WO2011136550A2 - 양극 활물질 및 이를 이용한 리튬 이차전지 - Google Patents

양극 활물질 및 이를 이용한 리튬 이차전지 Download PDF

Info

Publication number
WO2011136550A2
WO2011136550A2 PCT/KR2011/003066 KR2011003066W WO2011136550A2 WO 2011136550 A2 WO2011136550 A2 WO 2011136550A2 KR 2011003066 W KR2011003066 W KR 2011003066W WO 2011136550 A2 WO2011136550 A2 WO 2011136550A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
secondary battery
lithium
positive electrode
Prior art date
Application number
PCT/KR2011/003066
Other languages
English (en)
French (fr)
Other versions
WO2011136550A3 (ko
Inventor
장성균
박홍규
박신영
임진형
이동훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP11775255.0A priority Critical patent/EP2511972B1/en
Priority to CN201180006232.2A priority patent/CN102714314B/zh
Publication of WO2011136550A2 publication Critical patent/WO2011136550A2/ko
Publication of WO2011136550A3 publication Critical patent/WO2011136550A3/ko
Priority to US13/529,430 priority patent/US9786911B2/en
Priority to US15/691,036 priority patent/US10559821B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode active material for secondary batteries, comprising a compound having a specific composition, having a long life at room temperature and high temperature and excellent stability.
  • lithium secondary batteries used in electric vehicles have high energy density and high power output in a short time, and must be able to be used for more than 10 years under severe conditions where charging and discharging by a large current is repeated in a short time. It is inevitably required to have superior safety and long life characteristics than small lithium secondary batteries.
  • Lithium-containing cobalt oxide (LiCoO 2 ) having a layered structure is mainly used as a cathode active material of a lithium ion secondary battery used in a conventional small battery, and in addition, LiMnO 2 having a layered crystal structure and LiMn having a spinel crystal structure.
  • LiMnO 2 having a layered crystal structure LiMn having a spinel crystal structure.
  • LiCoO 2 is most used because of its excellent life characteristics and charging and discharging efficiency.
  • LiCoO 2 has a disadvantage in that its price competitiveness is limited because its structural stability is low and it is expensive due to the resource limitation of cobalt used as a raw material. .
  • Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantages of excellent thermal safety and low price, but have a problem of small capacity and poor high temperature characteristics.
  • the LiNiO 2 -based positive electrode active material exhibits a high discharge capacity of battery characteristics, but due to the cation mixing problem between Li and the transition metal, it is very difficult to synthesize, and thus has a large problem in the rate characteristic.
  • an object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • a cathode active material for a secondary battery which is made of a compound of Formula 1, as described later.
  • the performance of life characteristics and the like can be improved by contributing to improving the stability of the battery, and thus the present invention has been completed.
  • the cathode active material for a secondary battery according to the present invention may be composed of one or more compounds selected from Formula 1 below.
  • a, x and y are molar ratios, and s and t are weight ratios.
  • the present invention is characterized by using a lithium nickel-manganese-cobalt composite oxide having a layered structure and composed of a specific element and compound composition as a cathode active material.
  • a is greater than 0 and less than 0.2, as defined above, preferably 0.01 to 0.19.
  • x is greater than 0 and less than 0.9 as defined above, and preferably, may be 0.2 or more and less than 0.8.
  • Lithium carbonate and lithium hydroxide induce HF, which is a strong acid that may be present in the battery, toward the compound of formula, thereby suppressing side reactions of HF, consequently contributing to improving the stability of the battery and improving performance such as lifetime characteristics.
  • the lithium carbonate and the lithium hydroxide are included in an amount of less than 0.03% by weight relative to the entire active material, and too much content of lithium carbonate or lithium hydroxide may cause a decrease in capacity of the battery.
  • the ratio of lithium carbonate and lithium hydroxide is also very important, and this is possible through the synthesis process, post-synthesis control, etc. as a result of the present inventors' unremitting research. Although this principle is represented by the active material of Formula 1, it is not limited to the compound alone.
  • transition metals such as Mn, Ni, Co, etc. in the compound of Formula 1 may be substituted with other elements that may be located in the six coordination structure. This is about 10% or less of the total amount of the transition metal.
  • oxygen (O) ions in the compound of Formula 1 may be substituted with other anions in a predetermined amount range.
  • the substituted anion may be one or two or more elements preferably selected from the group consisting of halogen elements, chalcogenide-based elements, and nitrogen.
  • the substitution amount of a preferable anion is 0.01-0.2 molar ratio with respect to all anions, and more preferable substitution amount of an anion is the range which is 0.01-0.1 molar ratio.
  • the cathode active material of the present invention consisting of one or more compounds selected from Formula 1 may be used by itself, but may be mixed with one or more compounds selected from the group consisting of other lithium transition metal oxides and lithium transition metal phosphorus oxides for secondary batteries. It can also be used as a positive electrode active material.
  • the compound of Formula 1 constituting the positive electrode active material of the present invention may be prepared based on the composition formula.
  • the mixture of the lithium precursor and the mixed transition metal precursor may be prepared by firing in an atmosphere containing oxygen.
  • the lithium precursor lithium carbonate, lithium hydroxide, or the like is used, and the mixed transition metal precursor may be a transition metal oxide, a transition metal hydroxide, or the like.
  • the mixed transition metal precursor may be a mixture of the respective transition metal precursors, or may be one precursor including all of the respective transition metal precursors.
  • the latter composite precursor can be prepared by coprecipitation or the like.
  • a composite precursor having a composition of M (OH 1-d ) 2 , wherein 0 ⁇ d ⁇ 0.5 is prepared by the method disclosed in Korean Patent Application Publication No. 2009-0105868 to the applicant.
  • the transition metal precursor may be mixed with a lithium compound and then fired to prepare a cathode active material according to the present invention.
  • the contents of Korean Patent Application Publication No. 2009-0105868 are incorporated herein by reference.
  • the cathode active material according to the present invention may be prepared as a mixture for a cathode by adding a conductive agent and a binder.
  • the mixture may include a predetermined solvent such as water and NMP to make a slurry.
  • the slurry may be coated on a positive electrode current collector, and then dried and rolled to prepare a positive electrode.
  • the positive electrode is prepared by, for example, applying a slurry of a mixture of the positive electrode active material, the conductive agent and the binder according to the present invention onto a positive electrode current collector and then drying it, if necessary, the positive electrode active material, the conductive material,
  • the mixture (electrode mixture), such as a binder may further include at least one material selected from the group consisting of a viscosity modifier and a filler.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver or the like can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is a component for further improving the conductivity of the electrode active material, and may be added at 0.01 to 30 wt% based on the total weight of the electrode mixture.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Carbon derivatives such as carbon nanotubes and fullerenes, conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive agent to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the viscosity modifier is a component that adjusts the viscosity of the electrode mixture so that the mixing process of the electrode mixture and the coating process on the current collector thereof can be easily added, up to 30% by weight based on the total weight of the electrode mixture.
  • examples of such viscosity modifiers include, but are not limited to, carboxymethyl cellulose, polyvinylidene fluoride, and the like.
  • the solvent described above can serve as a viscosity modifier.
  • the filler is optionally used as an auxiliary component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the positive electrode thus prepared may be used to fabricate a lithium secondary battery together with a negative electrode, a separator, and a lithium salt-containing non-aqueous electrolyte.
  • the negative electrode is manufactured by coating and drying a negative electrode material on a negative electrode current collector, and if necessary, components such as a conductive agent and a binder as described above may be further included.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material examples include carbon and graphite materials such as natural graphite, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotube, fullerene, and activated carbon; Metals such as Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti which can be alloyed with lithium, and compounds containing these elements; Complexes of metals and compounds thereof with carbon and graphite materials; Lithium-containing nitrides; and the like.
  • carbon-based active materials, silicon-based active materials, tin-based active materials, or silicon-carbon-based active materials are more preferable, and these may be used alone or in combination of two or more.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets made of glass fibers or polyethylene, nonwoven fabrics, and the like are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the said lithium salt containing non-aqueous electrolyte consists of a nonaqueous electrolyte and a lithium salt.
  • a nonaqueous electrolyte a nonaqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates, and the like of Li, such as Li 4 SiO 4 —LiI-LiOH, Li 3 PO 4 —Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • the non-aqueous electrolyte includes pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, for the purpose of improving charge and discharge characteristics, flame retardancy, and the like.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included.
  • carbonate), PRS (propene sultone), FEC (Fluoro-Ethlene carbonate) and the like may be further included.
  • the secondary battery made of the cathode active material according to the present invention may be used as a unit cell of a battery module, which is a power source for medium and large devices, in which high temperature stability, long cycle characteristics, and high rate characteristics are required.
  • the medium-to-large device may be an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (HEV).
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • HEV plug-in hybrid electric vehicle
  • the amount of LiOH and Li 2 CO 3 of the prepared material was obtained by adding 10 g of the active material prepared in 200 ml of water, titrating with 0.1 N concentration of HCl, and measuring the amount of base.
  • a transition metal precursor having a molar ratio of 53, 27: 20 (Ni: Mn: Co) of Ni, Mn, and Co is prepared by a general coprecipitation known in the art, and CO 2 0.9971Li (Li 0.02 (Ni 0.53 Mn 0.27 Co 0.20 ) 0.98 ) O 2 * 0.0029Li 2 in the same manner as in Example 1, except that the amount of carbonate was maximized by adjusting to 1 hour at 100 L / min.
  • An active material of CO 3 was prepared.
  • Example 1 0.9972Li (Li 0.02 (Ni 0.53 Mn 0.27 Co 0.20 ) 0.98 ) O 2 * 0.0018 was used in the same manner as in Example 1, except that the amount of OH was increased by cooling the air by passing it at 300 L / min. An active material of LiOH * 0.0010Li 2 CO 3 was prepared.
  • Li (Li 0.02 (Ni 0.53 Mn 0.27 Co 0.20 ) 0.98 ) O 2 was prepared.
  • Ni 0.78 Mn 0.12 Co 0.10 (OH 0.53 ) 2 as a transition metal precursor by coprecipitation by the method disclosed in Korean Patent Application Publication No. 2009-0105868, followed by mixing with Li 2 CO 3 , followed by Is calcined at 890 ° C., oxygen (O 2 ) is passed through at 200 L / min for cooling, and 0.9952Li (Li 0.02 (Ni 0.78 Mn 0.12 Co 0.10 ) 0.98 ) O 2 * 0.0026LiOH * 0.0022Li 2
  • An active material of CO 3 was prepared.
  • the amount of LiOH and Li 2 CO 3 of the prepared material was obtained by adding 10 g of the active material prepared in 200 ml of water, titrating with 0.1 N concentration of HCl, and measuring the amount of base.
  • a transition metal precursor having a molar ratio of Ni: Mn and Co of 78:12:10 (Ni: Mn: Co) is prepared by a general coprecipitation method known in the art, and CO 2 0.9948 Li (Li 0.02 (Ni 0.78 Mn 0.12 Co 0.10 ) 0.98 ) O 2 * 0.0052Li 2 in the same manner as in Example 4, except that the amount of carbonate was maximized by adjusting to 1 hour at 100 L / min.
  • An active material of CO 3 was prepared.
  • the active material prepared in Example 4 was treated in the same manner as in Comparative Example 2 to prepare an active material of Li (Li 0.02 (Ni 0.78 Mn 0.12 Co 0.10 ) 0.98 ) O 2 .
  • the amount of LiOH and Li 2 CO 3 of the prepared material was obtained by adding 10 g of the active material prepared in 200 ml of water, titrating with 0.1 N concentration of HCl, and measuring the amount of base.
  • the transition metal precursor having a molar ratio of 5: 4: 1 (Ni: Mn: Co) of Ni, Mn, and Co is prepared by a general coprecipitation known in the art, and CO 2 0.9966 Li (Li 0.1 (Ni 0.5 Mn 0.4 Co 0.1 )) O 2 * 0.0034Li 2 CO in the same manner as in Example 4, except that the amount of carbonate was maximized by adjusting to 1 hour at 100 L / min. An active material of 3 was prepared.
  • the active material prepared in Example 5 was treated in the same manner as in Comparative Example 2 to prepare an active material of Li (Li 0.1 (Ni 0.5 Mn 0.4 Co 0.1 )) O 2 .
  • the active materials synthesized in Examples 1 to 5 and Comparative Examples 1 to 6 were each made of a slurry such that the ratio of active material: conductive agent: binder was 95: 2.5: 2.5 and then coated on Al foil.
  • the obtained electrode was pressed to have a porosity of 23%, and then punched into a circular shape to produce a coin-type battery.
  • Li metal was used as the cathode, and LiPF 6 dissolved in 1 M in a solvent in which EC: DMC: DEC was mixed in a volume ratio of 1: 2: 1 was used as an electrolyte.
  • LiOH and Li 2 CO 3 plays a very important role in the active material.
  • rate characteristics and cycle characteristics decrease rapidly.
  • This characteristic change shows a difference of 10 to 15 times or more when the active materials are carried out up to 300 cycles or 500 cycles, which are actual battery cycles, and especially when applied to an electric vehicle battery. Can be.
  • Comparative Examples 2, 4 and 6 even when Li 2 CO 3 is present alone, the performance is reduced.
  • the positive electrode active material of the specific lithium nickel-manganese-cobalt composite oxide according to the present invention can ensure the stability of the secondary battery and improve the life under high current short time charge and discharge conditions and high temperature conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 하기 화학식 1로부터 선택된 하나 또는 그 이상의 화합물로 이루어진 것을 특징으로 하는 이차전지용 양극 활물질을 제공한다. (1-s-t)[Li(LiaMn(1-a-x-y)NixCoy)O2]*s[Li2CO3]*t[LiOH] (1) (0<a<0.2, 0<x<0.9, 0<y<0.5, a+x+y<1, 0<s<0.03, 0<t<0.03) 이러한 양극 활물질은 대전류로 충전과 방전을 반복하여도 상온 및 고온에서 긴 수명을 가지며 우수한 안정성을 제공한다.

Description

양극 활물질 및 이를 이용한 리튬 이차전지
본 발명은 이차전지용 양극 활물질로서, 특정한 조성의 화합물로 이루어져 있어서, 상온 및 고온에서 긴 수명을 가지며 안정성이 우수한 것을 특징으로 하는 이차전지용 양극 활물질에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
특히, 전기자동차에 사용되는 리튬 이차전지는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있는 특성과 더불어, 대전류에 의한 충방전이 단시간에 반복되는 가혹한 조건 하에서 10 년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차전지보다 월등히 우수한 안전성 및 장기 수명 특성이 필연적으로 요구된다.
종래의 소형전지에 사용되는 리튬 이온 이차전지의 양극 활물질로는 층상 구조(layered structure)의 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
상기 양극 활물질들 중에 LiCoO2은 수명 특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 떨어지고, 원료로서 사용되는 코발트의 자원적 한계로 인해 고가이므로 가격 경쟁력에 한계가 있다는 단점을 가지고 있다.
LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 열적 안전성이 우수하고 가격이 저렴하다는 장점이 있지만, 용량이 작고, 고온 특성이 열악하다는 문제점이 있다.
또한, LiNiO2계 양극 활물질은 높은 방전용량의 전지 특성을 나타내고 있으나, Li과 전이금속 간의 양이온 혼합(cation mixing) 문제로 인해 합성이 매우 어려우며, 그에 따라 레이트(rate) 특성에 큰 문제점이 있다.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 화학식 1의 화합물로 이루어진 것을 특징으로 하는 이차전지용 양극 활물질을 개발하기에 이르렀고, 이러한 활물질을 사용하여 이차전지를 만드는 경우, 전지의 안정성 향상에 기여하여 수명특성 등의 성능도 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 이차전지용 양극 활물질은 하기 화학식 1로부터 선택된 하나 또는 그 이상의 화합물로 구성될 수 있다.
(1-s-t)[Li(LiaMn(1-a-x-y)NixCoy)O2]*s[Li2CO3]*t[LiOH] (1)
상기 식에서, 0<a<0.2; 0<x<0.9; 0<y<0.5; a+x+y<1; 0<s<0.03; 및 0<t<0.03 이다.
여기서, a, x 및 y는 몰 비율이고, s 및 t는 중량 비율이다.
상기에서 보는 바와 같이, 본 발명은 층상 구조를 가지며 특정한 원소 및 화합물 조성으로 이루어진 리튬 니켈-망간-코발트 복합산화물을 양극 활물질로 사용하는 것을 특징으로 한다.
화학식 1에서 a는 상기에 정의되어 있는 바와 같이 0 초과 내지 0.2 미만이며, 바람직하게는 0.01 내지 0.19일 수 있다. 화학식 1에서 x는 상기에 정의되어 있는 바와 같이 0 초과 내지 0.9 미만이며, 바람직하게는 0.2 이상 내지 0.8 미만일 수 있다.
이러한 탄산리튬과 수산화리튬은 전지 내부에 존재할 수 있는 강산인 HF를 화학식의 화합물 쪽으로 유도하여 HF의 부반응을 억제함으로써, 결과적으로 전지의 안정성 향상에 기여하면서 수명특성 등의 성능을 향상시킨다.
상기 탄산리튬과 수산화리튬은 상기에 정의되어 있는 바와 같이, 전체 활물질 대비 0.03 중량비 미만으로 포함되어 있으며, 탄산리튬 또는 수산화리튬의 함량이 너무 많으면 전지의 용량 저하를 유발할 수 있으므로 바람직하지 않다. 이러한 탄산리튬과 수산화리튬은 그 비율 또한 매우 중요하며, 이는 본 발명자들이 부단한 연구의 결과로 합성 과정, 합성 후 조절 등을 통해 가능하게 되었다. 이러한 원리는 화학식 1의 활물질로 표시하기는 하였으나, 단순히 상기 화합물 만으로 한정되는 것은 아니다.
통상적으로, 화학식 1의 화합물 중 Mn, Ni, Co 등의 전이금속들 중의 적어도 하나 이상은 6배위 구조에 위치할 수 있는 다른 원소로 치환될 수 있다. 이는 전이금속 전체량의 10% 정도 이하이다.
또한, 화학식 1의 화합물 중 산소(O) 이온은 소정량의 범위에서 다른 음이온으로 치환될 수 있다. 상기 치환 음이온은 바람직하게는 할로겐 원소, 칼코게나이드계 원소, 및 질소로 이루어진 군에서 선택되는 하나 또는 둘 이상의 원소일 수 있다는 것은 잘 알려진 사실이다.
이러한 음이온들의 치환에 의해 전이금속과의 결합력이 우수해지고 양극 활물질의 구조 전이가 방지되기 때문에, 전지의 수명을 향상시킬 수 있을 것이다. 반면에, 음이온의 치환량이 너무 많으면(전체 음이온 대비 0.2 몰비 초과), 화학식 1의 화합물이 안정적인 구조를 유지하지 못하여 오히려 수명 특성이 저하되므로 바람직하지 않다. 따라서, 바람직한 음이온의 치환량은 전체 음이온 대비 0.01 내지 0.2 몰비이고, 더욱 바람직한 음이온의 치환량은 0.01 내지 0.1 몰비인 범위이다.
화학식 1로부터 선택된 하나 또는 그 이상의 화합물로 이루어진 본 발명의 양극 활물질은 그 자체만으로 사용될 수 있지만, 다른 리튬 전이금속 산화물 및 리튬 전이금속 인 산화물로 이루어진 군에서 선택된 하나 또는 둘 이상의 화합물과 혼합하여 이차전지용 양극 활물질로 사용될 수도 있다.
본 발명의 양극 활물질을 구성하는 화학식 1의 화합물은 상기 조성식에 기반하여 제조할 수 있다. 예를 들어, 리튬 전구체와 혼합 전이금속 전구체의 혼합물을 산소가 포함된 분위기에서 소성하여 제조할 수 있다. 리튬 전구체로는 탄산 리튬, 수산화 리튬 등이 사용되며, 혼합 전이금속 전구체는 전이금속 산화물, 전이금속 수산화물 등이 사용될 수 있다. 혼합 전이금속 전구체는 각 전이금속 전구체들의 혼합물일 수도 있고, 각각의 전이금속들을 모두 포함하는 하나의 전구체일 수도 있다. 후자의 복합 전구체는 공침법 등에 의해 제조될 수 있다.
하나의 바람직한 예에서, 본 출원인의 한국 특허출원공개 제2009-0105868호에 개시되어 있는 방법에 의해 M(OH1-d)2 (여기서, 0<d<0.5)의 조성을 가진 복합 전구체를 제조하고, 이러한 전이금속 전구체를 리튬 화합물과 혼합한 후 소성하여 본 발명에 따른 양극 활물질을 제조할 수 있다. 상기 한국 특허출원공개 제2009-0105868호의 내용은 참조로서 본 발명에 합체된다.
본 발명에 따른 양극 활물질은 도전제 및 바인더를 첨가하여 양극용 합제로 제조될 수 있다.
상기 합제는 물, NMP 등 소정의 용매를 포함하여 슬러리를 만들 수 있으며, 이러한 슬러리를 양극 집전체 상에 도포한 후, 건조 및 압연하여 양극을 제조할 수 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 본 발명에 따른 양극 활물질, 도전제 및 바인더의 혼합물로 된 슬러리를 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 양극 활물질, 도전재, 바인더 등의 혼합물(전극 합제)에 점도 조절제 및 충진제로 이루어진 군에서 선택되는 1종 이상의 물질이 더 포함될 수도 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 전극 합제 전체 중량을 기준으로 0.01 ~ 30 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 나노튜브나 플러렌 등의 탄소 유도체, 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 점도 조절제는 전극 합제의 혼합 공정과 그것의 집전체 상의 도포 공정이 용이할 수 있도록 전극 합제의 점도를 조절하는 성분으로서, 전극 합제 전체 중량을 기준으로 30 중량%까지 첨가될 수 있다. 이러한 점도 조절제의 예로는, 카르복시메틸셀룰로우즈, 폴리비닐리덴 플로라이드 등이 있지만, 이들만으로 한정되는 것은 아니다. 경우에 따라서는, 앞서 설명한 용매가 점도 조절제로서의 역할을 병행할 수 있다.
상기 충진제는 전극의 팽창을 억제하는 보조성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
이렇게 제조된 양극은 음극, 분리막 및 리튬염 함유 비수계 전해질과 함께 리튬 이차전지를 제작하는데 사용될 수 있다.
상기 음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 도전제, 바인더 등의 성분들이 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는, 예를 들어, 천연 흑연, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화성 탄소, 카본블랙, 카본나노튜브, 플러렌, 활성탄 등의 탄소 및 흑연재료; 리튬과 합금이 가능한 Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti 등의 금속 및 이러한 원소를 포함하는 화합물; 금속 및 그 화합물과 탄소 및 흑연재료의 복합물; 리튬 함유 질화물 등을 들 수 있다. 그 중에서도 탄소계 활물질, 규소계 활물질, 주석계 활물질, 또는 규소-탄소계 활물질이 더욱 바람직하며, 이들은 단독으로 또는 둘 이상의 조합으로 사용될 수도 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해질은, 비수 전해질과 리튬염으로 이루어져 있다. 상기 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2) 2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene carbonate), PRS(Propene sultone), FEC(Fluoro-Ethlene carbonate) 등을 더 포함시킬 수 있다.
본 발명에 따른 양극 활물질로 제작된 이차전지는 특히 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 중대형 디바이스의 전원인 전지모듈의 단위전지로 사용될 수 있다.
바람직하게는, 상기 중대형 디바이스는 전기자동차(EV), 하이브리드 전기자동차(HEV) 또는 플러그-인(Plug-in) 하이브리드 전기자동차(HEV)일 수 있다.
이하 실시예들을 참조하여 본 발명의 내용을 더욱 상술하지만, 본 발명의 범주가 그것으로 한정되는 것은 아니다.
실시예 1
한국 특허출원공개 제2009-0105868호에 개시되어 있는 방법으로 공침법에 의해 전이금속 전구체로서 Ni0.53Mn0.27Co0.2(OH0.53)2를 합성한 후, Li2CO3와 혼합한 뒤 반응로(furnace)의 온도를 940℃로 하여 소성하고, 공기를 500 L/min으로 통과시켜 cooling하여, 0.9978Li(Li0.02(Ni0.53Mn0.27Co0.20)0.98)O2*0.0012LiOH*0.0010Li2CO3의 활물질을 제조하였다.
제조된 물질의 LiOH와 Li2CO3의 양은, 물 200 ml에 제조된 활물질 10 g을 넣고, 0.1N 농도의 HCl로 적정하여 염기의 양을 측정함으로써 얻었다.
비교예 1
당업계에 공지되어 있는 일반적인 공침법에 의해 Ni, Mn, Co의 몰비가 53 : 27 : 20(Ni : Mn : Co)인 전이금속 전구체를 제조하고 cooling 분위기를 150℃ shaking oven 통과시 CO2를 100 L/min으로 1 시간 가하는 것으로 조절하여 카보네이트의 양을 극대화 한 것을 제외하고는 실시예 1과 동일한 방법으로, 0.9971Li(Li0.02(Ni0.53Mn0.27Co0.20)0.98)O2*0.0029Li2CO3의 활물질을 제조하였다.
실시예 2
실시예 1에서 공기를 300 L/min으로 통과시켜 cooling하여 OH의 양을 늘린 것을 제외하고는 실시예 1과 동일한 방법으로 0.9972Li(Li0.02(Ni0.53Mn0.27Co0.20)0.98)O2*0.0018LiOH*0.0010Li2CO3의 활물질을 제조하였다.
실시예 3
실시예 1에서 cooling 분위기로 150℃ shaking oven 통과시 CO2를 100 L/min으로 15분 가하는 것을 제외하고는 실시예 1과 동일한 방법으로 0.9972Li(Li0.02(Ni0.53Mn0.27Co0.20)0.98)O2*0.0008LiOH*0.0020Li2CO3의 활물질을 제조하였다.
비교예 2
실시예 1에서 제조된 활물질의 염기를 제거하기 위하여, 증류수로 세척(washing)한 후 130℃의 오븐(oven)에서 24 시간 동안 건조하여, Li(Li0.02(Ni0.53Mn0.27Co0.20)0.98)O2를 제조하였다.
실시예 4
한국 특허출원공개 제2009-0105868호에 개시되어 있는 방법으로 공침법에 의해 전이금속 전구체로서 Ni0.78Mn0.12Co0.10(OH0.53)2를 합성한 후, Li2CO3와 혼합한 뒤, 반응로의 온도를 890℃로 하여 소성하고, 산소(O2)를 200 L/min으로 통과시켜 cooling하여, 0.9952Li(Li0.02(Ni0.78Mn0.12Co0.10)0.98)O2*0.0026LiOH*0.0022Li2CO3의 활물질을 제조하였다.
제조된 물질의 LiOH와 Li2CO3의 양은, 물 200 ml에 제조된 활물질 10 g을 넣고, 0.1N 농도의 HCl로 적정하여 염기의 양을 측정함으로써 얻었다.
비교예 3
당업계에 공지되어 있는 일반적인 공침법에 의해 Ni, Mn, Co의 몰비가 78 : 12 : 10(Ni : Mn : Co)인 전이금속 전구체를 제조하고 cooling 분위기를 150℃ shaking oven 통과시 CO2를 100 L/min으로 1 시간 가하는 것으로 조절하여 카보네이트의 양을 극대화 한 것을 제외하고는 실시예 4와 동일한 방법으로, 0.9948Li(Li0.02(Ni0.78Mn0.12Co0.10)0.98)O2*0.0052Li2CO3의 활물질을 제조하였다.
비교예 4
실시예 4에서 제조된 활물질을 비교예 2의 방법과 동일한 방법으로 처리하여 Li(Li0.02(Ni0.78Mn0.12Co0.10)0.98)O2의 활물질을 제조하였다.
실시예 5
한국 특허출원공개 제2009-0105868호에 개시되어 있는 방법으로 공침법에 의해 전이금속 전구체로서 Ni0.5Mn0.4Co0.1(OH0.53)2를 합성한 후, Li2CO3와 혼합한 뒤 반응로의 온도를 950℃로 하여 소성하고, 공기를 500 L/min으로 통과시켜 cooling하여, 0.9967Li(Li0.1(Ni0.5Mn0.4Co0.1)0.9)O2*0.0021LiOH*0.0012Li2CO3의 활물질을 제조하였다.
제조된 물질의 LiOH와 Li2CO3의 양은, 물 200 ml에 제조된 활물질 10 g을 넣고, 0.1N 농도의 HCl로 적정하여 염기의 양을 측정함으로써 얻었다.
비교예 5
당업계에 공지되어 있는 일반적인 공침법에 의해 Ni, Mn, Co의 몰비가 5 : 4 : 1(Ni : Mn : Co)인 전이금속 전구체를 제조하고 cooling 분위기를 150℃ shaking oven 통과시 CO2를 100 L/min으로 1 시간 가하는 것으로 조절하여 카보네이트의 양을 극대화 한 것을 제외하고는 실시예 4와 동일한 방법으로, 0.9966Li(Li0.1(Ni0.5Mn0.4Co0.1))O2*0.0034Li2CO3의 활물질을 제조하였다.
비교예 6
실시예 5에서 제조된 활물질을 비교예 2의 방법과 동일한 방법으로 처리하여 Li(Li0.1(Ni0.5Mn0.4Co0.1))O2의 활물질을 제조하였다.
실험예 1
실시예 1 내지 5와 비교예 1 내지 6에서 합성된 활물질들을 각각 활물질 : 도전제 : 바인더의 비율을 95 : 2.5 : 2.5의 비율이 되도록 슬러리로 만든 후 Al foil 위에 코팅하였다. 얻어진 전극을 공극률이 23%가 되도록 프레스(press) 한 후 원형 모양으로 펀칭하여 코인형 전지를 제작하였다. 이 때, 음극으로는 Li 금속을 사용하였고, 전해액으로는 EC : DMC : DEC가 1 : 2 : 1 부피비로 섞여진 용매(solvent)에 LiPF6가 1M로 녹아 있는 것을 사용하였다.
이렇제 제작된 전지들을 대상으로, 하기 표 1에서 기재되어 있는 조건으로 다양한 실험을 수행하였다.
[표 1] 전기화학 테스트 결과
Figure PCTKR2011003066-appb-I000001
상기 표 1에서 보는 바와 같이, 활물질에서 LiOH와 Li2CO3가 매우 중요한 역할을 하는 것을 확인할 수 있다. 비교예 2, 4, 6과 같이 각각의 활물질들에서 LiOH와 Li2CO3가 존재하지 않으면, 레이트 특성, 사이클 특성이 급격하게 감소하는 것을 볼 수 있다. 이러한 특성 변화는 상기 활물질들을 실제 전지 사이클인 300 사이클 또는 500 사이클까지 수행할 경우, 상기에서 나타나는 차이의 10 내지 15 배 이상의 차이를 보이게 되며, 특히 전기자동차용 전지에 적용될 경우, 그 이상의 차이를 보일 수 있다. 또한, 비교예 2, 4 및 6의 결과에서 보는 바와 같이, Li2CO3가 단독으로 존재할 경우에도 성능이 감퇴하는 결과를 보인다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
상기에서 설명한 바와 같이, 본 발명에 따른 특정한 리튬 니켈-망간-코발트 복합산화물의 양극 활물질은 이차전지의 안정성을 확보할 수 있고 대전류 단시간 충방전 조건과 고온 조건에서 수명을 향상시킬 수 있다.

Claims (10)

  1. 하기 화학식 1로부터 선택된 하나 또는 그 이상의 화합물을 포함하는 것을 특징으로 하는 이차전지용 양극 활물질:
    (1-s-t)[Li(LiaMn(1-a-x-y)NixCoy)O2]*s[Li2CO3]*t[LiOH] (1)
    상기 식에서, 0<a<0.2, 0<x<0.9, 0<y<0.5, a+x+y<1, 0<s<0.03, 0<t<0.03이고, a, x 및 y는 몰비이고, s와 t는 중량비이다.
  2. 제 1 항에 있어서, 상기 a는 0.01≤a≤0.19의 범위인 것을 특징으로 하는 이차전지용 양극 활물질.
  3. 제 1 항에 있어서, 상기 x의 범위는 0.02 이상 내지 0.8 미만인 것을 특징으로 하는 이차전지용 양극 활물질.
  4. 제 1 항에 있어서, 상기 y의 범위는 0 초과 내지 0.3 이하인 것을 특징으로 하는 이차전지용 양극 활물질.
  5. 제 1 항에 있어서, 상기 s와 t의 범위는 각각 0.01 내지 0.03의 범위인 것을 특징으로 하는 이차전지용 양극 활물질.
  6. 제 1 항 내지 제 5 항 중 어느 하나에 따른 양극 활물질을 포함하는 것으로 구성된 이차전지용 양극 합제.
  7. 제 6 항에 따른 양극 합제가 집전체 상에 도포되어 있는 것을 특징으로 하는 이차전지용 양극.
  8. 제 7 항에 따른 양극을 포함하는 것으로 구성된 리튬 이차전지.
  9. 제 8 항에 있어서, 상기 리튬 이차전지는 중대형 디바이스의 전원인 전지모듈의 단위전지로 사용되는 것을 특징으로 하는 리튬 이차전지.
  10. 제 9 항에 있어서, 상기 중대형 디바이스는 전기자동차, 하이브리드 전기자동차 또는 플러그-인 하이브리드 전기자동차인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2011/003066 2010-04-30 2011-04-27 양극 활물질 및 이를 이용한 리튬 이차전지 WO2011136550A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11775255.0A EP2511972B1 (en) 2010-04-30 2011-04-27 Cathode active material and lithium secondary battery using same
CN201180006232.2A CN102714314B (zh) 2010-04-30 2011-04-27 正极活性材料和包含所述正极活性材料的锂二次电池
US13/529,430 US9786911B2 (en) 2010-04-30 2012-06-21 Cathode active material and lithium secondary battery comprising the same
US15/691,036 US10559821B2 (en) 2010-04-30 2017-08-30 Cathode active material and lithium secondary battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100041015 2010-04-30
KR10-2010-0041015 2010-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/529,430 Continuation US9786911B2 (en) 2010-04-30 2012-06-21 Cathode active material and lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
WO2011136550A2 true WO2011136550A2 (ko) 2011-11-03
WO2011136550A3 WO2011136550A3 (ko) 2012-03-01

Family

ID=44862038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003066 WO2011136550A2 (ko) 2010-04-30 2011-04-27 양극 활물질 및 이를 이용한 리튬 이차전지

Country Status (5)

Country Link
US (2) US9786911B2 (ko)
EP (1) EP2511972B1 (ko)
KR (1) KR101240174B1 (ko)
CN (1) CN102714314B (ko)
WO (1) WO2011136550A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014913A3 (en) * 2012-07-20 2014-03-20 3M Innovative Properties Company High voltage cathode compositions for lithium-ion batteries

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511972B1 (en) 2010-04-30 2017-05-31 LG Chem, Ltd. Cathode active material and lithium secondary battery using same
EP2618408A4 (en) 2010-09-17 2017-01-25 LG Chem, Ltd. Positive electrode active material and lithium secondary battery using same
CN104334499A (zh) 2012-07-09 2015-02-04 株式会社Lg化学 用于制备锂复合过渡金属氧化物的前体
US9450278B2 (en) 2012-12-20 2016-09-20 International Business Machines Corporation Cathode material for lithium—oxygen battery
US20160197341A1 (en) * 2013-08-22 2016-07-07 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP6201277B2 (ja) * 2013-09-13 2017-09-27 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090105868A (ko) 2008-04-03 2009-10-07 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 신규 전구체

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233113A (ja) * 1998-02-19 1999-08-27 Sony Corp 二次電池用Li−Co系複合酸化物の製造方法
JP3611188B2 (ja) 2000-03-03 2005-01-19 日産自動車株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
US6660432B2 (en) * 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
JP4678457B2 (ja) 2000-10-24 2011-04-27 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池
US7358009B2 (en) 2002-02-15 2008-04-15 Uchicago Argonne, Llc Layered electrodes for lithium cells and batteries
JP2004281253A (ja) * 2003-03-17 2004-10-07 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
US20050069771A1 (en) * 2003-09-30 2005-03-31 Manev Vesselin G. Positive electrode material for lithium-ion battery
US7211237B2 (en) * 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
JP2005327644A (ja) * 2004-05-17 2005-11-24 Shin Kobe Electric Mach Co Ltd リチウム二次電池用正極材の製造方法、正極材及びリチウム二次電池
KR100598491B1 (ko) * 2004-10-21 2006-07-10 한양대학교 산학협력단 이중층 구조를 가지는 리튬이차전지용 양극 활물질, 그제조 방법 및 그를 사용한 리튬이차전지
JP4213659B2 (ja) * 2004-12-20 2009-01-21 株式会社東芝 非水電解質電池および正極活物質
JP2008521196A (ja) 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) 二重層構造を有するリチウム二次電池用正極活物質、その製造方法及びそれを用いたリチウム二次電池
US20070292761A1 (en) 2005-04-13 2007-12-20 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
KR100790834B1 (ko) 2006-05-10 2008-01-03 주식회사 엘지화학 고성능 리튬 이차전지용 재료
KR100794142B1 (ko) 2006-05-10 2008-01-16 주식회사 엘지화학 고성능 리튬 이차전지용 재료
KR100925854B1 (ko) * 2006-06-13 2009-11-06 주식회사 엘지화학 리튬 전이 금속 산화물의 제조방법
KR100834053B1 (ko) * 2006-09-29 2008-06-02 한양대학교 산학협력단 양극, 이를 포함하는 리튬 이차 전지, 및 이를 포함하는 하이브리드 커패시터
JP2008147068A (ja) 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP4979432B2 (ja) * 2007-03-28 2012-07-18 三洋電機株式会社 円筒型リチウム二次電池
US20080280205A1 (en) 2007-05-07 2008-11-13 3M Innovative Properties Company Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same
JP5077131B2 (ja) * 2007-08-02 2012-11-21 ソニー株式会社 正極活物質、並びにそれを用いた正極、および非水電解質二次電池
EP2261176B1 (en) * 2008-04-03 2022-09-14 LG Energy Solution, Ltd. Novel precursor for the production of a lithium composite transition metal oxide
KR100998684B1 (ko) 2008-06-09 2010-12-07 주식회사 엘지화학 안전성이 향상된 이차전지
CN102150305B (zh) 2008-09-10 2014-01-08 株式会社Lg化学 锂二次电池用正极活性材料
EP2398096A4 (en) * 2009-02-13 2013-09-18 Lg Chemical Ltd LITHIUM CENTRAL BATTERY WITH INCREASED ENERGY LIQUID
EP2506343B1 (en) * 2009-11-25 2014-10-22 LG Chem, Ltd. Anode made by a combination of two components, and lithium secondary battery using same
WO2011065650A2 (ko) 2009-11-25 2011-06-03 주식회사 엘지화학 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
KR101293931B1 (ko) 2010-04-01 2013-08-07 주식회사 엘지화학 양극 활물질 및 이를 이용한 리튬 이차전지
EP2511972B1 (en) 2010-04-30 2017-05-31 LG Chem, Ltd. Cathode active material and lithium secondary battery using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090105868A (ko) 2008-04-03 2009-10-07 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 신규 전구체

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014913A3 (en) * 2012-07-20 2014-03-20 3M Innovative Properties Company High voltage cathode compositions for lithium-ion batteries
US9601771B2 (en) 2012-07-20 2017-03-21 3M Innovative Properties Company High voltage cathode compositions for lithium-ion batteries

Also Published As

Publication number Publication date
KR101240174B1 (ko) 2013-03-07
EP2511972A2 (en) 2012-10-17
US20170365849A1 (en) 2017-12-21
WO2011136550A3 (ko) 2012-03-01
EP2511972A4 (en) 2013-07-10
US10559821B2 (en) 2020-02-11
US20130122363A1 (en) 2013-05-16
CN102714314B (zh) 2016-01-20
US9786911B2 (en) 2017-10-10
KR20110121554A (ko) 2011-11-07
EP2511972B1 (en) 2017-05-31
CN102714314A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2011065651A2 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2012039563A2 (ko) 리튬 망간계 산화물을 포함하는 양극 활물질 및 비수 전해질 이차전지
WO2011065650A9 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
WO2013165150A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2011084003A2 (ko) 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질
WO2013009078A9 (ko) 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
WO2013137577A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
US10559821B2 (en) Cathode active material and lithium secondary battery comprising the same
WO2013109038A1 (ko) 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2012039564A9 (ko) 도전성이 개선된 고용량 양극 활물질 및 이를 포함하는 비수 전해질 이차전지
WO2011122865A9 (ko) 양극 활물질 및 이를 이용한 리튬 이차전지
WO2014081252A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2014010854A1 (ko) 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
WO2012036474A2 (ko) 양극 활물질 및 이를 이용한 리튬 이차전지
WO2015026121A1 (ko) 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질
WO2012111951A2 (ko) 이차전지용 양극 합제 및 이를 포함하는 이차전지
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2012161482A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2014010867A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101239620B1 (ko) 향상된 레이트 특성의 이차전지용 양극 활물질

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006232.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775255

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011775255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011775255

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE