JP3611188B2 - 非水電解質二次電池用正極活物質および非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質および非水電解質二次電池 Download PDF

Info

Publication number
JP3611188B2
JP3611188B2 JP2000058087A JP2000058087A JP3611188B2 JP 3611188 B2 JP3611188 B2 JP 3611188B2 JP 2000058087 A JP2000058087 A JP 2000058087A JP 2000058087 A JP2000058087 A JP 2000058087A JP 3611188 B2 JP3611188 B2 JP 3611188B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000058087A
Other languages
English (en)
Other versions
JP2001250549A (ja
Inventor
沢 達 弘 福
像 文 男 宗
澤 康 彦 大
上 雄 児 丹
原 卓 也 三
村 貴 志 木
原 一 夫 砂
原 学 数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Nissan Motor Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, Nissan Motor Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2000058087A priority Critical patent/JP3611188B2/ja
Priority to US09/791,879 priority patent/US6613479B2/en
Priority to EP01104734A priority patent/EP1130663B1/en
Priority to DE60100548T priority patent/DE60100548T2/de
Publication of JP2001250549A publication Critical patent/JP2001250549A/ja
Application granted granted Critical
Publication of JP3611188B2 publication Critical patent/JP3611188B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、従来のスピネル構造リチウムマンガン複合酸化物よりも高容量であり、層状構造リチウムマンガン複合酸化物よりも高温でのサイクル耐久性に優れたLi含有マンガン層状複合酸化物よりなる非水電解質二次電池用正極活物質およびこれを正極活物質として用いた非水電解質リチウム二次電池に関するものである。
【0002】
【従来の技術】
近年の環境問題において、ゼロエミッションである電気自動車の開発が強く求められており、充放電可能な様々な二次電池の中でも、リチウム二次電池は、充放電電圧が高く、充放電容量が大きいことから、電気自動車用二次電池として期待されている。
【0003】
従来のリチウム二次電池用正極活物質としてはLiCoOが用いられていたが、使用環境下での安定性,価格,埋蔵量などの面から、自動車の二次電池用正極活物質としてスピネル構造リチウムマンガン複合酸化物(LiMn)を使用することが現在検討されている。しかし、二次電池用正極活物質として使用されるLiMnは高温での耐久性が十分でなく、電解質中へ正極材料が溶出して負極の性能劣化を招くという問点があり、そのような問題点を解決する手段として、Mnの一部を遷移金属元素や典型金属元素で置換する手法が試みられている(特開平11−171550号公報,特開平11−73962号公報等)。
【0004】
【発明が解決しようとする課題】
しかしながら、高温でのサイクル耐久性を改善する目的で特開平11−71115号公報において開示されているようにMnの一部を種々の元素で置換した場合、置換の結果、結晶構造中に歪みが導入され、室温でのサイクル耐久性が悪くなるという問題点があった。また、酸素の一部をフッ素等のハロゲン元素で置換することによりサイクル耐久性の向上を図る(特開平10−334918号公報,特開平11−45710号公報等)ことも検討されているが、サイクル耐久性のさらなる改善を狙い、結晶構造の安定化を図るために大量の元素置換を行うと、活物質容量の低下を招いてしまうという問題点があった。
【0005】
一方、容量の面でいえば、LiCoO系(活物質容量140mAh/g)はスピネル構造リチウムマンガン複合酸化物系(LiMn;活物質容量;100mAh/g)よりも高容量ではあるが、上述したように使用環境下での安定性などが十分ではない。そこで、結晶構造中のLi含有量がスピネル構造型リチウムマンガン複合酸化物系(LiMn)より多く、LiCoO系(活物質容量140mAh/g)に比べて使用環境下での安定性により一層優れた高容量リチウム複合酸化物正極活物質の開発が望まれているという課題があった。
【0006】
このような高容量型のリチウム二次電池用正極活物質においては、結晶構造に基づく化学式中のリチウム含有量により決まることが知られている。そこで、高容量Mn含有リチウム複合酸化物正極活物質を見出すために、結晶化学的な考察に基づき、新規正極活物質の探索が試みられてきた(特許第2870741号等)。
【0007】
近年、LiMnO系層状酸化物を用いることにより、従来のスピネル構造リチウムマンガン複合酸化物系に比べ2倍以上の正極活物質容量約270mAh/gを有することが見出された(A. Robert and P.G.Buruce:Nature,vol.381 (1996) p499.)。
【0008】
しかし、十分な充放電特性は例えば55℃で得ることができるものの、室温では1/3程度に活物質容量が低下してしまうという問題点がある。また、十分な充放電特性を確保するために室温以上で充放電を繰り返すと徐々に容量が低下し、良好なサイクル耐久性が確保されないという問題点があった。
【0009】
【発明の目的】
本発明は、このような従来の課題にかんがみてなされたものであって、これまでのスピネル構造リチウムマンガン複合酸化物よりも高容量であり、層状構造リチウムマンガン複合酸化物よりも高温でのサイクル耐久性に優れたリチウムマンガン層状複合酸化物正極活物質を提供し、この高容量のリチウムマンガン層状複合酸化物を用いた高性能なリチウム二次電池を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明に係わる非電解質二次電池用正極活物質は、請求項1に記載しているように、Liの一部を欠損させかつ酸素の一部をフッ素(F)で置換した化学式Li1−xMnO2−y−δで表わされ、リチウム欠損量xが0<x<1の有理数であり、酸素欠陥量δがδ≦0.2であるようリチウム欠損量xを制御しかつ酸素の一部をFで置換し、F置換量yが0.03≦y≦0.25であるリチウム含有マンガン層状複合酸化物よりなるものとしたことを特徴としている。
【0012】
また、本発明に係わる非水電解質二次電池用正極活物質は、請求項2に記載しているように、リチウム欠損量xがa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であるリチウム含有マンガン層状複合酸化物よりなるものとすることができる。
【0014】
さらにまた、本発明に係わる非水電解質二次電池用正極活物質は、請求項3に記載しているように、Mnの一部が置換金属元素Mで置換された化学式Li1−xMn1−z2−y−δで表わされ、Mnの置換金属元素MがMnを除く遷移金属および典型金属元素のうちから選ばれた少なくとも1種以上で、Mnの置換金属元素Mの置換量zが0.03≦z≦0.5であるリチウム含有マンガン層状複合酸化物よりなるものとすることができる。
【0015】
さらにまた、本発明に係わる非水電解質二次電池用正極活物質は、請求項4に記載しているように、Mnの置換金属元素MがCo,Ni,Cr,Fe,Al,Ga,Inのうちから選ばれた少なくとも1種以上であるリチウム含有マンガン層状複合酸化物よりなるものとすることができる。
【0017】
さらにまた、本発明に係わる非水電解質二次電池用正極活物質は、請求項5に記載しているように、Mnの置換金属元素Mの置換量zが0.03<z≦0.5の有理数であるリチウム含有マンガン層状複合酸化物よりなるものとすることができる。
【0018】
本発明に係わる非水電解質二次電池は、請求項6に記載しているように、上記非水電解質二次電池用正極活物質を正極に用い、Li金属、複合酸化物、窒化物、炭素のうちから選ばれた材料を負極に用いたものとしたことを特徴としている。
【0019】
【発明の作用】
これまでのスピネル構造および層状構造リチウムマンガン複合酸化物は、Mn+3がヤンテーラーイオンであるため、強い結晶内部の格子歪みを有し、Liの充放電によりMnの価数が+3から+4まで変化し、結晶格子の体積変化が繰り返され、その結果、特性の劣化が生じて十分な耐久性が得られない。そこで、Liの結晶格子からの出入りに際して、結晶格子内部の歪みが発生しないように、あらかじめ格子の支柱となりうる元素を導入して結晶構造の安定化を図ることが考えられる。そこで、我々は、このような観点で新規複合酸化物の探索を鋭意進めてきた。
【0020】
従来のNaCl型MO結晶と層状構造LiMO複合酸化物は非常に類似した構造であると考えられる。我々はこの規則的な構造に着目し、層状構造LiMO複合酸化物がMO結晶ブロックの繰り返しと考えると、層状構造LiMO複合酸化物はMOブロック[MO]とLiOブロック[LiO]が交互に繰り返えされた[LiO][MO]ブロックの繰り返しにより構成されたものであると考えられる。
【0021】
そこで、従来知られているナトリムマンガン酸化物Na2/3MnOの結晶構造について、このブロック構造を適用して考えると、Na2/3MnOは[Na2/3O][MnO]と記述することができる。
【0022】
これは[NaO][MnO]ブロックにおける[NaO]ブロック中のNa占有率を規則的に欠損させることにより、新規な層状構造を有するリチウムマンガン層状酸化物を創出させることが可能であることを示唆するものである。さらに、従来層状構造中の酸素の一部をフッ素で置換することにより格子の安定化が図られるとの知見が得られている。
【0023】
そこで、このような考察を[LiO][MO]ブロックに適用すれば[LiO]ブロック中のLi占有率を規則的に欠損させ、同時に酸素の一部をフッ素で置換することにより、従来にない耐久性に優れた新規な層状リチウムマンガン複合酸化物を創出させることが可能であるという考えに至った。
【0024】
さらに、元来、結晶化学的にLiサイトとMnサイトの違いは小さく、規則的な元素置換量を選ぶことにより結晶中の歪みや化学結合の安定化が行われ、充放電時のサイクル安定性の向上と耐久安定性、電解液との反応の抑制等が可能となり、サイクル安定性に優れたマンガン層状複合酸化物正極活物質が得られるという材料設計指針に到達した。
【0025】
この規則的元素置換という設計指針に基づき、例えば、高温での耐久安定性を保持させるために、Mnサイトの規則的な元素置換量yを、1/2、1/3、2/3、1/4、1/5、2/5、1/6、・・・、1/8、・・等と選ぶことにより、従来の層状構造リチウムマンガン複合酸化物よりもサイクル安定性に優れ、高容量な新規Mn含有リチウム複合酸化物正極活物質を見出し、上記課題が解決できることを見いだし本発明を完成するに至った。
【0026】
すなわち、本発明では、リチウムイオンの吸蔵放出が可能な負極活物質と、リチウムイオンの吸蔵放出が可能なリチウム含有複合酸化物からなる正極活物質と、リチウムイオン伝導性の非水電解液を備えた非水二次電池において、前記リチウム含有複合酸化物が化学式Li1−xMnO2−y−δで表さわれ、リチウム欠損量xが有理数であり、a/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であり、酸素欠陥量δがδ≦0.2であり、F置換量yが0.03≦y≦0.25であり、Mnの一部が置換金属元素Mで置換された化学式Li1−xMn1−z2−y−δで表わされ、Mnの置換金属元素MがCo,Ni,Cr,Fe,Al,Ga,Inのうちから選ばれた少なくとも1種以上であり、Mnの置換金属元素Mの置換量zが0.03≦z≦0.5であるLi欠損型フッ素安定化マンガン複合酸化物とすることにより、従来の層状構造リチウムマンガン複合酸化物よりもサイクル安定性に優れ、高容量な新規リチウム複合酸化物正極活物質であるものとし、そして、このような正極活物質を用いた非水電解質二次電池としたものである。
【0027】
本発明に係わる非水電解質二次電池用正極活物質において、化学式Li1−xMnO2−y−δ(または、化学式Li1−xMn1−z2−y−δ)で表わされる式のうち、リチウム欠損量xが0<x<1の有理数であるようにしているが、これは、リチウム欠損量が少ないとリチウム含有マンガン層状複合酸化物の定比組成から欠損するリチウム量が少なくなって十分なサイクル安定性が確保されないので好ましくなく、また、リチウム欠損量が多すぎると定比組成から欠損するリチウム量が多くなって活物質容量が低下するので好ましくない。
【0028】
また、酸素欠陥量δはδ≦0.2であるようにしているが、この酸素欠陥量δが0.2よりも大きいと結晶構造が不安定になり、サイクル性能が低下するので好ましくない。
【0029】
さらに、リチウム欠損量xが上記値を有するものであってa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であるようにしているが、このとき、aおよびbが1よりも小さいと十分なサイクル耐久性が確保されないので好ましくなく、30よりも大きくなると十分なサイクル耐久性が確保されないので好ましくなく、a<bの関係を満たさないと結晶構造が安定化せず、サイクル性能を低下させるので好ましくなく、その変動幅が±5%を超えると十分なサイクル耐久性が確保されないので好ましくない。
【0030】
さらにまた、F置換量yは0.03≦y≦0.25であるようにしているが、F置換量yが0.03よりも少ないと十分な置換の効果が得られないので好ましくなく、0.25よりも多くなると結晶構造が不安定となり、サイクル性能が低下するので好ましくない。
【0031】
さらにまた、Mnの置換金属元素Mの置換量zは0.03≦z≦0.5であるようにしているが、金属元素Mの置換量zが0.03よりも少ないと耐久性が十分に確保されないので好ましくなく、0.5よりも多くなると十分な活物質容量を得られないので好ましくない。
【0032】
【発明の実施の形態】
本発明によるリチウムマンガン複合酸化物を製造するに際しては、マンガン化合物とリチウム化合物とフッ素化合物と置換金属元素(遷移金属元素や典型金属元素)の化合物等を所定のモル比で均一に混合し、これを低酸素濃度雰囲気下で焼成する工程を採用することができる。
【0033】
このうち、マンガン化合物としては、電解二酸化マンガン,化学合成二酸化マンガン,三酸化二マンガン,γ−MnOOH,炭酸マンガン,硝酸マンガン,酢酸マンガン等を用いることができる。そして、このマンガン化合物粉末の平均粒径は0.1〜100μmが好適であり、好ましくは20μm以下が良好である。これはマンガン化合物の平均粒径が大きい場合、マンガン化合物とリチウム化合物の反応が著しく遅くなり、不均一な生成物を形成しにくくなるためである。
【0034】
他方、リチウム化合物としては、炭酸リチウム,水酸化リチウム,硝酸リチウム,酸化リチウム,酢酸リチウム等を用いることができる。そして、好ましくは炭酸リチウムおよび水酸化リチウムであり、また、その平均粒径は30μm以下であることが望ましい。
【0035】
また、フッ素化合物としては、フッ化マンガンあるいはフッ化リチウムを用いることができるが、好ましくはフッ化リチウムであり、また、その平均粒径は30μm以下が好適であり、さらに好ましくは10μm以下が良好である。
【0036】
本発明によるリチウムマンガン複合酸化物を製造するための前駆体の調製方法としては、マンガン化合物,リチウム化合物およびフッ素化合物を乾式混合あるいは湿式混合する方法、マンガン化合物とフッ素化合物から合成した含フッ素マンガン酸化物とリチウム化合物を乾式混合あるいは湿式混合する方法、LiMnOとフッ素化合物を乾式混合あるいは湿式混合する方法などがあげられる。
【0037】
焼成は低酸素濃度雰囲気で行う必要があり、好ましくは、窒素あるいはアルゴン、二酸化炭素等の酸素を含まないガス雰囲気で焼成することが望ましい。また、その際の酸素濃度は1000ppm以下とするのが良く、好ましくは100ppm以下とするのが良い。
【0038】
焼成温度は1100℃以下とするのが良く、好ましくは950℃以下とするのが良い。そして、1100℃を超える温度では生成物が分解しやすくなる。また、焼成時間は1〜48時間とするのが良く、好ましくは5〜24時間とするのが良い。さらに、焼成方法は一段焼成あるいは必要に応じて焼成温度を変えた多段焼成を行っても良い。
【0039】
本発明によるリチウムマンガン複合酸化物を製造するための前駆体に、含炭素化合物、好ましくはカーボンブラックやアセチレンブラック等の炭素粉末、クエン酸等の有機物を添加することにより、焼成雰囲気の酸素濃度を効率的に下げることができる。そして、その際の添加量は0.05〜10%であり、好ましくは0.1〜2%である。ここで、添加量が少ない場合はその効果が低く、添加量が多い場合は副生成物が生成しやすく、また、添加した含炭素化合物の残存により目的物の純度が低下するため好ましくない。
【0040】
本発明による非水電解質二次電池において、上記のリチウムマンガン複合酸化物よりなる正極(物質)と組み合わせて用いられる負極(物質)としては、通常の非水電解質二次電池に用いられる材料がいずれも使用可能であり、例えば金属リチウム,リチウム合金,SnSiO等の金属酸化物,LiCoNなどの金属窒化物、炭素材料などを用いることができる。そして、炭素材料としては、コークス,天然黒鉛,人造黒鉛,難黒鉛化炭素などを用いることができる。
【0041】
さらに、電解液としては、リチウム塩を電解質とし、非水溶媒に溶解したものを使用することができる。さらにまた、電解質としては、LiClO,LiAsF,LiPF,LiBF,LiCFSO,Li(CFSONなど従来公知のものが用いることができる。
【0042】
有機溶媒としては、特に限定されないが、カーボネート類,ラクトン類,エーテル類などが挙げられ、例えば、エチレンカーボネート,プロピレンカーボネート,ジエチルカーボネート,ジメチルカーボネート,メチルエチルカーボネート,1、2ージメトキシエタン,1、2−ジエトキシエタン,テトラヒドロフラン,1、3ージオキソラン,γーブチロラクトンなどの溶媒を単独もしくは2種類以上混合して用いることができる。そして、これらの溶媒に溶解される電解質の濃度は0.5〜2.0モル/リットルとして用いることができる。
【0043】
上記の他に、上記電解質を高分子マトリックスに均一分散させた固体または粘稠体、あるいはこれらに非水溶媒を含浸させたものも用いることができる。そして、高分子マトリックスとしては、例えば、ポリエチレンオキシド,ポリプロピレンオキシド,ポリアクリロニトリル,ポリフッ化ビニリデンなどを用いることができる。
【0044】
また、正極と負極の短絡防止のためのセパレーターを設けることができ、セパレーターの例としては、ポリエチレン,ポリプロピレン,セルロースなどの材料の多孔性シートや不織布等が用いられる。
【0046】
【発明の効果】
本発明による非水電解質二次電池用正極活物質では、請求項1に記載しているように、Liの一部を欠損させかつ酸素の一部をフッ素(F)で置換した化学式Li1−xMnO2−y−δで表わされ、リチウム欠損量xが0<x<1の有理数であり、酸素欠陥量δがδ≦0.2であるようリチウム欠損量xを制御しかつ酸素の一部をFで置換し、F置換量yが0.03≦y≦0.25であるリチウム含有マンガン層状複合酸化物よりなるものとしたから、これまでのスピネル構造リチウムマンガン複合酸化物よりも高容量であり、層状構造リチウムマンガン複合酸化物よりも高温でのサイクル耐久性に優れたリチウム含有マンガン層状複合酸化物よりなる非水電解質二次電池用正極活物質を提供することが可能であるという著しく優れた効果がもたらされる。
【0047】
また、請求項2に記載しているように、リチウム欠損量xがa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であるリチウム含有マンガン層状複合酸化物よりなるものとすることによって、これまでのスピネル構造リチウムマンガン複合酸化物よりも高容量であり、層状構造リチウムマンガン複合酸化物よりの高温でのサイクル耐久性に優れ、とくに、リチウム欠損量xが0<x<1の有理数であり、リチウム欠損量xがa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であり酸素欠陥量δがδ≦0.2であるようリチウム欠損量xを制御しかつ酸素の一部をFで置換し、F置換量yが0.03≦y≦0.25であるものとしたから、活物質容量を低下させることなく、十分なサイクル安定性を確保することが可能であるという著しく優れた効果がもたらされる。
【0049】
さらにまた、請求項3に記載しているように、Mnの一部が置換金属元素Mで置換された化学式Li1−xMn1−z2−y−δで表わされ、Mnの置換金属元素MがMnを除く遷移金属および典型金属元素のうちから選ばれた少なくとも1種以上で、Mnの置換金属元素Mの置換量zが0.03≦z≦0.5であるリチウム含有マンガン層状複合酸化物よりなるものとすることによって、これまでのスピネル構造リチウムマンガン複合酸化物よりも高容量であり、層状構造リチウムマンガン複合酸化物よりも高温でのサイクル耐久性に優れ、とくに、リチウム欠損量xが0<x<1の有理数であり、リチウム欠損量xがa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であり酸素欠陥量δがδ≦0.2であるようリチウム欠損量xを制御しかつ酸素の一部をFで置換し、F置換量yが0.03≦y≦0.25であるものとしたから、活物質容量を低下させることなく、十分なサイクル安定性を確保することが可能であるという著しく優れた効果がもたらされる。
【0050】
さらにまた、請求項4に記載しているように、Mnの置換金属元素MがCo,Ni,Cr,Fe,Al,Ga,Inのうちから選ばれた少なくとも1種以上であるリチウム含有マンガン層状複合酸化物よりなるものとすることによって、これまでのスピネル構造リチウムマンガン複合酸化物よりも高容量であり、層状構造リチウムマンガン複合酸化物よりも高温でのサイクル耐久性に優れ、とくに、リチウム欠損量xが0<x<1の有理数であり、リチウム欠損量xがa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であり酸素欠陥量δがδ≦0.2であるようリチウム欠損量xを制御しかつ酸素の一部をFで置換し、F置換量yが0.03≦y≦0.25であるものとしたから、活物質容量を低下させることなく、十分なサイクル安定性を確保することが可能であるという著しく優れた効果がもたらされる。
【0052】
さらにまた、請求項5に記載しているように、Mnの置換金属元素Mの置換量zが0.03<z≦0.5の有理数であるリチウム含有マンガン層状複合酸化物よりなるものとすることによって、これまでのスピネル構造リチウムマンガン複合酸化物よりも高容量であり、層状構造リチウムマンガン複合酸化物よりも高温でのサイクル耐久性に優れ、とくに、リチウム欠損量xが0<x<1の有理数であり、リチウム欠損量xがa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であり酸素欠陥量δがδ≦0.2であるようリチウム欠損量xを制御しかつ酸素の一部をFで置換し、F置換量yが0.03≦y≦0.25であり、Mnの一部が所定の金属元素で置換されたものとしたから、活物質容量を低下させることなく、十分なサイクル安定性を確保することが可能であるという著しく優れた効果がもたらされる。
【0053】
本発明による非水電解質二次電池では、請求項6に記載しているように、上記リチウム含有マンガン層状複合酸化物よりなる非水電解質二次電池用正極活物質を正極に用い、Li金属、複合酸化物、窒化物、炭素のうちから選ばれた材料を負極に用いたものとしたから、これまでのスピネル構造リチウムマンガン複合酸化物よりも高容量であり、層状構造リチウムマンガン複合酸化物よりも高温でのサイクル耐久性に優れ、EV、HEV用電池としてコンパクトで長寿命性能を発揮する高性能なリチウム二次電池を提供することが可能であるという著しく優れた効果がもたらされる。
【0054】
【実施例】
以下、本発明の実施例について比較例と共に詳細に説明するが、本発明はこのような実施例のみに限定されないことはいうまでもない。そして、これらの実施例および比較例においては下記のようにして作成した正極と負極と非水電解液とを用いて密閉型非水溶媒電池セルを作成した。
【0055】
(正極の作成) 水酸化リチウム一水和物粉末および三酸化二マンガン粉末、フッ化リチウム、Mnサイトの置換化合物を所定のモル比で秤量し、これらを乳鉢上にて混合させた後、この混合物をそれぞれアルゴン雰囲気下において950℃で24時間加熱処理を行ない、冷却後、乳鉢を用いて焼成物の粉砕を行い、リチウムとマンガンとフッ素が下記の表1に示すようなモル比となった各正極材料を得た。
【0056】
(電池の作成) 得られた正極活物質をそれぞれ、導電材としてのアセチレンブラックおよび結着剤としてのPTFE粉末とを重量比で80:16:4の割合で混合した。この混合物を2t/cmの加圧力で直径12mmの円板状に成形し、得られた成形物を150℃で16時間加熱処理して正極体とした。次に、直径12mmの円板状リチウム金属とステンレス鋼製の網状負極集電板とを圧着して負極体とした。
【0057】
電解液としては、エチレンカーボネートとジエチルカーボネートを体積比で1:1とした混合溶媒に、LiPFを1モル/リットルの濃度で溶解した溶液を用いた。そして、セパレーターとしてはポリプロピレンフィルムを用いた。
【0058】
正極の集電体としてはSUS薄板を用い、正極体および負極体はそれぞれリードを取り出したうえで間にセパレーターを介し対向させて素子となし、この素子をばねで押さえながら2枚のPTFE板で挟んだ。さらに、素子の側面もPTFE板で覆って密閉させ、密閉型非水溶媒電池セルとした。また、セルの作成はアルゴン雰囲気下で行った。
(評価)上記の密閉型非水溶媒電池セルを用い、60℃の雰囲気温度において、電圧4.3Vから2.0Vまで0.5mA/cmの定電流で充放電を繰り返し行い、放電容量が初期放電容量の90%を下回るまでのサイクル数を求め、その結果を下記の表1に併わせて示した。
【0059】
各実施例を今回活物質の設計指針にあるブロック構造[Li1−xO][Mn1−z1−y]で記述したものを下記に示す。
【0060】
(実施例1)
表1の実施例1の欄に記載のLi0.67MnO1.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないフ゛ロック構造記述を用いると
[Li2/3O][MnO1.950.05
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/3、z=0,y=0.05のときの実施例である。
【0061】
(実施例2)
表1の実施例2の欄に記載のLi0.83MnO1.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li5/6O][MnO1.950.05
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/6、z=0、y=0.05のときの実施例である。
【0062】
(実施例3)
表1の実施例3の欄に記載のLi0.967MnO1.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li29/30O][MnO1.950.05
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/30、z=0、y=0.05のときの実施例である。
【0063】
(実施例4)
表1の実施例4の欄に記載のLi0.967MnO1.90(−δ)0.10は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li29/30O][MnO1.900.10]
と記載でき、一般的ブロック構造式[Li −xO][Mn1−z1−y]において、x=1/30、z=0、y=0.10のときの実施例である。
【0064】
(実施例5)
表1の実施例5の欄に記載のLi0.967MnO1.75(−δ)0.25は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li29/30O][MnO1.750.25
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/30、z=0、y=0.25のときの実施例である。
【0065】
(実施例6)
表1の実施例6の欄に記載のLi0.83Mn0.75Co0.251.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li5/6O][Mn3/4Co1/41.950.05
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/6、z=1/4でM=Co、y=0.05のときの実施例である。
【0066】
(実施例7)
表1の実施例7の欄に記載のLi0.83Mn0.75Ni0.251.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li5/6O][Mn3/4Ni1/41.950.05
と記載でき、一般的ブロック構造式[Li1−x O][Mn1−z1−y]においてx=1/6、z=1/4でM=Ni、y=0.05のときの実施例である。
【0067】
(実施例8)
表1の実施例8の欄に記載のLi0.83Mn0.75Fe0.251.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li5/6O][Mn3/4Fe1/41.950.05
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/6、z=1/4でM=Fe、y=0.05のときの実施例である。
【0068】
(実施例9)
表1の実施例9の欄に記載のLi0.83Mn0.75Al0.251.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li5/6O][Mn3/4Al1/41.950.05
と記載でき、一般的ブロック構造式
[Li1−xO][Mn1−z1−y]においてx=1/6、z=1/4でM=Al、y=0.05のときの実施例である。
【0069】
(実施例10)
表1の実施例10の欄に記載のLi0.83Mn0.75Cr0.251. 95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li5/6O][Mn3/4Cr1/41.950.05
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/6、z=1/4でM=Cr、y=0.05のときの実施例である。
【0070】
(実施例11)
表1の実施例11の欄に記載のLi0.83Mn0.75Ga0.251.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li5/6O][Mn3/4Ga1/41.950.05
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/6、z=1/4でM=Ga、y=0.05のときの実施例である。
【0071】
(実施例12)
表1の実施例12の欄に記載のLi0.83Mn0.75In0.251.95(−δ)0.05は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[Li5/6O][Mn3/4In1/41.950.05
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−z1−y]においてx=1/6、z=1/4でM=In、y=0.05のときの実施例である。
【0072】
(比較例1)
表1の比較例1の欄に記載のLi1.0 Mn1.02(−δ)は、酸素欠損(酸素不定比量δ)を考慮しないブロック構造記述を用いると
[LiO][MnO]
と記載でき、一般的ブロック構造式[Li1−xO][Mn1−y O]においてx=0、y=0のときの比較例である。
【0073】
【表1】
Figure 0003611188
【0074】
この結果、表1に示すように、正極材料の組成が化学式Li1−xMn1−z2−y−δで表わされ、リチウム欠損量xが0<x<1の有理数であり、酸素欠陥量δがδ≦0.2であるようリチウム欠損量xを制御しかつ酸素の一部をFで置換し、F置換量yが0.03≦y≦0.25であるF含有Li欠損含マンガン複合酸化物を、望ましくはa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であり、置換金属元素MがCo,Ni,Cr,Fe,Al,Ga,Inのうちから選ばれた少なくとも1種以上からなり、Mnの置換金属元素Mの置換量zが0または0.03≦z≦0.5である条件を満たしているLi含有マンガン複合酸化物を正極材料として使用した実施例1〜12の各リチウム二次電池は、上記条件を満たしていないLi含有マンガン複合酸化物を正極材料として使用した比較例のリチウム二次電池に比べて、サイクル特性が著しく向上した高性能な非水二次電池とすることができ、EV、HEV用電池としてコンパクトでありながら長寿命性能が得られることが認められた。

Claims (6)

  1. Liの一部を欠損させかつ酸素の一部をフッ素(F)で置換した化学式Li1−xMnO2−y−δで表わされ、リチウム欠損量xが0<x<1の有理数であり、酸素欠陥量δがδ≦0.2であるようリチウム欠損量xを制御しかつ酸素の一部をFで置換し、F置換量yが0.03≦y≦0.25であるリチウム含有マンガン層状複合酸化物よりなることを特徴とする非水電解質二次電池用正極活物質。
  2. リチウム欠損量xがa/b比(x=a/b)で表わされ、aおよびbが各々1ないし30の自然数から選ばれた整数であり、a<bの関係を満たし、xの組成変動幅が±5%以内であるリチウム含有マンガン層状複合酸化物よりなることを特徴とする請求項1記載の非水電解質二次電池用正極活物質。
  3. 上記Mnの一部が置換金属元素Mで置換された化学式Li1−xMn1−z2−y−δで表わされ、Mnの置換金属元素MがMnを除く遷移金属および典型金属元素のうちから選ばれた少なくとも1種以上で、Mnの置換金属元素Mの置換量zが0.03≦z≦0.5であるリチウム含有マンガン層状複合酸化物よりなることを特徴とする請求項2記載の非水電解質二次電池用正極活物質。
  4. 上記Mnの置換金属元素MがCo,Ni,Cr,Fe,Al,Ga,Inのうちから選ばれた少なくとも1種以上であるリチウム含有マンガン層状複合酸化物よりなることを特徴とする請求項3記載の非水電解質二次電池用正極活物質。
  5. Mnの置換金属元素Mの置換量zが0.03<z≦0.5の有理数であるリチウム含有マンガン層状複合酸化物よりなることを特徴とする請求項4に記載の非水電解質二次電池用正極活物質。
  6. 請求項1〜5記載の非水電解質二次電池用正極活物質を正極に用い、Li金属、複合酸化物、窒化物、炭素のうちから選ばれた材料を負極に用いたことを特徴とする非水電解質二次電池。
JP2000058087A 2000-03-03 2000-03-03 非水電解質二次電池用正極活物質および非水電解質二次電池 Expired - Fee Related JP3611188B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000058087A JP3611188B2 (ja) 2000-03-03 2000-03-03 非水電解質二次電池用正極活物質および非水電解質二次電池
US09/791,879 US6613479B2 (en) 2000-03-03 2001-02-26 Positive electrode material and battery for nonaqueous electrolyte secondary battery
EP01104734A EP1130663B1 (en) 2000-03-03 2001-02-26 Positive electrode material for battery and nonaqueous electrolyte secondary battery
DE60100548T DE60100548T2 (de) 2000-03-03 2001-02-26 Aktives Material für die positive Elektrode einer Batterie und nichtwässrige Sekundärbatterie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058087A JP3611188B2 (ja) 2000-03-03 2000-03-03 非水電解質二次電池用正極活物質および非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2001250549A JP2001250549A (ja) 2001-09-14
JP3611188B2 true JP3611188B2 (ja) 2005-01-19

Family

ID=18578734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058087A Expired - Fee Related JP3611188B2 (ja) 2000-03-03 2000-03-03 非水電解質二次電池用正極活物質および非水電解質二次電池

Country Status (4)

Country Link
US (1) US6613479B2 (ja)
EP (1) EP1130663B1 (ja)
JP (1) JP3611188B2 (ja)
DE (1) DE60100548T2 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287474C (zh) * 2001-03-22 2006-11-29 松下电器产业株式会社 正极活性物质及含该活性物质的非水电解质二次电池
JP5036100B2 (ja) * 2001-03-30 2012-09-26 三洋電機株式会社 非水電解質二次電池およびその製造方法
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP4510331B2 (ja) 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
WO2003015198A2 (en) * 2001-08-07 2003-02-20 3M Innovative Properties Company Cathode compositions for lithium ion batteries
JP3827545B2 (ja) * 2001-09-13 2006-09-27 松下電器産業株式会社 正極活物質、その製造方法および非水電解質二次電池
US8658125B2 (en) * 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) * 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
NZ520452A (en) * 2002-10-31 2005-03-24 Lg Chemical Ltd Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition
NZ538480A (en) * 2003-04-17 2007-12-21 Seimi Chem Kk Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP4578790B2 (ja) * 2003-09-16 2010-11-10 Agcセイミケミカル株式会社 リチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法
JP4554911B2 (ja) 2003-11-07 2010-09-29 パナソニック株式会社 非水電解質二次電池
FR2862431B1 (fr) * 2003-11-17 2013-04-05 Cit Alcatel Matiere electrochimiquement active pour electrode positive de generateur electrochimique rechargeable au lithium
US7364793B2 (en) * 2004-09-24 2008-04-29 Lg Chem, Ltd. Powdered lithium transition metal oxide having doped interface layer and outer layer and method for preparation of the same
JP2008016316A (ja) * 2006-07-06 2008-01-24 Sony Corp 非水電解質二次電池
WO2008039808A2 (en) 2006-09-25 2008-04-03 Board Of Regents, The University Of Texas System Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
WO2010053328A2 (ko) * 2008-11-10 2010-05-14 주식회사 엘지화학 고전압 특성이 향상된 양극 활물질
JP5671831B2 (ja) 2009-05-21 2015-02-18 トヨタ自動車株式会社 窒化リチウム−遷移金属複合酸化物の製造方法、窒化リチウム−遷移金属複合酸化物およびリチウム電池
CN102792495B (zh) 2010-03-12 2015-10-21 丰田自动车株式会社 电极活性物质和电极活性物质的制造方法
WO2011136550A2 (ko) 2010-04-30 2011-11-03 주식회사 엘지화학 양극 활물질 및 이를 이용한 리튬 이차전지
KR101326088B1 (ko) * 2010-09-17 2013-11-07 주식회사 엘지화학 양극 활물질 및 이를 이용한 리튬 이차전지
ES2536250T3 (es) 2010-10-20 2015-05-21 Council Of Scientific & Industrial Research Material catódico y batería de iones de litio del mismo
US8900756B1 (en) * 2011-04-07 2014-12-02 The United States Of America As Represented By The Secretary Of The Army Solid state preparation method for lithium manganese oxide AB2O4 battery cathode
JP6533745B2 (ja) 2013-02-01 2019-06-19 トロノックス エルエルシー 改善されたリチウムマンガン酸化物組成物
JP6252890B2 (ja) * 2013-08-23 2017-12-27 日本電気株式会社 リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池
JP6103313B2 (ja) 2014-07-22 2017-03-29 トヨタ自動車株式会社 リチウム二次電池用正極活物質およびその利用
JP6274533B2 (ja) 2014-07-22 2018-02-07 トヨタ自動車株式会社 リチウム二次電池用正極活物質およびその利用
EP3238290B1 (en) * 2014-12-23 2024-05-01 QuantumScape Battery, Inc. Lithium rich nickel manganese cobalt oxide (lr-nmc)
JP7228771B2 (ja) * 2017-07-27 2023-02-27 パナソニックIpマネジメント株式会社 正極活物質、および、電池
CN113991168A (zh) * 2021-10-26 2022-01-28 蜂巢能源科技有限公司 一种全固态电池及其制备方法
CA3239435A1 (en) 2021-11-30 2023-06-29 Aram Yang Catholytes for a solid-state battery
EP4309222A1 (en) 2021-12-17 2024-01-24 QuantumScape Battery, Inc. Cathode materials having oxide surface species

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3429328B2 (ja) * 1992-07-21 2003-07-22 日立マクセル株式会社 リチウム二次電池およびその製造方法
EP0581290B1 (en) 1992-07-29 1999-07-07 Tosoh Corporation Novel manganese oxides, production thereof, and use thereof
ZA936168B (en) * 1992-08-28 1994-03-22 Technology Finance Corp Electrochemical cell
JP2870741B2 (ja) 1997-04-14 1999-03-17 堺化学工業株式会社 マンガン酸リチウム粒子状組成物及びその製造方法並びにリチウムイオン二次電池
JPH10334918A (ja) 1997-06-03 1998-12-18 Asahi Chem Ind Co Ltd 非水二次電池
JP4214564B2 (ja) 1997-06-19 2009-01-28 東ソー株式会社 他種元素を含有するスピネル構造リチウムマンガン系酸化物およびその製造方法並びにその用途
CA2240805C (en) 1997-06-19 2005-07-26 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
JPH1145710A (ja) 1997-07-25 1999-02-16 Toshiba Corp リチウムイオン二次電池
JP3813001B2 (ja) 1997-08-29 2006-08-23 旭化成エレクトロニクス株式会社 非水系二次電池
JP4066102B2 (ja) 1997-12-16 2008-03-26 日本化学工業株式会社 リチウムマンガン複合酸化物の製造方法
US6432581B1 (en) * 2000-05-11 2002-08-13 Telcordia Technologies, Inc. Rechargeable battery including an inorganic anode

Also Published As

Publication number Publication date
JP2001250549A (ja) 2001-09-14
US6613479B2 (en) 2003-09-02
EP1130663B1 (en) 2003-08-06
US20010024754A1 (en) 2001-09-27
EP1130663A1 (en) 2001-09-05
DE60100548T2 (de) 2004-02-26
DE60100548D1 (de) 2003-09-11

Similar Documents

Publication Publication Date Title
JP3611188B2 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP3611189B2 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP3611190B2 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP2000077071A (ja) 非水電解液二次電池
JP3578066B2 (ja) Li欠損マンガン複合酸化物及びこれを用いた非水電解質二次電池
JP2009032689A (ja) 非水電解質二次電池用負極活物質の製造方法及びこれによって製造された非水電解質二次電池用負極活物質
JP2004220952A (ja) 非水電解質二次電池用正極活物質
JP4274801B2 (ja) 非水電解質二次電池用正極活物質の製造法
JP2002042893A (ja) 非水電解質リチウムイオン二次電池
KR20190076774A (ko) 리튬 이차전지용 양극 활물질 전구체 및 그 제조방법, 리튬 이차전지용 양극 활물질 및 그 제조방법, 리튬 이차전지
JP2001185146A (ja) リチウム二次電池
JP5176317B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
EP1130664B1 (en) Positive electrode material and cell for nonaqueous electrolyte secondary battery
JP5169079B2 (ja) 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
JP2002050401A (ja) 非水電解質リチウムイオン二次電池
KR20000074691A (ko) 리튬 이차 전지용 양극 활물질 조성물 및 그를 포함하는 리튬이차 전지
JP2002324543A (ja) リチウムイオン二次電池とそのための正極活物質
JP4479874B2 (ja) 非水電解質二次電池用正極活物質の製造法、並びに非水電解質二次電池
JP3793054B2 (ja) 非水電解質二次電池
JP5196718B2 (ja) 非水電解質二次電池
JP2002321919A (ja) リチウムマンガン複合酸化物及びリチウム二次電池
JPH06163046A (ja) 非水電解液電池用正極活物質の製造法
JP2002060223A (ja) Li含有金属複合酸化物及びこれを用いた非水電解質二次電池
JP2007134049A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees