US20030108793A1 - Cathode compositions for lithium ion batteries - Google Patents
Cathode compositions for lithium ion batteries Download PDFInfo
- Publication number
- US20030108793A1 US20030108793A1 US10/210,919 US21091902A US2003108793A1 US 20030108793 A1 US20030108793 A1 US 20030108793A1 US 21091902 A US21091902 A US 21091902A US 2003108793 A1 US2003108793 A1 US 2003108793A1
- Authority
- US
- United States
- Prior art keywords
- lithium
- ion battery
- crystal structure
- composition
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 75
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 39
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000013078 crystal Substances 0.000 claims abstract description 32
- 239000011651 chromium Substances 0.000 claims abstract description 25
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 14
- 239000011029 spinel Substances 0.000 claims abstract description 14
- 230000009466 transformation Effects 0.000 claims abstract description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 60
- 230000003647 oxidation Effects 0.000 claims description 48
- 238000007254 oxidation reaction Methods 0.000 claims description 48
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052744 lithium Inorganic materials 0.000 abstract description 37
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 32
- 239000011572 manganese Substances 0.000 description 117
- 229910052760 oxygen Inorganic materials 0.000 description 30
- 239000001301 oxygen Substances 0.000 description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 29
- 239000000463 material Substances 0.000 description 19
- 238000000155 in situ X-ray diffraction Methods 0.000 description 12
- 230000001351 cycling effect Effects 0.000 description 11
- 229910052723 transition metal Inorganic materials 0.000 description 11
- 150000003624 transition metals Chemical class 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 230000002427 irreversible effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 230000002441 reversible effect Effects 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 230000002596 correlated effect Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 238000009830 intercalation Methods 0.000 description 5
- 230000002687 intercalation Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229910016771 Ni0.5Mn0.5 Inorganic materials 0.000 description 4
- 230000002547 anomalous effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- 238000011066 ex-situ storage Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910008039 Li-M-O Inorganic materials 0.000 description 3
- 229910007461 Li1/3M2/3 Inorganic materials 0.000 description 3
- 238000003991 Rietveld refinement Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000006479 redox reaction Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910007499 Li1/3Mn2/3 Inorganic materials 0.000 description 2
- 229910002983 Li2MnO3 Inorganic materials 0.000 description 2
- 229910032387 LiCoO2 Inorganic materials 0.000 description 2
- 229910013191 LiMO2 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 229910002001 transition metal nitrate Inorganic materials 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920006370 Kynar Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910004653 Li(OH).H2O Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910013724 M(OH)2 Inorganic materials 0.000 description 1
- 229910018380 Mn(NO3)2.6H2 O Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000010902 jet-milling Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910006525 α-NaFeO2 Inorganic materials 0.000 description 1
- 229910006596 α−NaFeO2 Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Complex oxides containing manganese and at least one other metal element
- C01G45/1221—Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Complex oxides containing manganese and at least one other metal element
- C01G45/1221—Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof
- C01G45/1228—Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof of the type (MnO2)-, e.g. LiMnO2 or Li(MxMn1-x)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Complex oxides containing cobalt and at least one other metal element
- C01G51/42—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
- C01G51/44—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese
- C01G51/50—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese of the type (MnO2)n-, e.g. Li(CoxMn1-x)O2 or Li(MyCoxMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/32—Three-dimensional structures spinel-type (AB2O4)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This invention relates to compositions useful as cathodes for lithium ion batteries.
- Lithium-ion batteries typically include an anode, an electrolyte, and a cathode that contains lithium in the form of a lithium-transition metal oxide.
- lithium-transition metal oxides that have been used include lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide. None of these materials, however, exhibits an optimal combination of high initial capacity, high thermal stability, and good capacity retention after repeated charge-discharge cycling.
- the invention features a cathode composition for a lithium ion battery that contains lithium having the formula (a) Li y [M 1 (1 ⁇ b) Mn b ]O 2 or (b) Li y [M 1 (1 ⁇ b) Mn b ]O 15+c where 0 ⁇ y ⁇ 1, 0 ⁇ b ⁇ 1 and 0 ⁇ c ⁇ 0.5 and M 1 represents one or more metal elements, with the proviso that for (a) M 1 is a metal element other than chromium.
- the composition is in the form of a single phase having an O3 crystal structure that does not undergo a phase transformation to a spinel crystal structure when incorporated in a lithium-ion battery and cycled for 100 full charge-discharge cycles at 30° C. and a final capacity of 130 mAh/g using a discharge current of 30 mA/g.
- the invention also features lithium-ion batteries incorporating these cathode compositions in combination with an anode and an electrolyte.
- the resulting cathode composition has the formula Li y [Li (1 ⁇ 2x)/3 M 2 x Mn (2 ⁇ x)/3 ]O 15+x .
- An example of M 2 is nickel.
- M 1 (1 ⁇ b) , M 2 and x are defined as in the first embodiment, with the proviso that (1 ⁇ 2x) ⁇ y ⁇ 1 and M 2 is a metal element other than chromium.
- the resulting cathode composition has the formula Li y [Li (1 ⁇ 2x)/3 M 2 x Mn (2 ⁇ x)/3 ]O 2 .
- An example of M 2 is nickel.
- M 1 (1 ⁇ b) , M 2 and x are defined as in the first embodiment, with the proviso that 0 ⁇ y ⁇ (1 ⁇ 2x), 0 ⁇ a ⁇ (1 ⁇ y) and M 2 is a metal element other than chromium.
- the resulting cathode has the formula Li y+a [Li (1 ⁇ 2x)/3 M 2 x Mn (2 ⁇ x)/3 ]O 1.5+x+y/2 .
- An example of M 2 is nickel.
- a fourth embodiment of (b); b, M 1 (1 ⁇ b) , M 2 and x are defined as in the first embodiment, with the proviso that 0 ⁇ y ⁇ (1 ⁇ 2x).
- the resulting cathode composition has the formula Li y [Li (1 ⁇ 2x)/3 M 2 x Mn (2 ⁇ x)/3 ]O 1.5+x+y/2 .
- An example of M 2 is nickel.
- the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15+x/2 .
- M 2 are Co or Fe and combinations therof.
- the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15+x/2 .
- M 2 are Co or Fe and combinations therof.
- M 1 (1 ⁇ b) , M 2 and x are defined as in the fifth embodiment with the proviso that (1 ⁇ x) ⁇ y ⁇ 1 and M 2 is a metal element other than chromium.
- the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 2 .
- M 2 are Co or Fe and combinations thereof.
- M 1 (1 ⁇ b) , M 2 and x are defined as in the fifth embodiment, with the proviso that 0 ⁇ y ⁇ (1 ⁇ x).
- the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15+x/2+y2 .
- M 2 are Co or Fe and combinations thereof.
- the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15+15 x.
- M 2 is chromium.
- the resulting cathode composition has the formula Li y+a [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 1.5+1.5x+y/2 .
- An example of M 2 is chromium.
- the resulting cathode composition has the formula Li y [Li (1 ⁇ x)/3 M 2 x Mn (2 ⁇ 2x)/3 ]O 15x+15+y/2 .
- M 2 is chromium.
- the invention provides cathode compositions, and lithium-ion batteries incorporating these compositions, that exhibit high initial capacities and good capacity retention after repeated charge-discharge cycling.
- the cathode compositions do not evolve substantial amounts of heat during elevated temperature abuse, thereby improving battery safety.
- the cycling was between 2.0 and 4.8 V at 5 mA/g.
- the cycling was between 3.0 and 4.4 V at 10 mA/g.
- FIG. 3 is a plot of specific capacity versus x in Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 over various voltage ranges.
- the solid and dashed lines as indicated give expected capacities.
- the circles give the experimental capacity to 4.45 V, the squares give the experimental capacity of the anomalous plateau and the triangles give the experimental first charge capacity.
- FIG 4 b shows the diffraction pattern of the starting powder.
- the in-situ scans are synchronized with the voltage-time curve in FIG. 4 c . For example, the 8th x-ray scan took place at the top of the first charge as indicated.
- FIG. 5 a is the voltage-time curve
- FIG. 5 b are the lattice constants a and c
- FIG. 5 c is the unit cell volume correlated to the voltage-time curve. The cell was cycled between 3.0 and 4.4 V
- FIGS. 6 a - e are plots of differential capacity versus voltage for Li/Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 cells with x as indicated. The cells were charged and discharged between 3.0 and 4.4 V using a specific current of 10 mA/g.
- FIG. 7 a is the voltage-time curve
- FIG. 7 b are the lattice constants a and c
- FIG. 7 c is the unit cell volume correlated to the voltage-time curve. The cell was cycled between 2.0 and 4.8 V.
- FIG. 8 b shows the diffraction pattern of the starting powder.
- the in-situ scans are synchronized with the voltage-time curve in FIG. 8 c . For example, the 16th x-ray scan took place at the top of the first charge as indicated.
- FIG. 9 a is the voltage-time curve;
- FIG. 9 b are the lattice constants a and c; and
- FIG. 9 c is the unit cell volume correlated to the voltage-time curve. The cell was cycled between 2.0 and 4.8 V.
- FIG. 10 is a Gibbs triangle for the Li—M—O ternary system with M representing Ni x Mn (2/3 ⁇ x/3) . The compositions of relevant phases are indicated.
- FIG. 11 is an expanded portion of the Li—M—O Gibbs triangle of FIG. 10 showing the region of interest for the charge and discharge of Li/Li[Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 cells.
- FIGS. 12 a - e are plots of differential capacity versus voltage for Li/Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 cells with x as indicated. The cells were charged and discharged between 2.0 and 4.8 V using a specific current of 5 mA/g.
- FIG. 13 is a plot of the portion of the discharge capacity of Li/Li[Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 cells (first charged to 4.8 V) due to the reduction of Mn.
- the points are the experimental results, the solid line is the prediction if the capacity is governed by the sites available in the Li layer (after the Ni 4+ is reduced to Ni 2+ ) and the dashed line is the capacity available if all Mn 4+ in the compound is reduced to Mn 3+ .
- the estimated stoichiometry of the sample at this potential based on oxidation state arguments (see table 1) is [Ni 033 Li 0113 Mn 0556 ]O 1833.
- the calculated pattern is shown as the solid line.
- FIGS. 14 c and 14 d show the variation of the goodness of fit (G.O.F.) and the Bragg-R factor versus the occupation of the oxygen sites.
- FIGS. 16 a - g are plots of capacity vs. cycle number for the materials of FIGS. 15 a - g under the same cycling conditions.
- Cathode compositions have the formulae set forth in the Summary of the Invention, above.
- the formulae themselves, as well as the choice of particular metal elements, and combinations thereof, for M 1 and M 2 reflect certain criteria that the inventors have discovered are useful for maximizing cathode performance.
- the cathode compositions preferably adopt an O3 crystal structure featuring layers generally arranged in the sequence lithium-oxygen-metal-oxygen-lithium. This crystal structure is retained when the cathode composition is incorporated in a lithium-ion battery and cycled for 100 full charge-discharge cycles at 30° C.
- the cathode compositions can be synthesized by electrochemically cycling cathode material described in Dahn, et.al.
- Heating is preferably conducted in air at temperatures of at least about 600° C., more preferably at least 800° C. In general, higher temperatures are preferred because they lead to materials with increased crystallinity.
- the ability to conduct the heating process in air is desirable because it obviates the need and associated expense of maintaining an inert atmosphere. Accordingly, the particular metal elements are selected such that they exhibit appropriate oxidation states in air at the desired synthesis temperature. Conversely, the synthesis temperature may be adjusted so that a particular metal element exists in a desired oxidation state in air at that temperature.
- cathode composition examples include Ni, Co, Fe, Cu, Li, Zn, V, and combinations thereof.
- Particularly preferred cathode compositions are those having the following formulae (where weighted average oxidation state of all M 2 is 2 when in a fully uncharged state and 4 when in a fully charged state):
- the cathode compositions can be combined with an anode and an electrolyte to form a lithium-ion battery.
- suitable anodes include lithium metal, graphite, and lithium alloy compositions, e.g., of the type described in Turner, U.S. Pat. No. 6,203,944 entitled “Electrode for a Lithium Battery” and Turner, WO 00/03444 entitled “Electrode Material and Compositions.”
- the electrolyte can be liquid or solid.
- solid electrolytes include polymeric electrolytes such as polyethylene oxide, polytetrafluoroethylene, fluorine-containing copolymers, and combinations thereof.
- liquid electrolytes examples include ethylene carbonate, diethyl carbonate, propylene carbonate, and combinations thereof.
- the electrolyte is provided with a lithium electrolyte salt.
- suitable salts include LiPF 6 , LiBF 4 , and LiClO 4 .
- Li/Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 is derived from Li 2 MnO 3 or Li[Li 1/3 Mn 2/3 ]O 2 by substitution of Li + and Mn 4+ by Ni 2+ while maintaining all the remaining Mn atoms in the 4+ oxidation state.
- Conventional wisdom suggests that lithium can be removed from these materials only until both the Ni and Mn oxidation states reach 4 + giving a charge capacity of 2y.
- Li/Li[Ni x Li (1/3 ⁇ 2/x3) Mn (2/3 ⁇ x/3) ]O 2 cells give smooth reversible voltage profiles reaching about 4.45 V when 2x Li atoms per formula unit are removed, as expected.
- the cells are charged to higher voltages, surprisingly they exhibit a long plateau of length approximately equal to 1 ⁇ 2x in the range between 4.5 and 4.7 V. Subsequent to this plateau the materials can reversibly cycle over 225 mAh/g (almost one Li atom per formula unit) between 2.0 and 4.8 V.
- In-situ x-ray diffraction and differential capacity measurements are used to infer that irreversible loss of oxygen from the compounds with x ⁇ 1 ⁇ 2 occurs during the first charge to 4.8 V.
- These oxygen deficient materials then reversibly react with lithium.
- the electrochemical activity during the first extraction of lithium is thought to be derived from the oxidation of Ni (Ni 2+ ⁇ Ni 4+ , Cr (Cr 3+ ⁇ Cr 6+ ) or Co (Co 3+ ⁇ Co 4+ ).
- Ni Ni 2+ ⁇ Ni 4+ , Cr (Cr 3+ ⁇ Cr 6+ ) or Co (Co 3+ ⁇ Co 4+ ).
- These oxidation state changes therefore, set limits for the maximum amount of Li that can be extracted from the compounds in a conventional intercalation process.
- the Ni oxidation state reaches 4+ at the stoichiometry Li 1 ⁇ 2x [Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 , leading to an expected reversible capacity of 2x Li per formula unit.
- There is a clear change in slope of the voltage profile of the first charge near 4.45 V, followed by an irreversible plateau (except for x 1 ⁇ 2), whose length increases as x decreases.
- the capacity of the first charge between 3.0 V and 4.45 V in the sloping portion of the curve is very near to that expected when Ni reaches 4+, as we will show later below. Therefore, the origin of the long plateau is mysterious, but useful, because it leads to materials with considerably greater reversible capacity.
- the compositions involved in this irreversible plateau are the focus of this application.
- the capacity versus cycle number is also shown for the same cells in the right hand panels of the figures.
- the voltage profiles are smooth and the cells show excellent reversibility.
- the solid line in FIG. 3 shows the capacity expected before the Ni oxidation state equals +4 plotted versus x in Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 . This occurs at the stoichiometry Li 1 ⁇ 2x [Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 .
- FIGS. 5 a - c shows the lattice constants and the unit cell volume correlated to the voltage profile. Within the error of the experiment, the changes to the lattice constants and the unit cell volume appear to be reversible as lithium is removed from and added to the compound.
- FIGS. 6 a - e shows the differential capacity versus voltage for the Li/Li[Ni x Li (1 ⁇ 2x)/3 Mn (2 ⁇ x)/3 ]O 2 cells cycled between 3.0 and 4.4 V. Apart from small differences between the first charge cycle and later cycles thought to be caused by the impedance of the uncycled Li electrode in the freshly assembled cells, the differential capacity is perfectly repeatable for numerous cycles, suggesting a stable intercalation process for all these materials.
- FIGS. 1 a - e clearly shows that there is excess capacity available in these samples above 4.45 V which occurs as a plateau between 4.5 and 4.7 V during the first charge cycle.
- the length of the plateau capacity is plotted versus x in Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 as the squares in FIG. 3.
- the plateau capacity decreases smoothly with x.
- the plateau should have a length of 1 ⁇ 2x per formula unit, if all Li atoms can be removed from the Li layers and provided that Li atoms cannot be extracted from the predominantly transition metal layer.
- This prediction is given as the long dashed line in FIG. 3 and agrees well with the square data points which are the experimental plateau capacities from FIG. 1
- the total capacity of the first charge of the cells described by FIG. 1 is given as the triangles in FIG. 3, and compared to the capacity expected if all the Li atoms could be extracted from the Li layers. The agreement is quite good.
- the lattice constant and the unit cell volume changes are correlated to the voltage profile.
- the c-axis begins to decrease rapidly, consistent with the behaviour observed (for example in LiCoO 2 ) when the last lithium atoms are removed from the lithium layers.
- the a-axis remains almost constant, while the c-axis is changing.
- the plateau cannot correspond entirely to a parasitic side reaction involving the electrolyte, because clearly the lithium content of the material is changing. Both the clear plateau near 4.6 V and the region of constant a-axis are not observed during the second charge. Some irreversible change has occurred in the electrode during its charge to 4.8V.
- FIGS. 8 a - c show the raw in-situ XRD results and FIGS. 9 a - c show the lattice constants and unit cell volume correlated to the cell voltage profile. Both FIGS. 8 and 9 clearly show that the structure of the material, as evidenced by the diffraction pattern and the lattice constants, in the discharged state (53 hours) is different from the virgin sample. In particular, the unit cell volume (FIG. 9 c ) is much larger than in the original material.
- FIG. 9 c shows the unit cell volume
- the charge removed must come from the oxygen atoms and therefore the removal of lithium must be accompanied by the expulsion of oxygen from the structure along this plateau.
- FIG. 10 shows the Gibbs triangle of the ternary Li—M—O system where we have abbreviated Ni x Mn (2 ⁇ x)/3 by M, where x is set by the nickel quantity in Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 .
- the compositions of relevant phases in the triangle are given.
- the solid solution series Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 (0 ⁇ x ⁇ 0.5) is found on the line joining Li[Li 1/3 M 2/3 ]O 2 and LiMO 2 .
- the line joining Li[Li 1/3 M 2/3 ]O 2 and MO 2 represents a line of constant transition metal oxidation state equal to 4+.
- FIG. 11 shows an expanded view of the Gibbs triangle in the region of interest to describe the charge of a Li/Li[Ni x Li (1/3 ⁇ 2x/3) Mn (2/3 ⁇ x/3) ]O 2 cell.
- the electrode in the freshly assembled cell begins at the point of intersection between the heavy solid line and the line joining Li[Li 1/3 M 2/3 ]O 2 and LiMO 2 .
- FIG. 12 reinforces this point by showing that the differential capacity versus voltage of the first charge to 4.8 V is different than the next cycles for the cells described by FIG. 1.
- the subsequent cycles are very reversible, as predicted by the line from “B” to “C” in FIG. 11.
- Table 1 gives the expected Mn oxidation state at the point “C” in FIG. 11.
- the structural model used to calculate the diffraction pattern in figure assumed that the sample retained the O3 structure.
- Table 2 gives the results of the Rietveld refinement of the charged electrodes.
- the obtained oxygen stoichiometry is compared to the predicted oxygen stoichiometry at 4.8 V given in table 1 based on oxidation state arguments.
- the agreement between predicted and measured oxygen stoichiometries appears to be very good and is evidence that the charged materials are oxygen deficient.
- TABLE 2 Results of ex-situ x-ray diffraction analysis of the samples charged to 4.8 V, showing oxygen loss.
- LiOH.H 2 O (98%+, Aldrich), Ni(NO 3 ) 2 .6H 2 O (98%+, Fluka) and Mn(NO 3 ) 2 .6H 2 O (97%+, Fluka) were used as the starting materials.
- a 50 ml aqueous solution of the transition metal nitrates was slowly dripped (1 to 2 hours) into 400 ml of a stirred solution of LiOH using a buret. This causes the precipitation of M(OH) 2 (M ⁇ Mn, Ni) with what we hope is a homogeneous cation distribution.
- the buret was washed three times to make sure that all the transition metal nitrates were added to the LiOH solution.
- the precipitate was filtered out and washed twice with additional distilled water to remove the residual Li salts (LiOH and the formed LiNO 3 ). The precipitate was dried in air at 180° C. overnight.
- the dried precipitate was mixed with the stoichiometric amount of Li(OH).H 2 O and ground in an automatic grinder. Pellets about 5 mm thick were then pressed. The pellets were heated in air at 480° C. for 3 hrs. Tongs were used to remove the pellets from the oven and sandwich them between two copper plates in order to quench the pellets to room temperature. The pellets were ground and new pellets made. The new pellets were heated in air at 900° C. for another 3 hrs and quenched to room temperature in the same way. The samples described here are the same ones reported in U.S. Ser. No. 09/845,178.
- the heated powder was ground in an automatic grinder again and pellets about 5 mm thick were pressed.
- the pellets were heated in an argon stream at 900° C. for 3 hours using a Lindberg tube furnace.
- the oven was heated to 900° C. at a rate of 600° C./hr. After dwelling at 900° C. for 3 hours, the oven was cooled to room temperature at a rate of 600° C./hr.
- argon was purged through the tube oven for about 3 hrs to remove residual oxygen from the tube.
- X-ray diffraction was carried out using a Siemens D500 diffractometer equipped with a Cu target X-ray tube and a diffracted beam monochromator.
- Profile refinement of the data for the powder samples was made using Hill and Howard's version of the Rietveld Program Rietica as described in Rietica v1.62, window version of LHPM, R. J. Hill and C. J. Howard, J. Appl. Crystallogr. 18, 173 (1985); D. B. Wiles and R. A. Young, J. Appl. Crystallogr.14, 149 (1981).
- the materials are single phase and adopt the ⁇ -NaFeO 2 structure (space group R-3M, #166).
- In-situ x-ray diffraction measurements were made using the same diffractometer and lattice constants were determined by least squares refinements to the positions of at least 7 Bragg peaks. Rietveld profile refinement was not performed on in-situ x-ray diffraction results.
- Bellcore-type electrodes were prepared for the electrochemical tests. Z grams of the sample is mixed with ca. 0.1Z (by weight) super S carbon black and 0.25Z Kynar 2801 (PVdF-HFP)(Elf-Atochem). This mixture was added to 3.1Z acetone and 0.4Z dibutyl phthalate (DBP, Aldrich) to dissolve the polymer.
- DBP dibutyl phthalate
- the slurry was then spread on a glass plate using a notch bar spreader to obtain an even thickness of 0.66 mm.
- the dry films were peeled off the plate and punched into circular disks with a diameter of 12 mm.
- the punched electrode was washed several times in anhydrous diethyl ether to remove the DBP. The washed electrode was dried at 90° C. in air overnight before use.
- FIGS. 15 a - g and FIGS. 16 a - g show the charge-discharge curves and capacity retention versus cycle number of Li/Li[CrxLi(1 ⁇ 3 ⁇ x/3)Mn(2 ⁇ 3 ⁇ 2x/3)]O 2 cells cycled between 2.0 and 4.8 V using a specific current of 5 mA/g at 30° C.
- FIGS. 15 a - g shows that the first charge profiles are quite different from the following ones and that the irreversible capacity losses are between 75 mAh/g and 150 mAh/g.
- 16 a - g shows that the delivered reversible capacity gradually decreases from about 260 mAh/g to almost 0 mAh/g as the Cr content increases from 1 ⁇ 6 to 1.
- the Cr is believed to be in 3+ oxidation state and the Mn in the 4+ oxidation state. Since Mn4+ can not be oxidized beyond the 4+ oxidation state in these experiments, the Mn4+ is assumed not to take part in the redox reaction.
- FIG. 17 shows that the first charge is quite different from the following ones.
- the features (marked with the dashed circle) during the first charge become more pronounced as the Cr content, x increases. These changes may be related to the movement of Cr during the first extraction of Li.
- the peak in FIG. 17 marked with the solid circle near 4.5 V during the first charge is due to oxygen loss.
- FIGS. 17 a - g show that the peak near 4.5 V in FIGS. 17 a - g.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/210,919 US20030108793A1 (en) | 2001-08-07 | 2002-08-02 | Cathode compositions for lithium ion batteries |
| US11/317,607 US7368071B2 (en) | 2001-08-07 | 2005-12-23 | Cathode compositions for lithium ion batteries |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US31062201P | 2001-08-07 | 2001-08-07 | |
| US10/210,919 US20030108793A1 (en) | 2001-08-07 | 2002-08-02 | Cathode compositions for lithium ion batteries |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/317,607 Continuation US7368071B2 (en) | 2001-08-07 | 2005-12-23 | Cathode compositions for lithium ion batteries |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030108793A1 true US20030108793A1 (en) | 2003-06-12 |
Family
ID=23203370
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/210,919 Abandoned US20030108793A1 (en) | 2001-08-07 | 2002-08-02 | Cathode compositions for lithium ion batteries |
| US11/317,607 Expired - Lifetime US7368071B2 (en) | 2001-08-07 | 2005-12-23 | Cathode compositions for lithium ion batteries |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/317,607 Expired - Lifetime US7368071B2 (en) | 2001-08-07 | 2005-12-23 | Cathode compositions for lithium ion batteries |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US20030108793A1 (enExample) |
| EP (1) | EP1425810A2 (enExample) |
| JP (2) | JP4955193B2 (enExample) |
| KR (1) | KR101036743B1 (enExample) |
| CN (1) | CN100459242C (enExample) |
| AU (1) | AU2002355544A1 (enExample) |
| TW (1) | TW557598B (enExample) |
| WO (1) | WO2003015198A2 (enExample) |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004040677A1 (en) | 2002-10-31 | 2004-05-13 | Lg Chem, Ltd. | Lithium transition metal oxide with gradient of metal composition |
| US20040121234A1 (en) * | 2002-12-23 | 2004-06-24 | 3M Innovative Properties Company | Cathode composition for rechargeable lithium battery |
| US20050031957A1 (en) * | 2003-08-08 | 2005-02-10 | 3M Innovative Properties Company | Multi-phase, silicon-containing electrode for a lithium-ion battery |
| US20050112054A1 (en) * | 2003-11-26 | 2005-05-26 | 3M Innovative Properties Company | Solid state synthesis of lithium ion battery cathode material |
| WO2005064715A1 (en) | 2003-12-31 | 2005-07-14 | Lg Chem, Ltd. | Electrode active material powder with size dependent composition and method to prepare the same |
| US20060051673A1 (en) * | 2004-09-03 | 2006-03-09 | Johnson Christopher S | Manganese oxide composite electrodes for lithium batteries |
| US20060147798A1 (en) * | 2001-04-27 | 2006-07-06 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
| US20060159994A1 (en) * | 2001-08-07 | 2006-07-20 | Dahn Jeffrey R | Cathode compositions for lithium ion batteries |
| US20070020521A1 (en) * | 2005-07-25 | 2007-01-25 | 3M Innovative Properties Company | Alloy compositions for lithium ion batteries |
| US20070020528A1 (en) * | 2005-07-25 | 2007-01-25 | 3M Innovative Properties Company | Alloy compositions for lithium ion batteries |
| US20070020522A1 (en) * | 2005-07-25 | 2007-01-25 | 3M Innovative Properties Company | Alloy composition for lithium ion batteries |
| US20070037056A1 (en) * | 2005-08-11 | 2007-02-15 | Hideki Kitao | Non-aqueous electrolyte secondary battery |
| US20070037043A1 (en) * | 2005-07-22 | 2007-02-15 | Chang Sung K | Pretreatment method of electrode active material |
| US20070128517A1 (en) * | 2005-12-01 | 2007-06-07 | 3M Innovative Properties Company | Electrode Compositions Based On An Amorphous Alloy Having A High Silicon Content |
| US20070148546A1 (en) * | 2005-12-28 | 2007-06-28 | Noriyuki Shimizu | Non-aqueous electrolyte secondary battery |
| US20070148544A1 (en) * | 2005-12-23 | 2007-06-28 | 3M Innovative Properties Company | Silicon-Containing Alloys Useful as Electrodes for Lithium-Ion Batteries |
| US20070218359A1 (en) * | 2006-02-08 | 2007-09-20 | Noriyuki Shimizu | Non-aqueous electrolyte secondary battery |
| US20070269718A1 (en) * | 2006-05-22 | 2007-11-22 | 3M Innovative Properties Company | Electrode composition, method of making the same, and lithium ion battery including the same |
| US7303840B2 (en) | 2004-09-03 | 2007-12-04 | Uchicago Argonne, Llc | Manganese oxide composite electrodes for lithium batteries |
| US20080280205A1 (en) * | 2007-05-07 | 2008-11-13 | 3M Innovative Properties Company | Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same |
| US20080311464A1 (en) * | 2005-10-13 | 2008-12-18 | Krause Larry J | Method of Using an Electrochemical Cell |
| US20090087744A1 (en) * | 2007-09-28 | 2009-04-02 | 3M Innovative Properties Company | Method of making cathode compositions |
| US20090087747A1 (en) * | 2007-09-28 | 2009-04-02 | 3M Innovative Properties Company | Sintered cathode compositions |
| US20090123842A1 (en) * | 2004-09-03 | 2009-05-14 | Uchicago Argonne, Llc | Manganese oxide composite electrodes for lithium batteries |
| US20100264381A1 (en) * | 2005-09-29 | 2010-10-21 | Massachusetts Institute Of Technology | Oxides having high energy densities |
| WO2014143834A1 (en) * | 2013-03-15 | 2014-09-18 | E. I. Du Pont De Nemours And Company | High voltage lithium ion battery |
| US8916295B2 (en) | 2011-03-09 | 2014-12-23 | Nissan Motor Co., Ltd. | Positive electrode active material for lithium ion secondary battery |
| US9017841B2 (en) | 2005-08-19 | 2015-04-28 | Lg Chem, Ltd. | Electrochemical device with high capacity and method for preparing the same |
| US9306211B2 (en) | 2012-03-07 | 2016-04-05 | Nissan Motor Co., Ltd. | Positive electrode active material, positive electrode for electrical device, and electrical device |
| US9343711B2 (en) | 2010-09-24 | 2016-05-17 | Kabushiki Kaisha Toshiba | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery |
| US9391326B2 (en) | 2012-03-07 | 2016-07-12 | Nissan Motor Co., Ltd. | Positive electrode active material, positive electrode for electric device, and electric device |
| US9461299B2 (en) | 2012-02-01 | 2016-10-04 | Nissan Motor Co., Ltd. | Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery |
| US9906060B2 (en) | 2013-09-06 | 2018-02-27 | Nissan Motor Co., Ltd. | Control device and control method for a secondary battery |
| US10158117B2 (en) | 2013-07-31 | 2018-12-18 | Nissan Motor Co., Ltd. | Transition metal oxide containing solid-solution lithium, and non-aqueous electrolyte secondary battery using transition metal oxide containing solid-solution lithium as positive electrode |
| US20190013518A1 (en) * | 2017-07-10 | 2019-01-10 | Uchicago Argonne, Llc | High valent lithiated surface structures for lithium ion battery electrode materials |
Families Citing this family (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7592100B2 (en) | 2001-03-22 | 2009-09-22 | Panasonic Corporation | Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same |
| JP4510331B2 (ja) | 2001-06-27 | 2010-07-21 | パナソニック株式会社 | 非水電解質二次電池 |
| JP3827545B2 (ja) | 2001-09-13 | 2006-09-27 | 松下電器産業株式会社 | 正極活物質、その製造方法および非水電解質二次電池 |
| US8658125B2 (en) | 2001-10-25 | 2014-02-25 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
| US8241790B2 (en) | 2002-08-05 | 2012-08-14 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
| US20090127520A1 (en) * | 2003-05-28 | 2009-05-21 | Pamela Whitfield | Lithium metal oxide compositions |
| JP5236878B2 (ja) * | 2003-05-28 | 2013-07-17 | ナショナル リサーチ カウンシル オブ カナダ | リチウムセルおよびバッテリー用の酸化リチウム電極 |
| US7238450B2 (en) | 2003-12-23 | 2007-07-03 | Tronox Llc | High voltage laminar cathode materials for lithium rechargeable batteries, and process for making the same |
| JP5315591B2 (ja) * | 2006-02-20 | 2013-10-16 | ソニー株式会社 | 正極活物質および電池 |
| US8153301B2 (en) * | 2008-07-21 | 2012-04-10 | 3M Innovative Properties Company | Cathode compositions for lithium-ion electrochemical cells |
| EP2351124A4 (en) * | 2008-09-30 | 2012-08-29 | Envia Systems Inc | BATTERY MATERIALS FOR POSITIVE ELECTRODE POSITIVE ELECTRODE METAL OXIDE RICH IN LITHIUM DOPED BY FLUOR OF HIGH SPECIFIC CAPACITY AND BATTERY CORRESPONDING |
| US8389160B2 (en) * | 2008-10-07 | 2013-03-05 | Envia Systems, Inc. | Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials |
| US8465873B2 (en) * | 2008-12-11 | 2013-06-18 | Envia Systems, Inc. | Positive electrode materials for high discharge capacity lithium ion batteries |
| JP2011034943A (ja) * | 2009-03-16 | 2011-02-17 | Sanyo Electric Co Ltd | 非水電解液二次電池 |
| US20100273055A1 (en) | 2009-04-28 | 2010-10-28 | 3M Innovative Properties Company | Lithium-ion electrochemical cell |
| TWI422849B (zh) * | 2009-08-13 | 2014-01-11 | Neotec Semiconductor Ltd | 以直流內阻估算鋰電池容量之方法 |
| US8394534B2 (en) * | 2009-08-27 | 2013-03-12 | Envia Systems, Inc. | Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling |
| CN102870256A (zh) * | 2009-08-27 | 2013-01-09 | 安维亚系统公司 | 基于锂的电池的经金属氧化物涂布的正电极材料 |
| US9843041B2 (en) * | 2009-11-11 | 2017-12-12 | Zenlabs Energy, Inc. | Coated positive electrode materials for lithium ion batteries |
| US8993177B2 (en) | 2009-12-04 | 2015-03-31 | Envia Systems, Inc. | Lithium ion battery with high voltage electrolytes and additives |
| US8765306B2 (en) * | 2010-03-26 | 2014-07-01 | Envia Systems, Inc. | High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance |
| US8741484B2 (en) | 2010-04-02 | 2014-06-03 | Envia Systems, Inc. | Doped positive electrode active materials and lithium ion secondary battery constructed therefrom |
| US8928286B2 (en) | 2010-09-03 | 2015-01-06 | Envia Systems, Inc. | Very long cycling of lithium ion batteries with lithium rich cathode materials |
| US8663849B2 (en) | 2010-09-22 | 2014-03-04 | Envia Systems, Inc. | Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries |
| CN103201883B (zh) | 2010-11-09 | 2016-03-02 | 3M创新有限公司 | 高容量合金阳极和包含其的锂离子电化学电池 |
| CN102655230B (zh) * | 2011-03-03 | 2015-11-25 | 苏州大学 | 用于锂离子二次电池的正极材料及其制备方法、锂离子二次电池正极和锂离子二次电池 |
| JP2012204291A (ja) * | 2011-03-28 | 2012-10-22 | Tokyo Univ Of Science | リチウムイオン二次電池およびこれに用いる正極材料 |
| BR112013032169A2 (pt) | 2011-06-16 | 2016-12-13 | 3M Innovative Properties Co | materiais microporosos com estrutura fibrilar de malha de rede e métodos de fabricação e uso dos mesmos |
| JP5970978B2 (ja) | 2011-07-04 | 2016-08-17 | 日産自動車株式会社 | 電気デバイス用正極活物質、電気デバイス用正極及び電気デバイス |
| US9159990B2 (en) | 2011-08-19 | 2015-10-13 | Envia Systems, Inc. | High capacity lithium ion battery formation protocol and corresponding batteries |
| KR101414955B1 (ko) | 2011-09-26 | 2014-07-07 | 주식회사 엘지화학 | 안전성 및 수명특성이 향상된 양극활물질 및 이를 포함하는 리튬 이차전지 |
| WO2013090263A1 (en) | 2011-12-12 | 2013-06-20 | Envia Systems, Inc. | Lithium metal oxides with multiple phases and stable high energy electrochemical cycling |
| US9070489B2 (en) | 2012-02-07 | 2015-06-30 | Envia Systems, Inc. | Mixed phase lithium metal oxide compositions with desirable battery performance |
| JP5999307B2 (ja) | 2012-03-07 | 2016-09-28 | 日産自動車株式会社 | 正極活物質、電気デバイス用正極及び電気デバイス |
| CN104508893B (zh) | 2012-08-02 | 2016-11-09 | 日产自动车株式会社 | 非水系有机电解液二次电池 |
| US9552901B2 (en) | 2012-08-17 | 2017-01-24 | Envia Systems, Inc. | Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance |
| US10115962B2 (en) | 2012-12-20 | 2018-10-30 | Envia Systems, Inc. | High capacity cathode material with stabilizing nanocoatings |
| WO2014164927A1 (en) | 2013-03-12 | 2014-10-09 | Apple Inc. | High voltage, high volumetric energy density li-ion battery using advanced cathode materials |
| KR20160030932A (ko) * | 2013-07-15 | 2016-03-21 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질 및 이차 전지 |
| JP6321801B2 (ja) * | 2013-08-19 | 2018-05-09 | エルジー・ケム・リミテッド | 寿命特性に優れたリチウムコバルト系複合酸化物及びそれを含む二次電池用正極活物質 |
| JP6167775B2 (ja) * | 2013-09-06 | 2017-07-26 | 日産自動車株式会社 | 二次電池の制御装置及び制御方法 |
| US9716265B2 (en) | 2014-08-01 | 2017-07-25 | Apple Inc. | High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries |
| WO2017058650A1 (en) | 2015-09-30 | 2017-04-06 | Hongli Dai | Cathode-active materials, their precursors, and methods of preparation |
| JP6052643B2 (ja) * | 2016-01-06 | 2016-12-27 | 株式会社Gsユアサ | 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池 |
| CN109328409A (zh) | 2016-03-14 | 2019-02-12 | 苹果公司 | 用于锂离子电池的阴极活性材料 |
| DE202017007594U1 (de) | 2016-07-05 | 2023-09-11 | Semiconductor Energy Laboratory Co., Ltd. | Positivelektrodenaktivmaterial und Sekundärbatterie |
| US12308421B2 (en) | 2016-09-12 | 2025-05-20 | Semiconductor Energy Laboratory Co., Ltd. | Electrode and power storage device comprising graphene compound |
| CN109715561B (zh) | 2016-09-20 | 2020-09-22 | 苹果公司 | 具有改善的颗粒形态的阴极活性材料 |
| KR102223565B1 (ko) | 2016-09-21 | 2021-03-04 | 애플 인크. | 리튬 이온 배터리용 표면 안정화된 캐소드 재료 및 이의 합성 방법 |
| KR102697171B1 (ko) | 2016-10-12 | 2024-08-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질 입자 및 양극 활물질 입자의 제작 방법 |
| CN112259720A (zh) | 2017-05-12 | 2021-01-22 | 株式会社半导体能源研究所 | 正极活性物质粒子 |
| CN117038957A (zh) | 2017-05-19 | 2023-11-10 | 株式会社半导体能源研究所 | 锂离子二次电池 |
| KR20250086799A (ko) | 2017-06-26 | 2025-06-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 양극 활물질의 제작 방법 및 이차 전지 |
| US11695108B2 (en) | 2018-08-02 | 2023-07-04 | Apple Inc. | Oxide mixture and complex oxide coatings for cathode materials |
| US11749799B2 (en) | 2018-08-17 | 2023-09-05 | Apple Inc. | Coatings for cathode active materials |
| US12206100B2 (en) | 2019-08-21 | 2025-01-21 | Apple Inc. | Mono-grain cathode materials |
| US11757096B2 (en) | 2019-08-21 | 2023-09-12 | Apple Inc. | Aluminum-doped lithium cobalt manganese oxide batteries |
| US12074321B2 (en) | 2019-08-21 | 2024-08-27 | Apple Inc. | Cathode active materials for lithium ion batteries |
| WO2021040931A1 (en) | 2019-08-29 | 2021-03-04 | Novonix Battery Testing Services Inc. | Lithium transition metal oxide and precursor particulates and methods |
| CN112751006B (zh) * | 2021-01-18 | 2022-04-15 | 北京大学深圳研究生院 | 一种无钴锂离子电池层状正极材料及其制备方法和应用 |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4550023A (en) * | 1981-08-07 | 1985-10-29 | Hans Schoberth | Method and flour for producing sliceable bread with a high bran content |
| US4780381A (en) * | 1987-11-05 | 1988-10-25 | Allied-Signal, Inc. | Rechargeable battery cathode from sodium cobalt dioxide in the O3, O'3, P3 and/or P'3 phases |
| US5753202A (en) * | 1996-04-08 | 1998-05-19 | Duracell Inc. | Method of preparation of lithium manganese oxide spinel |
| US5858324A (en) * | 1997-04-17 | 1999-01-12 | Minnesota Mining And Manufacturing Company | Lithium based compounds useful as electrodes and method for preparing same |
| US5874538A (en) * | 1995-10-31 | 1999-02-23 | Morinaga & Co., Ltd. | Process for producing soybean protein |
| US5900385A (en) * | 1997-10-15 | 1999-05-04 | Minnesota Mining And Manufacturing Company | Nickel--containing compounds useful as electrodes and method for preparing same |
| US6168887B1 (en) * | 1999-01-15 | 2001-01-02 | Chemetals Technology Corporation | Layered lithium manganese oxide bronze and electrodes thereof |
| US6214493B1 (en) * | 1996-01-15 | 2001-04-10 | The University Court Of The University Of St. Andrews | Manganese oxide based material for an electrochemical cell |
| US6291009B1 (en) * | 2000-05-16 | 2001-09-18 | Deborah W. Cohen | Method of producing a soy-based dough and products made from the dough |
| US6333128B1 (en) * | 1998-03-19 | 2001-12-25 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
| US6355283B1 (en) * | 1999-11-26 | 2002-03-12 | Toyofumi Yamada | Process for making soybean curd bread |
| US6368749B1 (en) * | 1999-06-23 | 2002-04-09 | Sanyo Electric Co., Ltd. | Active substances, electrodes, nonaqueous electrolyte secondary cells, and a process for fabricating the active substances |
Family Cites Families (168)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5546288Y2 (enExample) | 1975-04-09 | 1980-10-30 | ||
| US4567031A (en) * | 1983-12-27 | 1986-01-28 | Combustion Engineering, Inc. | Process for preparing mixed metal oxides |
| JPH0660867B2 (ja) | 1985-03-20 | 1994-08-10 | 株式会社日立製作所 | フロック画像認識装置 |
| JPS62105758A (ja) | 1985-11-05 | 1987-05-16 | Honda Motor Co Ltd | 四輪駆動車 |
| JP2668678B2 (ja) | 1986-11-08 | 1997-10-27 | 旭化成工業株式会社 | 二次電池 |
| JPH0831408B2 (ja) | 1988-04-08 | 1996-03-27 | 日本電気株式会社 | 半導体装置 |
| JP2699176B2 (ja) | 1988-05-20 | 1998-01-19 | 日立マクセル 株式会社 | リチウム二次電池 |
| US5264201A (en) | 1990-07-23 | 1993-11-23 | Her Majesty The Queen In Right Of The Province Of British Columbia | Lithiated nickel dioxide and secondary cells prepared therefrom |
| JP2561556B2 (ja) | 1990-08-24 | 1996-12-11 | 本田技研工業株式会社 | リチウム二次電池用正極活物質 |
| DE69127251T3 (de) * | 1990-10-25 | 2005-01-13 | Matsushita Electric Industrial Co., Ltd., Kadoma | Nichtwässrige elektrochemische Sekundärbatterie |
| US5521027A (en) * | 1990-10-25 | 1996-05-28 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous secondary electrochemical battery |
| JP2822659B2 (ja) | 1990-10-31 | 1998-11-11 | 松下電器産業株式会社 | 非水電解液二次電池 |
| CA2055305C (en) * | 1990-11-17 | 2002-02-19 | Naoyuki Sugeno | Nonaqueous electrolyte secondary battery |
| JP3079613B2 (ja) | 1991-03-07 | 2000-08-21 | ソニー株式会社 | 非水電解液二次電池 |
| JP3089662B2 (ja) | 1990-11-17 | 2000-09-18 | ソニー株式会社 | 非水電解液二次電池 |
| JP3356157B2 (ja) | 1990-11-17 | 2002-12-09 | ソニー株式会社 | 非水電解液二次電池 |
| JP3160920B2 (ja) | 1991-02-05 | 2001-04-25 | ソニー株式会社 | 非水電解液二次電池 |
| US5228910A (en) | 1991-09-06 | 1993-07-20 | Ferro Corporation | Mixed metal oxide crystalline powders and method for the synthesis thereof |
| JP3318941B2 (ja) | 1991-12-28 | 2002-08-26 | ソニー株式会社 | 正極材料の製造方法 |
| JPH05299092A (ja) * | 1992-01-17 | 1993-11-12 | Matsushita Electric Ind Co Ltd | 非水電解質リチウム二次電池及びその製造方法 |
| JP3042128B2 (ja) | 1992-01-22 | 2000-05-15 | 松下電器産業株式会社 | 電極材料の合成法 |
| US5393622A (en) * | 1992-02-07 | 1995-02-28 | Matsushita Electric Industrial Co., Ltd. | Process for production of positive electrode active material |
| JP3152497B2 (ja) | 1992-03-31 | 2001-04-03 | 三洋電機株式会社 | 非水系電解質二次電池 |
| US5478671A (en) * | 1992-04-24 | 1995-12-26 | Fuji Photo Film Co., Ltd. | Nonaqueous secondary battery |
| CA2096386A1 (en) * | 1992-05-18 | 1993-11-19 | Masahiro Kamauchi | Lithium secondary battery |
| US5474858A (en) * | 1992-07-21 | 1995-12-12 | Medtronic, Inc. | Method for preventing gas formation in electro-chemical cells |
| JP3081981B2 (ja) | 1993-03-18 | 2000-08-28 | セイコーインスツルメンツ株式会社 | 非水電解質二次電池及びその製造方法 |
| JP3076887B2 (ja) | 1993-03-22 | 2000-08-14 | セイコーインスツルメンツ株式会社 | 非水電解質二次電池及びその製造方法 |
| JP3487441B2 (ja) * | 1993-09-22 | 2004-01-19 | 株式会社デンソー | リチウム二次電池用活物質の製造方法 |
| US5742070A (en) * | 1993-09-22 | 1998-04-21 | Nippondenso Co., Ltd. | Method for preparing an active substance of chemical cells |
| EP0721673A1 (en) * | 1993-09-27 | 1996-07-17 | Arthur D. Little, Inc. | Small particle electrodes by aerosol process |
| JP3182271B2 (ja) | 1993-11-11 | 2001-07-03 | 三洋電機株式会社 | 非水系電池 |
| JP3197763B2 (ja) | 1993-11-18 | 2001-08-13 | 三洋電機株式会社 | 非水系電池 |
| JP3436600B2 (ja) | 1993-12-27 | 2003-08-11 | エヌイーシートーキン栃木株式会社 | 二次電池 |
| US5478675A (en) * | 1993-12-27 | 1995-12-26 | Hival Ltd. | Secondary battery |
| JP3111791B2 (ja) | 1994-02-21 | 2000-11-27 | 松下電器産業株式会社 | 非水電解液二次電池 |
| US5503930A (en) | 1994-03-07 | 1996-04-02 | Tdk Corporation | Layer structure oxide |
| US5609975A (en) * | 1994-05-13 | 1997-03-11 | Matsushita Electric Industrial Co., Ltd. | Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same |
| JP3550783B2 (ja) | 1994-05-16 | 2004-08-04 | 東ソー株式会社 | リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途 |
| US5531920A (en) * | 1994-10-03 | 1996-07-02 | Motorola, Inc. | Method of synthesizing alkaline metal intercalation materials for electrochemical cells |
| JP3008793B2 (ja) | 1994-12-16 | 2000-02-14 | 松下電器産業株式会社 | リチウム二次電池用正極活物質の製造法 |
| US5626635A (en) * | 1994-12-16 | 1997-05-06 | Matsushita Electric Industrial Co., Ltd. | Processes for making positive active material for lithium secondary batteries and secondary batteries therefor |
| JP3232943B2 (ja) | 1994-12-16 | 2001-11-26 | 松下電器産業株式会社 | リチウム二次電池用正極活物質の製造法 |
| JP3258841B2 (ja) | 1994-12-16 | 2002-02-18 | 三洋電機株式会社 | リチウム二次電池 |
| JPH08213015A (ja) | 1995-01-31 | 1996-08-20 | Sony Corp | リチウム二次電池用正極活物質及びリチウム二次電池 |
| JP3329124B2 (ja) * | 1995-03-03 | 2002-09-30 | 松下電器産業株式会社 | 非水電解液二次電池用正極活物質の製造法 |
| JP3506397B2 (ja) | 1995-03-28 | 2004-03-15 | 三井金属鉱業株式会社 | リチウム二次電池用正極材料およびその製造方法、並びにこれを用いたリチウム二次電池 |
| DE19511355A1 (de) * | 1995-03-28 | 1996-10-02 | Merck Patent Gmbh | Verfahren zur Herstellung von Lithium-Interkalationsverbindungen |
| JP3606289B2 (ja) * | 1995-04-26 | 2005-01-05 | 日本電池株式会社 | リチウム電池用正極活物質およびその製造法 |
| JP3536947B2 (ja) | 1995-05-23 | 2004-06-14 | 株式会社ユアサコーポレーション | リチウム二次電池 |
| ATE310321T1 (de) * | 1995-06-28 | 2005-12-15 | Ube Industries | Nichtwässrige sekundärbatterie |
| WO1997019023A1 (en) * | 1995-11-24 | 1997-05-29 | Fuji Chemical Industry Co., Ltd. | Lithium-nickel composite oxide, process for preparing the same, and positive active material for secondary battery |
| WO1997023918A1 (en) | 1995-12-26 | 1997-07-03 | Kao Corporation | Anode active material and nonaqueous secondary battery |
| JP3897387B2 (ja) | 1995-12-29 | 2007-03-22 | 株式会社ジーエス・ユアサコーポレーション | リチウム二次電池用正極活物質の製造方法 |
| US5718989A (en) * | 1995-12-29 | 1998-02-17 | Japan Storage Battery Co., Ltd. | Positive electrode active material for lithium secondary battery |
| JPH09245836A (ja) * | 1996-03-08 | 1997-09-19 | Fuji Photo Film Co Ltd | 非水電解質二次電池 |
| JP3846601B2 (ja) * | 1996-06-13 | 2006-11-15 | 株式会社ジーエス・ユアサコーポレーション | リチウム電池用正極活物質およびその製造方法ならびに前記活物質を備えた電池 |
| US6030726A (en) * | 1996-06-17 | 2000-02-29 | Hitachi, Ltd. | Lithium secondary battery having negative electrode of carbon material which bears metals |
| US5981445A (en) * | 1996-06-17 | 1999-11-09 | Corporation De I'ecole Polytechnique | Process of making fine ceramic powders from aqueous suspensions |
| TW363940B (en) | 1996-08-12 | 1999-07-11 | Toda Kogyo Corp | A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery |
| JP3489771B2 (ja) * | 1996-08-23 | 2004-01-26 | 松下電器産業株式会社 | リチウム電池およびリチウム電池の製造法 |
| US6077496A (en) * | 1996-09-12 | 2000-06-20 | Dowa Mining Co., Ltd. | Positive electrode active material for nonaqueous secondary cells and a process for producing said active material |
| JP3733659B2 (ja) | 1996-09-27 | 2006-01-11 | 住友化学株式会社 | 非水電解液二次電池用活物質の製造法 |
| JPH10106565A (ja) | 1996-10-01 | 1998-04-24 | Sumitomo Metal Mining Co Ltd | 非水電解質電池用正極活物質およびその製造方法 |
| US5783333A (en) * | 1996-11-27 | 1998-07-21 | Polystor Corporation | Lithium nickel cobalt oxides for positive electrodes |
| JPH10172571A (ja) * | 1996-12-16 | 1998-06-26 | Aichi Steel Works Ltd | リチウム二次電池及びその正極活物質の製造方法 |
| CN1163991C (zh) * | 1996-12-20 | 2004-08-25 | 日本电池株式会社 | 锂电池用正极活性物质、含有该物质的锂电池及其生产方法 |
| JPH11213999A (ja) | 1996-12-20 | 1999-08-06 | Japan Storage Battery Co Ltd | リチウム電池用正極活物質、これを備えたリチウム電池、及びリチウム電池用正極活物質の製造方法 |
| WO1998029914A1 (en) | 1996-12-25 | 1998-07-09 | Mitsubishi Denki Kabushiki Kaisha | Anode active material, method for manufacturing the same, and lithium ion secondary cell using the same |
| JP3301931B2 (ja) | 1996-12-27 | 2002-07-15 | 三洋電機株式会社 | リチウム二次電池 |
| US6040089A (en) * | 1997-02-28 | 2000-03-21 | Fmc Corporation | Multiple-doped oxide cathode material for secondary lithium and lithium-ion batteries |
| JP3036694B2 (ja) * | 1997-03-25 | 2000-04-24 | 三菱重工業株式会社 | Liイオン電池電極材料用Li複合酸化物の製造方法 |
| JP2870741B2 (ja) * | 1997-04-14 | 1999-03-17 | 堺化学工業株式会社 | マンガン酸リチウム粒子状組成物及びその製造方法並びにリチウムイオン二次電池 |
| JP3561607B2 (ja) | 1997-05-08 | 2004-09-02 | 三洋電機株式会社 | 非水電解質二次電池及び正極材料の製造方法 |
| DE69819395T2 (de) * | 1997-04-15 | 2004-09-09 | Sanyo Electric Co., Ltd., Moriguchi | Positivelektrodenmaterialf für Verwendung nichtwässriger Elektrolyt enthaltender Batterie und Verfahren zur seiner Herstellung und nichtwässriger Elektrolyt enthaltende Batterie |
| US6277521B1 (en) * | 1997-05-15 | 2001-08-21 | Fmc Corporation | Lithium metal oxide containing multiple dopants and method of preparing same |
| JP3045998B2 (ja) * | 1997-05-15 | 2000-05-29 | エフエムシー・コーポレイション | 層間化合物およびその作製方法 |
| US5948596A (en) * | 1997-05-27 | 1999-09-07 | Kodak Polychrome Graphics Llc | Digital printing plate comprising a thermal mask |
| DE19728382C2 (de) * | 1997-07-03 | 2003-03-13 | Hosokawa Alpine Ag & Co | Verfahren und Vorrichtung zur Fließbett-Strahlmahlung |
| US5948569A (en) | 1997-07-21 | 1999-09-07 | Duracell Inc. | Lithium ion electrochemical cell |
| US6017654A (en) * | 1997-08-04 | 2000-01-25 | Carnegie Mellon University | Cathode materials for lithium-ion secondary cells |
| JPH1186861A (ja) * | 1997-09-04 | 1999-03-30 | Res Dev Corp Of Japan | 電池正極活物質とその製造方法 |
| SG77657A1 (en) * | 1997-10-31 | 2001-01-16 | Canon Kk | Electrophotographic photosensitive member and process cartridge and electrophotographic apparatus having the electrophotographic photosensitive member |
| JPH11195416A (ja) | 1997-12-27 | 1999-07-21 | Toray Ind Inc | 電池用活物質の製造方法 |
| US6372385B1 (en) * | 1998-02-10 | 2002-04-16 | Samsung Display Devices Co., Ltd. | Active material for positive electrode used in lithium secondary battery and method of manufacturing same |
| DE19810549A1 (de) * | 1998-03-11 | 1999-09-16 | Delo Industrieklebstoffe Gmbh | Polymerisierbare fluorhaltige Zubereitung, ihre Verwendung und Verfahren zur Herstellung ausgehärteter Polymermassen aus dieser Zubereitung |
| US6203944B1 (en) * | 1998-03-26 | 2001-03-20 | 3M Innovative Properties Company | Electrode for a lithium battery |
| IL124007A (en) * | 1998-04-08 | 2001-08-26 | Univ Ramot | Long cycle-life alkali metal battery |
| JPH11307094A (ja) * | 1998-04-20 | 1999-11-05 | Chuo Denki Kogyo Co Ltd | リチウム二次電池用正極活物質とリチウム二次電池 |
| JPH11354156A (ja) | 1998-06-05 | 1999-12-24 | Sanyo Electric Co Ltd | 非水系電解液二次電池 |
| US6255017B1 (en) | 1998-07-10 | 2001-07-03 | 3M Innovative Properties Co. | Electrode material and compositions including same |
| CA2341751C (en) | 1998-08-27 | 2010-02-16 | Nec Corporation | Nonaqueous electrolyte solution secondary battery |
| FR2782999B1 (fr) * | 1998-09-09 | 2002-05-10 | Ulice | Materiau biodegradable a base de polymere et de farine cerealiere,son procede de fabrication et ses utilisations |
| AU1084300A (en) | 1998-10-16 | 2000-05-08 | Pacific Lithium Limited | Lithium manganese oxide and methods of manufacture |
| JP2000133262A (ja) * | 1998-10-21 | 2000-05-12 | Sanyo Electric Co Ltd | 非水系電解液二次電池 |
| DK1137598T3 (da) | 1998-11-13 | 2003-08-18 | Fmc Corp | Lagdelte lithiummetaloxider, der er fri for lokale kubiske spinellignende struktuelle faser, og fremgangsmåder til fremstilling af samme |
| WO2000030977A1 (en) | 1998-11-20 | 2000-06-02 | Fmc Corporation | Multiple doped lithium manganese oxide compounds and methods of preparing same |
| JP3291260B2 (ja) | 1998-12-03 | 2002-06-10 | 花王株式会社 | リチウム二次電池 |
| KR100280998B1 (ko) * | 1998-12-10 | 2001-03-02 | 김순택 | 리튬 이차 전지용 양극 활물질 |
| JP3446639B2 (ja) | 1998-12-10 | 2003-09-16 | 松下電器産業株式会社 | リチウム二次電池用正極活物質の製造方法およびリチウム二次電池 |
| JP3756334B2 (ja) | 1998-12-22 | 2006-03-15 | サンポット株式会社 | 暖房機 |
| JP3233352B2 (ja) | 1998-12-24 | 2001-11-26 | 株式会社東芝 | 非水溶媒二次電池の製造方法 |
| JP2000223157A (ja) | 1999-01-28 | 2000-08-11 | Sanyo Electric Co Ltd | リチウム二次電池 |
| JP3653409B2 (ja) | 1999-01-29 | 2005-05-25 | 三洋電機株式会社 | リチウム二次電池用正極活物質及びその製造方法、この正極活物質を用いたリチウム二次電池用正極及びその製造方法、この正極を用いたリチウム二次電池及びその製造方法 |
| JP3430058B2 (ja) | 1999-02-09 | 2003-07-28 | 株式会社デンソー | 正極活物質および非水電解質二次電池 |
| JP3806262B2 (ja) | 1999-03-18 | 2006-08-09 | セイミケミカル株式会社 | リチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法 |
| JP2000277151A (ja) | 1999-03-23 | 2000-10-06 | Toyota Central Res & Dev Lab Inc | リチウム二次電池の使用方法 |
| JP2000294240A (ja) | 1999-04-08 | 2000-10-20 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウム複合酸化物およびこれを用いたリチウム二次電池 |
| JP4318002B2 (ja) * | 1999-04-09 | 2009-08-19 | Agcセイミケミカル株式会社 | 非水電解液二次電池用正極活物質の製造方法 |
| JP3244227B2 (ja) * | 1999-04-26 | 2002-01-07 | 日本電気株式会社 | 非水電解液二次電池 |
| JP3110728B1 (ja) | 1999-05-06 | 2000-11-20 | 同和鉱業株式会社 | 非水系二次電池用正極活物質および正極 |
| JP3378222B2 (ja) | 1999-05-06 | 2003-02-17 | 同和鉱業株式会社 | 非水系二次電池用正極活物質および正極並びに二次電池 |
| JP3308229B2 (ja) | 1999-05-14 | 2002-07-29 | 三菱電線工業株式会社 | Li−Co系複合酸化物 |
| CA2308346A1 (en) * | 1999-05-14 | 2000-11-14 | Mitsubishi Cable Industries, Ltd. | Positive electrode active material, positive electrode active material composition and lithium ion secondary battery |
| JP3273438B2 (ja) | 1999-11-15 | 2002-04-08 | 三菱電線工業株式会社 | リチウムイオン二次電池 |
| JP3308232B2 (ja) | 1999-05-17 | 2002-07-29 | 三菱電線工業株式会社 | Li−Co系複合酸化物およびその製造方法 |
| JP3628549B2 (ja) | 1999-05-26 | 2005-03-16 | 日本曹達株式会社 | 触媒組成物及び硬化性組成物 |
| JP4318270B2 (ja) * | 1999-07-06 | 2009-08-19 | Agcセイミケミカル株式会社 | リチウム二次電池の製造方法 |
| JP3569169B2 (ja) | 1999-08-09 | 2004-09-22 | 株式会社東芝 | 非水電解質二次電池 |
| WO2001015252A1 (en) * | 1999-08-19 | 2001-03-01 | Mitsubishi Chemical Corporation | Positive electrode material for lithium secondary cell and positive electrode, and lithium secondary cell |
| US6248477B1 (en) * | 1999-09-29 | 2001-06-19 | Kerr-Mcgee Chemical Llc | Cathode intercalation compositions, production methods and rechargeable lithium batteries containing the same |
| JP3323485B2 (ja) | 1999-10-12 | 2002-09-09 | 三菱電線工業株式会社 | リチウムイオン二次電池 |
| JP4691228B2 (ja) * | 1999-11-02 | 2011-06-01 | Agcセイミケミカル株式会社 | 非水リチウム二次電池用リチウム−マンガン複合酸化物の製造法 |
| KR100315227B1 (ko) * | 1999-11-17 | 2001-11-26 | 김순택 | 리튬 이차 전지용 양극 활물질 및 그의 제조 방법 |
| JP2001146426A (ja) | 1999-11-19 | 2001-05-29 | Mitsubishi Chemicals Corp | リチウムマンガン複合酸化物の製造方法及びこれを用いたリチウムイオン二次電池 |
| DE60002505T2 (de) * | 1999-12-10 | 2004-03-25 | Fmc Corp. | Lithium kobaltoxide und verfahren zur herstellung |
| US6350543B2 (en) * | 1999-12-29 | 2002-02-26 | Kimberly-Clark Worldwide, Inc. | Manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries |
| US6694336B1 (en) * | 2000-01-25 | 2004-02-17 | Fusionone, Inc. | Data transfer and synchronization system |
| KR100326460B1 (ko) * | 2000-02-10 | 2002-02-28 | 김순택 | 리튬 이차 전지용 양극 활물질 및 그의 제조 방법 |
| JP4383681B2 (ja) | 2000-02-28 | 2009-12-16 | 三星エスディアイ株式会社 | リチウム二次電池用正極活物質及びその製造方法 |
| JP3611188B2 (ja) * | 2000-03-03 | 2005-01-19 | 日産自動車株式会社 | 非水電解質二次電池用正極活物質および非水電解質二次電池 |
| JP3611190B2 (ja) * | 2000-03-03 | 2005-01-19 | 日産自動車株式会社 | 非水電解質二次電池用正極活物質および非水電解質二次電池 |
| JP2002338246A (ja) | 2000-03-09 | 2002-11-27 | Ishihara Sangyo Kaisha Ltd | リチウム・マンガン複合酸化物の製造方法及び該リチウム・マンガン複合酸化物を用いてなるリチウム電池 |
| JP2001282767A (ja) | 2000-03-28 | 2001-10-12 | Seiko Instruments Inc | 電磁場解析装置、電磁場解析方法およびその方法をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体 |
| JP4210892B2 (ja) * | 2000-03-30 | 2009-01-21 | ソニー株式会社 | 二次電池 |
| JP4020565B2 (ja) * | 2000-03-31 | 2007-12-12 | 三洋電機株式会社 | 非水電解質二次電池 |
| US6677082B2 (en) * | 2000-06-22 | 2004-01-13 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
| US6680143B2 (en) | 2000-06-22 | 2004-01-20 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
| JP3890185B2 (ja) | 2000-07-27 | 2007-03-07 | 松下電器産業株式会社 | 正極活物質およびこれを含む非水電解質二次電池 |
| JP2002063900A (ja) | 2000-08-14 | 2002-02-28 | Hitachi Ltd | リチウム二次電池用正極活物質およびリチウム二次電池 |
| US6660432B2 (en) * | 2000-09-14 | 2003-12-09 | Ilion Technology Corporation | Lithiated oxide materials and methods of manufacture |
| JP3079382U (ja) | 2000-09-18 | 2001-08-17 | 株式会社山石 | 簡易ワンタッチ着装用和装帯 |
| JP2002100356A (ja) * | 2000-09-25 | 2002-04-05 | Seimi Chem Co Ltd | リチウム二次電池 |
| US6984469B2 (en) * | 2000-09-25 | 2006-01-10 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium batteries and method of preparing same |
| JP4183374B2 (ja) * | 2000-09-29 | 2008-11-19 | 三洋電機株式会社 | 非水電解質二次電池 |
| US7138209B2 (en) | 2000-10-09 | 2006-11-21 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery and method of preparing same |
| US20020053663A1 (en) * | 2000-11-06 | 2002-05-09 | Tanaka Chemical Corporation | High density cobalt-manganese coprecipitated nickel hydroxide and process for its production |
| JP5034136B2 (ja) | 2000-11-14 | 2012-09-26 | 株式会社Gsユアサ | 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池 |
| JP4137635B2 (ja) * | 2000-11-16 | 2008-08-20 | 日立マクセル株式会社 | 正極活物質および非水二次電池 |
| JP4086654B2 (ja) | 2000-11-16 | 2008-05-14 | 日立マクセル株式会社 | リチウム含有複合酸化物およびその製造方法、並びに非水二次電池 |
| US6706447B2 (en) * | 2000-12-22 | 2004-03-16 | Fmc Corporation, Lithium Division | Lithium metal dispersion in secondary battery anodes |
| JP2002234733A (ja) * | 2001-02-06 | 2002-08-23 | Tosoh Corp | 層状岩塩構造マンガン含有リチウム複合酸化物とその製造方法、並びにこれを用いた二次電池 |
| JP2002260655A (ja) | 2001-02-28 | 2002-09-13 | Nichia Chem Ind Ltd | リチウムイオン二次電池用正極活物質の製造方法 |
| WO2002073718A1 (en) * | 2001-03-14 | 2002-09-19 | Yuasa Corporation | Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same |
| DE60237441D1 (de) * | 2001-04-20 | 2010-10-07 | Gs Yuasa Corp | Ür, anode zur benutzung in einer sekundärbatterie mit wasserfreiem elektrolyt und sekundärbatterie mit wasserfreiem elektrolyt |
| JP2002321919A (ja) * | 2001-04-24 | 2002-11-08 | Nissan Motor Co Ltd | リチウムマンガン複合酸化物及びリチウム二次電池 |
| US6964828B2 (en) * | 2001-04-27 | 2005-11-15 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
| JP2002343356A (ja) | 2001-05-17 | 2002-11-29 | Dainippon Toryo Co Ltd | リチウムマンガン系複酸化物粒子、その製造方法及び二次電池 |
| JP4510331B2 (ja) * | 2001-06-27 | 2010-07-21 | パナソニック株式会社 | 非水電解質二次電池 |
| JP4635386B2 (ja) * | 2001-07-13 | 2011-02-23 | 株式会社Gsユアサ | 正極活物質およびこれを用いた非水電解質二次電池 |
| US6680145B2 (en) * | 2001-08-07 | 2004-01-20 | 3M Innovative Properties Company | Lithium-ion batteries |
| CN100459242C (zh) | 2001-08-07 | 2009-02-04 | 3M创新有限公司 | 锂离子电池用的改进的正极组合物 |
| US6878490B2 (en) * | 2001-08-20 | 2005-04-12 | Fmc Corporation | Positive electrode active materials for secondary batteries and methods of preparing same |
| ATE485241T1 (de) * | 2002-03-08 | 2010-11-15 | Altair Nanomaterials Inc | Verfahren zur herstellung nanoskaliger und submikronskaliger lithium-übergangsmetalloxide |
| DE602004017798D1 (de) * | 2003-02-21 | 2009-01-02 | Toyota Motor Co Ltd | Aktives Material für die positive Elektrode einer Sekundärbatterie mit nichtwässrigem Elektrolyt |
| US20050130042A1 (en) | 2003-12-11 | 2005-06-16 | Byd America Corporation | Materials for positive electrodes of lithium ion batteries and their methods of fabrication |
| JP4100341B2 (ja) * | 2003-12-26 | 2008-06-11 | 新神戸電機株式会社 | リチウム二次電池用正極材料及びそれを用いたリチウム二次電池 |
| JP3130813U (ja) | 2007-01-29 | 2007-04-12 | 幸夫 橋本 | 枕 |
-
2002
- 2002-08-02 CN CNB028154061A patent/CN100459242C/zh not_active Expired - Fee Related
- 2002-08-02 WO PCT/US2002/024684 patent/WO2003015198A2/en not_active Ceased
- 2002-08-02 AU AU2002355544A patent/AU2002355544A1/en not_active Abandoned
- 2002-08-02 US US10/210,919 patent/US20030108793A1/en not_active Abandoned
- 2002-08-02 KR KR1020047001759A patent/KR101036743B1/ko not_active Expired - Fee Related
- 2002-08-02 JP JP2003520018A patent/JP4955193B2/ja not_active Expired - Fee Related
- 2002-08-02 EP EP02794657A patent/EP1425810A2/en not_active Withdrawn
- 2002-08-06 TW TW091117676A patent/TW557598B/zh not_active IP Right Cessation
-
2005
- 2005-12-23 US US11/317,607 patent/US7368071B2/en not_active Expired - Lifetime
-
2011
- 2011-04-14 JP JP2011089811A patent/JP5539922B2/ja not_active Expired - Fee Related
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4550023A (en) * | 1981-08-07 | 1985-10-29 | Hans Schoberth | Method and flour for producing sliceable bread with a high bran content |
| US4780381A (en) * | 1987-11-05 | 1988-10-25 | Allied-Signal, Inc. | Rechargeable battery cathode from sodium cobalt dioxide in the O3, O'3, P3 and/or P'3 phases |
| US5874538A (en) * | 1995-10-31 | 1999-02-23 | Morinaga & Co., Ltd. | Process for producing soybean protein |
| US6214493B1 (en) * | 1996-01-15 | 2001-04-10 | The University Court Of The University Of St. Andrews | Manganese oxide based material for an electrochemical cell |
| US5753202A (en) * | 1996-04-08 | 1998-05-19 | Duracell Inc. | Method of preparation of lithium manganese oxide spinel |
| US5858324A (en) * | 1997-04-17 | 1999-01-12 | Minnesota Mining And Manufacturing Company | Lithium based compounds useful as electrodes and method for preparing same |
| US5900385A (en) * | 1997-10-15 | 1999-05-04 | Minnesota Mining And Manufacturing Company | Nickel--containing compounds useful as electrodes and method for preparing same |
| US6333128B1 (en) * | 1998-03-19 | 2001-12-25 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
| US6168887B1 (en) * | 1999-01-15 | 2001-01-02 | Chemetals Technology Corporation | Layered lithium manganese oxide bronze and electrodes thereof |
| US6368749B1 (en) * | 1999-06-23 | 2002-04-09 | Sanyo Electric Co., Ltd. | Active substances, electrodes, nonaqueous electrolyte secondary cells, and a process for fabricating the active substances |
| US6355283B1 (en) * | 1999-11-26 | 2002-03-12 | Toyofumi Yamada | Process for making soybean curd bread |
| US6291009B1 (en) * | 2000-05-16 | 2001-09-18 | Deborah W. Cohen | Method of producing a soy-based dough and products made from the dough |
Cited By (74)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8685565B2 (en) * | 2001-04-27 | 2014-04-01 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
| US8241791B2 (en) * | 2001-04-27 | 2012-08-14 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
| US20120282523A1 (en) * | 2001-04-27 | 2012-11-08 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
| US20060147798A1 (en) * | 2001-04-27 | 2006-07-06 | 3M Innovative Properties Company | Cathode compositions for lithium-ion batteries |
| US20060159994A1 (en) * | 2001-08-07 | 2006-07-20 | Dahn Jeffrey R | Cathode compositions for lithium ion batteries |
| US7368071B2 (en) | 2001-08-07 | 2008-05-06 | 3M Innovative Properties Company | Cathode compositions for lithium ion batteries |
| US20060105239A1 (en) * | 2002-10-31 | 2006-05-18 | Paulsen Jens M | Lithium transition metal oxide with gradient of metal composition |
| US7695649B2 (en) | 2002-10-31 | 2010-04-13 | Lg Chem, Ltd. | Lithium transition metal oxide with gradient of metal composition |
| WO2004040677A1 (en) | 2002-10-31 | 2004-05-13 | Lg Chem, Ltd. | Lithium transition metal oxide with gradient of metal composition |
| EP3121882A1 (en) | 2002-10-31 | 2017-01-25 | LG Chem, Ltd. | Lithium transition metal oxide with gradient of metal composition |
| US20040121234A1 (en) * | 2002-12-23 | 2004-06-24 | 3M Innovative Properties Company | Cathode composition for rechargeable lithium battery |
| US20050031957A1 (en) * | 2003-08-08 | 2005-02-10 | 3M Innovative Properties Company | Multi-phase, silicon-containing electrode for a lithium-ion battery |
| US7498100B2 (en) | 2003-08-08 | 2009-03-03 | 3M Innovative Properties Company | Multi-phase, silicon-containing electrode for a lithium-ion battery |
| US20070202407A1 (en) * | 2003-11-26 | 2007-08-30 | 3M Innovative Properties Company | Solid state synthesis of lithium ion battery cathode material |
| US7488465B2 (en) | 2003-11-26 | 2009-02-10 | 3M Innovative Properties Company | Solid state synthesis of lithium ion battery cathode material |
| US20050112054A1 (en) * | 2003-11-26 | 2005-05-26 | 3M Innovative Properties Company | Solid state synthesis of lithium ion battery cathode material |
| US7211237B2 (en) | 2003-11-26 | 2007-05-01 | 3M Innovative Properties Company | Solid state synthesis of lithium ion battery cathode material |
| US20100264363A1 (en) * | 2003-12-31 | 2010-10-21 | Jens Martin Paulsen | Electrode active material powder with size dependent composition and method to prepare the same |
| US7771877B2 (en) | 2003-12-31 | 2010-08-10 | Lg Chem, Ltd. | Electrode active material powder with size dependent composition and method to prepare the same |
| US20070122705A1 (en) * | 2003-12-31 | 2007-05-31 | Lg Chem. Ltd. | Electrode active material powder with size dependent composition and method to prepare the same |
| US8012626B2 (en) | 2003-12-31 | 2011-09-06 | Lg Chem, Ltd. | Electrode active material powder with size dependent composition and method to prepare the same |
| WO2005064715A1 (en) | 2003-12-31 | 2005-07-14 | Lg Chem, Ltd. | Electrode active material powder with size dependent composition and method to prepare the same |
| EP3432392A1 (en) | 2003-12-31 | 2019-01-23 | LG Chem, Ltd. | Electrode active material powder with size dependent composition and method to prepare the same |
| US7635536B2 (en) | 2004-09-03 | 2009-12-22 | Uchicago Argonne, Llc | Manganese oxide composite electrodes for lithium batteries |
| US8080340B2 (en) | 2004-09-03 | 2011-12-20 | Uchicago Argonne, Llc | Manganese oxide composite electrodes for lithium batteries |
| US7303840B2 (en) | 2004-09-03 | 2007-12-04 | Uchicago Argonne, Llc | Manganese oxide composite electrodes for lithium batteries |
| US20090123842A1 (en) * | 2004-09-03 | 2009-05-14 | Uchicago Argonne, Llc | Manganese oxide composite electrodes for lithium batteries |
| US20060051673A1 (en) * | 2004-09-03 | 2006-03-09 | Johnson Christopher S | Manganese oxide composite electrodes for lithium batteries |
| US20070037043A1 (en) * | 2005-07-22 | 2007-02-15 | Chang Sung K | Pretreatment method of electrode active material |
| US20070020528A1 (en) * | 2005-07-25 | 2007-01-25 | 3M Innovative Properties Company | Alloy compositions for lithium ion batteries |
| US7871727B2 (en) | 2005-07-25 | 2011-01-18 | 3M Innovative Properties Company | Alloy composition for lithium ion batteries |
| US7767349B2 (en) | 2005-07-25 | 2010-08-03 | 3M Innovative Properties Company | Alloy compositions for lithium ion batteries |
| US20070020522A1 (en) * | 2005-07-25 | 2007-01-25 | 3M Innovative Properties Company | Alloy composition for lithium ion batteries |
| US7851085B2 (en) | 2005-07-25 | 2010-12-14 | 3M Innovative Properties Company | Alloy compositions for lithium ion batteries |
| US20070020521A1 (en) * | 2005-07-25 | 2007-01-25 | 3M Innovative Properties Company | Alloy compositions for lithium ion batteries |
| US8871389B2 (en) | 2005-08-11 | 2014-10-28 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
| US7655357B2 (en) | 2005-08-11 | 2010-02-02 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
| US20070037056A1 (en) * | 2005-08-11 | 2007-02-15 | Hideki Kitao | Non-aqueous electrolyte secondary battery |
| US9017841B2 (en) | 2005-08-19 | 2015-04-28 | Lg Chem, Ltd. | Electrochemical device with high capacity and method for preparing the same |
| US8529800B2 (en) | 2005-09-29 | 2013-09-10 | Massachusetts Institute Of Technology | Oxides having high energy densities |
| US20100264381A1 (en) * | 2005-09-29 | 2010-10-21 | Massachusetts Institute Of Technology | Oxides having high energy densities |
| US7771861B2 (en) | 2005-10-13 | 2010-08-10 | 3M Innovative Properties Company | Method of using an electrochemical cell |
| TWI416779B (zh) * | 2005-10-13 | 2013-11-21 | 3M Innovative Properties Co | 使用電化電池之方法 |
| US20080311464A1 (en) * | 2005-10-13 | 2008-12-18 | Krause Larry J | Method of Using an Electrochemical Cell |
| US20070128517A1 (en) * | 2005-12-01 | 2007-06-07 | 3M Innovative Properties Company | Electrode Compositions Based On An Amorphous Alloy Having A High Silicon Content |
| US20100167126A1 (en) * | 2005-12-01 | 2010-07-01 | 3M Innovative Properties Company | Electrode compositions based on an amorphous alloy having a high silicon content |
| US7972727B2 (en) | 2005-12-01 | 2011-07-05 | 3M Innovative Properties Company | Electrode compositions based on an amorphous alloy having a high silicon content |
| US7732095B2 (en) | 2005-12-01 | 2010-06-08 | 3M Innovative Properties Company | Electrode compositions based on an amorphous alloy having a high silicon content |
| EP3249722A1 (en) | 2005-12-23 | 2017-11-29 | 3M Innovative Properties Co. | Silicon-containing alloys useful as electrodes for lithium-ion batteries |
| US8071238B2 (en) | 2005-12-23 | 2011-12-06 | 3M Innovative Properties Company | Silicon-containing alloys useful as electrodes for lithium-ion batteries |
| US20070148544A1 (en) * | 2005-12-23 | 2007-06-28 | 3M Innovative Properties Company | Silicon-Containing Alloys Useful as Electrodes for Lithium-Ion Batteries |
| US7906238B2 (en) | 2005-12-23 | 2011-03-15 | 3M Innovative Properties Company | Silicon-containing alloys useful as electrodes for lithium-ion batteries |
| US20070148546A1 (en) * | 2005-12-28 | 2007-06-28 | Noriyuki Shimizu | Non-aqueous electrolyte secondary battery |
| US7892679B2 (en) | 2005-12-28 | 2011-02-22 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
| US8227113B2 (en) | 2006-02-08 | 2012-07-24 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
| US7955734B2 (en) | 2006-02-08 | 2011-06-07 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
| US8530092B2 (en) | 2006-02-08 | 2013-09-10 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
| US20070218359A1 (en) * | 2006-02-08 | 2007-09-20 | Noriyuki Shimizu | Non-aqueous electrolyte secondary battery |
| US20070269718A1 (en) * | 2006-05-22 | 2007-11-22 | 3M Innovative Properties Company | Electrode composition, method of making the same, and lithium ion battery including the same |
| US20080280205A1 (en) * | 2007-05-07 | 2008-11-13 | 3M Innovative Properties Company | Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same |
| US20090087744A1 (en) * | 2007-09-28 | 2009-04-02 | 3M Innovative Properties Company | Method of making cathode compositions |
| US20090087747A1 (en) * | 2007-09-28 | 2009-04-02 | 3M Innovative Properties Company | Sintered cathode compositions |
| US8012624B2 (en) | 2007-09-28 | 2011-09-06 | 3M Innovative Properties Company | Sintered cathode compositions |
| US9343711B2 (en) | 2010-09-24 | 2016-05-17 | Kabushiki Kaisha Toshiba | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery |
| US8916295B2 (en) | 2011-03-09 | 2014-12-23 | Nissan Motor Co., Ltd. | Positive electrode active material for lithium ion secondary battery |
| US9461299B2 (en) | 2012-02-01 | 2016-10-04 | Nissan Motor Co., Ltd. | Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery |
| US9391326B2 (en) | 2012-03-07 | 2016-07-12 | Nissan Motor Co., Ltd. | Positive electrode active material, positive electrode for electric device, and electric device |
| US9306211B2 (en) | 2012-03-07 | 2016-04-05 | Nissan Motor Co., Ltd. | Positive electrode active material, positive electrode for electrical device, and electrical device |
| US9391322B2 (en) | 2013-03-15 | 2016-07-12 | E I Du Pont De Nemours And Company | Cathode material and battery |
| WO2014143834A1 (en) * | 2013-03-15 | 2014-09-18 | E. I. Du Pont De Nemours And Company | High voltage lithium ion battery |
| US10158117B2 (en) | 2013-07-31 | 2018-12-18 | Nissan Motor Co., Ltd. | Transition metal oxide containing solid-solution lithium, and non-aqueous electrolyte secondary battery using transition metal oxide containing solid-solution lithium as positive electrode |
| US9906060B2 (en) | 2013-09-06 | 2018-02-27 | Nissan Motor Co., Ltd. | Control device and control method for a secondary battery |
| US20190013518A1 (en) * | 2017-07-10 | 2019-01-10 | Uchicago Argonne, Llc | High valent lithiated surface structures for lithium ion battery electrode materials |
| US10431820B2 (en) * | 2017-07-10 | 2019-10-01 | Uchicago Argonne, Llc | High valent lithiated surface structures for lithium ion battery electrode materials |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101036743B1 (ko) | 2011-05-24 |
| WO2003015198A2 (en) | 2003-02-20 |
| JP2011155017A (ja) | 2011-08-11 |
| JP2004538610A (ja) | 2004-12-24 |
| JP5539922B2 (ja) | 2014-07-02 |
| AU2002355544A1 (en) | 2003-02-24 |
| CN1582509A (zh) | 2005-02-16 |
| WO2003015198A3 (en) | 2004-04-01 |
| TW557598B (en) | 2003-10-11 |
| US20060159994A1 (en) | 2006-07-20 |
| US7368071B2 (en) | 2008-05-06 |
| EP1425810A2 (en) | 2004-06-09 |
| CN100459242C (zh) | 2009-02-04 |
| KR20040022234A (ko) | 2004-03-11 |
| JP4955193B2 (ja) | 2012-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7368071B2 (en) | Cathode compositions for lithium ion batteries | |
| EP1390994B1 (en) | Improved cathode compositions for lithium-ion batteries | |
| EP1189296B9 (en) | Lithiated oxide materials and methods of manufacture | |
| US5759717A (en) | Method for manufacturing a positive electrode active material for lithium battery | |
| JP4813453B2 (ja) | リチウム含有複合酸化物および非水二次電池 | |
| US7771875B2 (en) | Positive electrodes for rechargeable batteries | |
| US20220029160A1 (en) | Cathode materials for use in lithium cells and batteries | |
| HK1063381B (en) | Improved cathode compositions for lithium-ion batteries | |
| Lee | Structural and electrochemical characterization of high-energy oxide cathodes for lithium ion batteries |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAHN, JEFFREY R.;LU, ZHONGHUA;REEL/FRAME:013172/0229 Effective date: 20020726 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |