide immunomodulatory agents include soluble fragments.
  • Soluble polypeptide immunomodulatory agent fragments are fragments of polypeptides that may be shed, secreted or otherwise extracted from the producing cells.
  • Soluble fragments of polypeptide immunomodulatory agents include some or all of the extracellular domain of the polypeptide, and lack some or all of the intracellular and/or transmembrane domains.
  • polypeptide immunomodulatory agent fragments include the entire extracellular domain of the immunomodulatory polypeptide. It will be appreciated that the extracellular domain can include 1, 2, 3, 4, or 5 amino acids from the transmembrane domain. Alternatively, the extracellular domain can have 1, 2, 3, 4, or 5 amino acids removed from the C-terminus, N-terminus, or both.
  • the immunomodulatory polypeptides or fragments thereof are expressed from nucleic acids that include sequences that encode a signal sequence.
  • the signal sequence is generally cleaved from the immature polypeptide to produce the mature polypeptide lacking the signal sequence.
  • the signal sequence of immunomodulatory polypeptides can be replaced by the signal sequence of another polypeptide using standard molecule biology techniques to affect the expression levels, secretion, solubility, or other property of the polypeptide.
  • the signal sequence that is used to replace the immunomodulatory polypeptide signal sequence can be any known in the art.
  • the immunomodulatory polypeptide includes the extracellular domain of human PD-L2 or a fragment thereof.
  • the immunomodulatory polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the human amino acid sequence:
  • SEQ ID NO:20 provides the human amino acid sequence of SEQ ID NO:19 without the signal sequence:
  • the immunomodulatory polypeptide includes the IgV domain of human PD-L2.
  • the polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the human amino acid sequence:
  • the immunomodulatory polypeptide includes the extracellular domain of non-human primate ( Cynomolgus ) PD-L2 or a fragment thereof.
  • the polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the non-human primate amino acid sequence:
  • SEQ ID NO:25 provides the non-human primate amino acid sequence of SEQ ID NO:24 without the signal sequence:
  • the immunomodulatory polypeptide includes the IgV domain of non-human primate PD-L2.
  • the polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the non-human primate amino acid sequence:
  • the immunomodulatory polypeptide includes the extracellular domain of murine PD-L2 or a fragment thereof.
  • the immunomodulatory polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the murine amino acid sequence:
  • SEQ ID NO:30 provides the murine amino acid sequence of SEQ ID NO:29 without the signal sequence:
  • the immunomodulatory polypeptide includes the IgV domain of murine PD-L2.
  • the polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the murine amino acid sequence:
  • the PD-L2 extracellular domain can contain one or more amino acids from the signal peptide or the putative transmembrane domain of PD-L2. During secretion, the number of amino acids of the signal peptide that are cleaved can vary depending on the expression system and the host. Additionally, fragments of PD-L2 extracellular domain missing one or more amino acids from the C-terminus or the N-terminus that retain the ability to bind to PD-1 can be used.
  • Exemplary suitable fragments of murine PD-L2 that can be used include, but are not limited to, the following:
  • Additional suitable fragments of murine PD-L2 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:1, or may be any signal peptide known in the art.
  • Exemplary suitable fragments of human PD-L2 that can be used include, but are not limited to, the following:
  • Additional suitable fragments of human PD-L2 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:3, or may be any signal peptide known in the art.
  • Suitable fragments of non-human primate PD-L2 include, but are not limited to, the following:
  • non-human primate PD-L2 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:5, or may be any signal peptide known in the art.
  • PD-L2 proteins also include a PD-1 binding fragment of amino acids 20-121 of SEQ ID NO:3 (human full length), or amino acids 1-102 of SEQ ID NO:24 (extracellular domain or ECD).
  • the PD-L2 polypeptide or PD-1 binding fragment also incorporates amino acids WDYKY at residues 110-114 of SEQ ID NO:3 or WDYKY at residues 91-95 of SEQ ID NO:24.
  • such a PD-1 binding fragment comprises at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 75, at least 80, at least 85, at least 90, at least 95, or at least 100 contiguous amino acids of the sequence of amino acids 20-121 of SEQ ID NO:3, wherein a preferred embodiment of each such PD-1 binding fragment would comprise as a sub-fragment the amino acids WDYKY found at residues 110-114 of SEQ ID NO:3 or WDYKY at residues 91-95 of SEQ ID NO:24.
  • the variant PD-L1 polypeptide includes all or part of the extracellular domain.
  • the amino acid sequence of a representative extracellular domain of human PD-L1 can have 80%, 85%, 90%, 95%, or 99% sequence identity to
  • the transmembrane domain of PD-L1 begins at amino acid position 239 of SEQ ID NO:9. It will be appreciated that the suitable fragments of PD-L1 can include 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 contiguous amino acids of a signal peptide sequence, for example SEQ ID NO:9 or variants thereof, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids of the transmembrane domain, or combinations thereof.
  • the extracellular domain of murine PD-L1 has the following amino acid sequence
  • the transmembrane domain of the murine PD-L1 begins at amino acid position 240 of SEQ ID NO:7.
  • the PD-L1 polypeptide includes the extracellular domain of murine PD-L1 with 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 contiguous amino acids of a signal peptide, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 contiguous amino acids of the transmembrane domain, or combinations thereof.
  • the immunomodulatory polypeptide includes the extracellular domain of murine B7.1 or a fragment thereof.
  • the immunomodulatory polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the murine amino acid sequence:
  • SEQ ID NO:37 provides the murine amino acid sequence of SEQ ID NO:36 without the signal sequence:
  • the immunomodulatory polypeptide includes the IgV domain of murine B7.1.
  • the polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the murine amino acid sequence:
  • the immunomodulatory polypeptide includes the extracellular domain of human B7.1 or a fragment thereof.
  • the immunomodulatory polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the human amino acid sequence:
  • SEQ ID NO:41 provides the human amino acid sequence of SEQ ID NO:40 without the signal sequence:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:41 or SEQ ID NO:42 lacking between 1 and 10 C-terminal amino acids.
  • the immunomodulatory polypeptide includes the IgV domain of human B7.1.
  • the polypeptide can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the human amino acid sequence:
  • Exemplary suitable fragments of murine B7.1 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of murine B7.1 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:11, or may be any signal peptide known in the art.
  • Exemplary suitable fragments of human B7.1 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:
  • Additional suitable fragments of human B7.1 include, but are not limited to, the following:
  • the signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:13, or may be any signal peptide known in the art.
  • the immunomodulatory polypeptide includes the extracellular domain of human PD-1 or a fragment thereof.
  • the predicted extracellular domain includes a sequence from about amino acid 21 to about amino acid 170 of Swissport Accession No. Q15116.
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the human amino acid sequence:
  • the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the protein from a host during manufacture.
  • the immunomodulatory polypeptide includes the IgV domain of human PD-1, for example amino acids 35-145.
  • the immunomodulatory polypeptide includes the extracellular domain of non-human primate ( Cynomolgus ) PD-1 or a fragment thereof.
  • Non-human primate ( Cynomolgus ) PD-1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • SEQ ID NO:16 contains a signal sequence from amino acids 1 to 20. The signal sequence will be removed in the mature protein. Additionally, signal peptides from other organisms can be used to enhance the secretion of the protein from a host during manufacture.
  • the immunomodulatory polypeptide includes the IgV domain of non-human primate PD-1.
  • the immunomodulatory polypeptide includes the extracellular domain of murine PD-1 or a fragment thereof.
  • the immunomodulatory polypeptide can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to the murine amino acid sequence:
  • the PD-1 extracellular domain can contain one or more amino acids from the signal peptide or the putative transmembrane domain of PD-1. During secretion, the number of amino acids of the signal peptide that are cleaved can vary depending on the expression system and the host. Additionally, fragments of PD-1 extracellular domain missing one or more amino acids from the C-terminus or the N-terminus can be used.
  • Exemplary suitable fragments of murine or human PD-1 that can be used include, but are not limited to, the following:
  • Additional immunomodulatory agents include PD-L2 and PD-L1, polypeptides and fragments and fusions thereof that are mutated so that they have increased binding to PD-1 under physiological conditions, or have decreased ability to promote signal transduction through the PD-1 receptor.
  • One embodiment provides isolated PD-L2 and PD-L1 polypeptides that contain one or more amino acid substitutions, deletions, or insertions that inhibit or reduce the ability of the polypeptide to activate PD-1 and transmit an inhibitory signal to a T cell compared to non-mutated PD-L2 or PD-L1.
  • the PD-L2 and PD-L1 polypeptides may be of any species of origin.
  • the PD-L2 or PD-L1 polypeptide is from a mammalian species.
  • the PD-L2 or PD-L1 polypeptide is of human or non-human primate origin.
  • the variant PD-L2 or PD-L1 polypeptide has the same binding activity to PD-1 as wildtype or non-variant PD-L2 or PD-L1 but does not have or has less than 10% ability to stimulate signal transduction through the PD-1 receptor relative to a non-mutated PD-L2 or PD-L1 polypeptide.
  • the variant PD-L2 or PD-L1 polypeptide has 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% or more binding activity to PD-1 than wildtype PD-L2 or PD-L1 and has less than 50%, 40%, 30%, 20%, or 10% of the ability to stimulate signal transduction through the PD-1 receptor relative to a non-mutated PD-L2 or PD-L1 polypeptide.
  • a variant PD-L2 or PD-L1 polypeptide can have any combination of amino acid substitutions, deletions or insertions.
  • isolated PD-L2 or PD-L1 variant polypeptides have a number of amino acid alterations such that their amino acid sequence shares at least 60, 70, 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with an amino acid sequence of a wild type PD-L2 or PD-L1 polypeptide.
  • PD-L1 variant polypeptides have an amino acid sequence sharing at least 60, 70, 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with the amino acid sequence of a wild type murine, non-human primate or human PD-L2 or PD-L1 polypeptide.
  • Percent sequence identity can be calculated using computer programs or direct sequence comparison.
  • Preferred computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package, FASTA, BLASTP, and TBLASTN (see, e.g., D. W. Mount, 2001, Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).
  • the BLASTP and TBLASTN programs are publicly available from NCBI and other sources.
  • the well-known Smith Waterman algorithm may also be used to determine identity.
  • a program useful with these parameters is publicly available as the “gap” program (Genetics Computer Group, Madison, Wis.). The aforementioned parameters are the default parameters for polypeptide comparisons (with no penalty for end gaps).
  • Amino acid substitutions in PD-L2 or PD-L1 polypeptides may be “conservative” or “non-conservative”.
  • “conservative” amino acid substitutions are substitutions wherein the substituted amino acid has similar structural or chemical properties, and “non-conservative” amino acid substitutions are those in which the charge, hydrophobicity, or bulk of the substituted amino acid is significantly altered. Non-conservative substitutions will differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • conservative amino acid substitutions include those in which the substitution is within one of the five following groups: 1) small aliphatic, nonpolar or slightly polar residues (Ala, Ser, Thr, Pro, Gly); 2) polar, negatively charged residues and their amides (Asp, Asn, Glu, Gln); polar, positively charged residues (His, Arg, Lys); large aliphatic, nonpolar residues (Met, Leu, Ile, Val, Cys); and large aromatic resides (Phe, Tyr, Trp).
  • non-conservative amino acid substitutions are those where 1) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl, or alanyl; 2) a cysteine or proline is substituted for (or by) any other residue; 3) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or 4) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) a residue that does not have a side chain, e.g., glycine.
  • a hydrophilic residue e.g., seryl or threon
  • substitutions at the recited amino acid positions can be made using any amino acid or amino acid analog.
  • the substitutions at the recited positions can be made with any of the naturally-occurring amino acids (e.g., alanine, aspartic acid, asparagine, arginine, cysteine, glycine, glutamic acid, glutamine, histidine, leucine, valine, isoleucine, lysine, methionine, proline, threonine, serine, phenylalanine, tryptophan, or tyrosine).
  • the naturally-occurring amino acids e.g., alanine, aspartic acid, asparagine, arginine, cysteine, glycine, glutamic acid, glutamine, histidine, leucine, valine, isoleucine, lysine, methionine, proline, threonine, serine, phenylalanine, tryptophan, or
  • variant PD-L2 and PD-L1 polypeptides and fragments are provided in Tables 1 and 2 of Example 1 below. These tables indicate amino acid positions that can be mutated to cause increased of decreased binding of these polypeptides to PD-1, as well as the effect of specific amino acid variations on binding to PD-1, as determined by FACS analysis and ELISA.
  • variant PD-L2 polypeptides contain a substitution at S58 that results in increase binding to PD-1.
  • the S58 substitution in PD-L2 is serine to tyrosine.
  • variant PD-L1 polypeptides contain a substitution at E58, A69 and/or C113 that results in increase binding to PD-1. Exemplary substitutions at these positions include, but are not limited to E568S, A69F and C113Y.
  • the disclosed isolated variant PD-L2 or PD-L1 polypeptides are antagonists of PD-1 and bind to and block PD-1 without triggering signal transduction through PD-1.
  • PD-1 signal transduction By preventing the attenuation of T cells by PD-1 signal transduction, more T cells are available to be activated.
  • Preventing T cell inhibition enhances T cell responses, enhances proliferation of T cells, enhances production and/or secretion of cytokines by T cells, stimulates differentiation and effector functions of T cells or promotes survival of T cells relative to T cells not contacted with a PD-1 antagonist.
  • the T cell response that results from the interaction typically is greater than the response in the absence of the PD-1 antagonist polypeptide.
  • the response of the T cell in the absence of the PD-1 antagonist polypeptide can be no response or can be a response significantly lower than in the presence of the PD-1 antagonist polypeptide.
  • the response of the T cell can be an effector (e.g., CTL or antibody-producing B cell) response, a helper response providing help for one or more effector (e.g., CTL or antibody-producing B cell) responses, or a suppressive response.
  • Methods for measuring the binding affinity between two molecules are well known in the art.
  • Methods for measuring the binding affinity of variant PD-L2 or PD-L1 polypeptides for PD-1 include, but are not limited to, fluorescence activated cell sorting (FACS), surface plasmon resonance, fluorescence anisotropy, affinity chromatography and affinity selection-mass spectrometry.
  • FACS fluorescence activated cell sorting
  • surface plasmon resonance fluorescence anisotropy
  • affinity chromatography affinity selection-mass spectrometry
  • variant polypeptides disclosed herein can be full-length polypeptides, or can be a fragment of a full length polypeptide.
  • Preferred fragments include all or part of the extracellular domain of effective to bind to PD-1.
  • a fragment refers to any subset of the polypeptide that is a shorter polypeptide of the full length protein.
  • Additional immunomodulatory agents include B7.1 and PD-1 polypeptides and fragments thereof that are modified so that they retain the ability to bind to PD-L2 and/or PD-L1 under physiological conditions, or have increased binding to PD-L2 and/or PD-L1.
  • Such variant PD-1 proteins include the soluble ECD portion of the PD-1 protein that includes mutations, such as the A99L mutation, that increases binding to the natural ligands (Molnar et al., Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2, PNAS, Vol. 105, pp. 10483-10488 (29 Jul. 2008)).
  • the B7.1 and PD-1 polypeptides may be of any species of origin.
  • the B7.1 or PD-1 polypeptide is from a mammalian species.
  • the B7.1 or PD-1 polypeptide is of human or non-human primate origin.
  • a variant B7.1 or PD-1 polypeptide can have any combination of amino acid substitutions, deletions or insertions.
  • isolated B7.1 or PD-1 variant polypeptides have an integer number of amino acid alterations such that their amino acid sequence shares at least 60, 70, 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with an amino acid sequence of a wild type B7.1 or PD-1 polypeptide.
  • B7.1 or PD-1 variant polypeptides have an amino acid sequence sharing at least 60, 70, 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with the amino acid sequence of a wild type murine, non-human primate or human B7.1 or PD-1 polypeptide.
  • Amino acid substitutions in B7.1 or PD-1 polypeptides may be “conservative” or “non-conservative”. Conservative and non-conservative substitutions are described above.
  • the disclosed isolated variant B7.1 or PD-1 polypeptides are antagonists of PD-1 and bind to PD-L2 and/or PD-L1, thereby blocking their binding to endogenous PD-1.
  • PD-1 signal transduction By preventing the attenuation of T cells by PD-1 signal transduction, more T cells are available to be activated.
  • Preventing T cell inhibition enhances T cell responses, enhances proliferation of T cells, enhances production and/or secretion of cytokines by T cells, stimulates differentiation and effector functions of T cells or promotes survival of T cells relative to T cells not contacted with a immunomodulatory agent.
  • the T cell response that results from the interaction typically is greater than the response in the absence of the immunomodulatory agent.
  • the response of the T cell in the absence of the immunomodulatory agent can be no response or can be a response significantly lower than in the presence of the immunomodulatory agent.
  • the response of the T cell can be an effector (e.g., CTL or antibody-producing B cell) response, a helper response providing help for one or more effector (e.g., CTL or antibody-producing B cell) responses, or a suppressive response.
  • the variant polypeptides can be full-length polypeptides, or can be a fragment of a full length polypeptide.
  • Preferred fragments include all or part of the extracellular domain of effective to bind to PD-L2 and/or PD-L1.
  • a fragment refers to any subset of the polypeptide that is a shorter polypeptide of the full length protein.
  • the immunomodulatory agents are fusion proteins that contain a first polypeptide domain and a second domain.
  • the fusion protein can either bind to a T cell receptor and/or preferably the fusion protein can bind to and block inhibitory signal transduction into the T cell, for example by competitively binding to PD-1.
  • the disclosed compositions effectively block signal transduction through PD-1.
  • Suitable polypeptides include variant polypeptides and/or fragments thereof that have increased or decreased binding affinity to inhibitory T cell signal transduction receptors such as PD-1.
  • the fusion proteins also optionally contain a peptide or polypeptide linker domain that separates the first polypeptide domain from the antigen-binding domain.
  • Fusion proteins disclosed herein are of formula I:
  • N represents the N-terminus of the fusion protein
  • C represents the C-terminus of the fusion protein
  • R 1 is a PD-L2, PD-L1, B7.1, or PD-1 polypeptide or a antigen-binding targeting domain
  • R 2 is an optional peptide/polypeptide linker domain
  • R 3 is a targeting domain or a antigen-binding targeting domain, wherein “R 3 ” is a polypeptide domain when “R 1 ” is a antigen-binding targeting domain, and “R 3 ” is a antigen-binding targeting domain wherein “R 1 ” is a PD-L2, PD-L1, B7.1, or PD-1 polypeptide, fragment or variant thereof.
  • R 1 is a PD-L2, PD-L1, B7.1, or PD-1 polypeptide domain
  • R 3 is a antigen-binding targeting domain or a dimerization domain.
  • the fusion proteins additionally contain a domain that functions to dimerize or multimerize two or more fusion proteins.
  • the domain that functions to dimerize or multimerize the fusion proteins can either be a separate domain, or alternatively can be contained within one of one of the other domains (PD-L2, PD-L1, B7.1, or PD-1 polypeptide domain, antigen-binding targeting domain, or peptide/polypeptide linker domain) of the fusion protein.
  • the fusion proteins can be dimerized or multimerized. Dimerization or multimerization can occur between or among two or more fusion proteins through dimerization or multimerization domains. Alternatively, dimerization or multimerization of fusion proteins can occur by chemical crosslinking The dimers or multimers that are formed can be homodimeric/homomultimeric or heterodimeric/heteromultimeric.
  • the modular nature of the fusion proteins and their ability to dimerize or multimerize in different combinations provides a wealth of options for targeting molecules that function to enhance an immune response to the tumor cell microenvironment or to immune regulatory tissues.
  • the fusion proteins also contain antigen-binding targeting domains.
  • the targeting domains bind to antigens, ligands or receptors that are specific to immune tissue involved in the regulation of T cell activation in response to infectious disease causing agents, cancer, or tumor sites.
  • the fusion proteins contain a domain that specifically binds to an antigen that is expressed by tumor cells.
  • the antigen expressed by the tumor may be specific to the tumor, or may be expressed at a higher level on the tumor cells as compared to non-tumor cells.
  • Antigenic markers such as serologically defined markers known as tumor associated antigens, which are either uniquely expressed by cancer cells or are present at markedly higher levels (e.g., elevated in a statistically significant manner) in subjects having a malignant condition relative to appropriate controls, are contemplated for use in certain embodiments.
  • Tumor-associated antigens may include, for example, cellular oncogene-encoded products or aberrantly expressed proto-oncogene-encoded products (e.g., products encoded by the neu, ras, trk, and kit genes), or mutated forms of growth factor receptor or receptor-like cell surface molecules (e.g., surface receptor encoded by the c-erb B gene).
  • Other tumor-associated antigens include molecules that may be directly involved in transformation events, or molecules that may not be directly involved in oncogenic transformation events but are expressed by tumor cells (e.g., carcinoembryonic antigen, CA-125, melonoma associated antigens, etc.) (see, e.g., U.S. Pat. No.
  • Genes that encode cellular tumor associated antigens include cellular oncogenes and proto-oncogenes that are aberrantly expressed.
  • cellular oncogenes encode products that are directly relevant to the transformation of the cell, and because of this, these antigens are particularly preferred targets for immunotherapy.
  • An example is the tumorigenic neu gene that encodes a cell surface molecule involved in oncogenic transformation.
  • Other examples include the ras, kit, and trk genes.
  • the products of proto-oncogenes may be aberrantly expressed (e.g., overexpressed), and this aberrant expression can be related to cellular transformation.
  • the product encoded by proto-oncogenes can be targeted.
  • Some oncogenes encode growth factor receptor molecules or growth factor receptor-like molecules that are expressed on the tumor cell surface.
  • An example is the cell surface receptor encoded by the c-erbB gene.
  • Other tumor-associated antigens may or may not be directly involved in malignant transformation. These antigens, however, are expressed by certain tumor cells and may therefore provide effective targets.
  • Some examples are carcinoembryonic antigen (CEA), CA 125 (associated with ovarian carcinoma), and melanoma specific antigens.
  • tumor associated antigens are detectable in samples of readily obtained biological fluids such as serum or mucosal secretions.
  • One such marker is CA125, a carcinoma associated antigen that is also shed into the bloodstream, where it is detectable in serum (e.g., Bast, et al., N. Eng. J. Med., 309:883 (1983); Lloyd, et al., Int. J. Canc., 71:842 (1997).
  • CA125 levels in serum and other biological fluids have been measured along with levels of other markers, for example, carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC), tissue polypeptide specific antigen (TPS), sialyl TN mucin (STN), and placental alkaline phosphatase (PLAP), in efforts to provide diagnostic and/or prognostic profiles of ovarian and other carcinomas (e.g., Sarandakou, et al., Acta Oncol., 36:755 (1997); Sarandakou, et al., Eur. J. Gynaecol.
  • CEA carcinoembryonic antigen
  • SCC squamous cell carcinoma antigen
  • TPS tissue polypeptide specific antigen
  • STN sialyl TN mucin
  • PLAP placental alkaline phosphatase
  • Elevated serum CA125 may also accompany neuroblastoma (e.g., Hirokawa, et al., Surg. Today, 28:349 (1998), while elevated CEA and SCC, among others, may accompany colorectal cancer (Gebauer, et al., Anticancer Res., 17(4B):2939 (1997)).
  • mesothelin is detectable only as a cell-associated tumor marker and has not been found in soluble form in serum from ovarian cancer patients, or in medium conditioned by OVCAR-3 cells (Chang, et al., Int. J. Cancer, 50:373 (1992)).
  • Structurally related human mesothelin polypeptides also include tumor-associated antigen polypeptides such as the distinct mesothelin related antigen (MRA) polypeptide, which is detectable as a naturally occurring soluble antigen in biological fluids from patients having malignancies (see WO 00/50900).
  • MRA mesothelin related antigen
  • a tumor antigen may include a cell surface molecule.
  • Tumor antigens of known structure and having a known or described function include the following cell surface receptors: HER1 (GenBank Accession No. U48722), HER2 (Yoshino, et al., J. Immunol., 152:2393 (1994); Disis, et al., Canc. Res., 54:16 (1994); GenBank Acc. Nos. X03363 and M17730), HER3 (GenBank Acc. Nos. U29339 and M34309), HER4 (Plowman, et al., Nature, 366:473 (1993); GenBank Acc. Nos.
  • EGFR epidermal growth factor receptor
  • vascular endothelial cell growth factor GenBank No. M32977
  • vascular endothelial cell growth factor receptor GenBank Acc. Nos. AF022375, 1680143, U48801 and X62568
  • insulin-like growth factor-I GenBank Acc. Nos. X00173, X56774, X56773, X06043, European Patent No. GB 2241703
  • insulin-like growth factor-II GeneBank Acc. Nos.
  • X03562, X00910, M17863 and M17862), transferrin receptor (Trowbridge and Omary, Proc. Nat. Acad. USA, 78:3039 (1981); GenBank Acc. Nos. X01060 and M11507), estrogen receptor (GenBank Acc. Nos. M38651, X03635, X99101, U47678 and M12674), progesterone receptor (GenBank Acc. Nos. X51730, X69068 and M15716), follicle stimulating hormone receptor (FSH-R) (GenBank Acc. Nos. Z34260 and M65085), retinoic acid receptor (GenBank Acc. Nos.
  • any of the CTA class of receptors including in particular HOM-MEL-40 antigen encoded by the SSX2 gene (GenBank Acc. Nos. X86175, U90842, U90841 and X86174), carcinoembryonic antigen (CEA, Gold and Freedman, J. Exp. Med., 121:439 (1985); GenBank Acc. Nos. M59710, M59255 and M29540), and PyLT (GenBank Acc. Nos.
  • PSA prostate surface antigen
  • ⁇ -human chorionic gonadotropin ⁇ -HCG ⁇ -human chorionic gonadotropin ⁇ -HCG
  • CT antigens of interest include antigens regarded in the art as “cancer/testis” (CT) antigens that are immunogenic in subjects having a malignant condition (Scanlan, et al., Cancer Immun., 4:1 (2004)).
  • CT antigens include at least 19 different families of antigens that contain one or more members and that are capable of inducing an immune response, including but not limited to MAGEA (CT1); BAGE (CT2); MAGEB (CT3); GAGE (CT4); SSX (CT5); NY-ESO-1 (CT6); MAGEC(CT7); SYCP1 (C8); SPANXB1 (CT11.2); NA88 (CT18); CTAGE (CT21); SPA17 (CT22); OY-TES-1 (CT23); CAGE (CT26); HOM-TES-85 (CT28); HCA661 (CT30); NY-SAR-35 (CT38); FATE (CT43); and TPTE (CT44).
  • CT1 MAGEA
  • CT2 BAGE
  • Additional tumor antigens that can be targeted include, but not limited to, alpha-actinin-4, Bcr-Abl fusion protein, Casp-8, beta-catenin, cdc27, cdk4, cdkn2a, coa-1, dek-can fusion protein, EF2, ETV6-AML1 fusion protein, LDLR-fucosyltransferaseAS fusion protein, HLA-A2, HLA-A11, hsp70-2, KIAAO205, Mart2, Mum-1, 2, and 3, neo-PAP, myosin class I, OS-9, pm1-RAR ⁇ fusion protein, PTPRK, K-ras, N-ras, Triosephosphate isomeras, Bage-1, Gage 3,4,5,6,7, GnTV, Herv-K-mel, Lü-1, Mage-A1,2,3,4,6,10,12, Mage-C2, NA
  • Protein therapeutics can be ineffective in treating tumors because they are inefficient at tumor penetration.
  • Tumor-associated neovasculature provides a readily accessible route through which protein therapeutics can access the tumor.
  • the fusion proteins contain a domain that specifically binds to an antigen that is expressed by neovasculature associated with a tumor.
  • the antigen may be specific to tumor neovasculature or may be expressed at a higher level in tumor neovasculature when compared to normal vasculature.
  • Exemplary antigens that are over-expressed by tumor-associated neovasculature as compared to normal vasculature include, but are not limited to, VEGF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and ⁇ 5 ⁇ 3 integrin/vitronectin.
  • Other antigens that are over-expressed by tumor-associated neovasculature as compared to normal vasculature are known to those of skill in the art and are suitable for targeting by the disclosed fusion proteins.
  • the fusion proteins contain a domain that specifically binds to an antigen that is expressed by immune tissue involved in the regulation of T cell activation in response to infectious disease causing agents.
  • disease targeting domains are ligands that bind to cell surface antigens or receptors that are specifically expressed on diseased cells or are overexpressed on diseased cells as compared to normal tissue. Diseased cells also secrete a large number of ligands into the microenvironment that affect growth and development. Receptors that bind to ligands secreted by diseased cells, including, but not limited to growth factors, cytokines and chemokines, including the chemokines provided above, are suitable for use in the disclosed fusion proteins.
  • Ligands secreted by diseased cells can be targeted using soluble fragments of receptors that bind to the secreted ligands. Soluble receptor fragments are fragments polypeptides that may be shed, secreted or otherwise extracted from the producing cells and include the entire extracellular domain, or fragments thereof.
  • disease-associated targeting domains are single polypeptide antibodies that bind to cell surface antigens or receptors that are specifically expressed on diseased cells or are overexpressed on diseased cells as compared to normal tissue.
  • disease or disease-associated targeting domains are Fc domains of immunoglobulin heavy chains that bind to Fc receptors expressed on diseased cells.
  • the Fc region a includes the polypeptides containing the constant region of an antibody excluding the first constant region immunoglobulin domain.
  • Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM.
  • the Fc domain is derived from a human or murine immunoglobulin.
  • the Fc domain is derived from human IgG1 or murine IgG2a including the C H 2 and C H 3 regions.
  • the hinge, C H 2 and C H 3 regions of a human immunoglobulin C ⁇ 1 chain are encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • the hinge, C H 2 and C H 3 regions of a human immunoglobulin C ⁇ 1 chain encoded by SEQ ID NO:44 has the following amino acid sequence:
  • EPKSCDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF 60 NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT 120 ISKAKGQPRE PQVYTLPPSR DELTKQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP 180 PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK 232
  • the Fc domain of a human immunoglobulin C ⁇ 1 chain has at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • the hinge, C H 2 and C H 3 regions of a murine immunoglobulin C ⁇ 2a chain are encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • the hinge, C H 2 and C H 3 regions of a murine immunoglobulin C ⁇ 2a chain encoded by SEQ ID NO:46 has the following amino acid sequence:
  • the Fc domain may contain one or more amino acid insertions, deletions or substitutions that enhance binding to specific Fc receptors that specifically expressed on tumors or tumor-associated neovasculature or are overexpressed on tumors or tumor-associated neovasculature relative to normal tissue.
  • Suitable amino acid substitutions include conservative and non-conservative substitutions, as described above.
  • rituximab a chimeric mouse/human IgG1 monoclonal antibody against CD20
  • rituximab a chimeric mouse/human IgG1 monoclonal antibody against CD20
  • Waldenstrom's macroglobulinemia correlated with the individual's expression of allelic variants of Fc ⁇ receptors with distinct intrinsic affinities for the Fc domain of human IgG1.
  • Fc ⁇ RIIIA low affinity activating Fc receptor CD16A
  • the Fc domain may contain one or more amino acid insertions, deletions or substitutions that reduce binding to the low affinity inhibitory Fc receptor CD32B (Fc ⁇ RIIB) and retain wild-type levels of binding to or enhance binding to the low affinity activating Fc receptor CD16A (Fc ⁇ RIIIA).
  • the Fc domain contains amino acid insertions, deletions or substitutions that enhance binding to CD16A.
  • a large number of substitutions in the Fc domain of human IgG1 that increase binding to CD16A and reduce binding to CD32B are known in the art and are described in Stavenhagen, et al., Cancer Res., 57(18):8882-90 (2007).
  • Exemplary variants of human IgG1 Fc domains with reduced binding to CD32B and/or increased binding to CD16A contain F243L, R929P, Y300L, V3051 or P296L substitutions. These amino acid substitutions may be present in a human IgG1 Fc domain in any combination.
  • the human IgG1 Fc domain variant contains a F243L, R929P and Y300L substitution.
  • the human IgG1 Fc domain variant contains a F243L, R929P, Y300L, V305I and P296L substitution.
  • disease or disease-associated neovasculature targeting domains are polypeptides that provide a signal for the posttranslational addition of a glycosylphosphatidylinositol (GPI) anchor.
  • GPI anchors are glycolipid structures that are added posttranslationally to the C-terminus of many eukaryotic proteins. This modification anchors the attached protein in the outer leaflet of cell membranes.
  • GPI anchors can be used to attach T cell receptor binding domains to the surface of cells for presentation to T cells.
  • the GPI anchor domain is C-terminal to the T cell receptor binding domain.
  • the GPI anchor domain is a polypeptide that signals for the posttranslational addition addition of a GPI anchor when the polypeptide is expressed in a eukaryotic system.
  • Anchor addition is determined by the GPI anchor signal sequence, which consists of a set of small amino acids at the site of anchor addition (the ⁇ site) followed by a hydrophilic spacer and ending in a hydrophobic stretch (Low, FASEB J., 3:1600-1608 (1989)). Cleavage of this signal sequence occurs in the ER before the addition of an anchor with conserved central components (Low, FASEB J., 3:1600-1608 (1989)) but with variable peripheral moieties (Homans et al., Nature, 333:269-272 (1988)).
  • the C-terminus of a GPI-anchored protein is linked through a phosphoethanolamine bridge to the highly conserved core glycan, mannose( ⁇ 1-2)mannose( ⁇ 1-6)mannose( ⁇ 1-4)glucosamine( ⁇ 1-6)myo-inositol.
  • a phospholipid tail attaches the GPI anchor to the cell membrane.
  • the glycan core can be variously modified with side chains, such as a phosphoethanolamine group, mannose, galactose, sialic acid, or other sugars. The most common side chain attached to the first mannose residue is another mannose.
  • lipid anchor of the phosphoinositol ring is a diacylglycerol, an alkylacylglycerol, or a ceramide.
  • the lipid species vary in length, ranging from 14 to 28 carbons, and can be either saturated or unsaturated.
  • GPI anchors also contain an additional fatty acid, such as palmitic acid, on the 2-hydroxyl of the inositol ring. This extra fatty acid renders the GPI anchor resistant to cleavage by PI-PLC.
  • GPI anchor attachment can be achieved by expression of a fusion protein containing a GPI anchor domain in a eukaryotic system capable of carrying out GPI posttranslational modifications.
  • GPI anchor domains can be used as the tumor or tumor vasculature targeting domain, or can be additionally added to fusion proteins already containing separate tumor or tumor vasculature targeting domains.
  • GPI anchor moieties are added directly to isolated T cell receptor binding domains through an in vitro enzymatic or chemical process.
  • GPI anchors can be added to polypeptides without the requirement for a GPI anchor domain.
  • GPI anchor moieties can be added to fusion proteins described herein having a T cell receptor binding domain and a tumor or tumor vasculature targeting domain.
  • GPI anchors can be added directly to T cell receptor binding domain polypeptides without the requirement for fusion partners encoding tumor or tumor vasculature targeting domains.
  • Fusion proteins optionally contain a peptide or polypeptide linker domain that separates the costimulatory polypeptide domain from the antigen-binding targeting domain.
  • the linker domain contains the hinge region of an immunoglobulin.
  • the hinge region is derived from a human immunoglobulin. Suitable human immunoglobulins that the hinge can be derived from include IgG, IgD and IgA. In a preferred embodiment, the hinge region is derived from human IgG.
  • the linker domain contains a hinge region of an immunoglobulin as described above, and further includes one or more additional immunoglobulin domains.
  • the additional domain includes the Fc domain of an immunoglobulin.
  • the Fc region as used herein includes the polypeptides containing the constant region of an antibody excluding the first constant region immunoglobulin domain.
  • Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM.
  • the Fc domain is derived from a human immunoglobulin.
  • the Fc domain is derived from human IgG including the C H 2 and C H 3 regions.
  • the linker domain contains a hinge region of an immunoglobulin and either the C H 1 domain of an immunoglobulin heavy chain or the C L domain of an immunoglobulin light chain.
  • the C H 1 or C L domain is derived from a human immunoglobulin.
  • the C L domain may be derived from either a ⁇ light chain or a ⁇ light chain.
  • the C H 1 or C L domain is derived from human IgG.
  • Amino acid sequences of immunoglobulin hinge regions and other domains are well known in the art.
  • Suitable peptide/polypeptide linker domains include naturally occurring or non-naturally occurring peptides or polypeptides.
  • Peptide linker sequences are at least 2 amino acids in length.
  • the peptide or polypeptide domains are flexible peptides or polypeptides.
  • a “flexible linker” refers to a peptide or polypeptide containing two or more amino acid residues joined by peptide bond(s) that provides increased rotational freedom for two polypeptides linked thereby than the two linked polypeptides would have in the absence of the flexible linker. Such rotational freedom allows two or more antigen binding sites joined by the flexible linker to each access target antigen(s) more efficiently.
  • Exemplary flexible peptides/polypeptides include, but are not limited to, the amino acid sequences Gly-Ser, Gly-Ser-Gly-Ser (SEQ ID NO:51), Ala-Ser, Gly-Gly-Gly-Ser (SEQ ID NO:52), (Gly 4 -Ser) 3 (SEQ ID NO:53), and (Gly 4 -Ser) 4 (SEQ ID NO:54). Additional flexible peptide/polypeptide sequences are well known in the art.
  • the fusion proteins optionally contain a dimerization or multimerization domain that functions to dimerize or multimerize two or more fusion proteins.
  • the domain that functions to dimerize or multimerize the fusion proteins can either be a separate domain, or alternatively can be contained within one of the other domains (T cell costimulatory/coinhibitory receptor binding domain, tumor/tumor neovasculature antigen-binding domain, or peptide/polypeptide linker domain) of the fusion protein.
  • a “dimerization domain” is formed by the association of at least two amino acid residues or of at least two peptides or polypeptides (which may have the same, or different, amino acid sequences).
  • the peptides or polypeptides may interact with each other through covalent and/or non-covalent association(s).
  • Preferred dimerization domains contain at least one cysteine that is capable of forming an intermolecular disulfide bond with a cysteine on the partner fusion protein.
  • the dimerization domain can contain one or more cysteine residues such that disulfide bond(s) can form between the partner fusion proteins.
  • dimerization domains contain one, two or three to about ten cysteine residues.
  • the dimerization domain is the hinge region of an immunoglobulin.
  • the dimerization domain is contained within the linker peptide/polypeptide of the fusion protein.
  • Additional exemplary dimerization domain can be any known in the art and include, but not limited to, coiled coils, acid patches, zinc fingers, calcium hands, a C H 1-C L pair, an “interface” with an engineered “knob” and/or “protruberance” as described in U.S. Pat. No. 5,821,333, leucine zippers (e.g., from jun and/or fos) (U.S. Pat. No.
  • SH2 src homology 2
  • SH3 src Homology 3
  • PTB phosphotyrosine binding
  • EH, Lim an isoleucine zipper, a receptor dimer pair (e.g., interleukin-8 receptor (IL-8R); and integrin heterodimers such as LFA-1 and GPIIIb/IIIa), or the dimerization region(s) thereof, dimeric ligand polypeptides (e.g. nerve growth factor (NGF), neurotrophin-3 (NT-3), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), VEGF-C, VEGF-D, PDGF members, and brain-derived neurotrophic factor (BDNF) (Arakawa, et al., J. Biol.
  • NGF nerve growth factor
  • NT-3 neurotrophin-3
  • IL-8 interleukin-8
  • VEGF vascular endothelial growth factor
  • VEGF-C vascular endothelial growth factor
  • VEGF-D vascular endothelial growth factor
  • BDNF brain-derived neurotrophic factor
  • polypeptide pairs can be identified by methods known in the art, including yeast two hybrid screens. Yeast two hybrid screens are described in U.S. Pat. Nos. 5,283,173 and 6,562,576, both of which are herein incorporated by reference in their entireties. Affinities between a pair of interacting domains can be determined using methods known in the art, including as described in Katahira, et al., J. Biol. Chem., 277, 9242-9246 (2002)).
  • a library of peptide sequences can be screened for heterodimerization, for example, using the methods described in WO 01/00814.
  • Useful methods for protein-protein interactions are also described in U.S. Pat. No. 6,790,624.
  • a “multimerization domain” is a domain that causes three or more peptides or polypeptides to interact with each other through covalent and/or non-covalent association(s).
  • Suitable multimerization domains include, but are not limited to, coiled-coil domains.
  • a coiled-coil is a peptide sequence with a contiguous pattern of mainly hydrophobic residues spaced 3 and 4 residues apart, usually in a sequence of seven amino acids (heptad repeat) or eleven amino acids (undecad repeat), which assembles (folds) to form a multimeric bundle of helices. Coiled-coils with sequences including some irregular distribution of the 3 and 4 residues spacing are also contemplated.
  • Hydrophobic residues are in particular the hydrophobic amino acids Val, Ile, Leu, Met, Tyr, Phe and Trp. Mainly hydrophobic means that at least 50% of the residues must be selected from the mentioned hydrophobic amino acids.
  • the coiled coil domain may be derived from laminin.
  • the heterotrimeric coiled coil protein laminin plays an important role in the formation of basement membranes.
  • the multifunctional oligomeric structure is required for laminin function.
  • Coiled coil domains may also be derived from the thrombospondins in which three (TSP-1 and TSP-2) or five (TSP-3, TSP-4 and TSP-5) chains are connected, or from COMP (COMPcc) (Guo, et at., EMBO J., 1998, 17: 5265-5272) which folds into a parallel five-stranded coiled coil (Malashkevich, et al., Science, 274: 761-765 (1996)).
  • coiled-coil domains derived from other proteins, and other domains that mediate polypeptide multimerization are known in the art and are suitable for use in the disclosed fusion proteins.
  • the immunomodulatory agent is a PD-L2 fusion protein, wherein a fragment of the extracellular domain of PD-L2 is linked to an immunoglobulin Fc domain (B7-DC-Ig).
  • B7-DC-Ig blocks B7-H1 and B7-DC binding to PD-1.
  • a representative murine PD-L2 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • the murine PD-L2 fusion protein encoded by SEQ ID NO:55 has the following amino acid sequence:
  • amino acid sequence of the murine PD-L2 fusion protein of SEQ ID NO:56 without the signal sequence is:
  • a representative human PD-L2 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • the human PD-L2 fusion protein encoded by SEQ ID NO:58 has the following amino acid sequence:
  • amino acid sequence of the human PD-L2 fusion protein of SEQ ID NO:59 without the signal sequence is:
  • a representative non-human primate ( Cynomolgus ) PD-L2 fusion protein has the following amino acid sequence:
  • the amino acid sequence of the non-human primate ( Cynomolgus ) PD-L2 fusion protein of SEQ ID NO:61 without the signal sequence is:
  • the immunomodulatory agent is a PD-L1 fusion protein, wherein a fragment of PD-L1 is linked to an immunoglobulin Fc domain (PD-L1-Ig).
  • PD-L1-Ig blocks PD-L1 and PD-L2 binding to PD-1.
  • a representative human PD-L1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • the human PD-L1 fusion protein encoded by SEQ ID NO:63 has the following amino acid sequence:
  • amino acid sequence of the human PD-L1 fusion protein of SEQ ID NO:64 without the signal sequence is:
  • a representative murine PD-L1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • the murine PD-L1 fusion protein encoded by SEQ ID NO:66 has the following amino acid sequence:
  • the immunomodulatory agent is a PD-1 fusion protein, wherein a fragment of PD-1 is linked to an immunoglobulin Fc domain (PD-1-Ig).
  • PD-1-Ig blocks PD-L1 and PD-L2 binding to PD-1.
  • a representative PD-1 fusion protein has the following amino acid sequence:
  • a representative non-human primate ( Cynomolgus ) PD-1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:
  • the non-human primate ( Cynomolgus ) PD-1 fusion protein encoded by SEQ ID NO:69 has the following amino acid sequence:
  • the immunomodulatory agent is a B7.1 fusion protein, wherein a fragment of B7.1 is linked to an immunoglobulin Fc domain (B7.1-Ig). B7.1 blocks PD-L1 binding to PD-1.
  • a representative B7.1 fusion protein has the following amino acid sequence:
  • the fusion protein binds to two or more ligands of PD-1.
  • the fusion protein can be engineered to bind PD-1 and a ligand of PD-1, for example PD-L1 or PD-L2.
  • the fusion protein can be engineered to bind to both PD-L1 and PD-L2.
  • isolated nucleic acid sequences encoding immunomodulatory polypeptides, fragments thereof, variants thereof and fusion proteins thereof are disclosed.
  • isolated nucleic acid refers to a nucleic acid that is separated from other nucleic acid molecules that are present in a mammalian genome, including nucleic acids that normally flank one or both sides of the nucleic acid in a mammalian genome.
  • an isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent.
  • an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule independent of other sequences (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease treatment), as well as recombinant DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote.
  • a virus e.g., a retrovirus, lentivirus, adenovirus, or herpes virus
  • an isolated nucleic acid can include an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid.
  • an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid.
  • Nucleic acids can be in sense or antisense orientation, or can be complementary to a reference sequence encoding a PD-L2, PD-L1, PD-1 or B7.1 polypeptide or variant thereof.
  • Reference sequences include, for example, the nucleotide sequence of human PD-L2, human PD-L1 or murine PD-L2 and murine PD-L1 which are known in the art and discussed above.
  • Nucleic acids can be DNA, RNA, or nucleic acid analogs. Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone. Such modification can improve, for example, stability, hybridization, or solubility of the nucleic acid. Modifications at the base moiety can include deoxyuridine for deoxythymidine, and 5-methyl-2′-deoxycytidine or 5-bromo-2′-deoxycytidine for deoxycytidine. Modifications of the sugar moiety can include modification of the 2′ hydroxyl of the ribose sugar to form 2′-O-methyl or 2′-O-allyl sugars.
  • the deoxyribose phosphate backbone can be modified to produce morpholino nucleic acids, in which each base moiety is linked to a six membered, morpholino ring, or peptide nucleic acids, in which the deoxyphosphate backbone is replaced by a pseudopeptide backbone and the four bases are retained. See, for example, Summerton and Weller (1997) Antisense Nucleic Acid Drug Dev. 7:187-195; and Hyrup et al. (1996) Bioorgan. Med. Chem. 4:5-23.
  • the deoxyphosphate backbone can be replaced with, for example, a phosphorothioate or phosphorodithioate backbone, a phosphoroamidite, or an alkyl phosphotriester backbone.
  • Nucleic acids such as those described above, can be inserted into vectors for expression in cells.
  • a “vector” is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
  • Vectors can be expression vectors.
  • An “expression vector” is a vector that includes one or more expression control sequences, and an “expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
  • Nucleic acids in vectors can be operably linked to one or more expression control sequences.
  • “operably linked” means incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest.
  • Examples of expression control sequences include promoters, enhancers, and transcription terminating regions.
  • a promoter is an expression control sequence composed of a region of a DNA molecule, typically within 100 nucleotides upstream of the point at which transcription starts (generally near the initiation site for RNA polymerase II). To bring a coding sequence under the control of a promoter, it is necessary to position the translation initiation site of the translational reading frame of the polypeptide between one and about fifty nucleotides downstream of the promoter.
  • Enhancers provide expression specificity in terms of time, location, and level. Unlike promoters, enhancers can function when located at various distances from the transcription site. An enhancer also can be located downstream from the transcription initiation site.
  • a coding sequence is “operably linked” and “under the control” of expression control sequences in a cell when RNA polymerase is able to transcribe the coding sequence into mRNA, which then can be translated into the protein encoded by the coding sequence.
  • Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalo virus, retroviruses, vaccinia viruses, adenoviruses, and adeno-associated viruses. Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, Wis.), Clontech (Palo Alto, Calif.), Stratagene (La Jolla, Calif.), and Invitrogen Life Technologies (Carlsbad, Calif.).
  • An expression vector can include a tag sequence.
  • Tag sequences are typically expressed as a fusion with the encoded polypeptide.
  • Such tags can be inserted anywhere within the polypeptide including at either the carboxyl or amino terminus.
  • useful tags include, but are not limited to, green fluorescent protein (GFP), glutathione S-transferase (GST), polyhistidine, c-myc, hemagglutinin, FlagTM tag (Kodak, New Haven, Conn.), maltose E binding protein and protein A.
  • the variant PD-L2 fusion protein is present in a vector containing nucleic acids that encode one or more domains of an Ig heavy chain constant region, preferably having an amino acid sequence corresponding to the hinge, C H2 and C H3 regions of a human immunoglobulin C ⁇ 1 chain.
  • Vectors containing nucleic acids to be expressed can be transferred into host cells.
  • the term “host cell” is intended to include prokaryotic and eukaryotic cells into which a recombinant expression vector can be introduced.
  • “transformed” and “transfected” encompass the introduction of a nucleic acid molecule (e.g., a vector) into a cell by one of a number of techniques. Although not limited to a particular technique, a number of these techniques are well established within the art.
  • Prokaryotic cells can be transformed with nucleic acids by, for example, electroporation or calcium chloride mediated transformation.
  • Nucleic acids can be transfected into mammalian cells by techniques including, for example, calcium phosphate co-precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation, or microinjection.
  • Host cells e.g., a prokaryotic cell or a eukaryotic cell such as a CHO cell
  • Monoclonal and polyclonal antibodies that are reactive with epitopes of the PD-L1, PD-L2, or PD-1 are disclosed.
  • Monoclonal antibodies (mAbs) and methods for their production and use are described in Kohler and Milstein, Nature 256:495-497 (1975); U.S. Pat. No. 4,376,110; Hartlow, E. et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1988); Monoclonal Antibodies and Hybridomas: A New Dimension in Biological Analyses, Plenum Press, New York, N.Y. (1980); H. Zola et al., in Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC Press, 1982)).
  • Antibodies that bind to PD-1 and block signal transduction through PD-1, and which have a lower affinity than those currently in use, allowing the antibody to dissociate in a period of less than three months, two months, one month, three weeks, two weeks, one week, or a few days after administration, are preferred for enhancement, augmentation or stimulation of an immune response.
  • One embodiment includes a bi-specific antibody that comprises an antibody that binds to the PD-L1 ligand bridged to an antibody that binds to the PD-L2 ligand, and prevents both from interacting with PD-1.
  • Another embodiment includes a bi-specific antibody that comprises an antibody that binds to the PD-1 receptor bridged to an antibody that binds to a ligand of PD-1, such as B7-H1.
  • the PD-1 binding portion reduces or inhibits signal transduction through the PD-1 receptor.
  • the antibody binds to an epitope that is present on both PD-L1 and PD-L2 and prevents them from interacting with PD-1.
  • Anti-idiotypic antibodies are described, for example, in Idiotypy in Biology and Medicine, Academic Press, New York, 1984; Immunological Reviews Volume 79, 1984; Immunological Reviews Volume 90, 1986; Curr. Top. Microbiol., Immunol. Volume 119, 1985; Bona, C. et al., CRC Crit. Rev. Immunol., pp. 33-81 (1981); Jerme, N K, Ann. Immunol. 125C:373-389 (1974); Jerne, N K, In: Idiotypes—Antigens on the Inside, Westen-Schnurr, I., ed., Editiones Roche, Basel, 1982, Urbain, J. et al., Ann. Immunol. 133D:179-(1982); Rajewsky, K. et al., Ann. Rev. Immunol. 1:569-607 (1983).
  • the antibodies may be xenogeneic, allogeneic, syngeneic, or modified forms thereof, such as humanized or chimeric antibodies.
  • Antiidiotypic antibodies specific for the idiotype of a specific antibody for example an anti-PD-L2 antibody, are also included.
  • antibody is meant to include both intact molecules as well as fragments thereof that include the antigen-binding site and are capable of binding to an epitope. These include, Fab and F(ab′) 2 fragments which lack the Fc fragment of an intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody (Wahl et al., J. Nuc. Med. 24:316-325 (1983)).
  • Fv fragments also included are Fv fragments (Hochman, J. et al. (1973) Biochemistry 12:1130-1135; Sharon, J. et al. (1976) Biochemistry 15:1591-1594). These various fragments are produced using conventional techniques such as protease cleavage or chemical cleavage (see, e.g., Rousseaux et al., Meth. Enzymol., 121:663-69 (1986)).
  • Polyclonal antibodies are obtained as sera from immunized animals such as rabbits, goats, rodents, etc. and may be used directly without further treatment or may be subjected to conventional enrichment or purification methods such as ammonium sulfate precipitation, ion exchange chromatography, and affinity chromatography.
  • the immunogen may include the complete PD-L1, PD-L2, PD-1, or fragments or derivatives thereof.
  • Preferred immunogens include all or a part of the extracellular domain (ECD) of PD-L1, PD-L2 or PD-1, where these residues contain the post-translation modifications, such as glycosylation.
  • Immunogens including the extracellular domain are produced in a variety of ways known in the art, e.g., expression of cloned genes using conventional recombinant methods or isolation from cells of origin.
  • Monoclonal antibodies may be produced using conventional hybridoma technology, such as the procedures introduced by Kohler and Milstein, Nature, 256:495-97 (1975), and modifications thereof (see above references).
  • An animal preferably a mouse is primed by immunization with an immunogen as above to elicit the desired antibody response in the primed animal.
  • B lymphocytes from the lymph nodes, spleens or peripheral blood of a primed, animal are fused with myeloma cells, generally in the presence of a fusion promoting agent such as polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • any of a number of murine myeloma cell lines are available for such use: the P3-NS1/1-Ag4-1, P3-x63-k0Ag8.653, Sp2/0-Ag14, or HL1-653 myeloma lines (available from the ATCC, Rockville, Md.).
  • Subsequent steps include growth in selective medium so that unfused parental myeloma cells and donor lymphocyte cells eventually die while only the hybridoma cells survive. These are cloned and grown and their supernatants screened for the presence of antibody of the desired specificity, e.g. by immunoassay techniques using PD-L2 or PD-L1 fusion proteins. Positive clones are subcloned, e.g., by limiting dilution, and the monoclonal antibodies are isolated.
  • Hybridomas produced according to these methods can be propagated in vitro or in vivo (in ascites fluid) using techniques known in the art (see generally Fink et al., Prog. Clin. Pathol., 9:121-33 (1984)).
  • the individual cell line is propagated in culture and the culture medium containing high concentrations of a single monoclonal antibody can be harvested by decantation, filtration, or centrifugation.
  • the antibody may be produced as a single chain antibody or scFv instead of the normal multimeric structure.
  • Single chain antibodies include the hypervariable regions from an Ig of interest and recreate the antigen binding site of the native Ig while being a fraction of the size of the intact Ig (Skerra, A. et al. Science, 240: 1038-1041 (1988); Pluckthun, A. et al. Methods Enzymol. 178: 497-515 (1989); Winter, G. et al. Nature, 349: 293-299 (1991)).
  • the antibody is produced using conventional molecular biology techniques.
  • Isolated immunomodulatory agents or variants thereof can be obtained by, for example, chemical synthesis or by recombinant production in a host cell.
  • a nucleic acid containing a nucleotide sequence encoding the polypeptide can be used to transform, transduce, or transfect a bacterial or eukaryotic host cell (e.g., an insect, yeast, or mammalian cell).
  • nucleic acid constructs include a regulatory sequence operably linked to a nucleotide sequence encoding an immunomodulatory polypeptide.
  • Regulatory sequences also referred to herein as expression control sequences typically do not encode a gene product, but instead affect the expression of the nucleic acid sequences to which they are operably linked.
  • Useful prokaryotic and eukaryotic systems for expressing and producing polypeptides are well know in the art include, for example, Escherichia coli strains such as BL-21, and cultured mammalian cells such as CHO cells.
  • viral-based expression systems can be utilized to express an immunomodulatory polypeptide.
  • Viral based expression systems are well known in the art and include, but are not limited to, baculoviral, SV40, retroviral, or vaccinia based viral vectors.
  • Mammalian cell lines that stably express immunomodulatory polypeptides can be produced using expression vectors with appropriate control elements and a selectable marker.
  • the eukaryotic expression vectors pCR3.1 (Invitrogen Life Technologies) and p91023(B) are suitable for expression of variant costimulatory polypeptides in, for example, Chinese hamster ovary (CHO) cells, COS-1 cells, human embryonic kidney 293 cells, NIH3T3 cells, BHK21 cells, MDCK cells, and human vascular endothelial cells (HUVEC).
  • transfected cells can be cultured such that the polypeptide of interest is expressed, and the polypeptide can be recovered from, for example, the cell culture supernatant or from lysed cells.
  • a immunomodulatory polypeptide can be produced by (a) ligating amplified sequences into a mammalian expression vector such as pcDNA3 (Invitrogen Life Technologies), and (b) transcribing and translating in vitro using wheat germ extract or rabbit reticulocyte lysate.
  • a mammalian expression vector such as pcDNA3 (Invitrogen Life Technologies)
  • pcDNA3 Invitrogen Life Technologies
  • Immunomodulatory polypeptides can be isolated using, for example, chromatographic methods such as DEAE ion exchange, gel filtration, and hydroxylapatite chromatography.
  • immunomodulatory polypeptides in a cell culture supernatant or a cytoplasmic extract can be isolated using a protein G column.
  • variant immunomodulatory polypeptides can be “engineered” to contain an amino acid sequence that allows the polypeptides to be captured onto an affinity matrix.
  • a tag such as c-myc, hemagglutinin, polyhistidine, or FlagTM (Kodak) can be used to aid polypeptide purification.
  • Such tags can be inserted anywhere within the polypeptide, including at either the carboxyl or amino terminus.
  • Other fusions that can be useful include enzymes that aid in the detection of the polypeptide, such as alkaline phosphatase.
  • Immunoaffinity chromatography also can be used to purify costimulatory polypeptides.
  • Random peptide display libraries can be used to screen for peptides which interact with PD-1, PD-L1 or PD-L2. Techniques for creating and screening such random peptide display libraries are known in the art (Ladner et al., U.S. Pat. No. 5,223,409; Ladner et al., U.S. Pat. No. 4,946,778; Ladner et al., U.S. Pat. No. 5,403,484 and Ladner et al., U.S. Pat. No. 5,571,698) and random peptide display libraries and kits for screening such libraries are available commercially.
  • Isolated nucleic acid molecules encoding immunomodulatory polypeptides can be produced by standard techniques, including, without limitation, common molecular cloning and chemical nucleic acid synthesis techniques. For example, polymerase chain reaction (PCR) techniques can be used to obtain an isolated nucleic acid encoding a variant costimulatory polypeptide.
  • PCR is a technique in which target nucleic acids are enzymatically amplified.
  • sequence information from the ends of the region of interest or beyond can be employed to design oligonucleotide primers that are identical in sequence to opposite strands of the template to be amplified.
  • PCR can be used to amplify specific sequences from DNA as well as RNA, including sequences from total genomic DNA or total cellular RNA.
  • Primers typically are 14 to 40 nucleotides in length, but can range from 10 nucleotides to hundreds of nucleotides in length.
  • General PCR techniques are described, for example in PCR Primer: A Laboratory Manual , ed. by Dieffenbach and Dveksler, Cold Spring Harbor Laboratory Press, 1995.
  • reverse transcriptase can be used to synthesize a complementary DNA (cDNA) strand.
  • Ligase chain reaction, strand displacement amplification, self-sustained sequence replication or nucleic acid sequence-based amplification also can be used to obtain isolated nucleic acids. See, for example, Lewis (1992) Genetic Engineering News 12:1; Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878; and Weiss (1991) Science 254:1292-1293.
  • Isolated nucleic acids can be chemically synthesized, either as a single nucleic acid molecule or as a series of oligonucleotides (e.g., using phosphoramidite technology for automated DNA synthesis in the 3′ to 5′ direction).
  • oligonucleotides e.g., >100 nucleotides
  • one or more pairs of long oligonucleotides can be synthesized that contain the desired sequence, with each pair containing a short segment of complementarity (e.g., about 15 nucleotides) such that a duplex is formed when the oligonucleotide pair is annealed.
  • DNA polymerase can be used to extend the oligonucleotides, resulting in a single, double-stranded nucleic acid molecule per oligonucleotide pair, which then can be ligated into a vector.
  • Isolated nucleic acids can also obtained by mutagenesis.
  • Immunomodulatory polypeptide encoding nucleic acids can be mutated using standard techniques, including oligonucleotide-directed mutagenesis and/or site-directed mutagenesis through PCR. See, Short Protocols in Molecular Biology . Chapter 8, Green Publishing Associates and John Wiley & Sons, edited by Ausubel et al, 1992. Examples of amino acid positions that can be modified include those described herein.
  • compositions including immunomodulatory agents are provided.
  • Pharmaceutical compositions containing peptides or polypeptides may be for administration by parenteral (intramuscular, intraperitoneal, intravenous (IV) or subcutaneous injection), transdermal (either passively or using iontophoresis or electroporation), or transmucosal (nasal, vaginal, rectal, or sublingual) routes of administration.
  • the compositions may also be administered using bioerodible inserts and may be delivered directly to an appropriate lymphoid tissue (e.g., spleen, lymph node, or mucosal-associated lymphoid tissue) or directly to an organ or tumor.
  • the compositions can be formulated in dosage forms appropriate for each route of administration.
  • Compositions containing antagonists of PD-1 receptors that are not peptides or polypeptides can additionally be formulated for enteral administration.
  • the term “effective amount” or “therapeutically effective amount” means a dosage sufficient to treat, inhibit, or alleviate one or more symptoms of the disorder being treated or to otherwise provide a desired pharmacologic and/or physiologic effect.
  • the precise dosage will vary according to a variety of factors such as subject-dependent variables (e.g., age, immune system health, etc.), the disease, and the treatment being effected.
  • Therapeutically effective amounts of immunomodulatory agents cause an immune response to be activated, enhanced, augmented, or sustained, and/or overcome or alleviate T cell exhaustion and/or T cell anergy, and/or activate monocytes, macrophages, dendritic cells and other antigen presenting cells (“APCs”).
  • APCs antigen presenting cells
  • the immunomodulatoryagent is administered in a range of 0.1-20 mg/kg based on extrapolation from tumor modeling and bioavailability. A most preferred range is 5-20 mg of immunomodulatory agent/kg. Generally, for intravenous injection or infusion, dosage may be lower than when administered by an alternative route.
  • compositions including those containing peptides and polypeptides, are administered in an aqueous solution, by parenteral injection.
  • the formulation may also be in the form of a suspension or emulsion.
  • pharmaceutical compositions are provided including effective amounts of a peptide or polypeptide, and optionally include pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers.
  • compositions include sterile water, buffered saline (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength; and optionally, additives such as detergents and solubilizing agents (e.g., TWEEN® 20, TWEEN 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), and preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol).
  • buffered saline e.g., Tris-HCl, acetate, phosphate
  • pH and ionic strength e.g., Tris-HCl, acetate, phosphate
  • additives e.g., Tris-HCl, acetate, phosphate
  • additives e.g., Tris-HCl, acetate, phosphate
  • additives e.g.,
  • non-aqueous solvents or vehicles examples include propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate.
  • the formulations may be lyophilized and redissolved/resuspended immediately before use.
  • the formulation may be sterilized by, for example, filtration through a bacteria retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions.
  • compositions containing one or more immunomodulatory polypeptide or nucleic acids encoding the immunomodulatory polypeptide can be administered in controlled release formulations.
  • Controlled release polymeric devices can be made for long term release systemically following implantation of a polymeric device (rod, cylinder, film, disk) or injection (microparticles).
  • the matrix can be in the form of microparticles such as microspheres, where peptides are dispersed within a solid polymeric matrix or microcapsules, where the core is of a different material than the polymeric shell, and the peptide is dispersed or suspended in the core, which may be liquid or solid in nature.
  • microparticles, microspheres, and microcapsules are used interchangeably.
  • the polymer may be cast as a thin slab or film, ranging from nanometers to four centimeters, a powder produced by grinding or other standard techniques, or even a gel such as a hydrogel.
  • the matrix can also be incorporated into or onto a medical device to modulate an immune response, to prevent infection in an immunocompromised patient (such as an elderly person in which a catheter has been inserted or a premature child) or to aid in healing, as in the case of a matrix used to facilitate healing of pressure sores, decubitis ulcers, etc.
  • Either non-biodegradable or biodegradable matrices can be used for delivery of immunomodulatory polypeptide or nucleic acids encoding them, although biodegradable matrices are preferred.
  • biodegradable matrices may be natural or synthetic polymers, although synthetic polymers are preferred due to the better characterization of degradation and release profiles.
  • the polymer is selected based on the period over which release is desired. In some cases linear release may be most useful, although in others a pulse release or “bulk release” may provide more effective results.
  • the polymer may be in the form of a hydrogel (typically in absorbing up to about 90% by weight of water), and can optionally be crosslinked with multivalent ions or polymers.
  • Bioerodible microspheres can be prepared using any of the methods developed for making microspheres for drug delivery, for example, as described by Mathiowitz and Langer, J. Controlled Release, 5:13-22 (1987); Mathiowitz, et al., Reactive Polymers, 6:275-283 (1987); and Mathiowitz, et al., J. Appl. Polymer Sci., 35:755-774 (1988).
  • Controlled release oral formulations may be desirable. Antagonists of PD-1 inhibitory signaling can be incorporated into an inert matrix which permits release by either diffusion or leaching mechanisms, e.g., films or gums. Slowly disintegrating matrices may also be incorporated into the formulation.
  • Another form of a controlled release is one in which the drug is enclosed in a semipermeable membrane which allows water to enter and push drug out through a single small opening due to osmotic effects.
  • the location of release may be the stomach, the small intestine (the duodenum, the jejunem, or the ileum), or the large intestine.
  • the release will avoid the deleterious effects of the stomach environment, either by protection of the active agent (or derivative) or by release of the active agent beyond the stomach environment, such as in the intestine.
  • an enteric coating i.e, impermeable to at least pH 5.0
  • These coatings may be used as mixed films or as capsules such as those available from Banner Pharmacaps.
  • the devices can be formulated for local release to treat the area of implantation or injection and typically deliver a dosage that is much less than the dosage for treatment of an entire body.
  • the devices can also be formulated for systemic delivery. These can be implanted or injected subcutaneously.
  • Antagonists of PD-1 can also be formulated for oral delivery.
  • Oral solid dosage forms are known to those skilled in the art. Solid dosage forms include tablets, capsules, pills, troches or lozenges, cachets, pellets, powders, or granules or incorporation of the material into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the present proteins and derivatives. See, e.g., Remington's Pharmaceutical Sciences, 21st Ed. (2005, Lippincott, Williams & Wilins, Baltimore, Md. 21201) pages 889-964.
  • compositions may be prepared in liquid form, or may be in dried powder (e.g., lyophilized) form.
  • Liposomal or polymeric encapsulation may be used to formulate the compositions. See also Marshall, K. In: Modern Pharmaceutics Edited by G. S. Banker and C. T. Rhodes Chapter 10, 1979.
  • the formulation will include the active agent and inert ingredients which protect the immunomodulatory agent in the stomach environment, and release of the biologically active material in the intestine.
  • Liquid dosage forms for oral administration including pharmaceutically acceptable emulsions, solutions, suspensions, and syrups, may contain other components including inert diluents; adjuvants such as wetting agents, emulsifying and suspending agents; and sweetening, flavoring, and perfuming agents.
  • Vaccines require strong T cell response to eliminate infected cells.
  • Immunomodulatory agents described herein can be administered as a component of a vaccine to promote, augment, or enhance the primary immune response and effector cell activity and numbers.
  • Vaccines include antigens, the immunomodulatory agent (or a source thereof) and optionally other adjuvants and targeting molecules.
  • Sources of immunomodulatory agent include any of the disclosed PD-L1, PD-L2 or PD-1 polypeptides, fusion proteins, or variants thereof, nucleic acids encoding any of these polypeptides, or host cells containing vectors that express any of these polypeptides.
  • Antigens can be peptides, proteins, polysaccharides, saccharides, lipids, nucleic acids, or combinations thereof.
  • the antigen can be derived from a virus, bacterium, parasite, protozoan, fungus, histoplasma , tissue or transformed cell and can be a whole cell or immunogenic component thereof, e.g., cell wall components or molecular components thereof.
  • Suitable antigens are known in the art and are available from commercial, government and scientific sources.
  • the antigens are whole inactivated or attenuated organisms. These organisms may be infectious organisms, such as viruses, parasites and bacteria.
  • the antigens may be tumor cells or cells infected with a virus or intracellular pathogen such as gonorrhea or malaria.
  • the antigens may be purified or partially purified polypeptides derived from tumors or viral or bacterial sources.
  • the antigens can be recombinant polypeptides produced by expressing DNA encoding the polypeptide antigen in a heterologous expression system.
  • the antigens can be DNA encoding all or part of an antigenic protein.
  • the DNA may be in the form of vector DNA such as plasmid DNA.
  • Antigens may be provided as single antigens or may be provided in combination. Antigens may also be provided as complex mixtures of polypeptides or nucleic acids.
  • a viral antigen can be isolated from any virus including, but not limited to, a virus from any of the following viral families: Arenaviridae, Arterivirus, Astroviridae, Baculoviridae, Badnavirus, Barnaviridae, Birnaviridae, Bromoviridae, Bunyaviridae, Caliciviridae, Capillovirus, Carlavirus, Caulimovirus, Circoviridae, Closterovirus, Comoviridae, Coronaviridae (e.g., Coronavirus, such as severe acute respiratory syndrome (SARS) virus), Corticoviridae, Cystoviridae, Deltavirus, Dianthovirus, Enamovirus, Filoviridae (e.g., Marburg virus and Ebola virus (e.g., Zaire, Reston, Ivory Coast, or Sudan strain)), Flaviviridae, (e.g., Hepatitis C virus, Dengue virus 1, Dengue virus 2, Dengue virus 3, and Dengue
  • Viral antigens may be derived from a particular strain, or a combination of strains, such as a papilloma virus, a herpes virus, i.e. herpes simplex 1 and 2; a hepatitis virus, for example, hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), the delta hepatitis D virus (HDV), hepatitis E virus (HEV) and hepatitis G virus (HGV), the tick-borne encephalitis viruses; parainfluenza, varicella-zoster, cytomeglavirus, Epstein-Barr, rotavirus, rhinovirus, adenovirus, coxsackieviruses, equine encephalitis, Japanese encephalitis, yellow fever, Rift Valley fever, and lymphocytic choriomeningitis.
  • HAV hepatitis A virus
  • HBV hepatit
  • Bacterial antigens can originate from any bacteria including, but not limited to, Actinomyces, Anabaena, Bacillus, Bacteroides, Bdellovibrio, Bordetella, Borrelia, Campylobacter, Caulobacter, Chlamydia, Chlorobium, Chromatium, Clostridium, Corynebacterium, Cytophaga, Deinococcus, Escherichia, Francisella, Halobacterium, Heliobacter, Haemophilus, Hemophilus influenza type B (HIB), Hyphomicrobium, Legionella, Leptspirosis, Listeria, Meningococcus A, B and C, Methanobacterium, Micrococcus, Myobacterium, Mycoplasma, Myxococcus, Neisseria, Nitrobacter, Oscillatoria, Prochloron, Proteus, Pseudomonas, Phodospirillum, Rickettsia, Salmonella, Shi
  • Antigens of parasites can be obtained from parasites such as, but not limited to, antigens derived from Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida tropicalis, Nocardia asteroides, Rickettsia ricketsii, Rickettsia typhi, Mycoplasma pneumoniae, Chlamydial psittaci, Chlamydial trachomatis, Plasmodium falciparum, Trypanosoma brucei, Entamoeba histolytica, Toxoplasma gondii, Trichomonas vaginalis and Schistosoma mansoni .
  • parasites such as, but not limited to, antigens derived from Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida tropicalis, Nocardia asteroides, Rickettsia ricketsii, Rick
  • Sporozoan antigens include Sporozoan antigens, Plasmodian antigens, such as all or part of a Circumsporozoite protein, a Sporozoite surface protein, a liver stage antigen, an apical membrane associated protein, or a Merozoite surface protein.
  • the antigen can be a tumor antigen, including a tumor-associated or tumor-specific antigen, such as, but not limited to, alpha-actinin-4, Bcr-Abl fusion protein, Casp-8, beta-catenin, cdc27, cdk4, cdkn2a, coa-1, dek-can fusion protein, EF2, ETV6-AML1 fusion protein, LDLR-fucosyltransferaseAS fusion protein, HLA-A2, HLA-A11, hsp70-2, KIAAO205, Mart2, Mum-1, 2, and 3, neo-PAP, myosin class I, OS-9, pm1-RAR ⁇ fusion protein, PTPRK, K-ras, N-ras, Triosephosphate isomeras, Bage-1, Gage 3,4,5,6,7, GnTV, Herv-K-mel, Lü-1, Mage-A1,2,3,4,6,10,12, Mage-
  • the vaccines may include an adjuvant.
  • the adjuvant can be, but is not limited to, one or more of the following: oil emulsions (e.g., Freund's adjuvant); saponin formulations; virosomes and viral-like particles; bacterial and microbial derivatives; immunostimulatory oligonucleotides; ADP-ribosylating toxins and detoxified derivatives; alum; BCG; mineral-containing compositions (e.g., mineral salts, such as aluminium salts and calcium salts, hydroxides, phosphates, sulfates, etc.); bioadhesives and/or mucoadhesives; microparticles; liposomes; polyoxyethylene ether and polyoxyethylene ester formulations; polyphosphazene; muramyl peptides; imidazoquinolone compounds; and surface active substances (e.g. lysolecithin, pluronic polyols, polyanions, peptide
  • Adjuvants may also include immunomodulators such as cytokines, interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons
  • immunomodulators such as cytokines, interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons
  • proteinaceous adjuvants may be provided as the full-length polypeptide or an active fragment thereof, or in the form of DNA, such as plasmid DNA.
  • Immunomodulatory agents described herein can be used to increase IFN ⁇ producing cells and decrease Treg cells at a tumor site or pathogen infected area.
  • Blocking the interaction of ligands with PD-1 produces different results. For example, blocking PD-L1 mediated signal transduction induces robust effector cell responses resulting in increased IFN ⁇ producing cells at a tumor site or site of infection. Blocking PD-L2 mediated signal transduction decreases the number of infiltrating Tregs at a tumor site or site of infection. Thus, the suppressive function of Tregs is reduced at a tumor site or pathogen infected area.
  • a preferred immunomodulatory agent blocks the interaction of both PD-L1 and PD-L2 with PD-1 resulting in increased IFN ⁇ producing cells and decreased Tregs at a tumor site or a pathogen infected area.
  • An exemparly immunmodulatory agent is a B7-DC-Ig fusion protein described above.
  • Immunomodulatory polypeptide agents and variants thereof, as well as nucleic acids encoding these polypeptides and fusion proteins, or cells expressing immunomodulatory polypeptide can be used to enhance a primary immune response to an antigen as well as increase effector cell function such as increasing antigen-specific proliferation of T cells, enhance cytokine production by T cells, and stimulate differentiation.
  • the immunostimulatory agents can be used to treat cancer.
  • the immunomodulatory polypeptide agents can be administered to a subject in need thereof in an effective amount to treat one or more symptoms associated with cancer, help overcome T cell exhaustion and/or T cell anergy.
  • Overcoming T cell exhaustion or T cell anergy can be determined by measuring T cell function using known techniques.
  • the immunomodulatory polypeptides are engineered to bind to PD-1 without triggering inhibitory signal transduction through PD-1 and retain the ability to costimulate T cells.
  • immunomodulatory polypeptide can be added to in vitro assays (e.g., T cell proliferation assays) designed to test for immunity to an antigen of interest in a subject from which the T cells were obtained. Addition of an immunomodulatory polypeptide to such assays would be expected to result in a more potent, and therefore more readily detectable, in vitro response.
  • in vitro assays e.g., T cell proliferation assays
  • the immunomodulatory agents provided herein are generally useful in vivo and ex vivo as immune response-stimulating therapeutics.
  • the disclosed immunomodulatory agent compositions are useful for treating a subject having or being predisposed to any disease or disorder to which the subject's immune system mounts an immune response.
  • the ability of immunomodulatory agents to inhibit or reduce PD-1 signal transaction enables a more robust immune response to be possible.
  • the disclosed compositions are useful to stimulate or enhance immune responses involving T cells.
  • the disclosed immunomodulatory agents are useful for stimulating or enhancing an immune response in host for treating cancer by administering to a subject an amount of an immunomodulatory agent effective to stimulate T cells in the subject.
  • the types of cancer that may be treated with the provided compositions and methods include, but are not limited to, the following: bladder, brain, breast, cervical, colo-rectal, esophageal, kidney, liver, lung, nasopharangeal, pancreatic, prostate, skin, stomach, uterine, ovarian, testicular and hematologic.
  • Malignant tumors which may be treated are classified herein according to the embryonic origin of the tissue from which the tumor is derived.
  • Carcinomas are tumors arising from endodermal or ectodermal tissues such as skin or the epithelial lining of internal organs and glands.
  • Sarcomas which arise less frequently, are derived from mesodermal connective tissues such as bone, fat, and cartilage.
  • the leukemias and lymphomas are malignant tumors of hematopoietic cells of the bone marrow. Leukemias proliferate as single cells, whereas lymphomas tend to grow as tumor masses. Malignant tumors may show up at numerous organs or tissues of the body to establish a cancer.
  • the immunomodulatory agents are generally useful in vivo and ex vivo as immune response-stimulating therapeutics.
  • the compositions are useful for treating infections in which T cell exhaustion or T cell anergy has occurred causing the infection to remain with the host over a prolonged period of time.
  • Exemplary infections to be treated are chronic infections cause by a hepatitis virus, a human immunodeficiency virus (HIV), a human T-lymphotrophic virus (HTLV), a herpes virus, an Epstein-Barr virus, or a human papilloma virus. It will be appreciated that other infections can also be treated using the immunomodulatory agents.
  • the disclosed compositions are also useful as part of a vaccine.
  • the type of disease to be treated or prevented is a chronic infectious disease caused by a bacterium, virus, protozoan, helminth, or other microbial pathogen that enters intracellularly and is attacked, i.e., by cytotoxic T lymphocytes.
  • T cell exhaustion is a tolerance mechanism in which the lymphocyte is intrinsically functionally inactivated following an antigen encounter, but remains alive for an extended period of time in a hyporesponsive state.
  • One method for treating chronic infection is to revitalize exhausted T cells or to reverse T cell exhaustion in a subject as well as overcoming T cell anergy.
  • Reversal of T cell exhaustion can be achieved by interfering with the interaction between PD-1 and its ligands PD-L1 (B7-H1) and PD-L2 (PD-L2).
  • PD-L1 B7-H1
  • PD-L2 PD-L2
  • Acute, often lethal, effects of pathogens can be mediated by toxins or other factors that fail to elicit a sufficient immune response prior to the damage caused by the toxin. This may be overcome by interfering with the interaction between PD-1 and its ligands, allowing for a more effective, rapid immune response.
  • the immunomodulatory agents can be administered for the treatment of local or systemic viral infections, including, but not limited to, immunodeficiency (e.g., HIV), papilloma (e.g., HPV), herpes (e.g., HSV), encephalitis, influenza (e.g., human influenza virus A), and common cold (e.g., human rhinovirus) viral infections.
  • immunodeficiency e.g., HIV
  • papilloma e.g., HPV
  • herpes e.g., HSV
  • encephalitis e.g., influenza virus A
  • common cold e.g., human rhinovirus
  • compositions including the immunomodulatory agent compositions can be administered topically to treat viral skin diseases such as herpes lesions or shingles, or genital warts.
  • Pharmaceutical formulations of immunomodulatory compositions can also be administered to treat systemic viral diseases, including, but not limited to, AIDS, influenza, the common cold, or encephalitis.
  • infections that can be treated include but are not limited to infections cause by microoganisms including, but not limited to, Actinomyces, Anabaena, Bacillus, Bacteroides, Bdellovibrio, Bordetella, Borrelia, Campylobacter, Caulobacter, Chlamydia, Chlorobium, Chromatium, Clostridium, Corynebacterium, Cytophaga, Deinococcus, Escherichia, Francisella, Halobacterium, Heliobacter, Haemophilus, Hemophilus influenza type B (HIB), Histoplasma, Hyphomicrobium, Legionella, Leishmania, Leptspirosis, Listeria, Meningococcus A, B and C, Methanobacterium, Micrococcus, Myobacterium, Mycoplasma, Myxococcus, Neisseria, Nitrobacter, Oscillatoria, Prochloron, Proteus, Pseudomonas, Phodos
  • the immunomodulatory agents may be administered alone or in combination with any other suitable treatment.
  • the immunomodulatory agent can be administered in conjunction with, or as a component of a vaccine composition as described above. Suitable components of vaccine compositions are described above.
  • the disclosed immunomodulatory agents can be administered prior to, concurrently with, or after the administration of a vaccine.
  • the immunomodulatory agent composition is administered at the same time as administration of a vaccine.
  • Immunomodulatory agent compositions may be administered in conjunction with prophylactic vaccines, which confer resistance in a subject to subsequent exposure to infectious agents, or in conjunction with therapeutic vaccines, which can be used to initiate or enhance a subject's immune response to a pre-existing antigen, such as a viral antigen in a subject infected with a virus.
  • prophylactic vaccines which confer resistance in a subject to subsequent exposure to infectious agents
  • therapeutic vaccines which can be used to initiate or enhance a subject's immune response to a pre-existing antigen, such as a viral antigen in a subject infected with a virus.
  • the desired outcome of a prophylactic, therapeutic or de-sensitized immune response may vary according to the disease, according to principles well known in the art.
  • an immune response against an infectious agent may completely prevent colonization and replication of an infectious agent, affecting “sterile immunity” and the absence of any disease symptoms.
  • a vaccine against infectious agents may be considered effective if it reduces the number, severity or duration of symptoms; if it reduces the number of individuals in a population with symptoms; or reduces the transmission of an infectious agent.
  • immune responses against cancer, allergens or infectious agents may completely treat a disease, may alleviate symptoms, or may be one facet in an overall therapeutic intervention against a disease.
  • the immunomodulatory agents induce an improved effector cell response such as a CD4 T-cell immune response, against at least one of the component antigen(s) or antigenic compositions compared to the effector cell response obtained with the corresponding composition without the immunomodulatory polypeptide.
  • improved effector cell response refers to a higher effector cell response such as a CD4 T cell response obtained in a human patient after administration of the vaccine composition than that obtained after administration of the same composition without an immunomodulatory polypeptide.
  • a higher CD4 T-cell response is obtained in a human patient upon administration of an immunogenic composition containing an immunomodulatory agent, preferably PD-L2-Ig, and an antigenic preparation compared to the response induced after administration of an immunogenic composition containing the antigenic preparation thereof which is un-adjuvanted.
  • an immunogenic composition containing an immunomodulatory agent preferably PD-L2-Ig
  • an antigenic preparation compared to the response induced after administration of an immunogenic composition containing the antigenic preparation thereof which is un-adjuvanted.
  • Such a formulation will advantageously be used to induce anti-antigen effector cell response capable of detection of antigen epitopes presented by MHC class II molecules.
  • the improved effector cell response can be obtained in an immunologically unprimed patient, i.e. a patient who is seronegative to the antigen.
  • This seronegativity may be the result of the patient having never faced the antigen (so-called “na ⁇ ve” patient) or, alternatively, having failed to respond to the antigen once encountered.
  • the improved effector cell response is obtained in an immunocompromised subject such as an elderly, typically 65 years of age or above, or an adult younger than 65 years of age with a high risk medical condition (“high risk” adult), or a child under the age of two.
  • the improved effector cell response can be assessed by measuring the number of cells producing any of the following cytokines: (1) cells producing at least two different cytokines (CD40L, IL-2, IFN ⁇ , TNF- ⁇ , IL-17); (2) cells producing at least CD40L and another cytokine (IL-2, TNF- ⁇ , IFN ⁇ , IL-17); (3) cells producing at least IL-2 and another cytokine (CD40L, TNF-alpha, IFN ⁇ , IL-17); (4) cells producing at least IFN ⁇ and another cytokine (IL-2, TNF- ⁇ , CD40L, IL-17); (5) cells producing at least TNF- ⁇ and another cytokine (IL-2, CD40L, IFN ⁇ , IL-17); and (6) cells producing at least IL-17 and another cytokine (TNF-alpha, IL-2, CD40L, IFN ⁇ , IL-17)
  • An improved effector cell response is present when cells producing any of the above cytokines will be in a higher amount following administration of the vaccine composition compared to the administration of the composition without a immunomodulatory polypeptide. Typically at least one, preferably two of the five conditions mentioned above will be fulfilled. In a preferred embodiment, cells producing all five cytokines (CD40L, IL-2, IFN ⁇ , TNF- ⁇ , IL-17) will be present at a higher number in the vaccinated group compared to the un-vaccinated group.
  • the immunogenic compositions may be administered by any suitable delivery route, such as intradermal, mucosal e.g. intranasal, oral, intramuscular or subcutaneous. Other delivery routes are well known in the art.
  • the intramuscular delivery route is preferred for the immunogenic compositions.
  • Intradermal delivery is another suitable route. Any suitable device may be used for intradermal delivery, for example short needle devices.
  • Intradermal vaccines may also be administered by devices which limit the effective penetration length of a needle into the skin. Jet injection devices which deliver liquid vaccines to the dermis via a liquid jet injector or via a needle which pierces the stratum corneum and produces a jet which reaches the dermis can also be used. Jet injection devices are known in the art. Ballistic powder/particle delivery devices which use compressed gas to accelerate vaccine in powder form through the outer layers of the skin to the dermis can also be used. Additionally, conventional syringes can be used in the classical Mantoux method of intradermal administration.
  • Another suitable administration route is the subcutaneous route.
  • Any suitable device may be used for subcutaneous delivery, for example classical needle.
  • a needle-free jet injector service is used. Needle-free injectors are known in the art. More preferably the device is pre-filled with the liquid vaccine formulation.
  • the vaccine is administered intranasally.
  • the vaccine is administered locally to the nasopharyngeal area, preferably without being inhaled into the lungs.
  • an intranasal delivery device which delivers the vaccine formulation to the nasopharyngeal area, without or substantially without it entering the lungs.
  • Preferred devices for intranasal administration of the vaccines are spray devices. Nasal spray devices are commercially available. Nebulizers produce a very fine spray which can be easily inhaled into the lungs and therefore does not efficiently reach the nasal mucosa. Nebulizers are therefore not preferred.
  • Preferred spray devices for intranasal use are devices for which the performance of the device is not dependent upon the pressure applied by the user.
  • Pressure threshold devices Liquid is released from the nozzle only when a threshold pressure is applied. These devices make it easier to achieve a spray with a regular droplet size. Pressure threshold devices suitable for use with the present invention are known in the art and are commercially available.
  • Preferred intranasal devices produce droplets (measured using water as the liquid) in the range 1 to 200 ⁇ m, preferably 10 to 120 ⁇ m. Below 10 ⁇ m there is a risk of inhalation, therefore it is desirable to have no more than about 5% of droplets below 10 ⁇ m. Droplets above 120 ⁇ m do not spread as well as smaller droplets, so it is desirable to have no more than about 5% of droplets exceeding 120 ⁇ m.
  • Bi-dose delivery is another feature of an intranasal delivery system for use with the vaccines.
  • Bi-dose devices contain two sub-doses of a single vaccine dose, one sub-dose for administration to each nostril. Generally, the two sub-doses are present in a single chamber and the construction of the device allows the efficient delivery of a single sub-dose at a time. Alternatively, a monodose device may be used for administering the vaccines.
  • the immunogenic composition may be given in two or more doses, over a time period of a few days, weeks or months.
  • different routes of administration are utilized, for example, for the first administration may be given intramuscularly, and the boosting composition, optionally containing a immunomodulatory agent, may be administered through a different route, for example intradermal, subcutaneous or intranasal.
  • the improved effector cell response conferred by the immunogenic composition may be ideally obtained after one single administration.
  • the single dose approach is extremely relevant in a rapidly evolving outbreak situation including bioterrorist attacks and epidemics.
  • the second dose of the same composition (still considered as ‘composition for first vaccination’) can be administered during the on-going primary immune response and is adequately spaced in time from the first dose.
  • the second dose of the composition is given a few weeks, or about one month, e.g. 2 weeks, 3 weeks, 4 weeks, 5 weeks, or 6 weeks after the first dose, to help prime the immune system in unresponsive or poorly responsive individuals.
  • the administration of the immunogenic composition alternatively or additionally induces an improved B-memory cell response in patients administered with the adjuvanted immunogenic composition compared to the B-memory cell response induced in individuals immunized with the un-adjuvanted composition.
  • An improved B-memory cell response is intended to mean an increased frequency of peripheral blood B lymphocytes capable of differentiation into antibody-secreting plasma cells upon antigen encounter as measured by stimulation of in vitro differentiation (see Example sections, e.g. methods of Elispot B cells memory).
  • the immunogenic composition increases the primary immune response as well as the CD8 T cell response.
  • the administration of a single dose of the immunogenic composition for first vaccination provides better sero-protection and induces an improved CD4 T-cell, or CD8 T-cell immune response against a specific antigen compared to that obtained with the un-adjuvanted formulation. This may result in reducing the overall morbidity and mortality rate and preventing emergency admissions to hospital for pneumonia and other influenza-like illness.
  • This method allows inducing a CD4 T cell response which is more persistent in time, e.g. still present one year after the first vaccination, compared to the response induced with the un-adjuvanted formulation.
  • the CD4 T-cell immune response such as the improved CD4 T-cell immune response obtained in an unprimed subject, involves the induction of a cross-reactive CD4 T helper response.
  • the amount of cross-reactive CD4 T cells is increased.
  • cross-reactive CD4 response refers to CD4 T-cell targeting shared epitopes for example between influenza strains.
  • the dose of immunomodulatory agent enhances an immune response to an antigen in a human.
  • a suitable immunomodulatory agent amount is that which improves the immunological potential of the composition compared to the unadjuvanted composition, or compared to the composition adjuvanted with another immunomodulatory agent amount.
  • an immunogenic composition dose will range from about 0.5 ml to about 1 ml.
  • Typical vaccine doses are 0.5 ml, 0.6 ml, 0.7 ml, 0.8 ml, 0.9 ml or 1 ml.
  • a final concentration of 50 ⁇ g of immunomodulatory agent, preferably PD-L2-Ig is contained per ml of vaccine composition, or 25 ⁇ g per 0.5 ml vaccine dose.
  • final concentrations of 35.7 ⁇ g or 71.4 ⁇ g of immunomodulatory agent is contained per ml of vaccine composition.
  • a 0.5 ml vaccine dose volume contains 25 ⁇ g or 50 ⁇ g of immunomodulatory agent per dose.
  • the dose is 100 ⁇ g or more.
  • Immunogenic compositions usually contain 15 ⁇ g of antigen component as measured by single radial immunodiffusion (SRD) (J. M. Wood et al.: J. Biol. Stand. 5 (1977) 237-247; J. M. Wood et al., J. Biol. Stand. 9 (1981) 317-330).
  • Subjects can be revaccinated with the immunogenic compositions. Typically revaccination is made at least 6 months after the first vaccination(s), preferably 8 to 14 months after, more preferably at around 10 to 12 months after.
  • the immunogenic composition for revaccination may contain any type of antigen preparation, either inactivated or live attenuated. It may contain the same type of antigen preparation, for example split influenza virus or split influenza virus antigenic preparation thereof, a whole virion, a purified subunit vaccine or a virosome, as the immunogenic composition used for the first vaccination.
  • the boosting composition may contain another type of antigen, i.e. split influenza virus or split influenza virus antigenic preparation thereof, a whole virion, a purified subunit vaccine or a virosome, than that used for the first vaccination.
  • a boosting composition is typically given at the next viral season, e.g. approximately one year after the first immunogenic composition.
  • the boosting composition may also be given every subsequent year (third, fourth, fifth vaccination and so forth).
  • the boosting composition may be the same as the composition used for the first vaccination.
  • revaccination induces any, preferably two or all, of the following: (i) an improved effector cell response against the antigenic preparation, or (ii) an improved B cell memory response or (iii) an improved humoral response, compared to the equivalent response induced after a first vaccination with the antigenic preparation without a Immunomodulatory agent.
  • the immunological responses induced after revaccination with the immunogenic antigenic preparation containing the Immunomodulatory agent are higher than the corresponding response induced after the revaccination with the un-adjuvanted composition.
  • the immunogenic compositions can be monovalent or multivalent, i.e, bivalent, trivalent, or quadrivalent. Preferably the immunogenic composition thereof is trivalent or quadrivalent.
  • Multivalent refers to the number of sources of antigen, typically from different species or strains. With regard to viruses, at least one strain is associated with a pandemic outbreak or has the potential to be associated with a pandemic outbreak.
  • Another embodiment provides contacting antigen presenting cells (APCs) with one or more of the disclosed immunomodulatory agents in an amount effective to inhibit, reduce or block PD-1 signal transduction in the APCs.
  • APCs antigen presenting cells
  • Blocking PD-1 signal transduction in the APCs reinvigorates the APCs enhancing clearance of intracellular pathogens, or cells infected with intracellular pathogens.
  • the immunomodulatory agent compositions can be administered to a subject in need thereof alone or in combination with one or more additional therapeutic agents.
  • the additional therapeutic agents are selected based on the condition, disorder or disease to be treated.
  • an immunomodulatory agent can be co-administered with one or more additional agents that function to enhance or promote an immune response.
  • the additional therapeutic agent is cyclophosphamide.
  • Cyclophosphamide (CPA, Cytoxan, or Neosar) is an oxazahosphorine drug and analogs include ifosfamide (IFO, Ifex), perfosfamide, trophosphamide (trofosfamide; Ixoten), and pharmaceutically acceptable salts, solvates, prodrugs and metabolites thereof (US patent application 20070202077 which is incorporated in its entirety).
  • Ifosfamide MIMOXANAO
  • MISO is a structural analog of cyclophosphamide and its mechanism of action is considered to be identical or substantially similar to that of cyclophosphamide.
  • Perfosfamide (4-hydroperoxycyclophosphamide) and trophosphamide are also alkylating agents, which are structurally related to cyclophosphamide. For example, perfosfamide alkylates DNA, thereby inhibiting DNA replication and RNA and protein synthesis.
  • New oxazaphosphorines derivatives have been designed and evaluated with an attempt to improve the selectivity and response with reduced host toxicity (Ref. Liang J, Huang M, Duan W, Yu X Q, Zhou S. Design of new oxazaphosphorine anticancer drugs. Curr Pharm Des. 2007; 13(9):963-78. Review).
  • Mafosfamide is an oxazaphosphorine analog that is a chemically stable 4-thioethane sulfonic acid salt of 4-hydroxy-CPA.
  • Glufosfamide is IFO derivative in which the isophosphoramide mustard, the alkylating metabolite of IFO, is glycosidically linked to a beta-D-glucose molecule. Additional cyclophosphamide analogs are described in U.S. Pat. No. 5,190,929 entitled “Cyclophosphamide analogs useful as anti-tumor agents” which is incorporated herein by reference in its entirety.
  • Additional therapeutic agents include is an agent that reduces activity and/or number of regulatory T lymphocytes (T-regs), preferably Sunitinib (SUTENT®), anti-TGF ⁇ or Imatinib (GLEEVAC®).
  • T-regs regulatory T lymphocytes
  • SUTENT® Sunitinib
  • anti-TGF ⁇ Imatinib
  • GLEEVAC® Imatinib
  • the recited treatment regimen may also include administering an adjuvant.
  • Other additional therapeutic agents include mitosis inhibitors, such as paclitaxol, aromatase inhibitors (e.g. Letrozole), agniogenesis inhibitors (VEGF inhibitors e.g. Avastin, VEGF-Trap), anthracyclines, oxaliplatin, doxorubicin, TLR4 antagonists, and IL-18 antagonists.
  • mitosis inhibitors such as paclitaxol, aromatase inhibitors (e.
  • Binding properties of the immunomodulatory agent are relevant to the dose and dose regime to be administered.
  • Existing antibody Immunomodulatory agents such as MDX-1106 demonstrate sustained occupancy of 60-80% of PD-1 molecules on T cells for at least 3 months following a single dose (Brahmer, et al. J. Clin. Oncology, 27:(155) 3018 (2009)).
  • the disclosed immunomodulatory agents have binding properties to PD-L1/PD-L2/PD-1 that demonstrate a shorter term, or lower percentage, of occupancy of PD-L1/PD-L2/PD-1 molecules on immune cells.
  • the disclosed immunomodulatory agents typically show less than 5, 10, 15, 20, 25, 30, 35, 40, 45, of 50% occupancy of PD-1 molecules on immune cells after one week, two weeks, three weeks, or even one month after administration of a single dose.
  • the disclosed immunomodulatory agents have reduced binding affinity to PD-1 relative to MDX-1106.
  • the PD-L2-Ig fusion protein In relation to an antibody such as MDX-1106, the PD-L2-Ig fusion protein has a relatively modest affinity for its receptor, and should therefore have a relatively fast off rate.
  • the immunomodulatory agents are administered intermittently over a period of days, weeks or months to elicit periodic enhanced immune response which are allowed to diminish prior to the next administration, which may serve to initiate an immune response, stimulate an immune response, or enhance an immune response.
  • methods are provided for modulating an immune response comprising administering to a mammal a composition comprising at least one immunomodulatory agent wherein said immunomodulatory agent provides a maximum plasma concentration of at least about 10 ng/mL.
  • the immunomodulating agent is AMP-224.
  • AMP-224 can be administered as a bolus dose at a dosage of, for example, 1.5 mg/kg, 5 mg/kg, 10 mg/kg, 30 mg/kg and/or 45 mg/kg.
  • AMP-224 has an AUC value that is about 18,000 ⁇ g/mL to about 25,000 ⁇ g/mL ⁇ day over the period of about a week.
  • the half-life of the immunomodulatory agent is about 5 to 10 days.
  • the current invention also provides use of at least one immunomodulatory agent in the manufacture of a medicament for the treatment of diseases, wherein said at least one immunomodulatory agent is formulated for administration to provide a maximum plasma concentration of said at least one immunomodulatory agent of least about 10 ng/mL and an Area Under the Curve value of said at least one immunomodulatory agent which is at least about 18,000 ⁇ g/mL to about 25,000 ⁇ g/mL ⁇ day over the period of one week.
  • the present invention provides the use of AMP-224 formulated for administration to provide a maximum plasma concentration of at least about 10 ng/mL.
  • mice Female C57BL/6 (B6) mice were purchased from the National Cancer Institute (Frederick, Md.). PD-1-deficient (PD-1 ⁇ / ⁇ ) mice were generated as described previously (Nishimura, et al., Int. Immunol., 10:1563-1572 (1998)). Stably transfected Chinese hamster ovary (CHO) cell clones secreting fusion proteins were maintained in CHO—SF II medium (Invitrogen Life Technologies) supplemented with 1% dialyzed fetal bovine serum (FBS; HyClone, Logan, Utah).
  • FBS Chinese hamster ovary
  • Lymphocytes and COS cells were grown in Dulbecco's modified Eagle medium (DMEM; Invitrogen Life Technologies) supplemented with 10% FBS, 25 mM HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate, 1% MEM nonessential amino acids, 100 U/ml penicillin G, and 100 ⁇ g/ml streptomycin sulfate.
  • DMEM Dulbecco's modified Eagle medium
  • B7-DC-Ig and B7-H1-Ig were constructed using a two-step PCR technique using B7-DC-Ig cDNA as a template.
  • Overlapping oligonucleotide primers were synthesized to encode the desired mutations, and two flanking 5′ and 3′ primers were designed to contain EcoR I and Bgl II restriction sites, respectively.
  • Appropriate regions of the cDNAs initially were amplified using the corresponding overlapping and flanking primers. Using the flanking 5′ and 3′ primers, fragments with overlapping sequences were fused together and amplified.
  • PCR products were digested with EcoR I and Bgl II and ligated into EcoR I/Bgl II-digested pHIg vectors. To verify that the desired mutations were introduced, each variant was sequenced using an ABI Prism 310 Genetic Analyzer. Plasmids were transfected into COS cells, and serum-free supernatants were harvested and used for in vitro binding assays or isolated on a protein G column for BIAcore analysis and functional assays.
  • Fusion proteins containing the extracellular domain of mouse PD-1 linked to the Fc portion of mouse IgG2a were produced in stably transfected CHO cells and isolated by protein G affinity column as described previously (Wand, et al. supra). Total RNA was isolated from mouse spleen cells and B7-DC cDNA was obtained by reverse-transcription PCR.
  • Murine B7-DC-Ig and B7-H1-Ig were prepared by transiently transfecting COS cells with a plasmid containing a chimeric cDNA that included the extracellular domain of mouse B7-DC linked in frame to the CH2-CH3 portion of human IgG1.
  • Human B7-DC-Ig and B7-H1-Ig were prepared by transiently transfecting COS cells with a plasmid containing a chimeric cDNA that included the extracellular domain of human B7-DC linked in frame to the CH2-CH3 portion of human IgG1.
  • the transfected COS cells were cultured in serum-free DMEM, and concentrated supernatants were used as sources of Ig fusion proteins for initial binding assays.
  • the Ig proteins were further isolated on a protein G column for BIAcore analysis and functional assays as described previously (Wand, et al. supra).
  • Molecular models of the Ig V-type domains of human B7-H1 (hB7-H1), mouse B7-H1 (mB7-H1), human B7-DC (hB7-DC), and mouse B7-DC (mB7-DC) were generated by homology (or comparative) modeling based on X-ray coordinates of human CD80 and CD86, as seen in the structures of the CD80/CTLA-4 and CD86/CTLA-4 complexes.
  • the V-domains of CD80 and CD86 were optimally superimposed, and sequences of B7 family members were aligned based on this superimposition.
  • the superimposition and initial alignments were carried out using the sequence-structure alignment function of MOE (Molecular Operating Environment, Chemical Computing Group, Montreal, Quebec, Canada). The alignment was then manually adjusted to match Ig consensus positions and to map other conserved hydrophobic residues in the target sequences to core positions in the X-ray structures. Corresponding residues in the aligned sequences thus were predicted to have roughly equivalent spatial positions. Taking this kind of structural information into account typically is a more reliable alignment criterion than sequence identity alone if the identity is low, as in this case. In the aligned region, the average identity of the compared B7 sequences relative to the two structural templates, CD80 and CD86, was only approximately 16%.
  • FIG. 5 The final version of the structure-oriented sequence alignment, which provided the basis for model building, is shown in FIG. 5 .
  • core regions of the four models were automatically assembled with MOE from the structural templates, and insertions and deletions in loop regions were modeled by applying a segment matching procedure (Levitt, J. Mol. Biol., 226:507-533 (1992); and Fechteler, et al., J. Mol. Biol., 253:114-131 (1995)).
  • Side chain replacements were carried out using preferred rotamer conformations seen in high-resolution protein databank structures (Ponder and Richards, J. Mol. Biol., 193:775-791 (1987); and Berman, et al., Nucl.
  • a sandwich ELISA specific for B7-DC-Ig and B7-H1-Ig was established.
  • Microtiter plates were coated with 2 fig/ml goat anti-human IgG (Sigma, St. Louis, Mo.) overnight at 4° C.
  • Wells were blocked for 1 hour with blocking buffer (10% FBS in PBS) and washed with PBS containing 0.05% Tween 20 (PBS-Tween).
  • COS cell culture supernatants were added and incubated for 2 hours at room temperature.
  • Known concentrations of isolated B7-DC-Ig also were added to separate wells on each plate for generation of a standard curve.
  • HRP horseradish peroxidase
  • TAGO horseradish peroxidase
  • TMB substrate TAGO, Inc., Burlingame, Calif.
  • Absorbance was measured at 405 mm on a microtiter plate reader. Concentrations of variant fusion proteins were determined by comparison with the linear range of a standard curve of B7-DC-Ig and B7-H1-Ig. Data from triplicate wells were collected, and the standard deviations from the mean were ⁇ 10%. Experiments were repeated at least three times.
  • mutant and wild type B7-DC-Ig and B7-H1-Ig fusion polypeptides were measured using a capture ELISA assay.
  • Recombinant PD-1Ig fusion proteins were coated on microtiter plates at 5 ⁇ g/ml overnight at 4° C. The plates were blocked and washed, and COS cell culture media was added and incubated for 2 hours at room temperature. After extensive washing, HRP-conjugated goat anti-human IgG was added, followed by TMB substrate and measurement of absorbance at 405 mm.
  • Human embryonal kidney 293 cells were transfected with a PD-1 GFP vector, which was constructed by fusing GFP (green fluorescent protein cDNA) in frame to the C terminal end of a full-length mouse PD-1 cDNA.
  • the cells were harvested 24 hours after transfection and incubated in FACS (fluorescence activated cell sorting) buffer (PBS, 3% FBS, 0.02% NaN 3 ) with equal amounts of fusion proteins, which had been titrated using wild type B7-DC-Ig and B7-H1-Ig in COS cell culture media on ice for 45 minutes.
  • FACS fluorescence activated cell sorting
  • the cells were washed, further incubated with fluorescein isothiocyanate (PE)-conjugated goat anti-human IgG (BioSource, Camarillo, Calif.), and analyzed on a FACScaliber (Becton Dickinson, Mountain View, Calif.) with Cell Quest software (Becton Dickinson). GFP-positive cells were gated by FL1.
  • PE fluorescein isothiocyanate
  • a flow cell of the CM5 chip was derivatized through injection of a 1:1 EDC:NHS [N-ethyl-N′-(diethylaminopropyl) carbodiimide:N-hydroxysuccinimide] mixture for seven minutes, followed by injection of 20 ⁇ g/ml of PD-1-Ig at 10 ⁇ l/min diluted in 10 mM sodium acetate (pH 4.5).
  • the PD-1-Ig was immobilized at 2000 RUs. This was followed by blocking the remaining activated carboxyl groups with 1 M ethanolamine (pH 8.5).
  • a control flow cell was prepared in a similar fashion as above, substituting running buffer alone in place of PD-1-Ig.
  • the fusion proteins were diluted in running buffer in a concentration series of 3.75, 7.5, 15, 30, and 60 ⁇ g/ml.
  • the proteins were injected at a flow rate of 20 ⁇ l/min for 3 minutes, and buffer was allowed to flow over the surface for 5 minutes for dissociation data.
  • the flow cells were regenerated with a single 30-second pulse of 10 mM NaOH. Data analysis was performed using BlAevaluation software package 3.1 (BIAcore).
  • mB7-DC residues E71, 1105, D111, and K113 were identified as important for binding to mPD1.
  • the identified residues were F67, 1115, K124 and 1126.
  • Mutation of residues S58 in mB7-DC and E58, A69 and C113 in mB7-H1 increased binding to mPD-1 as determined by ELISA.
  • these residues must at least be proximal to the receptor-ligand interface and have not only some tolerance for substitution but also potential optimization of binding interactions.
  • Variants of human B7-DC were also tested for binding to PD-1 using ELISA and FACS analysis. Mutation of hB7-DC residues K113 and D111 were identified as important for binding to PD-1.
  • B7-H1-Ig was first conjugated with allophycocyanin (APC). Unlabeled B7-DC-Ig at various concentrations was first incubated with a CHO cell line constitutively expressing PD-1 before adding B7-H1-Ig-APC to the probe and cell mixture.
  • FIG. 1 shows the median fluorescence intensity (MFI) of B7-H1-Ig-APC (y-axis) as a function of the concentration of unlabeled B7-DC-Ig competitor (x-axis) added. As the concentration of unlabeled B7-DC-Ig is increased the amount of B7-H1-Ig-APC bound to CHO cells decreases, demonstrating that B7-DC competes with B7-H1 for binding to PD-1.
  • MFI median fluorescence intensity
  • mice at age of 9 to 11 weeks were implanted subcutaneously with 1.0 ⁇ 10 5 CT26 colorectal tumor cells.
  • mice received 100 mg/kg of cyclophosphamide.
  • B7-DC-Ig treatment started 1 day later, on day 11.
  • Mice were treated with 100 ug of B7-DC-Ig, 2 doses per week, for 4 weeks and total 8 doses.
  • 75% of the mice that received the CTX+B7-DC-Ig treatment regimen eradicated the established tumors by Day 44, whereas all mice in the control CTX alone group died as a result of tumor growth or were euthanized because tumors exceeded the sizes approved by IACUC.
  • mice that eradicated established CT26 colorectal tumors from the above described experiment were rechallenged with 1 ⁇ 10 5 CT26 cells on Day 44 and Day 70. No tumors grew out from the rechallenge suggesting they had developed long term anti-tumor immunity from the cyclophosphamide and B7-DC-Ig combination treatment. All mice in the vehicle control group developed tumors. This demonstrated the effectiveness of the treatment on established tumors and that the B7-DC-Ig combination treatment resulted in memory responses to tumor antigens.
  • mice eradiated established CT26 colorectal tumors from the above described experiment were rechallenged with 2.5 ⁇ 10 5 CT26 cells on Day 44. Seven days later, mouse spleens were isolated. Mouse splenocytes were pulsed with 5 or 50 ug/mL of ovalbumin (OVA) or AH1 peptides for 6 hours in the presence of a Golgi blocker (BD BioScience). Memory T effector cells were analyzed by assessing CD8+/IFN ⁇ + T cells.
  • OVA ovalbumin
  • AH1 peptides AH1 peptides
  • FIGS. 2A-C show the results of experiments wherein the combination of cyclophosphamide (CTX or Cytoxan®) and B7-DC-Ig resulted in eradication of established CT26 tumors (colon carcinoma) in mice.
  • FIG. 2A shows tumor volume (mm 3 ) versus days post tumor challenge in mice treated with 100 mg/kg of CTX on Day 10 while
  • FIG. 2B shows tumor volume (mm 3 ) versus days post tumor challenge in mice treated with CTX on Day 10 followed by B7-DC-Ig administration starting one day later. Each line in each graph represents one mouse. Black arrow stands for B7-DC-Ig administration.
  • FIG. 2C shows average tumor volume for the mice in 2 A and 2 B.
  • FIG. 3 shows the results of experiments wherein the combination of CTX and B7-DC-Ig eradicated established CT26 tumors (colon carcinoma) in mice and protected against re-challenge with CT26.
  • Mice that were treated with CTX and B7-DC-Ig and found to be free of tumor growth on day 44 following tumor inoculation were rechallenged with tumors. The mice were later rechallenged again on on Day 70. None of the re-challenged mice displayed tumor growth by day 100.
  • FIG. 4 shows CTX and B7-DC-Ig treatment resulted in generation of tumor specific memory CTL.
  • FIG. 5 shows the effects of different doses of B7-DC-Ig in combination with CTX on the eradication of established CT26 tumors in mice.
  • Balb/C mice at age of 9 to 11 weeks were implanted subcutaneously with 1.0 ⁇ 10 5 CT26 cells.
  • mice were injected IP with 100 mg/kg of CTX.
  • mice were treated with 30, 100, or 300 ug of B7-DC-Ig biweekly for 4 weeks. Tumor growth was measured two times per week.
  • CTX in B7-DC-Ig Regimen Leads to Significant Reduction of PD-1+CD8+ T Cells in the Tumor Microenvironment
  • FIGS. 6A-C show the results of experiments where treatment of mice with the CTX and B7-DC-Ig regimen leads to significant reduction of PD-1+CD8+ T cells in the tumor microenvironment.
  • Balb/C mice at age of 9 to 11 weeks of age were implanted with 1 ⁇ 10 5 CT26 cells subcutaneously.
  • mice were injected with 100 mg/kg of CTX, IP.
  • mice were treated with 100 ug of B7-DC-Ig biweekly for 4 weeks.
  • FIG. 6A shows that at 2 days post CTX injection, PD-1+/CD8+ T cells were slight lower in the CTX+B7-DC-Ig treated group.
  • FIG. 6B shows that at 7 days post CTX injection, PD-1+/CD8+ T cells were significantly lower in the CTX+B7-DC-Ig treated and B7-DC-Ig alone groups.
  • FIG. 6C shows that at 13 days post CTX injection, PD-1+/CD8+ T cells were significantly lower in the CTX+B7-DC-Ig treated group and slightly lower in the B7-DC-Ig alone group.
  • FIG. 7 shows a schematic cartoon of how B7-DC-Ig breaks immune evasion by blocking PD-1 and B7-H1 interaction.
  • B7-DC-Ig can interact with PD-1 expressed on exhausted T cells, preventing B7-H1 binding, and can increase IFN ⁇ producing cells.
  • binding of B7-DC-Ig to PD-1 prevents binding of PD-L2 and can decrease Treg cells at the tumor site or pathogen infected area.
  • a pilot study incorporating several standard toxicity and immunotoxicity endpoints was performed in cynomolgus monkey with B7-DC-Ig.
  • Cage side observations were recorded 2 hours and 4 hours after injection and twice a day thereafter for 28 days; no abnormalities were noted.
  • Body weights were taken pre-dose and on Study Day 1, 8, and 15; no difference were observed ( FIG. 8 ).
  • FIG. 8 shows the data fit to two compartmental open pharmacokinetic models with IV bolus input using nonlinear regression analysis.
  • Half-life of B7-DC-Ig was 5-10 days.
  • BALB/c mice were injected IP with 100, 300, or 900 ⁇ g of murine B7-DC-Ig (corresponding to 1.5, 5, and 45 mg/kg) at Day 0 and level of murine B7-DC-Ig in systemic circulation was analyzed at various time points by ELISA.
  • the results of the ELISA assays are shown in FIG. 9 .
  • the terminal half-life was estimated to be 3.5 days for the 900 ⁇ g dose and 6.0 days for the two lower doses.
  • plasma levels of murine B7-DC-Ig were measured 6 hours after IP administration of murine B7-DC-Ig (corresponding to T max ) and just before the next administration (corresponding to T min ). This study was performed twice.
  • the plasma concentration of murine AMP-224 is dependent on the dosage administered. In most groups the concentration of murine AMP-224 is increasing with each dose when it is administered twice a week.
US13/511,879 2009-11-24 2010-11-24 Simultaneous inhibition of pd-l1/pd-l2 Abandoned US20130017199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/511,879 US20130017199A1 (en) 2009-11-24 2010-11-24 Simultaneous inhibition of pd-l1/pd-l2

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26398309P 2009-11-24 2009-11-24
US13/511,879 US20130017199A1 (en) 2009-11-24 2010-11-24 Simultaneous inhibition of pd-l1/pd-l2
PCT/US2010/057940 WO2011066342A2 (fr) 2009-11-24 2010-11-24 Inhibition simultanée de pd-l1/pd-l2

Publications (1)

Publication Number Publication Date
US20130017199A1 true US20130017199A1 (en) 2013-01-17

Family

ID=44067209

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/511,879 Abandoned US20130017199A1 (en) 2009-11-24 2010-11-24 Simultaneous inhibition of pd-l1/pd-l2

Country Status (4)

Country Link
US (1) US20130017199A1 (fr)
EP (1) EP2504028A4 (fr)
JP (1) JP2013512251A (fr)
WO (1) WO2011066342A2 (fr)

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110195068A1 (en) * 2008-08-25 2011-08-11 Solomon Langermann Pd-1 antagonists and methods of use thereof
US8609089B2 (en) 2008-08-25 2013-12-17 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use
US20150163719A1 (en) * 2012-06-29 2015-06-11 Lg Electronics Inc. Method for controlling handover in wireless communication system, and device therefor
WO2015112800A1 (fr) 2014-01-23 2015-07-30 Regeneron Pharmaceuticals, Inc. Anticorps humains se liant à pd-1
US9370565B2 (en) 2000-04-28 2016-06-21 The Johns Hopkins University Dendritic cell co-stimulatory molecules
WO2016164428A1 (fr) * 2015-04-06 2016-10-13 The Board Of Trustees Of The Leland Stanford Junior University Antagonistes de la voie de signalisation de mort cellulaire programmée 1 (pd-1) basés sur des récepteurs
WO2016176503A1 (fr) 2015-04-28 2016-11-03 Bristol-Myers Squibb Company Traitement du mélanome pd-l1 négatif à l'aide d'un anticorps anti-pd-1 et d'un anticorps anti-ctla-4
WO2016176504A1 (fr) 2015-04-28 2016-11-03 Bristol-Myers Squibb Company Traitement du mélanome pd-l1 positif à l'aide d'un anticorps anti-pd-1
US20160340430A1 (en) * 2010-03-05 2016-11-24 The Johns Hopkins University Compositions and methods for targeted immunomodulatory antibodies and fusion proteins
WO2016191751A1 (fr) 2015-05-28 2016-12-01 Bristol-Myers Squibb Company Traitement du cancer du poumon pd-l1 positif à l'aide d'un anticorps anti-pd-1
WO2016196389A1 (fr) 2015-05-29 2016-12-08 Bristol-Myers Squibb Company Traitement du néphrocarcinome
WO2017011666A1 (fr) 2015-07-14 2017-01-19 Bristol-Myers Squibb Company Méthode destinée à traiter le cancer à l'aide d'un inhibiteur des points de contrôle immunitaires
US9657082B2 (en) 2013-01-31 2017-05-23 Thomas Jefferson University PD-L1 and PD-L2-based fusion proteins and uses thereof
WO2017087870A1 (fr) 2015-11-18 2017-05-26 Bristol-Myers Squibb Company Traitement du cancer du poumon à l'aide d'une combinaison d'un anticorps anti-pd-1 et d'un anticorps anti-ctla-4
US9683048B2 (en) 2014-01-24 2017-06-20 Novartis Ag Antibody molecules to PD-1 and uses thereof
WO2017106061A1 (fr) 2015-12-14 2017-06-22 Macrogenics, Inc. Molécules bispécifiques présentant une immunoréactivité par rapport à pd-1 et à ctla-4 et leurs procédés d'utilisation
WO2017112943A1 (fr) 2015-12-23 2017-06-29 Modernatx, Inc. Procédés d'utilisation de polynucléotides codant pour un ligand ox40
WO2017156152A1 (fr) * 2016-03-08 2017-09-14 Bioxcel Corporation Thérapies d'immunomodulation du cancer
WO2017176925A1 (fr) 2016-04-05 2017-10-12 Bristol-Myers Squibb Company Analyse de profilage de cytokines permettant de prédire un pronostic d'un patient ayant besoin d'un traitement anti-cancéreux
WO2017201131A1 (fr) * 2016-05-18 2017-11-23 Albert Einstein College Of Medicine, Inc. Variants de polypeptides pd-l1, polypeptides multimères modulateurs des lymphocytes t et procédés d'utilisation correspondants
WO2017201325A1 (fr) 2016-05-18 2017-11-23 Modernatx, Inc. Combinaisons d'arnm codant pour des polypeptides de modulation immunitaire et leurs utilisations
WO2017201350A1 (fr) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucléotides codant pour l'interleukine 12 (il-12) et leurs utilisations
WO2017201352A1 (fr) 2016-05-18 2017-11-23 Modernatx, Inc. Polythérapie à base d'arnm pour le traitement du cancer
WO2017210453A1 (fr) 2016-06-02 2017-12-07 Bristol-Myers Squibb Company Blocage de pd-1 avec du nivolumab dans le lymphome de hodgkin réfractaire
WO2017210624A1 (fr) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Anticorps anti-pd-1 utilisé dans un procédé de traitement d'une tumeur
WO2017210637A1 (fr) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Utilisation d'anticorps anti-pd-1 dans le traitement de patients atteints d'un cancer colorectal
WO2017210473A1 (fr) 2016-06-02 2017-12-07 Bristol-Myers Squibb Company Utilisation d'un anticorps anti-pd-1 en combinaison avec un anticorps anti-cd30 dans le traitement du lymphome
WO2018048975A1 (fr) 2016-09-09 2018-03-15 Bristol-Myers Squibb Company Utilisation d'un anticorps anti-pd-1 en combinaison avec un anticorps anti-mésothéline dans le traitement du cancer
US9920123B2 (en) 2008-12-09 2018-03-20 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
US9938345B2 (en) 2014-01-23 2018-04-10 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-L1
WO2018081531A2 (fr) 2016-10-28 2018-05-03 Ariad Pharmaceuticals, Inc. Méthodess d'activation de lymphocytes t humains
WO2018083087A2 (fr) 2016-11-02 2018-05-11 Glaxosmithkline Intellectual Property (No.2) Limited Protéines de liaison
WO2018187057A1 (fr) 2017-04-06 2018-10-11 Regeneron Pharmaceuticals, Inc. Formulation stable d'anticorps
WO2018213731A1 (fr) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucléotides codant pour des polypeptides d'interleukine-12 (il12) ancrés et leurs utilisations
WO2018222718A1 (fr) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Traitement de tumeurs positives pour lag-3
US10160806B2 (en) 2014-06-26 2018-12-25 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
WO2019023624A1 (fr) 2017-07-28 2019-01-31 Bristol-Myers Squibb Company Biomarqueur sanguin périphérique prédictif pour inhibiteurs de points de contrôle
WO2019046321A1 (fr) 2017-08-28 2019-03-07 Bristol-Myers Squibb Company Antagonistes de tim-3 pour le traitement et le diagnostic de cancers
EP3456346A1 (fr) 2015-07-30 2019-03-20 MacroGenics, Inc. Molécules de liaison pd-1 et lag-3 et leurs procédés d'utilisation
WO2019060888A1 (fr) * 2017-09-25 2019-03-28 New York University Protéines de fusion hétérodimère-fc
US10273281B2 (en) 2015-11-02 2019-04-30 Five Prime Therapeutics, Inc. CD80 extracellular domain polypeptides and their use in cancer treatment
US20190183942A1 (en) * 2015-06-01 2019-06-20 The University Of Chicago Treatment of cancer by manipulation of commensal microflora
WO2019136531A1 (fr) * 2018-01-15 2019-07-18 University Of Canberra Molécules protéiques et utilisations associées
WO2019140322A1 (fr) 2018-01-12 2019-07-18 KDAc Therapeutics, Inc. Combinaison d'un inhibiteur sélectif de désacétylase d'histone 3 (hdac3) et d'un agent d'immunothérapie pour le traitement du cancer
WO2019144126A1 (fr) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoïdes et leurs dérivés pour favoriser l'immunogénicité des cellules tumorales et infectées
US10392442B2 (en) 2015-12-17 2019-08-27 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
GB201912107D0 (en) 2019-08-22 2019-10-09 Amazentis Sa Combination
US10457725B2 (en) 2016-05-13 2019-10-29 Regeneron Pharmaceuticals, Inc. Methods of treating skin cancer by administering a PD-1 inhibitor
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US10512689B2 (en) 2015-04-17 2019-12-24 Bristol-Myers Squibb Company Compositions comprising a combination of nivolumab and ipilimumab
WO2020023707A1 (fr) 2018-07-26 2020-01-30 Bristol-Myers Squibb Company Polythérapie à base de lag-3 pour le traitement du cancer
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
WO2020097409A2 (fr) 2018-11-08 2020-05-14 Modernatx, Inc. Utilisation d'arnm codant pour ox40l pour traiter le cancer chez des patients humains
US10660954B2 (en) 2015-07-31 2020-05-26 University Of Florida Research Foundation, Incorporated Hematopoietic stem cells in combinatorial therapy with immune checkpoint inhibitors against cancer
WO2020232019A1 (fr) 2019-05-13 2020-11-19 Regeneron Pharmaceuticals, Inc. Combinaison d'inhibiteurs pd-1 et d'inhibiteurs lag-3 pour une efficacité améliorée dans le traitement du cancer
WO2020236253A1 (fr) 2019-05-20 2020-11-26 Massachusetts Institute Of Technology Promédicaments d'ester boronique et leurs utilisations
WO2020239558A1 (fr) 2019-05-24 2020-12-03 Pfizer Inc. Polythérapies faisant appel à des inhibiteurs de cdk
WO2020255009A2 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1
WO2020255011A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1 ou anti-pd-l1
US10927158B2 (en) 2016-12-22 2021-02-23 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US10927161B2 (en) 2017-03-15 2021-02-23 Cue Biopharma, Inc. Methods for modulating an immune response
WO2021041532A1 (fr) 2019-08-26 2021-03-04 Dana-Farber Cancer Institute, Inc. Utilisation d'héparine pour favoriser la signalisation de l'interféron de type 1
WO2021055994A1 (fr) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Profilage spatial quantitatif pour une thérapie par antagoniste de lag-3
WO2021092380A1 (fr) 2019-11-08 2021-05-14 Bristol-Myers Squibb Company Thérapie par antagoniste de lag-3 contre le mélanome
WO2021097256A1 (fr) 2019-11-14 2021-05-20 Cohbar, Inc. Peptides antagonistes de cxcr4
US11021511B2 (en) 2017-01-27 2021-06-01 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
US11072653B2 (en) 2015-06-08 2021-07-27 Macrogenics, Inc. LAG-3-binding molecules and methods of use thereof
US11078279B2 (en) 2015-06-12 2021-08-03 Macrogenics, Inc. Combination therapy for the treatment of cancer
US11078282B2 (en) 2016-04-15 2021-08-03 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
WO2021155042A1 (fr) 2020-01-28 2021-08-05 Genentech, Inc. Protéines de fusion hétérodimères fc-il15/il15r alpha pour le traitement du cancer
US11096988B2 (en) 2017-03-16 2021-08-24 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11167018B2 (en) * 2016-12-23 2021-11-09 Keio University Compositions and methods for the induction of CD8+ T-cells
US11174315B2 (en) 2015-10-08 2021-11-16 Macrogenics, Inc. Combination therapy for the treatment of cancer
WO2021243207A1 (fr) 2020-05-28 2021-12-02 Modernatx, Inc. Utilisation d'arnm codant pour ox40l, il-23 et il-36gamma pour le traitement du cancer
US11226339B2 (en) 2012-12-11 2022-01-18 Albert Einstein College Of Medicine Methods for high throughput receptor:ligand identification
WO2022047189A1 (fr) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Thérapie par antagoniste de lag-3 pour le carcinome hépatocellulaire
WO2022046833A1 (fr) 2020-08-26 2022-03-03 Regeneron Pharmaceuticals, Inc. Méthodes de traitement du cancer par administration d'un inhibiteur de pd-1
US11299551B2 (en) 2020-02-26 2022-04-12 Biograph 55, Inc. Composite binding molecules targeting immunosuppressive B cells
WO2022087402A1 (fr) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Thérapie par antagoniste de lag-3 pour le cancer du poumon
US11319359B2 (en) 2015-04-17 2022-05-03 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities
US11332537B2 (en) 2018-04-17 2022-05-17 Celldex Therapeutics, Inc. Anti-CD27 and anti-PD-L1 antibodies and bispecific constructs
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
WO2022118197A1 (fr) 2020-12-02 2022-06-09 Pfizer Inc. Délai de résolution d'événements indésirables liés à l'axitinib
US11377423B2 (en) 2012-07-27 2022-07-05 The Broad Institute, Inc. Inhibitors of histone deacetylase
WO2022156727A1 (fr) 2021-01-21 2022-07-28 浙江养生堂天然药物研究所有限公司 Composition et procédé de traitement de tumeurs
WO2022204672A1 (fr) 2021-03-23 2022-09-29 Regeneron Pharmaceuticals, Inc. Méthodes de traitement du cancer chez des patients immunodéprimés ou immunovulnérables par administration d'un inhibiteur de pd-1
WO2022212400A1 (fr) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Méthodes de dosage et de traitement au moyen d'une combinaison d'une thérapie par inhibiteur de point de contrôle et d'une thérapie par lymphocytes car t
US11492367B2 (en) 2017-01-27 2022-11-08 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
US11505591B2 (en) 2016-05-18 2022-11-22 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11564986B2 (en) 2015-07-16 2023-01-31 Onkosxcel Therapeutics, Llc Approach for treatment of cancer via immunomodulation by using talabostat
US11572368B2 (en) 2011-04-28 2023-02-07 The General Hospital Corporation Inhibitors of histone deacetylase
WO2023015198A1 (fr) 2021-08-04 2023-02-09 Genentech, Inc. Protéines de fusion hétérodimères avec fc et il15/il15r alpha servant à faire proliférer des lymphocytes nk dans le traitement de tumeurs solides
US11607453B2 (en) 2017-05-12 2023-03-21 Harpoon Therapeutics, Inc. Mesothelin binding proteins
US11613525B2 (en) 2018-05-16 2023-03-28 Ctxt Pty Limited Substituted condensed thiophenes as modulators of sting
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
WO2023057882A1 (fr) 2021-10-05 2023-04-13 Pfizer Inc. Combinaisons de composés d'azalactam avec un antagoniste de liaison à l'axe pd-1 pour le traitement du cancer
WO2023077090A1 (fr) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Thérapie par antagoniste de lag-3 pour cancer hématologique
WO2023079428A1 (fr) 2021-11-03 2023-05-11 Pfizer Inc. Polythérapies utilisant un agoniste de tlr7/8
US11702461B2 (en) 2018-01-09 2023-07-18 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides comprising reduced-affinity immunomodulatory polypeptides
WO2023140950A1 (fr) * 2022-01-18 2023-07-27 Fbd Biologics Limited Complexe de protéine ciblant cd47/pd-l1 et ses procédés d'utilisation
WO2023147371A1 (fr) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Polythérapie pour carcinome hépatocellulaire
US11723934B2 (en) 2018-02-09 2023-08-15 Keio University Compositions and methods for the induction of CD8+ T-cells
US11725041B2 (en) * 2016-08-11 2023-08-15 The Council Of The Queensland Institute Of Medical Research Immune-modulating compounds
US11732022B2 (en) 2017-03-16 2023-08-22 Alpine Immune Sciences, Inc. PD-L2 variant immunomodulatory proteins and uses thereof
WO2023159102A1 (fr) 2022-02-17 2023-08-24 Regeneron Pharmaceuticals, Inc. Association d'inhibiteurs de point de contrôle et de virus oncolytique pour le traitement du cancer
US11767361B2 (en) 2016-06-03 2023-09-26 Bristol-Myers Squibb Company Method of treating lung cancer
WO2023196988A1 (fr) 2022-04-07 2023-10-12 Modernatx, Inc. Procédés d'utilisation d'arnm codant pour il-12
WO2023164266A3 (fr) * 2022-02-28 2023-10-12 Sagittarius Bio, Inc. Inhibiteurs à double point de contrôle et leurs procédés d'utilisation
US11789010B2 (en) 2017-04-28 2023-10-17 Five Prime Therapeutics, Inc. Methods of treatment with CD80 extracellular domain polypeptides
US11807692B2 (en) 2018-09-25 2023-11-07 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
US11851471B2 (en) 2017-01-09 2023-12-26 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11874276B2 (en) 2018-04-05 2024-01-16 Dana-Farber Cancer Institute, Inc. STING levels as a biomarker for cancer immunotherapy
WO2024015803A2 (fr) 2022-07-11 2024-01-18 Autonomous Therapeutics, Inc. Arn crypté et ses procédés d'utilisation
US11878062B2 (en) 2020-05-12 2024-01-23 Cue Biopharma, Inc. Multimeric T-cell modulatory polypeptides and methods of use thereof
WO2024023740A1 (fr) 2022-07-27 2024-02-01 Astrazeneca Ab Combinaisons de virus recombinant exprimant l'interleukine-12 avec des inhibiteurs de pd-1/pdl1
US11976125B2 (en) 2021-01-15 2024-05-07 Harpoon Therapeutics, Inc. B cell maturation antigen binding proteins

Families Citing this family (779)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2629683T3 (es) 1999-11-30 2017-08-14 Mayo Foundation For Medical Education And Research B7-H1, una nueva molécula inmunorreguladora
CA2498008C (fr) 2002-09-11 2014-02-04 Genentech, Inc. Nouvelles composition et methodes servant au traitement de maladies associees au systeme immunitaire
US7432351B1 (en) 2002-10-04 2008-10-07 Mayo Foundation For Medical Education And Research B7-H1 variants
PT1810026T (pt) 2004-10-06 2018-06-11 Mayo Found Medical Education & Res B7-h1 e pd-1 no tratamento do carcinona de células renais
EP2170946A2 (fr) 2007-07-13 2010-04-07 The Johns Hopkins University Variants de b7-dc
AU2009233708B2 (en) 2008-04-09 2015-06-04 Genentech, Inc. Novel compositions and methods for the treatment of immune related diseases
JP5757863B2 (ja) 2008-05-19 2015-08-05 アドバクシス インコーポレイテッド 異種抗原のための二重送達システム
US9017660B2 (en) 2009-11-11 2015-04-28 Advaxis, Inc. Compositions and methods for prevention of escape mutation in the treatment of Her2/neu over-expressing tumors
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
TWI507205B (zh) 2009-03-25 2015-11-11 Genentech Inc 抗fgfr3抗體及使用方法
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
US9783578B2 (en) 2010-06-25 2017-10-10 Aurigene Discovery Technologies Limited Immunosuppression modulating compounds
US8907053B2 (en) 2010-06-25 2014-12-09 Aurigene Discovery Technologies Limited Immunosuppression modulating compounds
EP3029066B1 (fr) 2010-07-29 2019-02-20 Xencor, Inc. Anticorps à points isoélectriques modifiés
WO2012138377A2 (fr) 2010-10-01 2012-10-11 Trustees Of The University Of Pennsylvania Utilisation de vecteurs de vaccin de listeria pour renverser l'insensibilité au vaccin chez des individus infectés par des parasites
WO2012125551A1 (fr) 2011-03-11 2012-09-20 Advaxis Adjuvants à base de listeria
WO2012168944A1 (fr) * 2011-06-08 2012-12-13 Aurigene Discovery Technologies Limited Composés thérapeutiques pour une immunomodulation
DK3409278T3 (da) 2011-07-21 2020-11-09 Sumitomo Dainippon Pharma Oncology Inc Heterocykliske proteinkinaseinhibitorer
AU2012290121B2 (en) * 2011-08-01 2015-11-26 Genentech, Inc. Methods of treating cancer using PD-1 axis binding antagonists and MEK inhibitors
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
HRP20220924T1 (hr) * 2011-10-17 2022-10-28 Io Biotech Aps Imunoterapija zasnovana na pd-l1
BR112014018331A8 (pt) * 2012-01-25 2017-07-11 Univ Texas Biomarcadores e terapias combinadas usando vírus oncolítico e imunomodulação
KR20140134695A (ko) 2012-03-12 2014-11-24 어드박시스, 인크. 리스테리아 백신 치료 후 억제 세포 기능 저해
WO2013181452A1 (fr) 2012-05-31 2013-12-05 Genentech, Inc. Procédés de traitement du cancer au moyen d'antagonistes liant l'axe pd-1 et d'antagonistes de vegf
LT3176170T (lt) 2012-06-13 2019-04-25 Incyte Holdings Corporation Pakeisti tricikliniai junginiai, kaip fgfr inhibitoriai
JP6403166B2 (ja) * 2012-08-03 2018-10-10 ダナ−ファーバー キャンサー インスティテュート, インコーポレイテッド 単一抗原抗pd−l1およびpd−l2二重結合抗体およびその使用方法
EA201590451A1 (ru) 2012-08-30 2016-05-31 Эмджен Инк. Способ лечения меланомы с применением вируса простого герпеса и ингибитора иммунной контрольной точки
SI2904011T1 (sl) * 2012-10-02 2017-10-30 Bristol-Myers Squibb Company Kombinacija anti-kir protiteles in anti-pd-1 protiteles za zdravljenje raka
AU2013337277B2 (en) 2012-11-05 2018-03-08 Foundation Medicine, Inc. Novel NTRK1 fusion molecules and uses thereof
CN104813168B (zh) * 2012-11-30 2017-10-20 霍夫曼-拉罗奇有限公司 需要pd‑l1抑制剂综合疗法的患者的鉴定
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
AU2014205086B2 (en) 2013-01-14 2019-04-18 Xencor, Inc. Novel heterodimeric proteins
WO2014113510A1 (fr) 2013-01-15 2014-07-24 Xencor, Inc. Elimination rapide de complexes antigéniques à l'aide de nouveaux anticorps
CA3150658A1 (en) 2013-01-18 2014-07-24 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
TW201446794A (zh) 2013-02-20 2014-12-16 Novartis Ag 利用抗-cd123嵌合抗原受體工程化t細胞之初級人類白血病有效靶向
KR102313997B1 (ko) 2013-02-20 2021-10-20 노파르티스 아게 인간화 항-EGFRvIII 키메라 항원 수용체를 사용한 암의 치료
US9302005B2 (en) 2013-03-14 2016-04-05 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
CA2906927C (fr) 2013-03-15 2021-07-13 Xencor, Inc. Modulation de cellules t avec des anticorps bispecifiques et des fusions de fc
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
TWI654206B (zh) 2013-03-16 2019-03-21 諾華公司 使用人類化抗-cd19嵌合抗原受體治療癌症
JP2016516772A (ja) 2013-04-09 2016-06-09 リクスト・バイオテクノロジー,インコーポレイテッド オキサシクロヘプタン及びオキサビシクロヘプテンの配合物
AU2014250940A1 (en) 2013-04-09 2015-10-22 Boston Biomedical, Inc. 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer
DK2986610T5 (en) 2013-04-19 2018-12-10 Incyte Holdings Corp BICYCLIC HETEROCYCLES AS FGFR INHIBITORS
CA2916681A1 (fr) 2013-07-16 2015-01-22 Genentech, Inc. Procedes de traitement du cancer a l'aide d'antagonistes se liant a l'axe pd-1 et inhibiteurs de mek
US9827309B2 (en) 2013-08-20 2017-11-28 Merck Sharp & Dohme Corp. Treating cancer with a combination of a PD-1 antagonist and dinaciclib
ES2714708T3 (es) 2013-10-01 2019-05-29 Mayo Found Medical Education & Res Procedimientos para el tratamiento de cáncer en pacientes con niveles elevados de Bim
WO2015066413A1 (fr) 2013-11-01 2015-05-07 Novartis Ag Composés d'acide oxazolidinone-hydroxamique pour le traitement d'infections bactériennes
BR112016010716A8 (pt) 2013-11-13 2020-04-22 Novartis Ag dose de reforço imunológico, baixa, de um inibidor de mtor, seu uso, e adjuvante de vacina
JP6879739B2 (ja) 2013-11-25 2021-06-02 フェイムウェイヴ リミテッド 癌治療のための抗ceacam1および抗pd抗体を含む組成物
WO2015088930A1 (fr) 2013-12-10 2015-06-18 Merck Sharp & Dohme Corp. Dosage de proximité immunohistochimique pour cellules positives pd-1 et cellules positives de ligand pd dans un tissu tumoral
ME03527B (fr) 2013-12-12 2020-04-20 Shanghai hengrui pharmaceutical co ltd Anticorps anti-pd-1, son fragment de liaison à l'antigène, et son application médicale
CA2933883A1 (fr) 2013-12-17 2015-06-25 Genentech, Inc. Methodes de traitement de cancers her2 positifs au moyen d'antagonistes se liant a l'axe pd-1 et d'anticorps anti-her2
SG11201604875PA (en) 2013-12-17 2016-07-28 Genentech Inc Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
EP3084003A4 (fr) 2013-12-17 2017-07-19 Merck Sharp & Dohme Corp. Biomarqueurs de signature du gène ifn-gamma de la réponse tumorale à des antagonistes de pd-1
SG11201604979WA (en) 2013-12-17 2016-07-28 Genentech Inc Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
JP6779785B2 (ja) 2013-12-19 2020-11-04 ノバルティス アーゲー ヒトメソテリンキメラ抗原受容体およびその使用
JO3517B1 (ar) 2014-01-17 2020-07-05 Novartis Ag ان-ازاسبيرو الكان حلقي كبديل مركبات اريل-ان مغايرة وتركيبات لتثبيط نشاط shp2
US10570202B2 (en) 2014-02-04 2020-02-25 Pfizer Inc. Combination of a PD-1 antagonist and a VEGFR inhibitor for treating cancer
ES2783026T3 (es) 2014-02-04 2020-09-16 Pfizer Combinación de un antagonista de PD-1 y un agonista de 4-1BB para el tratamiento de cáncer
CN106456753B (zh) 2014-02-04 2021-05-11 因塞特公司 用于治疗癌症的pd-1拮抗剂和ido1抑制剂的组合
MX2016011993A (es) 2014-03-14 2016-12-09 Novartis Ag Moleculas de anticuerpo que se unen a lag-3 y usos de las mismas.
ES2939760T3 (es) 2014-03-15 2023-04-26 Novartis Ag Tratamiento de cáncer utilizando un receptor quimérico para antígenos
PE20161371A1 (es) 2014-03-24 2016-12-21 Novartis Ag Compuestos organicos de monobactam para el tratamiento de infecciones bacterianas
US9822186B2 (en) 2014-03-28 2017-11-21 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
KR20160145624A (ko) 2014-03-31 2016-12-20 제넨테크, 인크. 항-ox40 항체 및 사용 방법
CA2943834A1 (fr) 2014-03-31 2015-10-08 Genentech, Inc. Therapie combinatoires comprenant des agents anti-angiogenese et des agonistes se liant a ox40
PL3129470T3 (pl) 2014-04-07 2021-11-29 Novartis Ag Leczenie nowotworu złośliwego z zastosowaniem chimerycznego receptora antygenowego anty-CD19
US10302653B2 (en) 2014-05-22 2019-05-28 Mayo Foundation For Medical Education And Research Distinguishing antagonistic and agonistic anti B7-H1 antibodies
JP2017516779A (ja) 2014-05-28 2017-06-22 アイデニクス・ファーマシューティカルズ・エルエルシー 癌治療のためのヌクレオシド誘導体
ES2916923T3 (es) 2014-07-11 2022-07-06 Ventana Med Syst Inc Anticuerpos anti-PD-L1 y usos diagnósticos de los mismos
EP3169349A4 (fr) * 2014-07-14 2018-02-14 The Council Of The Queensland Institute Of Medical Research Immunothérapie par galectine
MX2017000546A (es) 2014-07-15 2017-03-08 Genentech Inc Composiciones para el tratamiento del cancer mediante el uso de antagonistas de union al eje de pd-1 e inhibidores de mek.
CN114984228A (zh) 2014-07-18 2022-09-02 阿德瓦希斯股份有限公司 用于治疗前列腺癌的pd-1拮抗剂和基于李斯特菌的疫苗的组合
WO2016014553A1 (fr) 2014-07-21 2016-01-28 Novartis Ag Récepteurs d'antigènes chimères synthétisés par l'intermédiaire d'une sortase
JP2017528433A (ja) 2014-07-21 2017-09-28 ノバルティス アーゲー 低い免疫増強用量のmTOR阻害剤とCARの組み合わせ
KR102594343B1 (ko) 2014-07-21 2023-10-26 노파르티스 아게 Cd33 키메라 항원 수용체를 사용한 암의 치료
EP3171896A4 (fr) 2014-07-23 2018-03-21 Mayo Foundation for Medical Education and Research Ciblage d'adn-pkcs et de b7-h1 pour traiter le cancer
ES2781175T3 (es) 2014-07-31 2020-08-31 Novartis Ag Subconjunto optimizado de células T que contienen un receptor de antígeno quimérico
WO2016020836A1 (fr) 2014-08-06 2016-02-11 Novartis Ag Dérivés de quinolone comme antibactériens
CA2958200A1 (fr) 2014-08-14 2016-02-18 Novartis Ag Traitement du cancer a l'aide du recepteur d'antigene chimerique gfr alpha-4
CN107108744B (zh) 2014-08-19 2020-09-25 诺华股份有限公司 抗cd123嵌合抗原受体(car)用于癌症治疗
EP3185866A1 (fr) 2014-08-25 2017-07-05 Pfizer Inc. Combinaison d'un antagoniste de pd-1 et d'un inhibiteur d'alk dans le traitement du cancer
TR201907471T4 (tr) 2014-08-28 2019-06-21 Halozyme Inc Bir hiyalüronan ayrıştırıcı enzim ve bir bağışıklık kontrol noktası inhibitörüyle kombinasyon terapisi.
BR112017005390A2 (pt) 2014-09-17 2017-12-12 Novartis Ag células citotóxicas alvo com receptores quiméricos para imunoterapia adotiva
HUE049175T2 (hu) 2014-09-23 2020-09-28 Hoffmann La Roche Eljárás anti-CD79b immunkonjugátumok alkalmazására
AU2015326996B2 (en) * 2014-09-30 2021-05-20 Intervet International B.V. PD-L1 antibodies binding canine PD-L1
CN107106687A (zh) 2014-10-03 2017-08-29 诺华股份有限公司 组合治疗
MA41044A (fr) 2014-10-08 2017-08-15 Novartis Ag Compositions et procédés d'utilisation pour une réponse immunitaire accrue et traitement contre le cancer
JP6815992B2 (ja) 2014-10-08 2021-01-20 ノバルティス アーゲー キメラ抗原受容体療法に対する治療応答性を予測するバイオマーカーおよびその使用
EP4245376A3 (fr) 2014-10-14 2023-12-13 Novartis AG Molécules d'anticorps de pd-l1 et leurs utilisations
ES2753391T3 (es) 2014-10-14 2020-04-08 Halozyme Inc Composiciones de adenosina desaminasa 2 (ADA2), variantes de la misma y métodos de uso de las mismas
AU2015343337A1 (en) 2014-11-03 2017-06-15 Genentech, Inc. Assays for detecting T cell immune subsets and methods of use thereof
SG11201703521UA (en) 2014-11-03 2017-05-30 Genentech Inc Methods and biomarkers for predicting efficacy and evaluation of an ox40 agonist treatment
MX2017006301A (es) 2014-11-14 2017-08-21 Novartis Ag Conjugados de anticuerpo- farmaco.
RU2017121096A (ru) 2014-11-17 2018-12-19 Дженентек, Инк. Комбинированная терапия, включающая применение ох40-связывающих агонистов и антагонистов связывания оси pd-1
EP3220927B1 (fr) 2014-11-20 2022-01-05 Promega Corporation Systèmes et procédés pour évaluer des modulateurs de points de contrôle immunitaires
SI3221355T1 (sl) 2014-11-20 2021-01-29 F. Hoffmann-La Roche Ag Kombinirano zdravljenje z bispecifičnimi molekulami CD3, ki aktivirajo celice T in vežejo antigene in folatni receptor 1 (FoIR1) ter antagonisti za vezavo osi PD-1
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
MA41019A (fr) 2014-11-26 2021-05-05 Xencor Inc Anticorps hétérodimériques se liant aux antigènes cd3 et cd38
MA55043A (fr) 2014-11-26 2021-12-29 Xencor Inc Anticorps hétérodimériques se liant à l'antigène cd3 et l'antigène cd20
JP6771464B2 (ja) 2014-11-27 2020-10-21 ジェネンテック, インコーポレイテッド Cbpおよび/またはep300インヒビターとしての、4,5,6,7−テトラヒドロ−1h−ピラゾロ[4,3−c]ピリジン−3−アミン化合物
WO2016090034A2 (fr) 2014-12-03 2016-06-09 Novartis Ag Méthodes de pré-conditionnement de cellules b dans une thérapie car
WO2016089833A1 (fr) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Nouveaux composés tricycliques comme inhibiteurs d'enzymes idh mutantes
EP3226688B1 (fr) 2014-12-05 2020-07-01 Merck Sharp & Dohme Corp. Composés tricycliques servant d'inhibiteurs d'enzymes idh mutantes
WO2016089830A1 (fr) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Nouveaux composés tricycliques utilisés en tant qu'inhibiteurs d'enzymes idh mutantes
EP3227337A1 (fr) 2014-12-05 2017-10-11 F. Hoffmann-La Roche AG Procédés et compositions de traitement du cancer à l'aide d'antagonistes de l'axe pd-1 et d'antagonistes de hpk1
CA2968406A1 (fr) 2014-12-09 2016-06-16 Mark D. Ayers Systeme et procedes pour deriver des marqueurs biologiques de signature genique de reponse a des antagonistes de pd-1
LT3233843T (lt) 2014-12-16 2019-12-10 Novartis Ag Izoksazolo hidroksamido rūgšties junginiai, kaip lpxc inhibitoriai
IL308119A (en) 2014-12-18 2023-12-01 Amgen Inc Stable frozen formulation for herpes simplex virus
EP3233918A1 (fr) 2014-12-19 2017-10-25 Novartis AG Polythérapies
EP3237449A2 (fr) 2014-12-22 2017-11-01 Xencor, Inc. Anticorps trispécifiques
WO2016126608A1 (fr) 2015-02-02 2016-08-11 Novartis Ag Cellules exprimant car dirigées contre de multiples antigènes tumoraux et leurs utilisations
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
CN107438607B (zh) 2015-02-20 2021-02-05 因赛特公司 作为fgfr抑制剂的双环杂环
SG10201810615VA (en) 2015-02-26 2019-01-30 Merck Patent Gmbh Pd-1 / pd-l1 inhibitors for the treatment of cancer
CA2978226A1 (fr) 2015-03-04 2016-09-09 Merck Sharpe & Dohme Corp. Association d'un antagoniste de pd-1 et d'un inhibiteur des tyrosines kinases vegfr/fgfr/ret pour traiter le cancer
CA2978311A1 (fr) 2015-03-04 2016-09-09 Merck Sharp & Dohme Corp. Combinaison d'un antagoniste de pd-1 et d'eribuline dans le traitement du cancer
WO2016141387A1 (fr) 2015-03-05 2016-09-09 Xencor, Inc. Modulation de lymphocytes t avec des anticorps bispécifiques et des hybrides fc
BR112017018908A2 (pt) 2015-03-10 2018-04-17 Aduro Biotech, Inc. composições e métodos para ativar a sinalização dependente do "estimulador do gene de interferon
EP3067062A1 (fr) 2015-03-13 2016-09-14 Ipsen Pharma S.A.S. Combinaison de tasquinimod ou d'un sel pharmaceutiquement acceptable de celui-ci et d'un inhibiteur de pd1 et/ou de pdl1, destinée à être utilisée comme médicament
US20180140602A1 (en) 2015-04-07 2018-05-24 Novartis Ag Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives
KR20180002653A (ko) 2015-04-07 2018-01-08 제넨테크, 인크. 효능작용 활성을 갖는 항원 결합 복합체 및 사용 방법
EP4234685A3 (fr) 2015-04-17 2023-09-06 Novartis AG Procédés pour améliorer l'efficacité et l'expansion de cellules exprimant un récepteur antigénique chimérique
WO2016168133A1 (fr) 2015-04-17 2016-10-20 Merck Sharp & Dohme Corp. Biomarqueurs sanguins de la sensibilité d'une tumeur à des antagonistes de pd-1
WO2016172583A1 (fr) 2015-04-23 2016-10-27 Novartis Ag Traitement du cancer à l'aide de protéine récepteur antigénique chimérique et un inhibiteur de protéine kinase
CN114099712A (zh) 2015-05-06 2022-03-01 斯尼普技术有限公司 改变微生物种群和改善微生物群
PT3294770T (pt) 2015-05-12 2020-12-04 Hoffmann La Roche Métodos terapêuticos e diagnósticos para o cancro
US10815264B2 (en) 2015-05-27 2020-10-27 Southern Research Institute Nucleotides for the treatment of cancer
IL255372B (en) 2015-05-29 2022-07-01 Genentech Inc Therapeutic and diagnostic methods for cancer
AU2016271018A1 (en) 2015-05-29 2017-11-30 Dynavax Technologies Corporation Combination of a PD-1 antagonist and CPG-C type oligonucleotide for treating cancer
KR20180011839A (ko) 2015-06-08 2018-02-02 제넨테크, 인크. 항-ox40 항체를 이용한 암의 치료 방법
IL256245B (en) 2015-06-16 2022-09-01 Merck Patent Gmbh Treatments that combine a pd-l1 antagonist
MX2017016353A (es) 2015-06-17 2018-05-02 Genentech Inc Metodos para tratar canceres de mama metastasicos o localmente avanzados con antagonistas de union al eje de pd-1 y taxanos.
US20190194315A1 (en) 2015-06-17 2019-06-27 Novartis Ag Antibody drug conjugates
PT3319635T (pt) 2015-06-24 2021-07-07 Immodulon Therapeutics Ltd Um inibidor de ponto de verificação e uma micobactéria de célula inteira para utilização em terapêutica do cancro
AU2016288246A1 (en) 2015-07-02 2018-02-01 Celgene Corporation Combination therapy for treatment of hematological cancers and solid tumors
GB201511790D0 (en) 2015-07-06 2015-08-19 Iomet Pharma Ltd Pharmaceutical compound
AU2016291817A1 (en) 2015-07-16 2018-02-22 Biolinerx Ltd. Compositions and methods for treating cancer
JP7146632B2 (ja) 2015-07-21 2022-10-04 ノバルティス アーゲー 免疫細胞の有効性および増大を改善する方法
DK3317301T3 (da) 2015-07-29 2021-06-28 Immutep Sas Kombinationsterapier omfattende antistofmolekyler mod lag-3
WO2017019897A1 (fr) 2015-07-29 2017-02-02 Novartis Ag Polythérapies comprenant des molécules d'anticorps contre tim -3
CN108235685A (zh) 2015-07-29 2018-06-29 诺华股份有限公司 Pd-1拮抗剂与egfr抑制剂的组合
CA2991857A1 (fr) 2015-07-29 2017-02-02 Novartis Ag Utilisation combinee d'anticorps anti-pd-1 et anti-m-csf dans le traitement du cancer
US10738074B2 (en) 2015-08-13 2020-08-11 Merck Sharp & Dohme Corp. Cyclic di-nucleotide compounds as STING agonists
US11453697B1 (en) 2015-08-13 2022-09-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
ES2955775T3 (es) 2015-08-27 2023-12-07 Inst Nat Sante Rech Med Métodos para predecir el tiempo de supervivencia de pacientes que padecen cáncer de pulmón
CN108780084B (zh) 2015-09-03 2022-07-22 诺华股份有限公司 预测细胞因子释放综合征的生物标志物
WO2017040990A1 (fr) 2015-09-03 2017-03-09 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques et leurs utilisations
AU2016328279A1 (en) * 2015-09-24 2018-05-10 The University Of North Carolina At Chapel Hill Methods and compositions for reducing metastases
CN113912724A (zh) 2015-09-25 2022-01-11 豪夫迈·罗氏有限公司 抗tigit抗体和使用方法
WO2017055327A1 (fr) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de quantification de la population de cellules endothéliales dans un échantillon de tissu
WO2017055324A1 (fr) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de quantification de la population de cellules d'origine monocytaire dans un prélèvement de tissu
WO2017055326A1 (fr) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de quantification de la population de cellules dendritiques myéloïdes dans un prélèvement de tissu
WO2017055325A1 (fr) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de quantification de la population de cellules nk dans un prélèvement de tissu
WO2017055321A1 (fr) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de quantification de la population de fibroblastes dans un prélèvement de tissu
WO2017055319A1 (fr) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de quantification de la population de cellules b dans un prélèvement de tissu
WO2017055320A1 (fr) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédé de quantification de la population de lymphocytes cytotoxiques dans un prélèvement de tissu
WO2017055322A1 (fr) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de quantification de la population de neutrophiles dans un prélèvement de tissu
WO2017058780A1 (fr) 2015-09-30 2017-04-06 Merck Patent Gmbh Combinaison d'un antagoniste de la liaison de l'axe pd-1 et d'un inhibiteur de alk dans le traitement du cancer alk-négatif
WO2017059224A2 (fr) 2015-10-01 2017-04-06 Gilead Sciences, Inc. Combinaison d'un inhibiteur de btk et d'un inhibiteur de point de contrôle pour le traitement de cancers
HUE055407T2 (hu) 2015-10-02 2021-11-29 Hoffmann La Roche PD1-re és TIM3-ra specifikus bispecifikus antitestek
CA2997799A1 (fr) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anticorps anti-pd1 et methodes d'utilisation
WO2017060397A1 (fr) 2015-10-09 2017-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de prédiction du temps de survie de sujets souffrant de métastases d'un mélanome
CN106565836B (zh) * 2015-10-10 2020-08-18 中国科学院广州生物医药与健康研究院 高亲和力的可溶性pdl-1分子
EP3362074B1 (fr) 2015-10-16 2023-08-09 President and Fellows of Harvard College Modulation de pd-1 des lymphocytes t régulateurs pour réguler les réponses immunitaires effectrices des lymphocytes t
US10149887B2 (en) 2015-10-23 2018-12-11 Canbas Co., Ltd. Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment
MA44334A (fr) 2015-10-29 2018-09-05 Novartis Ag Conjugués d'anticorps comprenant un agoniste du récepteur de type toll
WO2017075045A2 (fr) 2015-10-30 2017-05-04 Mayo Foundation For Medical Education And Research Anticorps anti-b7-h1
EP3370733B1 (fr) 2015-11-02 2021-07-14 Board of Regents, The University of Texas System Méthodes d'activation de cd40 et blocage de points de contrôle immunitaires
EP3371311B1 (fr) 2015-11-06 2021-07-21 Orionis Biosciences BV Protéines chimères bifonctionnelles et leurs utilisations
EP3371221A2 (fr) 2015-11-07 2018-09-12 MultiVir Inc. Méthodes et compositions comprenant une thérapie génique suppressive de tumeur et le blocage du point de contrôle immunitaire pour le traitement du cancer
PL3377107T3 (pl) 2015-11-19 2020-12-14 F. Hoffmann-La Roche Ag Sposoby leczenia nowotworu przy użyciu inhibitorów b-raf i inhibitorów immunologicznego punktu kontrolnego
KR101949108B1 (ko) 2015-12-03 2019-02-15 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 Sting의 조정제로서의 시클릭 푸린 디뉴클레오티드
EP3387013B1 (fr) 2015-12-07 2022-06-08 Xencor, Inc. Anticorps hétérodimères se liant à cd3 et psma
WO2017098421A1 (fr) 2015-12-08 2017-06-15 Glaxosmithkline Intellectual Property Development Limited Composés benzothiadiazine
CN108290954B (zh) 2015-12-09 2022-07-26 豪夫迈·罗氏有限公司 Ii型抗cd20抗体用于降低抗药物抗体形成
EP3178848A1 (fr) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Anticorps de type ii contre cd20 pour la reduction de la formation des anticorps contre des médicaments
EP3389783A4 (fr) 2015-12-15 2019-05-15 Merck Sharp & Dohme Corp. Nouveaux composés utilisés comme inhibiteurs de l'indoléamine 2,3-dioxygénase
MX2018007423A (es) 2015-12-17 2018-11-09 Novartis Ag Moleculas de anticuerpo que se unen a pd-1 y usos de las mismas.
UY37030A (es) 2015-12-18 2017-07-31 Novartis Ag Anticuerpos dirigidos a cd32b y métodos de uso de los mismos
WO2017112741A1 (fr) 2015-12-22 2017-06-29 Novartis Ag Récepteur d'antigène chimérique (car) contre la mésothéline et anticorps contre l'inhibiteur de pd-l1 pour une utilisation combinée dans une thérapie anticancéreuse
WO2017112730A1 (fr) 2015-12-22 2017-06-29 Incyte Corporation Composés hétérocycliques utilisés comme immunomodulateurs
US10052315B2 (en) 2016-01-08 2018-08-21 Celgene Corporation Formulations of 2-(4-chlorophenyl)-N-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide
US10596257B2 (en) 2016-01-08 2020-03-24 Hoffmann-La Roche Inc. Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies
CA3010796A1 (fr) 2016-01-08 2017-07-13 Celgene Corporation Composes antiproliferatifs, leurs compositions pharmaceutiques et leurs utilisations
AR107320A1 (es) 2016-01-08 2018-04-18 Celgene Corp Formas sólidas de 2-(4-clorofenil)-n-((2-(2,6-dioxopiperidin-3-il)-1-oxoindolin-5-il)metil)-2,2-difluoroacetamida y sus composiciones farmacéuticas y usos
JP6993699B2 (ja) 2016-01-11 2022-02-03 ウニヴェルズィテート・ツューリヒ ヒトインターロイキン-2に対する免疫刺激性ヒト化モノクローナル抗体及びその融合タンパク質
WO2017129763A1 (fr) 2016-01-28 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Méthodes et compositions pharmaceutiques pour le traitement du cancer de l'estomac à cellules en bague à chaton
ES2924775T3 (es) 2016-01-28 2022-10-10 Inst Nat Sante Rech Med Métodos y composición farmacéutica para el tratamiento del cáncer
US10822415B2 (en) 2016-01-28 2020-11-03 Inserm (Institut National De La Santéet De La Recherche Médicale) Methods for enhancing the potency of the immune checkpoint inhibitors
CN115850521A (zh) 2016-02-05 2023-03-28 奥里尼斯生物科学私人有限公司 靶向性治疗剂及其用途
KR20220147693A (ko) * 2016-02-15 2022-11-03 에프케이디 테라피즈 리미티드, 향상된 인터페론 치료
MA44236A (fr) 2016-02-17 2018-12-26 Novartis Ag Anticorps anti-tgfbêta 2
BR112018016842A2 (pt) 2016-02-19 2018-12-26 Novartis Ag compostos de piridona tetracíclica como antivirais
EP3419999B1 (fr) 2016-02-26 2021-08-04 (INSERM) Institut National de la Santé et de la Recherche Médicale Anticorps ayant une spécificité pour le btla et leurs utilisations
AU2017225854B2 (en) 2016-02-29 2020-11-19 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
CN109153714A (zh) 2016-03-04 2019-01-04 诺华股份有限公司 表达多重嵌合抗原受体(car)分子的细胞及其用途
WO2017153952A1 (fr) 2016-03-10 2017-09-14 Glaxosmithkline Intellectual Property Development Limited Dérivés de 5-sulfamoyl-2-hydroxybenzamide
WO2017160599A1 (fr) 2016-03-14 2017-09-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Utilisation d'antagonistes de cd300b pour traiter un sepsis et un choc septique
WO2017159699A1 (fr) 2016-03-15 2017-09-21 Chugai Seiyaku Kabushiki Kaisha Procédés de traitement de cancers au moyen d'antagonistes se liant à l'axe pd-1 et d'anticorps anti-gpc3
CN110753755B (zh) 2016-03-21 2023-12-29 丹娜法伯癌症研究院 T细胞耗竭状态特异性基因表达调节子及其用途
WO2017165742A1 (fr) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Procédés de traitement d'événements indésirables liés à l'immunité gastro-intestinale dans des polythérapies anti-ctla4 et anti-pd-1
WO2017165778A1 (fr) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Procédés pour traiter des événements indésirables gastro-intestinaux d'origine immunitaire dans des traitements oncologiques immunitaires
WO2017163186A1 (fr) 2016-03-24 2017-09-28 Novartis Ag Analogues d'alcynyl nucléoside en tant qu'inhibiteurs du rhinovirus humain
CN109195990A (zh) 2016-03-30 2019-01-11 Musc研究发展基金会 通过靶向糖蛋白a重复优势蛋白(garp)治疗和诊断癌症以及单独或联合提供有效免疫疗法的方法
SI3440076T1 (sl) 2016-04-07 2022-09-30 Glaxosmithkline Intellectual Property Development Limited Heterociklični amidi uporabni kot proteinski modulatorji
CN109563081A (zh) 2016-04-07 2019-04-02 葛兰素史克知识产权开发有限公司 可用作蛋白调节剂的杂环酰胺类
SG11201808909WA (en) 2016-04-13 2018-11-29 Vivia Biotech Sl Ex vivo bite-activated t cells
CA3019921A1 (fr) 2016-04-15 2017-10-19 Genentech, Inc. Methodes de suivi et de traitement du cancer
WO2017181079A2 (fr) 2016-04-15 2017-10-19 Genentech, Inc. Méthodes de surveillance et de traitement du cancer
WO2017189976A1 (fr) 2016-04-29 2017-11-02 Board Of Regents, The University Of Texas System Mesure ciblée de l'activité transcriptionnelle liée aux récepteurs hormonaux
WO2017192874A1 (fr) 2016-05-04 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compositions immunomodulatrices se liant à l'albumine et méthodes d'utilisation desdites compositions
ES2801423T3 (es) 2016-05-05 2021-01-11 Glaxosmithkline Ip No 2 Ltd Potenciador de inhibidores del homólogo Zeste 2
JP7105200B2 (ja) 2016-05-13 2022-07-22 オリオニス バイオサイエンシズ ビーブイ 標的突然変異体インターフェロン-ベータおよびその使用
EP3243832A1 (fr) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Molécules de liaison d'antigène comprenant un trimère de ligand de la famille tnf et un fragment de liaison pd1
US11753463B2 (en) 2016-05-13 2023-09-12 Orionis Biosciences BV Therapeutic targeting of non-cellular structures
US20190292259A1 (en) 2016-05-24 2019-09-26 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd)
MA45146A (fr) 2016-05-24 2021-03-24 Constellation Pharmaceuticals Inc Dérivés de pyrazolopyridine pour le traitement du cancer
MA45122A (fr) 2016-05-24 2019-04-10 Constellation Pharmaceuticals Inc Inhibiteurs hétérocycliques de cbp/ep300 et leur utilisation dans le traitement du cancer
EP3463433A1 (fr) 2016-05-25 2019-04-10 Institut National de la Sante et de la Recherche Medicale (INSERM) Procédés et compositions de traitement de cancers
GB201609811D0 (en) 2016-06-05 2016-07-20 Snipr Technologies Ltd Methods, cells, systems, arrays, RNA and kits
BR112018075598A2 (pt) 2016-06-08 2019-03-26 Glaxosmithkline Intellectual Property Development Limited compostos químicos
AU2017279027A1 (en) 2016-06-08 2018-12-20 Glaxosmithkline Intellectual Property Development Limited Chemical Compounds
AU2017283480A1 (en) 2016-06-13 2019-01-24 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
JP6941630B2 (ja) 2016-06-14 2021-09-29 ノバルティス アーゲー 抗菌剤としての(r)−4(5−(シクロプロピルエチニル)イソオキサゾール−3−イル)−n−ヒドロキシ−2−メチル−2−(メチルスルホニル)ブタンアミドの結晶形
KR102523402B1 (ko) 2016-06-14 2023-04-19 젠코어 인코포레이티드 이중특이적 체크포인트 억제제 항체
WO2017216685A1 (fr) 2016-06-16 2017-12-21 Novartis Ag Composés pyridones pentacycliques utiles en tant qu'agents antiviraux
WO2017216686A1 (fr) 2016-06-16 2017-12-21 Novartis Ag Composés de 2-oxo-6,7-dihydropyrido-isoquinoline fusionnés en 8,9 utilisés comme antiviraux
PL3472167T3 (pl) 2016-06-20 2022-12-19 Incyte Corporation Związki heterocykliczne jako immunomodulatory
MX2018016227A (es) 2016-06-24 2019-07-08 Infinity Pharmaceuticals Inc Terapias de combinacion.
JP7021127B2 (ja) 2016-06-28 2022-02-16 ゼンコア インコーポレイテッド ソマトスタチン受容体2に結合するヘテロ二量体抗体
EP3507367A4 (fr) 2016-07-05 2020-03-25 Aduro BioTech, Inc. Composés dinucléotidiques cycliques d'acide nucléique bloqué et leurs utilisations
WO2018011166A2 (fr) 2016-07-12 2018-01-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de quantification de la population de cellules dendritiques myéloïdes dans un échantillon de tissu
WO2018015879A1 (fr) 2016-07-20 2018-01-25 Glaxosmithkline Intellectual Property Development Limited Dérivés d'isoquinoléine utilisés comme inhibiteurs de perk
WO2018026606A1 (fr) 2016-08-01 2018-02-08 Threshold Pharmaceuticals, Inc. Administration de promédicaments activés par l'hypoxie en combinaison à des agents immunomodulateurs pour le traitement du cancer
WO2018027204A1 (fr) 2016-08-05 2018-02-08 Genentech, Inc. Anticorps multivalents et multiépitopiques ayant une activité agoniste et procédés d'utilisation
CN109476748B (zh) 2016-08-08 2023-05-23 豪夫迈·罗氏有限公司 用于癌症的治疗和诊断方法
WO2018029336A1 (fr) 2016-08-12 2018-02-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Méthodes visant à déterminer si un patient a reçu un activateur de la voie de ppar bêta/delta
JP2019524820A (ja) 2016-08-12 2019-09-05 ジェネンテック, インコーポレイテッド Mek阻害剤、pd−1軸阻害剤及びvegf阻害剤での組合せ療法
WO2018033135A1 (fr) 2016-08-19 2018-02-22 Beigene, Ltd. Utilisation d'une combinaison comprenant un inhibiteur de btk pour le traitement de cancers
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
JP2019526595A (ja) 2016-09-09 2019-09-19 ティージー セラピューティクス,インコーポレイテッド 血液癌を治療するための抗cd20抗体、pi3キナーゼ−デルタ阻害剤および抗pd−1抗体または抗pd−l1抗体の組み合わせ
WO2018047109A1 (fr) 2016-09-09 2018-03-15 Novartis Ag Composés pyridones polycycliques utiles en tant qu'agents antiviraux
WO2018046738A1 (fr) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de prédiction du temps de survie de patients souffrant d'un cancer
WO2018046736A1 (fr) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de prédiction du temps de survie de patients souffrant d'un cancer
JP6908710B2 (ja) 2016-09-21 2021-07-28 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ ケモカイン受容体ccr4を標的にするキメラ抗原受容体(car)およびその使用
EP3515453A1 (fr) 2016-09-22 2019-07-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Méthodes et compositions pharmaceutiques permettant la reprogrammation de l'environnement immunitaire chez un sujet en ayant besoin
AU2017331277A1 (en) 2016-09-23 2019-03-28 Marengo Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains
JP7089507B2 (ja) 2016-09-26 2022-06-22 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Pd-1軸阻害剤への応答を予測すること
US11395838B2 (en) 2016-09-27 2022-07-26 Board Of Regents, The University Of Texas System Methods for enhancing immune checkpoint blockade therapy by modulating the microbiome
JOP20190061A1 (ar) 2016-09-28 2019-03-26 Novartis Ag مثبطات بيتا-لاكتاماز
JP2019534251A (ja) 2016-09-29 2019-11-28 ジェネンテック, インコーポレイテッド Mek阻害剤、pd−1軸阻害剤、及びタキサンを用いた併用療法
US10537590B2 (en) 2016-09-30 2020-01-21 Boehringer Ingelheim International Gmbh Cyclic dinucleotide compounds
SI3523287T1 (sl) 2016-10-04 2021-11-30 Merck Sharp & Dohme Corp. Benzo(b)tiofenske spojine kot agonisti STING
JP2019530704A (ja) 2016-10-06 2019-10-24 ファイザー・インコーポレイテッド がんの処置のためのアベルマブの投与レジメン
CA3038712A1 (fr) 2016-10-06 2018-04-12 Genentech, Inc. Methodes therapeutiques et de diagnostic du cancer
BR112019006781A2 (pt) 2016-10-07 2019-07-30 Novartis Ag receptores de antígeno quiméricos para o tratamento de câncer
CN110072540B (zh) 2016-10-12 2023-06-02 得克萨斯州大学系统董事会 用于tusc2免疫治疗的方法和组合物
WO2018071576A1 (fr) 2016-10-14 2018-04-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Traitement des tumeurs par inhibition de cd300f
SG11201903302UA (en) 2016-10-14 2019-05-30 Xencor Inc Bispecific heterodimeric fusion proteins containing il-15/il-15ralpha fc-fusion proteins and pd-1 antibody fragments
CN110072552A (zh) 2016-10-14 2019-07-30 默沙东公司 用于治疗尿路上皮癌的pd-1拮抗剂和艾立布林的组合
TW201819380A (zh) 2016-10-18 2018-06-01 瑞士商諾華公司 作為抗病毒劑之稠合四環吡啶酮化合物
WO2018075447A1 (fr) 2016-10-19 2018-04-26 The Trustees Of Columbia University In The City Of New York Combinaison d'inhibiteur de braf, de talimogène laherparepvec, et d'inhibiteur de point de contrôle immunitaire destiné à être utilisé dans le traitement du cancer (mélanome)
US11084859B2 (en) 2016-10-24 2021-08-10 Orionis Biosciences BV Targeted mutant interferon-gamma and uses thereof
EP3532487A1 (fr) * 2016-10-27 2019-09-04 IO Biotech APS Nouveaux composés pdl2
JP2019535250A (ja) 2016-10-29 2019-12-12 ジェネンテック, インコーポレイテッド 抗mic抗体及び使用方法
CA3043356A1 (fr) 2016-11-09 2018-05-17 Musc Foundation For Research Development Axe metabolique regule cd38-nad+ en immunotherapie antitumorale
US20190345500A1 (en) 2016-11-14 2019-11-14 |Nserm (Institut National De La Santé Et De La Recherche Médicale) Methods and pharmaceutical compositions for modulating stem cells proliferation or differentiation
KR20190074300A (ko) 2016-11-15 2019-06-27 제넨테크, 인크. 항-cd20/항-cd3 이중특이적 항체에 의한 치료를 위한 투약
WO2018094275A1 (fr) 2016-11-18 2018-05-24 Tolero Pharmaceuticals, Inc. Promédicaments de l'alvocidib et leur utilisation en tant qu'inhibiteurs de protéines kinases
US20190365788A1 (en) 2016-11-21 2019-12-05 Idenix Pharmaceuticals Llc Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases
WO2018098352A2 (fr) 2016-11-22 2018-05-31 Jun Oishi Ciblage d'expression du point de contrôle immunitaire induit par kras
CA3045306A1 (fr) 2016-11-29 2018-06-07 Boston Biomedical, Inc. Derives de naphthofurane, preparation et procedes d'utilisation associes
MX2019006072A (es) 2016-11-30 2019-08-14 Oncomed Pharm Inc Metodos para tratamiento de cancer que comprenden agentes de enlace al inmunoreceptor de celulas t con dominios ige itim (tigit).
JP2020500878A (ja) 2016-12-01 2020-01-16 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited 併用療法
CA3045243A1 (fr) 2016-12-01 2018-06-07 Glaxosmithkline Intellectual Property Development Limited Polytherapie
WO2018102786A1 (fr) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Procédés de modulation de lymphocytes t modifiés par car
KR20190095921A (ko) 2016-12-12 2019-08-16 제넨테크, 인크. 항-pd-l1 항체 및 안티안드로겐을 사용하여 암을 치료하는 방법
KR20190112263A (ko) 2016-12-12 2019-10-04 멀티비르 인코포레이티드 암 및 감염성 질환의 치료 및 예방을 위한 바이러스 유전자 치료요법 및 면역 체크포인트 억제제를 포함하는 방법 및 조성물
WO2018112364A1 (fr) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Polythérapies pour le traitement d'un mélanome
WO2018112360A1 (fr) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Polythérapies pour le traitement du cancer
BR112019012993A2 (pt) 2016-12-22 2019-12-03 Incyte Corp derivados de benzo-oxazol como imunomoduladores
CA3047508A1 (fr) 2016-12-23 2018-06-28 Virttu Biologics Limited Traitement du cancer
WO2018122245A1 (fr) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de prédiction de la durée de survie de patients souffrant d'un cancer colorectal cms3
WO2018122249A1 (fr) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Méthodes permettant de prédire le temps de survie de patients souffrant d'un cancer colorectal stable microsatellitaire
US11613785B2 (en) 2017-01-09 2023-03-28 Onkosxcel Therapeutics, Llc Predictive and diagnostic methods for prostate cancer
EP3573979A1 (fr) 2017-01-27 2019-12-04 Celgene Corporation 3- (1-oxo-4-((4- ((3-oxomorpholino)méthyl)benzyl)oxy)isoindolin-2-yl)pipéridine-2,6-dione et isotopologues correspondants
JOP20190187A1 (ar) 2017-02-03 2019-08-01 Novartis Ag مترافقات عقار جسم مضاد لـ ccr7
WO2018144999A1 (fr) 2017-02-06 2018-08-09 Orionis Biosciences, Inc. Interféron d'ingénierie ciblé et utilisations de ce dernier
EP3577133A1 (fr) 2017-02-06 2019-12-11 Orionis Biosciences NV Protéines chimériques ciblées et leurs utilisations
WO2018146128A1 (fr) 2017-02-07 2018-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Détection du polymorphisme d'un kit pour prédire la réponse d'une immunothérapie anticancéreuse avec blocage de point de contrôle
WO2018146148A1 (fr) 2017-02-07 2018-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédé de prédiction de la réponse à une immunothérapie anticancéreuse par inhibition de points de contrôle
HUE057337T2 (hu) 2017-02-10 2022-05-28 Novartis Ag 1-(4-amino-5-bróm-6-(1H-pirazol-1-il)pirimidin-2-il)-1H-pirazol-4-ol és alkalmazása rák kezelésében
CN110662764B (zh) 2017-02-16 2023-08-22 湘潭腾华生物科技有限公司 抗程序性死亡配体1(pd-l1)抗体及其治疗用途
US20200291089A1 (en) 2017-02-16 2020-09-17 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
US11693007B2 (en) 2017-02-24 2023-07-04 Board Of Regents, The University Of Texas System Assay for detection of early stage pancreatic cancer
US20200062735A1 (en) 2017-02-27 2020-02-27 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
JP2020508353A (ja) 2017-02-27 2020-03-19 ノバルティス アーゲー セリチニブ及び抗pd−1抗体分子の組合せのための投与スケジュール
WO2018160841A1 (fr) 2017-03-01 2018-09-07 Genentech, Inc. Procédés diagnostiques et thérapeutiques relatifs au cancer
EP3596075B1 (fr) 2017-03-15 2023-10-11 F. Hoffmann-La Roche AG Azaindoles utilisés en tant qu'inhibiteurs de hpk1
WO2018170133A1 (fr) 2017-03-15 2018-09-20 Amgen Inc. Utilisation de virus oncolytiques, seuls ou en combinaison avec un inhibiteur de point de contrôle immunitaire, pour le traitement du cancer
JOP20190218A1 (ar) 2017-03-22 2019-09-22 Boehringer Ingelheim Int مركبات ثنائية النيوكليوتيدات حلقية معدلة
CN108623686A (zh) 2017-03-25 2018-10-09 信达生物制药(苏州)有限公司 抗ox40抗体及其用途
US20200181225A1 (en) * 2017-03-29 2020-06-11 Sunnybrook Research Institute Engineered t-cell modulating molecules and methods of using same
MA48994A (fr) 2017-03-30 2020-02-05 Hoffmann La Roche Isoquinoléines utilisées en tant qu'inhibiteurs de hpk1
AU2018244935A1 (en) 2017-03-30 2019-08-15 F. Hoffmann-La Roche Ag Naphthyridines as inhibitors of HPK1
HUE059885T2 (hu) 2017-04-03 2023-01-28 Hoffmann La Roche Anti-PD-1 antitest immunkonjugátumai mutáns il-2-vel vagy il-15-tel
WO2018185618A1 (fr) 2017-04-03 2018-10-11 Novartis Ag Conjugués de médicament-anticorps anti-cdh6 et combinaisons d'anticorps anti-gitr et méthodes de traitement
TWI690538B (zh) 2017-04-05 2020-04-11 瑞士商赫孚孟拉羅股份公司 特異性結合至pd1至lag3的雙特異性抗體
CA3058279A1 (fr) 2017-04-13 2018-10-18 F.Hoffmann-La Roche Ag Immunoconjugue d'interleukine -2, agoniste de cd40 et facultativement un antagoniste de liaison de l'axe pd -1 destine a etre utilise dans des methodes de traitement du cancer
CN110621787A (zh) 2017-04-14 2019-12-27 豪夫迈·罗氏有限公司 用于癌症的诊断和治疗方法
WO2018195283A1 (fr) 2017-04-19 2018-10-25 Elstar Therapeutics, Inc. Molécules multispécifiques et utilisations correspondantes
AR111419A1 (es) 2017-04-27 2019-07-10 Novartis Ag Compuestos fusionados de indazol piridona como antivirales
US20200179511A1 (en) 2017-04-28 2020-06-11 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
UY37695A (es) 2017-04-28 2018-11-30 Novartis Ag Compuesto dinucleótido cíclico bis 2’-5’-rr-(3’f-a)(3’f-a) y usos del mismo
AR111651A1 (es) 2017-04-28 2019-08-07 Novartis Ag Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación
WO2018201056A1 (fr) 2017-04-28 2018-11-01 Novartis Ag Cellules exprimant un récepteur antigénique chimérique ciblant le bcma, et polythérapie comprenant un inhibiteur de gamma sécrétase
US20200385472A1 (en) 2017-04-28 2020-12-10 Elstar Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
UY37718A (es) 2017-05-05 2018-11-30 Novartis Ag 2-quinolinonas triciclicas como agentes antibacteriales
WO2018208667A1 (fr) 2017-05-12 2018-11-15 Merck Sharp & Dohme Corp. Composés dinucléotidiques cycliques en tant qu'agonistes sting
JP2020520923A (ja) 2017-05-17 2020-07-16 ボストン バイオメディカル, インコーポレイテッド がんを処置するための方法
AR111760A1 (es) 2017-05-19 2019-08-14 Novartis Ag Compuestos y composiciones para el tratamiento de tumores sólidos mediante administración intratumoral
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
CN111051346A (zh) 2017-05-31 2020-04-21 斯特库伯株式会社 使用免疫特异性结合btn1a1的抗体和分子治疗癌症的方法
EP3630836A1 (fr) 2017-05-31 2020-04-08 Elstar Therapeutics, Inc. Molécules multispécifiques se liant à une protéine de leucémie myéloproliférative (mpl) et leurs utilisations
JOP20190279A1 (ar) 2017-05-31 2019-11-28 Novartis Ag الصور البلورية من 5-برومو -2، 6-داي (1h-بيرازول -1-يل) بيريميدين -4- أمين وأملاح جديدة
WO2018223004A1 (fr) 2017-06-01 2018-12-06 Xencor, Inc. Anticorps bispécifiques se liant à cd20 et cd3
EP3630839A1 (fr) 2017-06-01 2020-04-08 Xencor, Inc. Anticorps bispécifiques liant cd123 cd3
CA3065120A1 (fr) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles de fabrication et procedes de traitement utilisant une therapie cellulaire adoptive
WO2018226671A1 (fr) 2017-06-06 2018-12-13 Stcube & Co., Inc. Procédés de traitement du cancer à l'aide d'anticorps et de molécules se liant à btn1a1 ou des ligands de btn1a1
WO2018225093A1 (fr) 2017-06-07 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Composés chimiques utilisés comme inhibiteurs de la voie atf4
EP3634483A1 (fr) 2017-06-09 2020-04-15 GlaxoSmithKline Intellectual Property Development Limited Polythérapie
WO2018226336A1 (fr) 2017-06-09 2018-12-13 Providence Health & Services - Oregon Utilisation de cd39 et de cd103 pour l'identification de cellules tumorales humaines réactives pour le traitement du cancer
WO2018229715A1 (fr) 2017-06-16 2018-12-20 Novartis Ag Compositions comprenant des anticorps anti-cd32b et procédés d'utilisation correspondants
WO2018234367A1 (fr) 2017-06-20 2018-12-27 Institut Curie Inhibiteur de l'histone méthyltransférase suv39h1 destiné à être utilisé dans une polythérapie anticancéreuse
EP3642240A1 (fr) 2017-06-22 2020-04-29 Novartis AG Molécules d'anticorps dirigées contre cd73 et utilisations correspondantes
WO2018235056A1 (fr) 2017-06-22 2018-12-27 Novartis Ag Anticorps se liant à il-1beta destinés à être utilisés dans le traitement du cancer
JP7282045B2 (ja) 2017-06-22 2023-05-26 セルジーン コーポレイション B型肝炎ウイルス感染を特徴とする肝細胞癌の治療
CA3061874A1 (fr) 2017-06-22 2018-12-27 Novartis Ag Utilisation d'anticorps de liaison il-1s dans le traitement du cancer
AU2018290237A1 (en) 2017-06-22 2020-01-16 Novartis Ag Antibody molecules to CD73 and uses thereof
CA3066747A1 (fr) 2017-06-27 2019-01-03 Novartis Ag Regimes posologiques pour anticorps anti-tim3 et leurs utilisations
CN111050545A (zh) 2017-06-29 2020-04-21 朱诺治疗学股份有限公司 评估与免疫疗法相关的毒性的小鼠模型
WO2019006472A1 (fr) 2017-06-30 2019-01-03 Xencor, Inc. Protéines de fusion fc hétérodimères ciblées contenant il-15/il-15ra et domaines de liaison à l'antigène
LT3644999T (lt) 2017-06-30 2023-03-10 Celgene Corporation 2-(4-chlorfenil)-n-((2-(2,6-dioksopiperidin-3-il)-1-oksoizoindolin-5-il) metil)-2,2-difluoracetamido kompozicijos ir panaudojimo būdai
JP2020525512A (ja) 2017-07-03 2020-08-27 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited 癌および他の疾患を処置するためのATF4阻害剤としての2−(4−クロロフェノキシ)−N−((1−(2−(4−クロロフェノキシ)エチンアゼチジン(ethynazetidin)−3−イル)メチル)アセトアミド誘導体および関連化合物
WO2019008506A1 (fr) 2017-07-03 2019-01-10 Glaxosmithkline Intellectual Property Development Limited Dérivés de n-(3-(2-(4-chlorophénoxy)acétamido)bicyclo[1.1.1]pentan-1-yl)-2-cyclobutane-1-carboxamide et composés apparentés en tant qu'inhibiteurs atf4 pour le traitement du cancer et d'autres maladies
US20200306301A1 (en) 2017-07-03 2020-10-01 Torque Therapeutics, Inc. Polynucleotides Encoding Immunostimulatory Fusion Molecules and Uses Thereof
JP7258009B2 (ja) 2017-07-10 2023-04-14 セルジーン コーポレイション 抗増殖化合物及びその使用方法
AR112603A1 (es) * 2017-07-10 2019-11-20 Lilly Co Eli Anticuerpos biespecíficos inhibidores de punto de control
WO2019016174A1 (fr) 2017-07-18 2019-01-24 Institut Gustave Roussy Procédé d'évaluation de la réponse à des médicaments ciblant pd-1/pdl-1
CN111163798A (zh) 2017-07-20 2020-05-15 诺华股份有限公司 用于抗lag-3抗体的给药方案及其用途
JP2020527351A (ja) 2017-07-21 2020-09-10 ジェネンテック, インコーポレイテッド がんの治療法及び診断法
EP3658173A1 (fr) 2017-07-25 2020-06-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Méthodes et compositions pharmaceutiques pour la modulation de la monocytopoïèse
WO2019021208A1 (fr) 2017-07-27 2019-01-31 Glaxosmithkline Intellectual Property Development Limited Dérivés d'indazole utiles en tant qu'inhibiteurs de perk
JP2020529421A (ja) 2017-08-04 2020-10-08 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. がんの処置のためのPD−1アンタゴニストおよびベンゾ[b]チオフェンSTINGアゴニストの組み合わせ
MA49772A (fr) 2017-08-04 2021-04-21 Merck Sharp & Dohme Agonistes benzo[b]thiophène de sting pour le traitement du cancer
WO2019035938A1 (fr) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. Molécules multispécifiques se liant à bcma et leurs utilisations
UY37866A (es) 2017-09-07 2019-03-29 Glaxosmithkline Ip Dev Ltd Nuevos compuestos derivados de benzoimidazol sustituidos que reducen la proteína myc (c-myc) en las células e inhiben la histona acetiltransferasa de p300/cbp.
WO2019053617A1 (fr) 2017-09-12 2019-03-21 Glaxosmithkline Intellectual Property Development Limited Composés chimiques
JP7196160B2 (ja) 2017-09-12 2022-12-26 スミトモ ファーマ オンコロジー, インコーポレイテッド Mcl-1阻害剤アルボシジブを用いた、bcl-2阻害剤に対して非感受性である癌の治療レジメン
US20210060158A1 (en) 2017-09-19 2021-03-04 Institut Curie Agonist of aryl hydrocarbon receptor for use in cancer combination therapy
US20200216542A1 (en) 2017-09-20 2020-07-09 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
EP3692033A1 (fr) 2017-10-05 2020-08-12 GlaxoSmithKline Intellectual Property Development Limited Modulateurs de stimulateur des gènes (sting) d'interféron utiles dans le traitement du vih
WO2019069270A1 (fr) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited Modulateurs de stimulateur des gènes (sting) de l'interféron
WO2019077062A1 (fr) 2017-10-18 2019-04-25 Vivia Biotech, S.L. Cellules car-t activées par des bite
EP3858333A1 (fr) 2017-10-20 2021-08-04 BioNTech RNA Pharmaceuticals GmbH Préparation et stockage de formulations d'arn liposomal appropriées pour une thérapie
EP3700933A1 (fr) 2017-10-25 2020-09-02 Novartis AG Anticorps ciblant cd32b et leurs procédés d'utilisation
WO2019089753A2 (fr) 2017-10-31 2019-05-09 Compass Therapeutics Llc Anticorps cd137 et antagonistes pd-1 et leurs utilisations
US20210132042A1 (en) 2017-11-01 2021-05-06 Juno Therapeutics, Inc. Methods of assessing or monitoring a response to a cell therapy
AU2018360800A1 (en) 2017-11-01 2020-05-14 Juno Therapeutics, Inc. Chimeric antigen receptors specific for B-cell maturation antigen (BCMA)
US20210179607A1 (en) 2017-11-01 2021-06-17 Merck Sharp & Dohme Corp. Novel substituted tetrahydroquinolin compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
SG11202003501XA (en) 2017-11-01 2020-05-28 Juno Therapeutics Inc Antibodies and chimeric antigen receptors specific for b-cell maturation antigen
CA3077664A1 (fr) 2017-11-06 2019-05-09 Genentech, Inc. Procedes de diagnostic et procedes therapeutiques du cancer
CA3082383A1 (fr) 2017-11-08 2019-05-16 Xencor, Inc. Anticorps bispecifiques et monospecifiques utilisant de nouvelles sequences anti-pd-1
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
MX2020004930A (es) 2017-11-14 2020-08-27 Merck Sharp & Dohme Compuestos de biarilo sustituido novedosos como inhibidores de indolamina 2,3-dioxigenasa (ido).
AU2018369841A1 (en) 2017-11-14 2020-05-07 Pfizer Inc. EZH2 inhibitor combination therapies
WO2019099294A1 (fr) 2017-11-14 2019-05-23 Merck Sharp & Dohme Corp. Nouveaux composés biaryles substitués utilisés en tant qu'inhibiteurs de l'indoléamine 2,3-dioxygénase (ido)
US20200277378A1 (en) 2017-11-16 2020-09-03 Novartis Ag Combination therapies
CN111315749A (zh) 2017-11-17 2020-06-19 诺华股份有限公司 新颖的二氢异噁唑化合物及其在治疗乙型肝炎中的用途
CA3082409A1 (fr) 2017-11-17 2019-05-23 Merck Sharp & Dohme Corp. Anticorps specifiques du transcrit 3 de type immunoglobuline (ilt3) et leurs utilisations
KR20200111168A (ko) 2017-11-24 2020-09-28 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 암 치료를 위한 방법 및 조성물
EP3717907A1 (fr) 2017-11-30 2020-10-07 Novartis AG Récepteur d'antigène chimérique ciblant le bcma et ses utilisations
US20200377571A1 (en) 2017-12-08 2020-12-03 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
AU2018386222B2 (en) 2017-12-15 2023-04-20 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
MA51184A (fr) 2017-12-15 2020-10-21 Juno Therapeutics Inc Molécules de liaison à l'anti-cct5 et procédés d'utilisation associés
JP2021506291A (ja) 2017-12-19 2021-02-22 ゼンコア インコーポレイテッド 改変されたil−2 fc融合タンパク質
US11685761B2 (en) 2017-12-20 2023-06-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
CN111433210A (zh) 2017-12-20 2020-07-17 诺华股份有限公司 作为抗病毒药的稠合三环吡唑并-二氢吡嗪基-吡啶酮化合物
WO2019129137A1 (fr) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anticorps anti-lag-3 et utilisations associées
CN109970856B (zh) 2017-12-27 2022-08-23 信达生物制药(苏州)有限公司 抗lag-3抗体及其用途
WO2019136432A1 (fr) 2018-01-08 2019-07-11 Novartis Ag Arns renforçant le système immunitaire pour une combinaison avec une thérapie par récepteur d'antigène chimérique
US20210069246A1 (en) 2018-01-31 2021-03-11 Celgene Corporation Combination therapy using adoptive cell therapy and checkpoint inhibitor
JP2021511793A (ja) 2018-01-31 2021-05-13 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Lag3に結合する抗原結合部位を含む二重特異性抗体
CA3090249A1 (fr) 2018-01-31 2019-08-08 Novartis Ag Polytherapie utilisant un recepteur antigenique chimerique
WO2019152979A1 (fr) 2018-02-05 2019-08-08 Orionis Biosciences, Inc. Agents de liaison aux fibroblastes et utilisations associées
US20200399383A1 (en) 2018-02-13 2020-12-24 Novartis Ag Chimeric antigen receptor therapy in combination with il-15r and il15
AU2019220395A1 (en) 2018-02-14 2020-09-10 Abba Therapeutics Ag Anti-human PD-L2 antibodies
US20190292188A1 (en) 2018-02-27 2019-09-26 Incyte Corporation Imidazopyrimidines and triazolopyrimidines as a2a / a2b inhibitors
JP2021514982A (ja) 2018-02-28 2021-06-17 ノバルティス アーゲー インドール−2−カルボニル化合物及びb型肝炎治療のためのそれらの使用
US20200405853A1 (en) 2018-03-06 2020-12-31 Institut Curie Inhibitor of setdb1 histone methyltransferase for use in cancer combination therapy
EP3765085A1 (fr) 2018-03-12 2021-01-20 Université de Paris Utilisation de mimétiques de restriction calorique pour potentialiser la chimio-immunothérapie pour le traitement de cancers
US20210238280A1 (en) 2018-03-14 2021-08-05 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
CN112262155A (zh) 2018-03-14 2021-01-22 表面肿瘤学公司 结合cd39的抗体及其用途
US20210009711A1 (en) 2018-03-14 2021-01-14 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
AU2019322487B2 (en) 2018-03-19 2024-04-18 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and CD122/CD132 agonists for the treatment of cancer
CN112512571A (zh) 2018-03-22 2021-03-16 表面肿瘤学公司 抗il-27抗体及其用途
US10760075B2 (en) 2018-04-30 2020-09-01 Snipr Biome Aps Treating and preventing microbial infections
KR20210006344A (ko) 2018-03-25 2021-01-18 에스엔아이피알 바이옴 에이피에스. 미생물 감염의 치료 및 예방
CN111971291A (zh) 2018-03-27 2020-11-20 勃林格殷格翰国际有限公司 用作sting激动剂的含有2-氮杂-次黄嘌呤或6h-吡唑并[1,5-d][1,2,4]三嗪-7-酮的环状二核苷酸化合物
US20210024567A1 (en) 2018-03-27 2021-01-28 Boehringer Ingelheim International Gmbh Modified cyclic dinucleotide compounds
WO2019185792A1 (fr) 2018-03-29 2019-10-03 Philogen S.P.A Traitement du cancer à l'aide d'immunoconjugués et d'inhibiteurs du point de contrôle immunitaire
US11702430B2 (en) 2018-04-03 2023-07-18 Merck Sharp & Dohme Llc Aza-benzothiophene compounds as STING agonists
MX2020010407A (es) 2018-04-03 2020-10-22 Merck Sharp & Dohme Benzotiofenos y compuestos relacionados como agonistas de sting.
CA3096052A1 (fr) 2018-04-04 2019-10-10 Xencor, Inc. Anticorps heterodimeres qui se lient a la proteine d'activation des fibroblastes
WO2019193541A1 (fr) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Dérivés de cycle aromatiques bicycliques de formule (i) utilisés en tant qu'inhibiteurs d'atf4
WO2019193540A1 (fr) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Dérivés hétéroaryles de formule (i) utilisés en tant qu'inhibiteurs d'atf4
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
US20190365861A1 (en) 2018-04-18 2019-12-05 Xencor, Inc. Il-15/il-15ra heterodimeric fc fusion proteins and uses thereof
US11524991B2 (en) 2018-04-18 2022-12-13 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
CN112437777A (zh) 2018-04-18 2021-03-02 Xencor股份有限公司 包含IL-15/IL-15RA Fc融合蛋白和TIM-3抗原结合结构域的靶向TIM-3的异源二聚体融合蛋白
WO2019204743A1 (fr) 2018-04-19 2019-10-24 Checkmate Pharmaceuticals, Inc. Agonistes de récepteur de type rig-i synthétique
WO2019204179A1 (fr) 2018-04-20 2019-10-24 Merck Sharp & Dohme Corp. Nouveaux agonistes de rig-i substitués : compositions et méthodes associées
WO2019207030A1 (fr) 2018-04-26 2019-10-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de prédiction d'une réponse à un inhibiteur de point de contrôle immunitaire chez un patient souffrant d'un cancer du poumon
EP3784351A1 (fr) 2018-04-27 2021-03-03 Novartis AG Thérapies reposant sur des cellules car-t présentant une efficacité améliorée
EP3788369A1 (fr) 2018-05-01 2021-03-10 Novartis Ag Biomarqueurs pour évaluer des cellules car-t pour prédire un résultat clinique
PE20210920A1 (es) 2018-05-04 2021-05-19 Incyte Corp Formas solidas de un inhibidor de fgfr y procesos para prepararlas
WO2019213506A1 (fr) 2018-05-04 2019-11-07 Incyte Corporation Sels d'un inhibiteur de fgfr
KR20210006405A (ko) 2018-05-04 2021-01-18 메르크 파텐트 게엠베하 암의 치료를 위한 PD-1/PD-L1, TGFβ 및 DNA-PK의 조합 억제
WO2019222677A1 (fr) 2018-05-18 2019-11-21 Incyte Corporation Dérivés de pyrimidine fusionnés utilisés en tant qu'inhibiteurs de a2a/a2b
CA3101174A1 (fr) 2018-05-23 2019-11-28 Celgene Corporation Traitement du myelome multiple et utilisation de biomarqueurs pour le 4-(4-(4-(((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)oxy)methyl)benzyl)piperazin-1-yl)-3-fluorobenzoni trile
AU2019274530A1 (en) 2018-05-23 2020-12-10 Celgene Corporation Antiproliferative compounds and bispecific antibody against BCMA and CD3 for combined use
UY38247A (es) 2018-05-30 2019-12-31 Novartis Ag Anticuerpos frente a entpd2, terapias de combinación y métodos de uso de los anticuerpos y las terapias de combinación
JP2021525071A (ja) 2018-05-31 2021-09-24 ノバルティス アーゲー B型肝炎抗体
WO2019231870A1 (fr) 2018-05-31 2019-12-05 Merck Sharp & Dohme Corp. Nouveaux composés [1,1,1]bicyclo substitués en tant qu'inhibiteurs de l'indoléamine 2,3-dioxygénase
WO2019232244A2 (fr) 2018-05-31 2019-12-05 Novartis Ag Molécules d'anticorps anti-cd73 et leurs utilisations
US20210253614A1 (en) 2018-05-31 2021-08-19 Peloton Therapeutics, Inc. Compositions and methods for inhibiting cd73
CA3098420A1 (fr) 2018-06-01 2019-12-05 Novartis Ag Molecules de liaison dirigees contre bcma et leurs utilisations
CA3102256A1 (fr) 2018-06-01 2019-12-05 Novartis Ag Dosage d'un anticorps bispecifique qui se lie a cd123 et cd3
BR112020025048A2 (pt) 2018-06-13 2021-04-06 Novartis Ag Receptores de antígeno quimérico de bcma e usos dos mesmos
JP7399895B2 (ja) 2018-06-23 2023-12-18 ジェネンテック, インコーポレイテッド Pd-1軸結合拮抗薬、白金剤、およびトポイソメラーゼii阻害剤で肺癌を治療する方法
CN112672758A (zh) 2018-06-25 2021-04-16 英摩杜伦治疗学公司 癌症治疗
WO2020005068A2 (fr) 2018-06-29 2020-01-02 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Signatures géniques et procédé de prédiction de réponse à des antagonistes pd-1 et des antagonistes ctla -4, et combinaison de ceux-ci
CA3105448A1 (fr) 2018-07-03 2020-01-09 Elstar Therapeutics, Inc. Molecules d'anticorps anti-tcr et leurs utilisations
CN112424167A (zh) 2018-07-09 2021-02-26 葛兰素史密斯克莱知识产权发展有限公司 化学化合物
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
AU2019301944B2 (en) 2018-07-10 2022-02-24 Novartis Ag 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of IKAROS Family Zinc Finger 2 (IKZF2)-dependent diseases
BR112021000673A2 (pt) 2018-07-18 2021-04-20 Genentech, Inc. métodos para tratar um indivíduo com câncer de pulmão, kits, anticorpo anti-pd-l1 e composições
WO2020020444A1 (fr) 2018-07-24 2020-01-30 Biontech Rna Pharmaceuticals Gmbh Vaccins individualisés pour le cancer
CN112601584A (zh) 2018-07-24 2021-04-02 豪夫迈·罗氏有限公司 异喹啉化合物及其用途
WO2020023551A1 (fr) 2018-07-24 2020-01-30 Genentech, Inc. Composés de naphtyridine et leurs utilisations
US20210301020A1 (en) 2018-07-24 2021-09-30 Amgen Inc. Combination of lilrb1/2 pathway inhibitors and pd-1 pathway inhibitors
WO2020021465A1 (fr) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Procédé de traitement de tumeurs neuroendocrines
US20210236633A1 (en) 2018-08-06 2021-08-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers
WO2020031107A1 (fr) 2018-08-08 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Composés chimiques
PE20211412A1 (es) 2018-08-20 2021-08-02 Pfizer Anticuerpos anti-gdf15, composiciones y metodos de uso
WO2020044206A1 (fr) 2018-08-29 2020-03-05 Glaxosmithkline Intellectual Property Development Limited Amides hétérocycliques utiles en tant qu'inhibiteurs de kinases destinés à être utilisés dans le traitement du cancer
WO2020044252A1 (fr) 2018-08-31 2020-03-05 Novartis Ag Régimes posologiques pour anticorps anti-m-csf et utilisations associées
TW202024023A (zh) 2018-09-03 2020-07-01 瑞士商赫孚孟拉羅股份公司 治療性化合物及其使用方法
WO2020048942A1 (fr) 2018-09-04 2020-03-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés et compositions pharmaceutiques visant à améliorer les réponses immunitaires dépendantes des lymphocytes t cytotoxiques
TW202024131A (zh) 2018-09-07 2020-07-01 美商輝瑞大藥廠 抗-αvβ8抗體及組合物及其用途
WO2020049534A1 (fr) 2018-09-07 2020-03-12 Novartis Ag Agoniste de sting et polythérapie correspondante pour le traitement du cancer
WO2020053742A2 (fr) 2018-09-10 2020-03-19 Novartis Ag Anticorps peptidiques anti-hla-vhb
AU2019339777B2 (en) 2018-09-12 2022-09-01 Novartis Ag Antiviral pyridopyrazinedione compounds
WO2020061376A2 (fr) 2018-09-19 2020-03-26 Alpine Immune Sciences, Inc. Méthodes et utilisations de protéines de fusion de variant cd80 et constructions associées
WO2020058372A1 (fr) 2018-09-19 2020-03-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés et composition pharmaceutique pour le traitement du cancer résistant à une thérapie ciblant des points de contrôle immunitaires
CA3111401A1 (fr) 2018-09-19 2020-03-26 Genentech, Inc. Methodes therapeutiques et de diagnostic pour le cancer de la vessie
WO2020061377A1 (fr) 2018-09-19 2020-03-26 Genentech, Inc. Composés 2,3-dihydro-7-azaindole spirocycliques et leurs utilisations
ES2955032T3 (es) 2018-09-21 2023-11-28 Hoffmann La Roche Métodos de diagnóstico para el cáncer de mama triple negativo
US20220242957A1 (en) 2018-09-27 2022-08-04 Marengo Therapeutics, Inc. Csf1r/ccr2 multispecific antibodies
EP3856779A1 (fr) 2018-09-28 2021-08-04 Novartis AG Thérapies par récepteur antigénique chimérique (car) de cd22
EP3856782A1 (fr) 2018-09-28 2021-08-04 Novartis AG Polythérapies à base de récepteur antigénique chimérique (car) cd19 et de car cd22
US20210346375A1 (en) 2018-09-29 2021-11-11 Novartis Ag Process of manufacture of a compound for inhibiting the activity of shp2, as well as products resulting from acid addition
WO2020069402A1 (fr) 2018-09-30 2020-04-02 Genentech, Inc. Composés de cinnoline pour le traitement de troubles dépendant du hpk1 tels que le cancer
WO2020070053A1 (fr) 2018-10-01 2020-04-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Utilisation d'inhibiteurs de formation de granules de stress pour cibler la régulation de réponses immunitaires
TW202024053A (zh) 2018-10-02 2020-07-01 美商建南德克公司 異喹啉化合物及其用途
CN113195523A (zh) 2018-10-03 2021-07-30 Xencor股份有限公司 IL-12异源二聚体Fc融合蛋白
WO2020072695A1 (fr) 2018-10-03 2020-04-09 Genentech, Inc. Composés de 8-aminoisoquinoline et leurs utilisations
US11066404B2 (en) 2018-10-11 2021-07-20 Incyte Corporation Dihydropyrido[2,3-d]pyrimidinone compounds as CDK2 inhibitors
EP3864047A2 (fr) 2018-10-12 2021-08-18 Xencor, Inc. Protéines de fusion fc d'il-15/il-15ralpha ciblant pd-1 et utilisations dans des polythérapies faisant intervenir celles-ci
CN112867803A (zh) 2018-10-16 2021-05-28 诺华股份有限公司 单独的或与免疫标志物组合的肿瘤突变负荷作为生物标志物用于预测对靶向疗法的应答
WO2020079164A1 (fr) 2018-10-18 2020-04-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Combinaison d'un antagoniste big-h3 et d'un inhibiteur de point de contrôle immunitaire pour le traitement d'une tumeur solide
EP3867646A1 (fr) 2018-10-18 2021-08-25 F. Hoffmann-La Roche AG Procédés de diagnostic et de thérapie pour le cancer sarcomatoïde du rein
US20210324081A1 (en) 2018-10-22 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Dosing
US20210393799A1 (en) 2018-10-29 2021-12-23 Wisconsin Alumni Research Foundation Dendritic polymers complexed with immune checkpoint inhibitors for enhanced cancer immunotherapy
US11564995B2 (en) 2018-10-29 2023-01-31 Wisconsin Alumni Research Foundation Peptide-nanoparticle conjugates
WO2020089811A1 (fr) 2018-10-31 2020-05-07 Novartis Ag Conjugué médicament-anticorps anti-dc-sign
WO2020092183A1 (fr) 2018-11-01 2020-05-07 Merck Sharp & Dohme Corp. Nouveaux composés pyrazole substitués utilisés en tant qu'inhibiteurs de l'indoléamine 2,3-dioxygénase
CN113646335A (zh) 2018-11-01 2021-11-12 朱诺治疗学股份有限公司 使用对b细胞成熟抗原具有特异性的嵌合抗原受体的治疗的方法
PE20211058A1 (es) 2018-11-01 2021-06-07 Juno Therapeutics Inc Receptores de antigenos quimericos especificos para el miembro d del grupo 5 de la clase c del receptor acoplado a proteina g (gprc5d)
WO2020096871A1 (fr) 2018-11-06 2020-05-14 Merck Sharp & Dohme Corp. Nouveaux composés tricycliques substitués utilisés en tant qu'inhibiteurs de l'indoléamine 2,3-dioxygénase
KR20210093946A (ko) 2018-11-16 2021-07-28 아르퀼 인코포레이티드 암의 치료를 위한 제약 조합물
MX2021005734A (es) 2018-11-16 2021-09-10 Juno Therapeutics Inc Metodos de dosificacion de celulas t modificadas para el tratamiento de malignidades de celulas b.
CN113286813A (zh) 2018-11-19 2021-08-20 得克萨斯大学体系董事会 用于car和tcr转导的模块化多顺反子载体
US20210395255A1 (en) 2018-11-20 2021-12-23 Merck Sharp & Dohme Corp. Substituted amino triazolopyrimidine and amino triazolopyrazine adenosine receptor antagonists, pharmaceutical compositions and their use
WO2020106560A1 (fr) 2018-11-20 2020-05-28 Merck Sharp & Dohme Corp. Composés amino-triazolopyrimidine et amino-triazolopyrazine substitués utilisés en tant qu'antagonistes de récepteur de l'adénosine, compositions pharmaceutiques et leur utilisation
JP2022511437A (ja) 2018-11-26 2022-01-31 デバイオファーム インターナショナル エス.エー. Hiv感染の組み合わせ治療
JP2022513652A (ja) 2018-11-28 2022-02-09 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 機能および抑制性環境に対する抵抗性を増強するための免疫細胞のマルチプレックスゲノム編集
EP3887823B1 (fr) 2018-11-28 2024-01-17 Institut National de la Santé et de la Recherche Médicale (INSERM) Procédés et trousse pour tester le potentiel lytique de cellules effectrices immunitaires
US20230008022A1 (en) 2018-11-28 2023-01-12 Merck Sharp & Dohme Corp. Novel substituted piperazine amide compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
US20220033778A1 (en) 2018-11-29 2022-02-03 Board Of Regents, The University Of Texas System Methods for ex vivo expansion of natural killer cells and use thereof
IL283487B1 (en) 2018-11-30 2024-03-01 Glaxosmithkline Ip Dev Ltd Compounds useful in curing HIV
AU2019385905B2 (en) 2018-11-30 2023-01-12 Merck Sharp & Dohme Llc 9-substituted amino triazolo quinazoline derivatives as adenosine receptor antagonists, pharmaceutical compositions and their use
JP2022513685A (ja) 2018-11-30 2022-02-09 ジュノー セラピューティクス インコーポレイテッド 養子細胞療法を用いた処置のための方法
JP2022511029A (ja) 2018-12-04 2022-01-28 スミトモ ダイニッポン ファーマ オンコロジー, インコーポレイテッド がんの処置のための薬剤としての使用のためのcdk9インヒビターおよびその多形
CN113260633A (zh) 2018-12-05 2021-08-13 豪夫迈·罗氏有限公司 用于癌症免疫疗法的诊断方法和组合物
US20220018835A1 (en) 2018-12-07 2022-01-20 INSERM (Institut National de la Santé et de la Recherche Médicale Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes
TW202039459A (zh) 2018-12-11 2020-11-01 美商施萬生物製藥研發 Ip有限責任公司 Alk5 抑制劑
WO2020127059A1 (fr) 2018-12-17 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Utilisation de sulconazole en tant qu'inhibiteur de la furine
CN113271945A (zh) 2018-12-20 2021-08-17 诺华股份有限公司 包含3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物的给药方案和药物组合
EP3897853A1 (fr) 2018-12-20 2021-10-27 Xencor, Inc. Protéines de fusion fc hétérodimères ciblées contenant les il-15/il-15ra et des domaines de liaison à l'antigène nkg2d
WO2020128620A1 (fr) 2018-12-21 2020-06-25 Novartis Ag Utilisation d'anticorps se liant à il-1bêta
CN113166762A (zh) 2018-12-21 2021-07-23 欧恩科斯欧公司 新的偶联核酸分子及其用途
CA3123996A1 (fr) 2018-12-21 2019-12-18 Novartis Ag Anticorps diriges contre pmel17 et conjugues de ces derniers
KR20210107730A (ko) 2018-12-21 2021-09-01 노파르티스 아게 골수 형성이상 증후군의 치료 또는 예방에서의 il-1 베타 항체의 용도
US20220025036A1 (en) 2018-12-21 2022-01-27 Novartis Ag Use of il-1beta binding antibodies
WO2020128637A1 (fr) 2018-12-21 2020-06-25 Novartis Ag UTILISATION D'ANTICORPS DE LIAISON À IL-1β DANS LE TRAITEMENT D'UN CANCER MSI-H
WO2020140012A1 (fr) 2018-12-27 2020-07-02 Amgen Inc. Formulations de virus lyophilisées
AU2020205150A1 (en) 2019-01-03 2021-07-22 Assistance Publique-Hôpitaux De Paris (Aphp) Methods and pharmaceutical compositions for enhancing CD8+ T cell-dependent immune responses in subjects suffering from cancer
CA3125753A1 (fr) 2019-01-09 2020-07-16 Celgene Corporation Composes antiproliferatifs et deuxiemes principes actifs destines a etre utilises dans le traitement d'un myelome multiple
SG11202107438WA (en) 2019-01-09 2021-08-30 Celgene Corp Pharmaceutical compositions comprising (s)-4-(4-(4-(((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)oxy)methyl) benzyl)piperazin-1-yl)-3-fluorobenzonitrile and methods of using the same
CA3125756A1 (fr) 2019-01-09 2020-07-16 Celgene Corporation Formes solides comprenant du (s)-4-(4-(4-(((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)oxy)methyl) benzyl)piperazin-1-yl)-3-fluorobenzonitrile et des sels de ceux-ci, compos itions les comprenant et procedes d'utilisation associes
CN115120716A (zh) 2019-01-14 2022-09-30 健泰科生物技术公司 用pd-1轴结合拮抗剂和rna疫苗治疗癌症的方法
CN113508129A (zh) 2019-01-15 2021-10-15 法国国家健康和医学研究院 突变的白介素-34(il-34)多肽及其在治疗中的用途
TWI829857B (zh) 2019-01-29 2024-01-21 美商英塞特公司 作為a2a / a2b抑制劑之吡唑并吡啶及三唑并吡啶
US20220096651A1 (en) 2019-01-29 2022-03-31 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase like orphan receptor 1 (ror1)
EP3921443A1 (fr) 2019-02-08 2021-12-15 F. Hoffmann-La Roche AG Méthodes diagnostiques et thérapeutiques pour le cancer
WO2020165733A1 (fr) 2019-02-12 2020-08-20 Novartis Ag Combinaison pharmaceutique comprenant du tno155 et un inhibiteur de pd-1
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2020165833A1 (fr) 2019-02-15 2020-08-20 Novartis Ag Dérivés de 3-(1-oxo-5-(pipéridin-4-yl)isoindolin-2-yl)pipéridine-2,6-dione et leurs utilisations
EA202192260A1 (ru) 2019-02-15 2021-12-17 Инсайт Корпорейшн Биомаркеры циклин-зависимой киназы 2 и их применение
US11384083B2 (en) 2019-02-15 2022-07-12 Incyte Corporation Substituted spiro[cyclopropane-1,5′-pyrrolo[2,3-d]pyrimidin]-6′(7′h)-ones as CDK2 inhibitors
JP2022520448A (ja) 2019-02-15 2022-03-30 ノバルティス アーゲー 置換3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用
WO2020169472A2 (fr) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés d'induction de changements phénotypiques dans des macrophages
CN114173875A (zh) 2019-03-01 2022-03-11 Xencor股份有限公司 结合enpp3和cd3的异二聚抗体
CA3131529A1 (fr) 2019-03-05 2020-09-10 Amgen Inc. Utilisation de virus oncolytiques pour le traitement du cancer
US11472791B2 (en) 2019-03-05 2022-10-18 Incyte Corporation Pyrazolyl pyrimidinylamine compounds as CDK2 inhibitors
WO2020185532A1 (fr) 2019-03-08 2020-09-17 Incyte Corporation Méthodes de traitement du cancer au moyen d'un inhibiteur de fgfr
AU2020233995A1 (en) 2019-03-12 2021-09-23 BioNTech SE Therapeutic RNA for prostate cancer
EP3938403A1 (fr) 2019-03-14 2022-01-19 F. Hoffmann-La Roche AG Traitement du cancer avec des anticorps bispécifiques de her2xcd3 en combinaison avec un mab anti-her2
KR20220012839A (ko) 2019-03-19 2022-02-04 펀다시오 프리바다 인스티튜트 드인베스티가시오 온콜로지카 데 발 헤브론 Omomyc와 pd-1 또는 ctla-4에 결합하는 항체를 이용한 암 치료용 조합 요법
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
CA3133460A1 (fr) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprenant des modulateurs de pkm2 et methodes de traitement les utilisant
US11919904B2 (en) 2019-03-29 2024-03-05 Incyte Corporation Sulfonylamide compounds as CDK2 inhibitors
TW202102543A (zh) 2019-03-29 2021-01-16 美商安進公司 溶瘤病毒在癌症新輔助療法中之用途
MX2021011609A (es) 2019-03-29 2022-01-24 Genentech Inc Moduladores de interacciones de proteinas de superficie celular y metodos y composiciones relacionados con estos.
EP3947737A2 (fr) 2019-04-02 2022-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Méthodes de prédiction et de prévention du cancer chez des patients ayant des lésions prémalignes
US20220177465A1 (en) 2019-04-04 2022-06-09 Merck Sharp & Dohme Corp. Inhibitors of histone deacetylase-3 useful for the treatment of cancer, inflammation, neurodegeneration diseases and diabetes
WO2020200472A1 (fr) 2019-04-05 2020-10-08 Biontech Rna Pharmaceuticals Gmbh Préparation et stockage de formulations d'arn liposomal appropriées pour une thérapie
EP3952850A1 (fr) 2019-04-09 2022-02-16 Institut National de la Santé et de la Recherche Médicale (INSERM) Utilisation d'inhibiteurs de sk2 en association avec une thérapie de blocage de point de contrôle immunitaire pour le traitement du cancer
EP3956446A1 (fr) 2019-04-17 2022-02-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés et compositions de traitement de troubles dépendants de il-1beta mediés par inflamasome nlrp3
WO2020214995A1 (fr) 2019-04-19 2020-10-22 Genentech, Inc. Anticorps anti-mertk et leurs méthodes d'utilisation
WO2020223233A1 (fr) 2019-04-30 2020-11-05 Genentech, Inc. Méthodes pronostiques et thérapeutiques contre le cancer colorectal
US11447494B2 (en) 2019-05-01 2022-09-20 Incyte Corporation Tricyclic amine compounds as CDK2 inhibitors
US11440914B2 (en) 2019-05-01 2022-09-13 Incyte Corporation Tricyclic amine compounds as CDK2 inhibitors
KR20220012261A (ko) 2019-05-07 2022-02-03 이뮤니컴 인코포레이티드 체외 성분채집술에 의한 체크포인트 억제제에 대한 반응 증가
WO2020227711A1 (fr) 2019-05-09 2020-11-12 FUJIFILM Cellular Dynamics, Inc. Procédés de production d'hépatocytes
WO2020232375A1 (fr) 2019-05-16 2020-11-19 Silicon Swat, Inc. Dérivés d'acide oxoacridinyle acétique et procédés d'utilisation
WO2020232378A1 (fr) 2019-05-16 2020-11-19 Silicon Swat, Inc. Dérivés d'acide acétique benzo[b][1,8]naphtyridine et leur procédés d'utilisation
CN114096240A (zh) 2019-05-17 2022-02-25 癌症预防制药股份有限公司 用于治疗家族性腺瘤性息肉病的方法
JP2022533717A (ja) 2019-05-20 2022-07-25 バイオエヌテック エスエー 卵巣癌のための治療用rna
AU2020289485A1 (en) 2019-06-03 2022-02-03 The University Of Chicago Methods and compositions for treating cancer with collagen binding drug carriers
US20220305135A1 (en) 2019-06-03 2022-09-29 The University Of Chicago Methods and compositions for treating cancer with cancer-targeted adjuvants
EP3990635A1 (fr) 2019-06-27 2022-05-04 Rigontec GmbH Procédé de conception pour ligands rig-i optimisés
CN114729383A (zh) 2019-07-02 2022-07-08 弗莱德哈钦森癌症研究中心 重组ad35载体及相关基因疗法改进
MX2022000164A (es) 2019-07-03 2022-04-01 Sumitomo Pharma Oncology Inc Inhibidores de tirosina cinasa no receptora 1 (tnk1) y usos de los mismos.
WO2021007269A1 (fr) 2019-07-09 2021-01-14 Incyte Corporation Hétérocycles bicycliques en tant qu'inhibiteurs de fgfr
GB201910305D0 (en) 2019-07-18 2019-09-04 Ctxt Pty Ltd Compounds
GB201910304D0 (en) 2019-07-18 2019-09-04 Ctxt Pty Ltd Compounds
US11083705B2 (en) 2019-07-26 2021-08-10 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
KR20220056176A (ko) 2019-08-02 2022-05-04 메르사나 테라퓨틱스, 인코포레이티드 암 치료를 위한 sting(인터페론 유전자의 자극인자) 작용제로서의 비스-[n-((5-카바모일)-1h-벤조[d]이미다졸-2-일)-피라졸-5-카복사미드] 유도체 및 관련 화합물
CN114514032A (zh) 2019-08-02 2022-05-17 兰提欧派普有限公司 用于治疗癌症的血管紧张素2型(at2)受体激动剂
WO2021024020A1 (fr) 2019-08-06 2021-02-11 Astellas Pharma Inc. Polythérapie impliquant des anticorps dirigés contre la claudine 18.2 et inhibiteurs de point de contrôle immunitaire pour le traitement du cancer
EP4013788A1 (fr) 2019-08-12 2022-06-22 Purinomia Biotech, Inc. Méthodes et compositions pour favoriser et potentialiser des réponses immunitaires à médiation par des lymphocytes t par ciblage adcc de cellules exprimant cd39
KR20220064369A (ko) 2019-08-14 2022-05-18 인사이트 코포레이션 Cdk2 저해제로서의 이미다졸릴 피리디미딘일아민 화합물
MX2022003005A (es) 2019-09-16 2022-04-07 Surface Oncology Inc Composiciones y metodos de anticuerpos anti-cd39.
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
WO2021053556A1 (fr) 2019-09-18 2021-03-25 Novartis Ag Protéines de fusion nkg2d et leurs utilisations
JP2022548881A (ja) 2019-09-18 2022-11-22 ノバルティス アーゲー Entpd2抗体、組合せ療法並びに抗体及び組合せ療法を使用する方法
AU2020353672A1 (en) 2019-09-25 2022-03-31 Surface Oncology, LLC Anti-IL-27 antibodies and uses thereof
US11667613B2 (en) 2019-09-26 2023-06-06 Novartis Ag Antiviral pyrazolopyridinone compounds
EP4034562A2 (fr) 2019-09-27 2022-08-03 GlaxoSmithKline Intellectual Property Development Limited Protéines de liaison à un antigène
EP3800201A1 (fr) 2019-10-01 2021-04-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Stimulation cd28h améliorant des activités de destruction de cellules nk
US11851466B2 (en) 2019-10-03 2023-12-26 Xencor, Inc. Targeted IL-12 heterodimeric Fc-fusion proteins
EP4037710A1 (fr) 2019-10-04 2022-08-10 Institut National de la Santé et de la Recherche Médicale (INSERM) Méthodes et composition pharmaceutique pour le traitement du cancer de l'ovaire, du cancer du sein ou du cancer du pancréas
TW202128757A (zh) 2019-10-11 2021-08-01 美商建南德克公司 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白
CA3157681A1 (fr) 2019-10-11 2021-04-15 Incyte Corporation Amines bicycliques utilisees en tant qu'inhibiteurs de cdk2
KR20220100879A (ko) 2019-10-14 2022-07-18 인사이트 코포레이션 Fgfr 저해제로서의 이환식 헤테로사이클
WO2021076728A1 (fr) 2019-10-16 2021-04-22 Incyte Corporation Hétérocycles bicycliques en tant qu'inhibiteurs de fgfr
KR20220087498A (ko) 2019-10-21 2022-06-24 노파르티스 아게 Tim-3 억제제 및 그의 용도
CA3158298A1 (fr) 2019-10-21 2021-04-29 Novartis Ag Polytherapies comprenant du venetoclax et des inhibiteurs de tim-3
AU2020372478A1 (en) 2019-10-23 2022-06-02 Checkmate Pharmaceuticals, Inc. Synthetic RIG-I-like receptor agonists
BR112022008074A2 (pt) 2019-10-28 2022-07-12 Shanghai Inst Materia Medica Cas Composto de ácido oxocarboxílico heterocíclico de cinco membros e uso médico do mesmo
US20220409724A1 (en) 2019-10-29 2022-12-29 Eisai R&D Management Co., Ltd. Combination of a pd-1 antagonist, a vegfr/fgfr/ret tyrosine kinase inhibitor and a cbp/beta-catenin inhibitor for treating cancer
WO2021087458A2 (fr) 2019-11-02 2021-05-06 Board Of Regents, The University Of Texas System Ciblage de la dégradation des arnm non-sens pour activer la voie p53 pour le traitement du cancer
CN115066613A (zh) 2019-11-06 2022-09-16 基因泰克公司 用于治疗血液癌症的诊断和治疗方法
MX2022005651A (es) 2019-11-11 2022-07-27 Incyte Corp Sales y formas cristalinas de un inhibidor de la proteina de muerte celular programada 1 (pd-1)/ligando de muerte celular programada 1 (pd-l1).
CN114728905A (zh) 2019-11-13 2022-07-08 基因泰克公司 治疗性化合物及使用方法
WO2021102343A1 (fr) 2019-11-22 2021-05-27 Sumitomo Dainippon Pharma Oncology, Inc. Composition pharmaceutique de dose solide
IL293084A (en) 2019-11-22 2022-07-01 Theravance Biopharma R& D Ip Llc 5,1-Converted naphthyridines or quinolines as alk5 inhibitors
JP2023503161A (ja) 2019-11-26 2023-01-26 ノバルティス アーゲー Cd19及びcd22キメラ抗原受容体及びその使用
ES2961245T3 (es) 2019-12-04 2024-03-11 Orna Therapeutics Inc Composiciones y métodos de ARN circular
JP2023505258A (ja) 2019-12-04 2023-02-08 インサイト・コーポレイション Fgfr阻害剤としての三環式複素環
PE20221504A1 (es) 2019-12-04 2022-09-30 Incyte Corp Derivados de un inhibidor de fgfr
WO2021113644A1 (fr) 2019-12-05 2021-06-10 Multivir Inc. Combinaisons comprenant un activateur de lymphocytes t cd8+, un inhibiteur de point de contrôle immunitaire et une radiothérapie en vue d'obtenir des effets ciblés et abscopal pour le traitement du cancer
WO2021113679A1 (fr) 2019-12-06 2021-06-10 Mersana Therapeutics, Inc. Composés dimères utilisés en tant qu'agonistes de sting
CA3165399A1 (fr) 2019-12-20 2021-06-24 Novartis Ag Utilisations d'anticorps anti-tgf-betas et inhibiteurs de point de controle pour le traitement des maladies proliferatives
CN113045655A (zh) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 抗ox40抗体及其用途
CN115279766A (zh) 2020-01-03 2022-11-01 因赛特公司 包含a2a/a2b和pd-1/pd-l1抑制剂的组合疗法
WO2021138407A2 (fr) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Molécules multifonctionnelles se liant à cd33 et utilisations associées
KR20220124718A (ko) 2020-01-07 2022-09-14 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 암 치료를 위한 개선된 인간 메틸 티오아데노신/아데노신 고갈 효소 변이체
AU2021207348A1 (en) 2020-01-17 2022-08-11 Novartis Ag Combination comprising a TIM-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
BR112022015077A2 (pt) 2020-01-31 2022-10-04 Genentech Inc Métodos para induzir células t cd8+ específicas de neoepítopos em um indivíduo com um tumor e para induzir o tráfico de células t cd8+, vacinas de rna, vacina de rna para uso e antagonistas de ligação
CA3168337A1 (fr) 2020-02-17 2021-08-26 Marie-Andree Forget Procedes d'expansion de lymphocytes infiltrant les tumeurs et leur utilisation
WO2021171264A1 (fr) 2020-02-28 2021-09-02 Novartis Ag Dosage d'un anticorps bispécifique qui se lie à cd123 et cd3
EP4110341A2 (fr) 2020-02-28 2023-01-04 Novartis AG Combinaison pharmaceutique triple comprenant dabrafenib, un inhibiteur d'erk et un inhibiteur de raf ou un inhibiteur de pd-1
CA3174064A1 (fr) 2020-03-03 2021-09-10 Array Biopharma Inc. Methodes de traitement du cancer a l'aide de (r)-n-(3-fluoro-4-((3-((1-hydroxypropan-2-yl)amino)-1h-pyrazolo[3,4-b]pyridin-4-yl)oxy)phenyl)-3-(4-fluorophenyl)-1-isopropyl-2,4-diox o-1,2,3,4-tetrahydropyrimidine-5-carboxamide
WO2021177980A1 (fr) 2020-03-06 2021-09-10 Genentech, Inc. Polythérapie contre le cancer comprenant un antagoniste de liaison à l'axe pd-1 et un antagoniste de l'il 6
TW202140027A (zh) 2020-03-06 2021-11-01 美商英塞特公司 包含axl/mer及pd—1/pd/l1抑制劑之組合療法
WO2021183318A2 (fr) 2020-03-09 2021-09-16 President And Fellows Of Harvard College Méthodes et compositions se rapportant à des polythérapies améliorées
JP2023518295A (ja) 2020-03-20 2023-04-28 オルナ セラピューティクス インコーポレイテッド 環状rna組成物及び方法
EP4126824A1 (fr) 2020-03-31 2023-02-08 Theravance Biopharma R&D IP, LLC Pyrimidines substituées et méthodes d'utilisation
WO2021202959A1 (fr) 2020-04-03 2021-10-07 Genentech, Inc. Procédés thérapeutiques et de diagnostic du cancer
WO2021207689A2 (fr) 2020-04-10 2021-10-14 Juno Therapeutics, Inc. Méthodes et utilisations associées à une thérapie cellulaire modifiée à l'aide d'un récepteur antigénique chimérique ciblant un antigène de maturation des lymphocytes b
CA3171597A1 (fr) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Traitement combine pour le cancer
CN115698075A (zh) 2020-04-14 2023-02-03 葛兰素史密斯克莱知识产权发展有限公司 涉及抗icos和抗pd1抗体,任选地进一步涉及抗tim3抗体的癌症的组合治疗
JP2023522202A (ja) 2020-04-16 2023-05-29 インサイト・コーポレイション 融合三環式kras阻害剤
TW202206100A (zh) 2020-04-27 2022-02-16 美商西健公司 癌症之治療
JP2023523450A (ja) 2020-04-28 2023-06-05 ジェネンテック, インコーポレイテッド 非小細胞肺がん免疫療法のための方法及び組成物
US20230181756A1 (en) 2020-04-30 2023-06-15 Novartis Ag Ccr7 antibody drug conjugates for treating cancer
EP4147052A1 (fr) 2020-05-05 2023-03-15 F. Hoffmann-La Roche AG Prédiction de réponse à des inhibiteurs de l'axe pd-1
CN115836054A (zh) 2020-05-06 2023-03-21 默沙东有限责任公司 Il4i1抑制剂和使用方法
WO2021231526A1 (fr) 2020-05-13 2021-11-18 Incyte Corporation Composés de pyrimidine fusionnés utilisés comme inhibiteurs de kras
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
CA3178726A1 (fr) 2020-05-21 2021-11-25 Gregory LIZEE Recepteurs de lymphocytes t ayant une specificite pour le vgll1 et leurs utilisations
CA3184802A1 (fr) 2020-05-26 2021-12-02 Inserm (Institut National De La Sante Et De La Recherche Medicale) Polypeptides du coronavirus 2 associe au syndrome respiratoire aigu severe (sars-cov-2) et leurs utilisations a des fins vaccinales
CA3180060A1 (fr) 2020-05-29 2021-12-02 Zongmin ZHAO Cellules vivantes modifiees avec des nanocomplexes biologiquement actifs fonctionnalises par des polyphenols
WO2021247836A1 (fr) 2020-06-03 2021-12-09 Board Of Regents, The University Of Texas System Méthodes de ciblage de shp-2 pour surmonter une résistance
US20210387983A1 (en) 2020-06-10 2021-12-16 Theravance Biopharma R&D Ip, Llc Crystalline alk5 inhibitors and uses thereof
WO2021252977A1 (fr) 2020-06-12 2021-12-16 Genentech, Inc. Méthodes et compositions pour une immunothérapie anticancéreuse
JP2023531406A (ja) 2020-06-16 2023-07-24 ジェネンテック, インコーポレイテッド トリプルネガティブ乳がんを処置するための方法および組成物
AR122644A1 (es) 2020-06-19 2022-09-28 Onxeo Nuevas moléculas de ácido nucleico conjugado y sus usos
IL298262A (en) 2020-06-23 2023-01-01 Novartis Ag A dosage regimen that includes derivatives of 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione
US20230235077A1 (en) 2020-06-24 2023-07-27 The General Hospital Corporation Materials and methods of treating cancer
CA3182867A1 (fr) 2020-06-25 2021-12-30 Aarif Ahsan Methodes pour traiter un cancer avec des polytherapies
EP4172628A1 (fr) 2020-06-30 2023-05-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés pour prédire le risque de récidive et/ou de mort de patients souffrant d'un cancer solide après un traitement adjuvant préopératoire et une chirurgie radicale
JP2023531305A (ja) 2020-06-30 2023-07-21 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 術前補助療法後の固形癌患者の再発及び/又は死亡のリスクを予測するための方法。
BR112023000248A2 (pt) 2020-07-07 2023-01-31 Celgene Corp Composições farmacêuticas compreendendo (s)-4-(4-(4-(((2-(2,6-dioxopiperidin-3-il)-1-oxoisoindolin-4-il)óxi)metil)benzil)piperazin-1-il)-3-fluorobenzo¬nitrila e métodos de uso das mesmas
AU2021306613A1 (en) 2020-07-07 2023-02-02 BioNTech SE Therapeutic RNA for HPV-positive cancer
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
EP4188549A1 (fr) 2020-08-03 2023-06-07 Novartis AG Dérivés de 3-(1-oxoisoindolin-2-yl)pipéridine-2,6-dione substitués par hétéroaryle et leurs utilisations
EP4196612A1 (fr) 2020-08-12 2023-06-21 Genentech, Inc. Méthodes diagnostiques et thérapeutiques pour le cancer
IL300666A (en) 2020-08-19 2023-04-01 Xencor Inc ANTI–CD28 COMPOSITIONS
AU2021333779A1 (en) 2020-08-26 2023-04-13 Marengo Therapeutics, Inc. Methods of detecting TRBC1 or TRBC2
WO2022047093A1 (fr) 2020-08-28 2022-03-03 Incyte Corporation Composés d'imidazole vinylique en tant qu'inhibiteurs de kras
WO2022043557A1 (fr) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Méthode de traitement de cancers exprimant le psma
EP4204020A1 (fr) 2020-08-31 2023-07-05 Advanced Accelerator Applications International S.A. Méthode de traitement de cancers exprimant le psma
JP2023540490A (ja) 2020-09-02 2023-09-25 ファーマブシン インコーポレイテッド がん患者を治療するためのpd-1拮抗薬及びvegfr-2拮抗薬の併用療法
TW202228727A (zh) 2020-10-01 2022-08-01 德商拜恩迪克公司 適用於治療之微脂體rna調配物之製備及儲存
US11767320B2 (en) 2020-10-02 2023-09-26 Incyte Corporation Bicyclic dione compounds as inhibitors of KRAS
TW202233671A (zh) 2020-10-20 2022-09-01 美商建南德克公司 Peg結合抗mertk抗體及其使用方法
CN116685325A (zh) 2020-10-20 2023-09-01 豪夫迈·罗氏有限公司 Pd-1轴结合拮抗剂和lrrk2抑制剂的组合疗法
WO2022093981A1 (fr) 2020-10-28 2022-05-05 Genentech, Inc. Polythérapie comprenant des inhibiteurs de ptpn22 et des antagonistes de liaison au pd-l1
JP2023548069A (ja) 2020-11-04 2023-11-15 ジェネンテック, インコーポレイテッド 抗cd20/抗cd3二重特異性抗体の皮下投薬
US20220153842A1 (en) 2020-11-04 2022-05-19 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
WO2022098638A2 (fr) 2020-11-04 2022-05-12 Genentech, Inc. Dosage pour le traitement avec des anticorps bispécifiques anti-cd20/anti-cd3
TW202233616A (zh) 2020-11-06 2022-09-01 美商英塞特公司 用於製備pd-1/pd-l1抑制劑以及其鹽及結晶形式之方法
TW202233615A (zh) 2020-11-06 2022-09-01 美商英塞特公司 Pd—1/pd—l1抑制劑之結晶形式
EP4240491A1 (fr) 2020-11-06 2023-09-13 Novartis AG Molécules de liaison à cd19 et utilisations associées
WO2022099018A1 (fr) 2020-11-06 2022-05-12 Incyte Corporation Procédé de préparation d'un inhibiteur de pd-1/pd-l1
CA3200974A1 (fr) 2020-11-08 2022-05-12 Seagen Inc. Polytherapie
US20230405059A1 (en) 2020-11-10 2023-12-21 Immodulon Therapeutics Limited A mycobacterium for use in cancer therapy
KR20230107260A (ko) 2020-11-12 2023-07-14 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) Sars-cov-2 스파이크 단백질의 수용체-결합 도메인에 접합되거나 융합된 항체, 및 백신 목적을 위한 이의 용도
US20230051406A1 (en) 2020-11-13 2023-02-16 Catamaran Bio, Inc. Genetically modified natural killer cells and methods of use thereof
WO2022101463A1 (fr) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Utilisation des derniers résidus de l'extrémité c-terminale m31/41 de l'ectodomaine zikv m pour déclencher la mort cellulaire apoptotique
JP2023551906A (ja) 2020-12-02 2023-12-13 ジェネンテック, インコーポレイテッド ネオアジュバントおよびアジュバント尿路上皮癌腫療法のための方法および組成物
EP4259149A1 (fr) 2020-12-08 2023-10-18 Infinity Pharmaceuticals, Inc. Éganélisib destiné à être utilisé dans le traitement d'un cancer pd-l1 négatif
TW202237119A (zh) 2020-12-10 2022-10-01 美商住友製藥腫瘤公司 Alk﹘5抑制劑和彼之用途
WO2022135667A1 (fr) 2020-12-21 2022-06-30 BioNTech SE Arn thérapeutique pour le traitement du cancer
WO2022135666A1 (fr) 2020-12-21 2022-06-30 BioNTech SE Programme de traitement faisant intervenir des protéines cytokines
TW202245808A (zh) 2020-12-21 2022-12-01 德商拜恩迪克公司 用於治療癌症之治療性rna
JP2024502005A (ja) 2020-12-29 2024-01-17 インサイト・コーポレイション A2a/a2b阻害剤、pd-1/pd-l1阻害剤、及び抗cd73抗体を含む併用療法
EP4281116A1 (fr) 2021-01-19 2023-11-29 William Marsh Rice University Administration de polypeptides spécifique des os
WO2022162569A1 (fr) 2021-01-29 2022-08-04 Novartis Ag Régimes posologiques d'anticorps anti-cd73 et anti-entpd2 et leurs utilisations
CN116848106A (zh) 2021-02-03 2023-10-03 基因泰克公司 作为cbl-b抑制剂的酰胺
AR124800A1 (es) 2021-02-03 2023-05-03 Genentech Inc Lactamas como inhibidores cbl-b
EP4292596A1 (fr) 2021-02-10 2023-12-20 Curon Biopharmaceutical (Shanghai) Co., Limited Méthode et combinaison pour le traitement de tumeurs
CA3212345A1 (fr) 2021-03-02 2022-09-09 Glaxosmithkline Intellectual Property Development Limited Pyridines substituees utiles en tant qu'inhibiteurs de la dnmt1
EP4305067A1 (fr) 2021-03-09 2024-01-17 Xencor, Inc. Anticorps hétérodimériques se liant à cd3 et à cldn6
WO2022192586A1 (fr) 2021-03-10 2022-09-15 Xencor, Inc. Anticorps hétérodimères qui se lient au cd3 et au gpc3
CN117321418A (zh) 2021-03-18 2023-12-29 诺华股份有限公司 癌症生物标志物及其使用方法
CA3212571A1 (fr) 2021-03-19 2022-09-22 Trained Therapeutix Discovery, Inc. Composes pour reguler l'immunite entrainee, et leurs procedes d'utilisation
TW202304506A (zh) 2021-03-25 2023-02-01 日商安斯泰來製藥公司 涉及抗claudin 18.2抗體的組合治療以治療癌症
EP4314060A1 (fr) 2021-03-31 2024-02-07 GlaxoSmithKline Intellectual Property Development Limited Protéines de liaison à l'antigène et leurs combinaisons
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
AU2022254104A1 (en) 2021-04-08 2023-10-26 Nurix Therapeutics, Inc. Combination therapies with cbl-b inhibitor compounds
KR20240004462A (ko) 2021-04-08 2024-01-11 마렝고 테라퓨틱스, 인크. Tcr에 결합하는 다기능성 분자 및 이의 용도
WO2022216898A1 (fr) 2021-04-09 2022-10-13 Genentech, Inc. Polythérapie comprenant un inhibiteur de raf et un inhibiteur de l'axe pd-1
WO2022217026A1 (fr) 2021-04-09 2022-10-13 Seagen Inc. Méthodes de traitement du cancer à l'aide d'anticorps anti-tigit
US20220324986A1 (en) 2021-04-12 2022-10-13 Incyte Corporation Combination therapy comprising an fgfr inhibitor and a nectin-4 targeting agent
TW202309022A (zh) 2021-04-13 2023-03-01 美商努法倫特公司 用於治療具egfr突變之癌症之胺基取代雜環
AU2022258829A1 (en) 2021-04-16 2023-10-26 Novartis Ag Antibody drug conjugates and methods for making thereof
WO2022226100A1 (fr) 2021-04-20 2022-10-27 Seagen Inc. Modulation de la cytotoxicité cellulaire dépendante des anticorps
JP2024517535A (ja) 2021-04-30 2024-04-23 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 抗cd20/抗cd3二重特異性抗体と抗cd79b抗体薬物コンジュゲートを用いた併用治療の投与
WO2022227015A1 (fr) 2021-04-30 2022-11-03 Merck Sharp & Dohme Corp. Inhibiteurs d'il4i1 et méthodes d'utilisation
JP2024516230A (ja) 2021-04-30 2024-04-12 ジェネンテック, インコーポレイテッド がんのための治療及び診断方法並びに組成物
WO2022236134A1 (fr) 2021-05-07 2022-11-10 Surface Oncology, Inc. Anticorps anti-il-27 et leurs utilisations
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
WO2022251359A1 (fr) 2021-05-26 2022-12-01 Theravance Biopharma R&D Ip, Llc Inhibiteurs bicycliques de l'alk5 et procédés d'utilisation
TW202307210A (zh) 2021-06-01 2023-02-16 瑞士商諾華公司 Cd19和cd22嵌合抗原受體及其用途
WO2022261018A1 (fr) 2021-06-07 2022-12-15 Providence Health & Services - Oregon Cxcr5, pd-1 et icos exprimant des lymphocytes t cd4 réactifs aux tumeurs et leur utilisation
CA3220155A1 (fr) 2021-06-09 2022-12-15 Incyte Corporation Heterocycles tricycliques utiles en tant qu'inhibiteurs de fgfr
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
KR20240028452A (ko) 2021-07-02 2024-03-05 제넨테크, 인크. 암을 치료하기 위한 방법 및 조성물
WO2023280790A1 (fr) 2021-07-05 2023-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Signatures génétiques pour prédire la durée de survie chez les patients souffrant d'un carcinome des cellules rénales
IL309642A (en) 2021-07-07 2024-02-01 Incyte Corp Tricyclic compounds as inhibitors of Kras
AU2022312698A1 (en) 2021-07-13 2024-01-25 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
WO2023287896A1 (fr) 2021-07-14 2023-01-19 Incyte Corporation Composés tricycliques utiles en tant qu'inhibiteurs de kras
AU2021457845A1 (en) 2021-07-27 2024-02-22 Immodulon Therapeutics Limited A mycobacterium for use in cancer therapy
CN117715936A (zh) 2021-07-28 2024-03-15 豪夫迈·罗氏有限公司 用于治疗癌症的方法和组合物
WO2023010094A2 (fr) 2021-07-28 2023-02-02 Genentech, Inc. Méthodes et compositions pour le traitement du cancer
WO2023010080A1 (fr) 2021-07-30 2023-02-02 Seagen Inc. Traitement contre le cancer
WO2023012147A1 (fr) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Anticorps bispécifiques et procédés d'utilisation
WO2023014922A1 (fr) 2021-08-04 2023-02-09 The Regents Of The University Of Colorado, A Body Corporate Cellules t de récepteur d'antigène chimérique activant le lat et leurs méthodes d'utilisation
US20230174555A1 (en) 2021-08-31 2023-06-08 Incyte Corporation Naphthyridine compounds as inhibitors of kras
TW202328090A (zh) 2021-09-08 2023-07-16 美商雷度納製藥公司 Papd5及/或papd7抑制劑
US20230151005A1 (en) 2021-09-21 2023-05-18 Incyte Corporation Hetero-tricyclic compounds as inhibitors of kras
WO2023051926A1 (fr) 2021-09-30 2023-04-06 BioNTech SE Traitement impliquant un arn non immunogène pour vaccination antigénique et antagonistes liant l'axe pd-1
TW202321308A (zh) 2021-09-30 2023-06-01 美商建南德克公司 使用抗tigit抗體、抗cd38抗體及pd—1軸結合拮抗劑治療血液癌症的方法
CA3234375A1 (fr) 2021-10-01 2023-04-06 Incyte Corporation Inhibiteurs de kras tels que la pyrazoloquinoline
CA3234457A1 (fr) 2021-10-05 2023-04-13 Cytovia Therapeutics, Llc Cellules tueuses naturelles et leurs methodes d'utilisation
WO2023057534A1 (fr) 2021-10-06 2023-04-13 Genmab A/S Agents de liaison multispécifiques dirigés contre pd-l1 et cd137 en combinaison
TW202333802A (zh) 2021-10-11 2023-09-01 德商拜恩迪克公司 用於肺癌之治療性rna(二)
CA3235146A1 (fr) 2021-10-14 2023-04-20 Incyte Corporation Composes de quinoleine utiles en tant qu'inhibiteurs de kras
TW202330612A (zh) 2021-10-20 2023-08-01 日商武田藥品工業股份有限公司 靶向bcma之組合物及其使用方法
WO2023076880A1 (fr) 2021-10-25 2023-05-04 Board Of Regents, The University Of Texas System Thérapie ciblant le foxo1 pour le traitement du cancer
WO2023079430A1 (fr) 2021-11-02 2023-05-11 Pfizer Inc. Méthodes de traitement de myopathies mitochondriales à l'aide d'anticorps anti-gdf15
WO2023080900A1 (fr) 2021-11-05 2023-05-11 Genentech, Inc. Procédés et compositions pour classer et traiter le cancer rénal
WO2023083439A1 (fr) 2021-11-09 2023-05-19 BioNTech SE Agoniste de tlr7 et combinaisons pour le traitement du cancer
AU2022384793A1 (en) 2021-11-12 2024-04-11 Advanced Accelerator Applications Combination therapy for treating lung cancer
WO2023088968A1 (fr) 2021-11-17 2023-05-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Vaccins universels contre les sarbecovirus
WO2023091746A1 (fr) 2021-11-22 2023-05-25 Incyte Corporation Polythérapie comprenant un inhibiteur de fgfr et un inhibiteur de kras
TW202332429A (zh) 2021-11-24 2023-08-16 美商建南德克公司 治療性化合物及其使用方法
WO2023097194A2 (fr) 2021-11-24 2023-06-01 Genentech, Inc. Composés thérapeutiques et méthodes d'utilisation
WO2023102184A1 (fr) 2021-12-03 2023-06-08 Incyte Corporation Composés aminés bicycliques utilisés comme inhibiteurs de cdk12
WO2023107705A1 (fr) 2021-12-10 2023-06-15 Incyte Corporation Amines bicycliques utilisées comme inhibiteurs de cdk12
WO2023111203A1 (fr) 2021-12-16 2023-06-22 Onxeo Nouvelles molécules d'acide nucléique conjuguées et leurs utilisations
US20230192722A1 (en) 2021-12-22 2023-06-22 Incyte Corporation Salts and solid forms of an fgfr inhibitor and processes of preparing thereof
WO2023129438A1 (fr) 2021-12-28 2023-07-06 Wisconsin Alumni Research Foundation Compositions d'hydrogel destinées à être utilisées dans le cadre de la déplétion de macrophages associés à une tumeur
TW202342474A (zh) 2022-02-14 2023-11-01 美商基利科學股份有限公司 抗病毒吡唑并吡啶酮化合物
WO2023154799A1 (fr) 2022-02-14 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Immunothérapie combinée pour traitement du cancer
WO2023172921A1 (fr) 2022-03-07 2023-09-14 Incyte Corporation Formes solides, sels et processus de préparation d'un inhibiteur de cdk2
WO2023191816A1 (fr) 2022-04-01 2023-10-05 Genentech, Inc. Dosage pour traitement avec des anticorps bispécifiques anti-fcrh5/anti-cd3
WO2023211972A1 (fr) 2022-04-28 2023-11-02 Medical University Of South Carolina Lymphocytes t régulateurs modifiés par un récepteur antigénique chimérique pour le traitement du cancer
WO2023214325A1 (fr) 2022-05-05 2023-11-09 Novartis Ag Dérivés de pyrazolopyrimidine et leurs utilisations en tant qu'inhibiteurs de tet2
WO2023219613A1 (fr) 2022-05-11 2023-11-16 Genentech, Inc. Dosage pour le traitement avec des anticorps bispécifiques anti-fcrh5/anti-cd3
WO2023218046A1 (fr) 2022-05-12 2023-11-16 Genmab A/S Agents de liaison capables de se lier à cd27 en polythérapie
WO2023230541A1 (fr) 2022-05-27 2023-11-30 Viiv Healthcare Company Dérivés de pipérazine utiles dans le traitement du vih
WO2023240058A2 (fr) 2022-06-07 2023-12-14 Genentech, Inc. Méthodes pronostiques et thérapeutiques pour le cancer
TW202402279A (zh) 2022-06-08 2024-01-16 美商英塞特公司 作為dgk抑制劑之三環三唑并化合物
WO2023250430A1 (fr) 2022-06-22 2023-12-28 Incyte Corporation Inhibiteurs de cdk12 d'amine bicyclique
WO2023250400A1 (fr) 2022-06-22 2023-12-28 Juno Therapeutics, Inc. Méthodes de traitement pour thérapie de deuxième ligne par cellules car-t ciblées par cd19
US20240101557A1 (en) 2022-07-11 2024-03-28 Incyte Corporation Fused tricyclic compounds as inhibitors of kras g12v mutants
WO2024015897A1 (fr) 2022-07-13 2024-01-18 Genentech, Inc. Dosage pour traitement avec anticorps bispécifiques anti-fcrh5/anti-cd3
WO2024020432A1 (fr) 2022-07-19 2024-01-25 Genentech, Inc. Dosage pour traitement avec des anticorps bispécifiques anti-fcrh5/anti-cd3
WO2024028794A1 (fr) 2022-08-02 2024-02-08 Temple Therapeutics BV Méthodes de traitement de troubles de l'endomètre et de l'hyperprolifération ovarienne
US20240041929A1 (en) 2022-08-05 2024-02-08 Juno Therapeutics, Inc. Chimeric antigen receptors specific for gprc5d and bcma
WO2024049949A1 (fr) 2022-09-01 2024-03-07 Genentech, Inc. Méthodes thérapeutiques et diagnostiques pour cancer de la vessie
WO2024052356A1 (fr) 2022-09-06 2024-03-14 Institut National de la Santé et de la Recherche Médicale Inhibiteurs de la voie métabolique de céramide pour surmonter la résistance à l'immunothérapie dans le cancer
WO2024077166A1 (fr) 2022-10-05 2024-04-11 Genentech, Inc. Procédés et compositions pour la classification et le traitement du cancer du poumon
WO2024077095A1 (fr) 2022-10-05 2024-04-11 Genentech, Inc. Méthodes et compositions de classification et de traitement du cancer de la vessie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020095024A1 (en) * 2000-06-06 2002-07-18 Mikesell Glen E. B7-related nucleic acids and polypeptides useful for immunomodulation
US20100203056A1 (en) * 2008-12-09 2010-08-12 Genentech, Inc. Anti-pd-l1 antibodies and their use to enhance t-cell function
US8114845B2 (en) * 2008-08-25 2012-02-14 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2539411T3 (es) * 1999-08-23 2015-06-30 Dana-Farber Cancer Institute, Inc. PD-1, receptor para la B7-4 y su utilización
CA2466279A1 (fr) * 2001-11-13 2003-05-22 Dana-Farber Cancer Institute, Inc. Agents modulant l'activite de cellules immunes et procedes d'utilisation associes
GB0519303D0 (en) * 2005-09-21 2005-11-02 Oxford Biomedica Ltd Chemo-immunotherapy method
EP2061504A4 (fr) * 2006-09-20 2010-01-27 Univ Johns Hopkins Thérapie combinatoire contre le cancer et les maladies infectieuses utilisant un vaccin et des anti-b7-h1
US20100285039A1 (en) * 2008-01-03 2010-11-11 The Johns Hopkins University B7-H1 (CD274) Antagonists Induce Apoptosis of Tumor Cells
KR20110074850A (ko) * 2008-08-25 2011-07-04 앰플리뮨, 인크. Pd-1 길항제 및 그의 사용 방법
EP2344540B1 (fr) * 2008-10-02 2017-11-29 Aptevo Research and Development LLC Protéines de liaison multicibles antagonistes de cd86
EP3798237A1 (fr) * 2010-03-05 2021-03-31 The Johns Hopkins University Compositions et procédés pour des anticorps immunomodulateurs et des protéines de fusion ciblés

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020095024A1 (en) * 2000-06-06 2002-07-18 Mikesell Glen E. B7-related nucleic acids and polypeptides useful for immunomodulation
US8114845B2 (en) * 2008-08-25 2012-02-14 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use
US20120114648A1 (en) * 2008-08-25 2012-05-10 Amplimmune, Inc. Compositions of pd-1 antagonists and methods of use
US20120114649A1 (en) * 2008-08-25 2012-05-10 Amplimmune, Inc. Delaware Compositions of pd-1 antagonists and methods of use
US20100203056A1 (en) * 2008-12-09 2010-08-12 Genentech, Inc. Anti-pd-l1 antibodies and their use to enhance t-cell function

Cited By (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370565B2 (en) 2000-04-28 2016-06-21 The Johns Hopkins University Dendritic cell co-stimulatory molecules
US8609089B2 (en) 2008-08-25 2013-12-17 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use
US8709416B2 (en) 2008-08-25 2014-04-29 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use
US20110195068A1 (en) * 2008-08-25 2011-08-11 Solomon Langermann Pd-1 antagonists and methods of use thereof
US9920123B2 (en) 2008-12-09 2018-03-20 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
US10442860B2 (en) 2010-03-05 2019-10-15 The Johns Hopkins University Compositions and methods for targeted immunomodulatory antibodies and fusion proteins
US11274156B2 (en) 2010-03-05 2022-03-15 The Johns Hopkins University Compositions and methods for targeted immunomodulatory antibodies and fusion proteins
US20160340430A1 (en) * 2010-03-05 2016-11-24 The Johns Hopkins University Compositions and methods for targeted immunomodulatory antibodies and fusion proteins
US9850306B2 (en) * 2010-03-05 2017-12-26 The Johns Hopkins University Compositions and methods for targeted immunomodulatory antibodies and fusion proteins
US11572368B2 (en) 2011-04-28 2023-02-07 The General Hospital Corporation Inhibitors of histone deacetylase
US20150163719A1 (en) * 2012-06-29 2015-06-11 Lg Electronics Inc. Method for controlling handover in wireless communication system, and device therefor
US11377423B2 (en) 2012-07-27 2022-07-05 The Broad Institute, Inc. Inhibitors of histone deacetylase
US11226339B2 (en) 2012-12-11 2022-01-18 Albert Einstein College Of Medicine Methods for high throughput receptor:ligand identification
US9657082B2 (en) 2013-01-31 2017-05-23 Thomas Jefferson University PD-L1 and PD-L2-based fusion proteins and uses thereof
US10364279B2 (en) 2013-01-31 2019-07-30 Thomas Jefferson University PD-L1 and PD-L2-based fusion proteins and uses thereof
US11708412B2 (en) 2013-09-26 2023-07-25 Novartis Ag Methods for treating hematologic cancers
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
US11117970B2 (en) 2014-01-23 2021-09-14 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-L1
US10737113B2 (en) 2014-01-23 2020-08-11 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-1
EP3967710A1 (fr) 2014-01-23 2022-03-16 Regeneron Pharmaceuticals, Inc. Anticorps humains dirigés contre pd-1
US9987500B2 (en) 2014-01-23 2018-06-05 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-1
US9938345B2 (en) 2014-01-23 2018-04-10 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-L1
WO2015112800A1 (fr) 2014-01-23 2015-07-30 Regeneron Pharmaceuticals, Inc. Anticorps humains se liant à pd-1
US10752687B2 (en) 2014-01-24 2020-08-25 Novartis Ag Antibody molecules to PD-1 and uses thereof
US11827704B2 (en) 2014-01-24 2023-11-28 Novartis Ag Antibody molecules to PD-1 and uses thereof
US9683048B2 (en) 2014-01-24 2017-06-20 Novartis Ag Antibody molecules to PD-1 and uses thereof
US9815898B2 (en) 2014-01-24 2017-11-14 Novartis Ag Antibody molecules to PD-1 and uses thereof
US11155620B2 (en) 2014-01-31 2021-10-26 Novartis Ag Method of detecting TIM-3 using antibody molecules to TIM-3
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US10981990B2 (en) 2014-01-31 2021-04-20 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US10160806B2 (en) 2014-06-26 2018-12-25 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
US11098119B2 (en) 2014-06-26 2021-08-24 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
US10588938B2 (en) 2015-04-06 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Receptor-based antagonists of the programmed cell death 1 (PD-1) pathway
WO2016164428A1 (fr) * 2015-04-06 2016-10-13 The Board Of Trustees Of The Leland Stanford Junior University Antagonistes de la voie de signalisation de mort cellulaire programmée 1 (pd-1) basés sur des récepteurs
US11400133B2 (en) 2015-04-06 2022-08-02 The Board Of Trustees Of The Leland Stanford Junior University Receptor-based antagonists of the programmed cell death 1 (PD-1) pathway
EP3738610A1 (fr) 2015-04-17 2020-11-18 Bristol-Myers Squibb Company Compositions comprenant une combinaison de ipilimumab et nivolumab
US11319359B2 (en) 2015-04-17 2022-05-03 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities
US10512689B2 (en) 2015-04-17 2019-12-24 Bristol-Myers Squibb Company Compositions comprising a combination of nivolumab and ipilimumab
US11612654B2 (en) 2015-04-17 2023-03-28 Bristol-Myers Squibb Company Combination therapy comprising nivolumab and ipilimumab
US10174113B2 (en) 2015-04-28 2019-01-08 Bristol-Myers Squibb Company Treatment of PD-L1-negative melanoma using an anti-PD-1 antibody and an anti-CTLA-4 antibody
EP3988571A1 (fr) 2015-04-28 2022-04-27 Bristol-Myers Squibb Company Traitement du mélanome pd-l1 négatif à l'aide d'un anticorps anti-pd-1 et d'un anticorps anti-ctla-4
WO2016176503A1 (fr) 2015-04-28 2016-11-03 Bristol-Myers Squibb Company Traitement du mélanome pd-l1 négatif à l'aide d'un anticorps anti-pd-1 et d'un anticorps anti-ctla-4
WO2016176504A1 (fr) 2015-04-28 2016-11-03 Bristol-Myers Squibb Company Traitement du mélanome pd-l1 positif à l'aide d'un anticorps anti-pd-1
WO2016191751A1 (fr) 2015-05-28 2016-12-01 Bristol-Myers Squibb Company Traitement du cancer du poumon pd-l1 positif à l'aide d'un anticorps anti-pd-1
US11078278B2 (en) 2015-05-29 2021-08-03 Bristol-Myers Squibb Company Treatment of renal cell carcinoma
WO2016196389A1 (fr) 2015-05-29 2016-12-08 Bristol-Myers Squibb Company Traitement du néphrocarcinome
US20190183942A1 (en) * 2015-06-01 2019-06-20 The University Of Chicago Treatment of cancer by manipulation of commensal microflora
US20220296656A1 (en) * 2015-06-01 2022-09-22 The University Of Chicago Treatment of cancer by manipulation of commensal microflora
US11072653B2 (en) 2015-06-08 2021-07-27 Macrogenics, Inc. LAG-3-binding molecules and methods of use thereof
US11858991B2 (en) 2015-06-08 2024-01-02 Macrogenics, Inc. LAG-3-binding molecules and methods of use thereof
US11078279B2 (en) 2015-06-12 2021-08-03 Macrogenics, Inc. Combination therapy for the treatment of cancer
US10544224B2 (en) 2015-07-14 2020-01-28 Bristol-Myers Squibb Company Method of treating cancer using immune checkpoint inhibitor
WO2017011666A1 (fr) 2015-07-14 2017-01-19 Bristol-Myers Squibb Company Méthode destinée à traiter le cancer à l'aide d'un inhibiteur des points de contrôle immunitaires
EP3858859A1 (fr) 2015-07-14 2021-08-04 Bristol-Myers Squibb Company Méthode de traitement du cancer à l'aide de contrôle immunitaire ; anticorps qui se lie à une mort programmée-1 receptor (pd-1) ou mort programmée ligand 1 (pd-l1)
US11564986B2 (en) 2015-07-16 2023-01-31 Onkosxcel Therapeutics, Llc Approach for treatment of cancer via immunomodulation by using talabostat
US11623959B2 (en) 2015-07-30 2023-04-11 Macrogenics, Inc. PD-1-binding molecules and methods of use thereof
EP3981792A1 (fr) 2015-07-30 2022-04-13 MacroGenics, Inc. Molécules de liaison pd-1 et leurs procédés d'utilisation
EP3456346A1 (fr) 2015-07-30 2019-03-20 MacroGenics, Inc. Molécules de liaison pd-1 et lag-3 et leurs procédés d'utilisation
US10577422B2 (en) 2015-07-30 2020-03-03 Macrogenics, Inc. PD-1-binding molecules and methods of use thereof
US11904016B2 (en) 2015-07-31 2024-02-20 University Of Florida Research Foundation, Incorporated Hematopoietic stem cells in combinatorial therapy with immune checkpoint inhibitors against cancer
US10660954B2 (en) 2015-07-31 2020-05-26 University Of Florida Research Foundation, Incorporated Hematopoietic stem cells in combinatorial therapy with immune checkpoint inhibitors against cancer
US11174315B2 (en) 2015-10-08 2021-11-16 Macrogenics, Inc. Combination therapy for the treatment of cancer
US11098103B2 (en) 2015-11-02 2021-08-24 Five Prime Therapeutics, Inc. CD80 extracellular domain polypeptides and their use in cancer treatment
US10273281B2 (en) 2015-11-02 2019-04-30 Five Prime Therapeutics, Inc. CD80 extracellular domain polypeptides and their use in cancer treatment
WO2017087870A1 (fr) 2015-11-18 2017-05-26 Bristol-Myers Squibb Company Traitement du cancer du poumon à l'aide d'une combinaison d'un anticorps anti-pd-1 et d'un anticorps anti-ctla-4
US11072657B2 (en) 2015-11-18 2021-07-27 Bristol-Myers Squibb Company Treatment of lung cancer using a combination of an anti-PD-1 antibody and an anti-CTLA-4 antibody
US10954301B2 (en) 2015-12-14 2021-03-23 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
WO2017106061A1 (fr) 2015-12-14 2017-06-22 Macrogenics, Inc. Molécules bispécifiques présentant une immunoréactivité par rapport à pd-1 et à ctla-4 et leurs procédés d'utilisation
US11840571B2 (en) 2015-12-14 2023-12-12 Macrogenics, Inc. Methods of using bispecific molecules having immunoreactivity with PD-1 and CTLA-4
US10668152B2 (en) 2015-12-17 2020-06-02 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
US11965031B2 (en) 2015-12-17 2024-04-23 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
US10392442B2 (en) 2015-12-17 2019-08-27 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
WO2017112943A1 (fr) 2015-12-23 2017-06-29 Modernatx, Inc. Procédés d'utilisation de polynucléotides codant pour un ligand ox40
EP4039699A1 (fr) 2015-12-23 2022-08-10 ModernaTX, Inc. Procédés d'utilisation de polynucléotides codant le ligand ox40
WO2017156152A1 (fr) * 2016-03-08 2017-09-14 Bioxcel Corporation Thérapies d'immunomodulation du cancer
US11209441B2 (en) 2016-04-05 2021-12-28 Bristol-Myers Squibb Company Cytokine profiling analysis
WO2017176925A1 (fr) 2016-04-05 2017-10-12 Bristol-Myers Squibb Company Analyse de profilage de cytokines permettant de prédire un pronostic d'un patient ayant besoin d'un traitement anti-cancéreux
US11078282B2 (en) 2016-04-15 2021-08-03 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11498967B2 (en) 2016-04-15 2022-11-15 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11359022B2 (en) 2016-04-15 2022-06-14 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11479609B2 (en) 2016-04-15 2022-10-25 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US10457725B2 (en) 2016-05-13 2019-10-29 Regeneron Pharmaceuticals, Inc. Methods of treating skin cancer by administering a PD-1 inhibitor
US11505600B2 (en) 2016-05-13 2022-11-22 Regeneron Pharmaceuticals, Inc. Methods of treating skin cancer by administering a PD-1 inhibitor
IL262606B (en) * 2016-05-18 2022-12-01 Albert Einstein College Medicine Inc pd-l1 variant polypeptides, T-cell modulatory multimeric polypeptides, and methods of using them
US11505591B2 (en) 2016-05-18 2022-11-22 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
EP4137509A1 (fr) 2016-05-18 2023-02-22 ModernaTX, Inc. Combinaisons d'arnm codant des polypeptides de modulation immunitaire et leurs utilisations
IL262606B2 (en) * 2016-05-18 2023-04-01 Albert Einstein College Medicine Inc pd-l1 variant polypeptides, T-cell modulatory multimeric polypeptides, and methods of using them
AU2017266905B2 (en) * 2016-05-18 2022-12-15 Albert Einstein College Of Medicine, Inc. Variant PD-L1 polypeptides, T-cell modulatory multimeric polypeptides, and methods of use thereof
WO2017201352A1 (fr) 2016-05-18 2017-11-23 Modernatx, Inc. Polythérapie à base d'arnm pour le traitement du cancer
WO2017201350A1 (fr) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucléotides codant pour l'interleukine 12 (il-12) et leurs utilisations
EP4186518A1 (fr) 2016-05-18 2023-05-31 ModernaTX, Inc. Polynucleotides codant l'interleukine-12 (il12) et leurs utilisations
CN109689096A (zh) * 2016-05-18 2019-04-26 阿尔伯特爱因斯坦医学院公司 变体pd-l1多肽、t细胞调节性多聚体多肽及其使用方法
US11339201B2 (en) 2016-05-18 2022-05-24 Albert Einstein College Of Medicine Variant PD-L1 polypeptides, T-cell modulatory multimeric polypeptides, and methods of use thereof
WO2017201325A1 (fr) 2016-05-18 2017-11-23 Modernatx, Inc. Combinaisons d'arnm codant pour des polypeptides de modulation immunitaire et leurs utilisations
WO2017201131A1 (fr) * 2016-05-18 2017-11-23 Albert Einstein College Of Medicine, Inc. Variants de polypeptides pd-l1, polypeptides multimères modulateurs des lymphocytes t et procédés d'utilisation correspondants
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
US11083790B2 (en) 2016-06-02 2021-08-10 Bristol-Myers Squibb Company Treatment of Hodgkin lymphoma using an anti-PD-1 antibody
US11299543B2 (en) 2016-06-02 2022-04-12 Bristol-Myers Squibb Company Use of an anti-PD-1 antibody in combination with an anti-CD30 antibody in cancer treatment
EP4248990A2 (fr) 2016-06-02 2023-09-27 Bristol-Myers Squibb Company Blocage de pd-1 a l'aide de nivolumab dans les cas de lymphome de hodgkin refractaire
EP4248989A2 (fr) 2016-06-02 2023-09-27 Bristol-Myers Squibb Company Utilisation conjointe d'anticorps anti-pd-1 et anti-cd30 dans le traitement de lymphomes
WO2017210473A1 (fr) 2016-06-02 2017-12-07 Bristol-Myers Squibb Company Utilisation d'un anticorps anti-pd-1 en combinaison avec un anticorps anti-cd30 dans le traitement du lymphome
WO2017210453A1 (fr) 2016-06-02 2017-12-07 Bristol-Myers Squibb Company Blocage de pd-1 avec du nivolumab dans le lymphome de hodgkin réfractaire
US11332529B2 (en) 2016-06-03 2022-05-17 Bristol-Myers Squibb Company Methods of treating colorectal cancer
WO2017210624A1 (fr) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Anticorps anti-pd-1 utilisé dans un procédé de traitement d'une tumeur
WO2017210637A1 (fr) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Utilisation d'anticorps anti-pd-1 dans le traitement de patients atteints d'un cancer colorectal
US11767361B2 (en) 2016-06-03 2023-09-26 Bristol-Myers Squibb Company Method of treating lung cancer
EP3988570A1 (fr) 2016-06-03 2022-04-27 Bristol-Myers Squibb Company Utilisation d'anticorps anti-pd-1 dans le traitement de patients atteints d'un cancer colorectal
US11725041B2 (en) * 2016-08-11 2023-08-15 The Council Of The Queensland Institute Of Medical Research Immune-modulating compounds
WO2018048975A1 (fr) 2016-09-09 2018-03-15 Bristol-Myers Squibb Company Utilisation d'un anticorps anti-pd-1 en combinaison avec un anticorps anti-mésothéline dans le traitement du cancer
WO2018081531A2 (fr) 2016-10-28 2018-05-03 Ariad Pharmaceuticals, Inc. Méthodess d'activation de lymphocytes t humains
WO2018083087A2 (fr) 2016-11-02 2018-05-11 Glaxosmithkline Intellectual Property (No.2) Limited Protéines de liaison
US11505588B2 (en) 2016-12-22 2022-11-22 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11708400B2 (en) 2016-12-22 2023-07-25 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11377478B2 (en) 2016-12-22 2022-07-05 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11530248B2 (en) 2016-12-22 2022-12-20 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11851467B2 (en) 2016-12-22 2023-12-26 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11370821B2 (en) 2016-12-22 2022-06-28 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11401314B2 (en) 2016-12-22 2022-08-02 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US10927158B2 (en) 2016-12-22 2021-02-23 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11739133B2 (en) 2016-12-22 2023-08-29 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11117945B2 (en) 2016-12-22 2021-09-14 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11905320B2 (en) 2016-12-22 2024-02-20 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11167018B2 (en) * 2016-12-23 2021-11-09 Keio University Compositions and methods for the induction of CD8+ T-cells
US11633465B2 (en) 2016-12-23 2023-04-25 Keio University Compositions and methods for the induction of CD8+ T-cells
US11851471B2 (en) 2017-01-09 2023-12-26 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
US11021511B2 (en) 2017-01-27 2021-06-01 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
US11492367B2 (en) 2017-01-27 2022-11-08 Janssen Biotech, Inc. Cyclic dinucleotides as sting agonists
US11479595B2 (en) 2017-03-15 2022-10-25 Cue Biopharma, Inc. Methods for modulating an immune response
US10927161B2 (en) 2017-03-15 2021-02-23 Cue Biopharma, Inc. Methods for modulating an immune response
US11104712B2 (en) 2017-03-15 2021-08-31 Cue Biopharma, Inc. Methods for modulating an immune response
US11958893B2 (en) 2017-03-15 2024-04-16 Cue Biopharma, Inc. Methods for modulating an immune response
US11767355B2 (en) 2017-03-15 2023-09-26 Cue Biopharma, Inc. Methods for modulating an immune response
US11117950B2 (en) 2017-03-16 2021-09-14 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11732022B2 (en) 2017-03-16 2023-08-22 Alpine Immune Sciences, Inc. PD-L2 variant immunomodulatory proteins and uses thereof
US11639375B2 (en) 2017-03-16 2023-05-02 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11096988B2 (en) 2017-03-16 2021-08-24 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11117949B2 (en) 2017-03-16 2021-09-14 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11117948B2 (en) 2017-03-16 2021-09-14 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11230588B2 (en) 2017-03-16 2022-01-25 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
WO2018187057A1 (fr) 2017-04-06 2018-10-11 Regeneron Pharmaceuticals, Inc. Formulation stable d'anticorps
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
EP4249512A2 (fr) 2017-04-06 2023-09-27 Regeneron Pharmaceuticals, Inc. Formulation stable d'anticorps
US11789010B2 (en) 2017-04-28 2023-10-17 Five Prime Therapeutics, Inc. Methods of treatment with CD80 extracellular domain polypeptides
US11607453B2 (en) 2017-05-12 2023-03-21 Harpoon Therapeutics, Inc. Mesothelin binding proteins
WO2018213731A1 (fr) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucléotides codant pour des polypeptides d'interleukine-12 (il12) ancrés et leurs utilisations
WO2018222718A1 (fr) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Traitement de tumeurs positives pour lag-3
EP4306542A2 (fr) 2017-05-30 2024-01-17 Bristol-Myers Squibb Company Traitement de tumeurs positives lag-3
US11807686B2 (en) 2017-05-30 2023-11-07 Bristol-Myers Squibb Company Treatment of LAG-3 positive tumors
US11899017B2 (en) 2017-07-28 2024-02-13 Bristol-Myers Squibb Company Predictive peripheral blood biomarker for checkpoint inhibitors
WO2019023624A1 (fr) 2017-07-28 2019-01-31 Bristol-Myers Squibb Company Biomarqueur sanguin périphérique prédictif pour inhibiteurs de points de contrôle
WO2019046321A1 (fr) 2017-08-28 2019-03-07 Bristol-Myers Squibb Company Antagonistes de tim-3 pour le traitement et le diagnostic de cancers
US11787859B2 (en) 2017-08-28 2023-10-17 Bristol-Myers Squibb Company TIM-3 antagonists for the treatment and diagnosis of cancers
WO2019060888A1 (fr) * 2017-09-25 2019-03-28 New York University Protéines de fusion hétérodimère-fc
US11702461B2 (en) 2018-01-09 2023-07-18 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides comprising reduced-affinity immunomodulatory polypeptides
WO2019140322A1 (fr) 2018-01-12 2019-07-18 KDAc Therapeutics, Inc. Combinaison d'un inhibiteur sélectif de désacétylase d'histone 3 (hdac3) et d'un agent d'immunothérapie pour le traitement du cancer
WO2019136531A1 (fr) * 2018-01-15 2019-07-18 University Of Canberra Molécules protéiques et utilisations associées
CN111936509A (zh) * 2018-01-15 2020-11-13 艾比克斯治疗私人有限公司 蛋白质分子及其用途
JP2021510538A (ja) * 2018-01-15 2021-04-30 エピアクシス セラピューティクス プロプライエタリー リミテッド タンパク質性分子およびその使用
WO2019144126A1 (fr) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoïdes et leurs dérivés pour favoriser l'immunogénicité des cellules tumorales et infectées
US11723934B2 (en) 2018-02-09 2023-08-15 Keio University Compositions and methods for the induction of CD8+ T-cells
US11874276B2 (en) 2018-04-05 2024-01-16 Dana-Farber Cancer Institute, Inc. STING levels as a biomarker for cancer immunotherapy
US11332537B2 (en) 2018-04-17 2022-05-17 Celldex Therapeutics, Inc. Anti-CD27 and anti-PD-L1 antibodies and bispecific constructs
US11459393B2 (en) 2018-04-17 2022-10-04 Celldex Therapeutics, Inc. Anti-CD27 and anti-PD-L1 antibodies and bispecific constructs
US11613525B2 (en) 2018-05-16 2023-03-28 Ctxt Pty Limited Substituted condensed thiophenes as modulators of sting
WO2020023707A1 (fr) 2018-07-26 2020-01-30 Bristol-Myers Squibb Company Polythérapie à base de lag-3 pour le traitement du cancer
US11807692B2 (en) 2018-09-25 2023-11-07 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
WO2020097409A2 (fr) 2018-11-08 2020-05-14 Modernatx, Inc. Utilisation d'arnm codant pour ox40l pour traiter le cancer chez des patients humains
WO2020232019A1 (fr) 2019-05-13 2020-11-19 Regeneron Pharmaceuticals, Inc. Combinaison d'inhibiteurs pd-1 et d'inhibiteurs lag-3 pour une efficacité améliorée dans le traitement du cancer
WO2020236253A1 (fr) 2019-05-20 2020-11-26 Massachusetts Institute Of Technology Promédicaments d'ester boronique et leurs utilisations
WO2020239558A1 (fr) 2019-05-24 2020-12-03 Pfizer Inc. Polythérapies faisant appel à des inhibiteurs de cdk
WO2020255009A2 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1
WO2020255011A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1 ou anti-pd-l1
WO2021032861A1 (fr) 2019-08-22 2021-02-25 Amazentis Sa Combinaison d'une urolithine et d'un traitement d'immunothérapie
CN114585386A (zh) * 2019-08-22 2022-06-03 阿马曾提斯公司 尿石素和免疫疗法治疗的组合
GB201912107D0 (en) 2019-08-22 2019-10-09 Amazentis Sa Combination
WO2021041532A1 (fr) 2019-08-26 2021-03-04 Dana-Farber Cancer Institute, Inc. Utilisation d'héparine pour favoriser la signalisation de l'interféron de type 1
WO2021055994A1 (fr) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Profilage spatial quantitatif pour une thérapie par antagoniste de lag-3
WO2021092380A1 (fr) 2019-11-08 2021-05-14 Bristol-Myers Squibb Company Thérapie par antagoniste de lag-3 contre le mélanome
WO2021097256A1 (fr) 2019-11-14 2021-05-20 Cohbar, Inc. Peptides antagonistes de cxcr4
WO2021155042A1 (fr) 2020-01-28 2021-08-05 Genentech, Inc. Protéines de fusion hétérodimères fc-il15/il15r alpha pour le traitement du cancer
US11299551B2 (en) 2020-02-26 2022-04-12 Biograph 55, Inc. Composite binding molecules targeting immunosuppressive B cells
US11878062B2 (en) 2020-05-12 2024-01-23 Cue Biopharma, Inc. Multimeric T-cell modulatory polypeptides and methods of use thereof
WO2021243207A1 (fr) 2020-05-28 2021-12-02 Modernatx, Inc. Utilisation d'arnm codant pour ox40l, il-23 et il-36gamma pour le traitement du cancer
WO2022046833A1 (fr) 2020-08-26 2022-03-03 Regeneron Pharmaceuticals, Inc. Méthodes de traitement du cancer par administration d'un inhibiteur de pd-1
WO2022047189A1 (fr) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Thérapie par antagoniste de lag-3 pour le carcinome hépatocellulaire
WO2022087402A1 (fr) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Thérapie par antagoniste de lag-3 pour le cancer du poumon
WO2022118197A1 (fr) 2020-12-02 2022-06-09 Pfizer Inc. Délai de résolution d'événements indésirables liés à l'axitinib
US11976125B2 (en) 2021-01-15 2024-05-07 Harpoon Therapeutics, Inc. B cell maturation antigen binding proteins
WO2022156727A1 (fr) 2021-01-21 2022-07-28 浙江养生堂天然药物研究所有限公司 Composition et procédé de traitement de tumeurs
WO2022204672A1 (fr) 2021-03-23 2022-09-29 Regeneron Pharmaceuticals, Inc. Méthodes de traitement du cancer chez des patients immunodéprimés ou immunovulnérables par administration d'un inhibiteur de pd-1
WO2022212400A1 (fr) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Méthodes de dosage et de traitement au moyen d'une combinaison d'une thérapie par inhibiteur de point de contrôle et d'une thérapie par lymphocytes car t
WO2023015198A1 (fr) 2021-08-04 2023-02-09 Genentech, Inc. Protéines de fusion hétérodimères avec fc et il15/il15r alpha servant à faire proliférer des lymphocytes nk dans le traitement de tumeurs solides
WO2023057882A1 (fr) 2021-10-05 2023-04-13 Pfizer Inc. Combinaisons de composés d'azalactam avec un antagoniste de liaison à l'axe pd-1 pour le traitement du cancer
WO2023077090A1 (fr) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Thérapie par antagoniste de lag-3 pour cancer hématologique
WO2023079428A1 (fr) 2021-11-03 2023-05-11 Pfizer Inc. Polythérapies utilisant un agoniste de tlr7/8
WO2023140950A1 (fr) * 2022-01-18 2023-07-27 Fbd Biologics Limited Complexe de protéine ciblant cd47/pd-l1 et ses procédés d'utilisation
WO2023147371A1 (fr) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Polythérapie pour carcinome hépatocellulaire
WO2023159102A1 (fr) 2022-02-17 2023-08-24 Regeneron Pharmaceuticals, Inc. Association d'inhibiteurs de point de contrôle et de virus oncolytique pour le traitement du cancer
WO2023164266A3 (fr) * 2022-02-28 2023-10-12 Sagittarius Bio, Inc. Inhibiteurs à double point de contrôle et leurs procédés d'utilisation
WO2023196988A1 (fr) 2022-04-07 2023-10-12 Modernatx, Inc. Procédés d'utilisation d'arnm codant pour il-12
WO2024015803A2 (fr) 2022-07-11 2024-01-18 Autonomous Therapeutics, Inc. Arn crypté et ses procédés d'utilisation
WO2024023740A1 (fr) 2022-07-27 2024-02-01 Astrazeneca Ab Combinaisons de virus recombinant exprimant l'interleukine-12 avec des inhibiteurs de pd-1/pdl1

Also Published As

Publication number Publication date
EP2504028A4 (fr) 2014-04-09
JP2013512251A (ja) 2013-04-11
EP2504028A2 (fr) 2012-10-03
WO2011066342A2 (fr) 2011-06-03
WO2011066342A3 (fr) 2011-07-21

Similar Documents

Publication Publication Date Title
US20130017199A1 (en) Simultaneous inhibition of pd-l1/pd-l2
US20140227262A1 (en) PD-1 Antagonists and Methods for Treating Infectious Disease
EP2514762B1 (fr) Variants de B7-DC
DK2350129T3 (en) PREPARATIONS WITH PD-1 ANTAGONISTS AND PROCEDURES FOR USE THEREOF
KR102375327B1 (ko) 관문 분자를 표적으로 하는 dna 단클론성 항체
EP2726503B1 (fr) Polypeptides et leurs utilisations pour traiter les troubles auto-immuns et l'infection
CA3032826A1 (fr) Compositions et procedes de modulation de la transduction du signal lair
AU2013227994A1 (en) Compositions of PD-1 antagonists and methods of use

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMPLIMMUNE, INC., MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LANGERMANN, SOLOMON;REEL/FRAME:030907/0898

Effective date: 20110412

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION