WO2015016506A1 - 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 - Google Patents
에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- WO2015016506A1 WO2015016506A1 PCT/KR2014/006419 KR2014006419W WO2015016506A1 WO 2015016506 A1 WO2015016506 A1 WO 2015016506A1 KR 2014006419 W KR2014006419 W KR 2014006419W WO 2015016506 A1 WO2015016506 A1 WO 2015016506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- electrode active
- range
- less
- lithium
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode active material having an improved energy density and a lithium secondary battery including the same.
- lithium secondary batteries with high energy density and voltage, long cycle life, and low self discharge rate It is commercially used and widely used.
- Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as the lithium secondary battery, and lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium-containing nickel oxide (LiNiO). The use of 2 ) is also under consideration.
- LiCoO 2 has been widely used because of its excellent physical properties such as excellent cycle characteristics. However, the safety is low, and due to the limited resources of cobalt as a raw material, there is a limitation in using it as a power source in fields such as electric vehicles. LiNiO 2 is difficult to apply to the actual production process at a reasonable cost, due to its manufacturing method.
- lithium manganese oxides such as LiMnO 2 , LiMn 2 O 4 has the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting much attention as a cathode active material that can replace LiCoO 2 .
- these lithium manganese oxides also have the disadvantage of poor cycle characteristics.
- LiMnO 2 has a small initial capacity, in particular dozens of charge and discharge cycles are required until reaching a constant capacity.
- LiMn 2 O 4 has a disadvantage in that the capacity is severely degraded as the cycle continues, and particularly, the cycle characteristics are rapidly decreased due to decomposition of the electrolyte and elution of manganese at a high temperature of 50 degrees or more.
- the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
- the electrode active material includes a first electrode active material: and a second electrode active material: wherein the first electrode active material and the second electrode active material are each represented by the following general formula (1).
- the composition of the first electrode active material has a ratio of lithium to metal in the range of 1.4 or more and 1.7 or less, and the second electrode active material has a ratio of lithium to metal in the range of 1.2 or more and less than 1.4. do.
- M is at least one selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and bicycle transition metals;
- A is at least one selected from the group consisting of anions of PO 4 , BO 3 , CO 3 , F and NO 3 ,
- the first electrode active material has a molar content of manganese (Mn) in a range of 60 mol% or more and 80 mol% or less based on the molar content of all metals, and the second electrode active material has a molar amount of manganese (Mn).
- the content may be in the range of more than 30 mol% to less than 60 mol% based on the molar content of the total metal.
- the second electrode active material may be formed of a third electrode active material having a molar content of manganese (Mn) in a range of more than 30 mol% to less than 50 mol% based on the molar content of the entire metal.
- Mn manganese
- the second electrode active material may include a fourth electrode active material having a molar content of manganese (Mn) in a range of more than 40 mol% to less than 60 mol% based on the molar content of all metals.
- Mn manganese
- the second electrode active material includes both the third electrode active material and the fourth electrode active material, and a mixing ratio of the third electrode active material and the fourth electrode active material is within a range of 5:95 to 95: 5 in weight ratio. Can be.
- the mixing ratio of the first electrode active material and the second electrode active material may be in a range of 5:95 to 95: 5 by weight.
- the first electrode active material may have an average particle diameter (D50) in a range of 3 ⁇ m or more and 20 ⁇ m or less.
- the second electrode active material may have an average particle diameter (D50) in a range of 3 ⁇ m or more and 20 ⁇ m or less.
- the third electrode active material may have an average particle diameter D50 of 3 ⁇ m or more and 20 ⁇ m or less
- the fourth electrode active material may have an average particle diameter D50 of 3 ⁇ m or more and 20 ⁇ m or less.
- the first electrode active material may be spherical, elliptical, fusiform, flaky, fibrous, rod-shaped, core-shell, or amorphous.
- the second electrode active material may be spherical, elliptical, fusiform, flaky, fibrous, rod-shaped, core-shell, or amorphous.
- the first electrode active material further includes a conductive coating layer present on the surface, and the conductive coating layer may have a thickness in a range of 0.1 nm or more and 100 nm or less.
- the second electrode active material further includes a conductive coating layer present on the surface, and the conductive coating layer may have a thickness in a range of 0.1 nm or more and 100 nm or less.
- the third electrode active material further includes a conductive coating layer present on the surface, and the conductive coating layer may have a thickness in a range of 0.1 nm or more and 100 nm or less.
- the fourth electrode active material further includes a conductive coating layer present on the surface, and the conductive coating layer may have a thickness in a range of 0.1 nm or more to 100 nm or less.
- the first electrode active material is a secondary particle made of primary particles, the secondary particles may be in the range of 1% or more to 50% or less porosity.
- the second electrode active material may be secondary particles formed of primary particles, and the secondary particles may have a porosity in a range of 1% or more and 50% or less.
- the third electrode active material is secondary particles made of primary particles, and the secondary particles may have a porosity in a range of 1% or more and 50% or less.
- the fourth electrode active material is secondary particles made of primary particles, and the secondary particles may have a porosity in a range of 1% or more and 50% or less.
- the conductive coating layer may include one or more conductive particles.
- the conductive coating layer may include conductive carbon black.
- the conductive carbon black may be at least one selected from the group consisting of acetylene black, Ketjen black, furnace black, oil-furnace black, Columbia carbon, channel black, lamp black, and summer black.
- the present invention can also provide a lithium secondary battery comprising the electrode active material as a positive electrode active material.
- the lithium secondary battery may include a carbon-based material and / or Si as a negative electrode active material.
- the lithium secondary battery may be one selected from the group consisting of a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery.
- the positive electrode is prepared by applying an electrode mixture, which is a mixture of a positive electrode active material, a conductive material, and a binder, onto a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
- an electrode mixture which is a mixture of a positive electrode active material, a conductive material, and a binder, onto a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
- the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
- the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material.
- a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- the elastic graphite-based material may be used as the conductive material, or may be used together with the materials.
- the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
- binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
- the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
- the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
- the present invention also provides a secondary battery including the electrode, and the secondary battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
- the lithium secondary batteries are generally composed of a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and a lithium salt-containing nonaqueous electrolyte, and other components of the lithium secondary battery will be described below.
- the negative electrode is prepared by coating, drying, and pressing the negative electrode active material on the negative electrode current collector, and optionally, the conductive material, binder, filler, etc. may be further included as necessary.
- the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5
- the negative electrode current collector is generally made of a thickness of 3 ⁇ 500 ⁇ m.
- a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
- fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
- the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
- a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
- a solid electrolyte such as a polymer
- the solid electrolyte may also serve as a separator.
- the lithium salt-containing nonaqueous electrolyte is composed of a nonaqueous electrolyte and lithium.
- a nonaqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte and the like are used as the nonaqueous electrolyte, but are not limited thereto.
- non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
- organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
- Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 has a nitride, halides, sulfates, such as Li, such as S-SiS 2 can be used.
- the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
- the lithium salt-containing non-aqueous electrolyte includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexa for the purpose of improving charge and discharge characteristics and flame retardancy.
- a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
- lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
- Lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
- the present invention can provide a battery pack using the lithium secondary battery, and a device using the battery pack as an energy source.
- specific examples of the device may include a power tool moving by being driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
- Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
- Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
- Lithium manganese oxide containing Mn as an essential transition metal and having a layered crystal structure in which 0.5 Li 2 MnO 3 0.5Li (Ni 0.45 Mn 0.35 Ni 0.20 ) O 2 and a ratio of lithium to metal 1: 1.5
- a positive electrode active material was prepared by mixing 0.25Li 2 MnO 3 .0.75Li (Ni 0.45 Mn 0.40 Ni 0.15 ) O 2 having a ratio of lithium of about 1.25 to a weight ratio of 1: 1.
- the positive electrode active material was a slurry in which the ratio of the active material, the conductive agent, and the binder was 90: 5: 5, coated on an Al-foil having a thickness of 20 ⁇ m, and a coin-shaped and single-layer pouch-type battery was manufactured.
- Artificial graphite was used as a negative electrode, and 1M LiPF 6 was used for EC: EMC (1: 2) to which 2wt% LiBF 4 was added as an electrolyte.
- a positive electrode active material was manufactured.
- a coin type or single layer pouch type battery was manufactured in the same manner as in Example 1.
- the coin-type batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to an initial capacity characteristic experiment by flowing a current of 0.1 C-rate at a voltage range of 2.75 to 4.65 V, and 0.5 C at a voltage range of 2.75 to 4.65 V. Capacitance experiments were conducted according to the rate by flowing a current of -rate. At this time, each capacity characteristic is shown in Table 1 below.
- the single layer pouch type batteries manufactured in Examples 1 and 2 and Comparative Example 2 were subjected to output characteristics experiments under pulse conditions of 10 seconds in a voltage range of 3.0 to 4.35V, and the respective output characteristics in SOC20 are shown in Table 2.
- the single-layer pouch type batteries manufactured in Examples 1, 2 and Comparative Example 2 were subjected to life characteristics experiments by flowing a current of 45 degrees 0.5 / 1.0 C-rate at a voltage range of 3.0 to 4.35 V, and the life characteristics were 300 cycles. It is shown in Table 3 to evaluate the retention after the initial dose.
- the 0.1C capacity is 2.5 to 5.5% smaller than that of the electrode active material alone, and is 0.5. It can be seen that the C dose is 1.5 to 2% difference.
- the electrode active material according to the present invention may provide an electrode active material having an effect of improving high voltage stability and energy density and a lithium secondary battery including the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Claims (27)
- 제 1 전극 활물질:과 제 2 전극 활물질:을 포함하고,상기 제 1 전극 활물질과 제 2 전극 활물질은, 각각 하기 화학식 (1)로 표현되는 조성을 가지며,상기 제 1 전극 활물질은, 금속에 대한 리튬의 비가 1.4 이상 내지 1.7 이하의 범위 내이고,상기 제 2 전극 활물질은, 금속에 대한 리튬의 비가 1.2 이상 내지 1.4 미만의 범위 내인 것을 특징으로 하는 전극 활물질:(1-x)LiM’O2-yAy -xLi2MnO3-y’Ay’ (1)상기 식에서,M’은 MnaMb이고;M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고,0<x<1; 0<y≤0.02; 0<y’≤0.02; 0.5≤a≤1.0; 0≤b≤0.5; a + b = 1 이다.
- 제 1 항에 있어서, 상기 제 1 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 60 몰% 이상 내지 80 몰% 이하의 범위 내이고, 상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 30 몰% 초과 내지 60 몰% 미만의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 2 항에 있어서, 상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 30 몰% 초과 내지 50 몰% 미만의 범위 내인 제 3 전극 활물질로 이루어진 것을 특징으로 하는 전극 활물질.
- 제 2 항에 있어서, 상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 40 몰% 초과 내지 60 몰% 미만의 범위 내인 제 4 전극 활물질로 이루어진 것을 특징으로 하는 전극 활물질.
- 제 2 항에 있어서, 상기 제 2 전극 활물질은, 제 3 전극 활물질과 제 4 전극 활물질을 모두 포함하고, 상기 제 3 전극 활물질과 상기 제 4 전극 활물질의 혼합비는, 중량비로 5 : 95 이상 내지 95 : 5 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 1 전극 활물질과 상기 제 2 전극 활물질의 혼합비는, 중량비로 5 : 95 이상 내지 95 : 5 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 1 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 2 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 5 항에 있어서, 상기 제 3 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내이고, 상기 제 4 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 1 전극 활물질은, 구형, 타원형, 방추형, 인편형, 섬유형, 막대형, 코어-쉘형, 또는 비정형의 형상인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 2 전극 활물질은, 구형, 타원형, 방추형, 인편형, 섬유형, 막대형, 코어-쉘형, 또는 비정형의 형상인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 1 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 2 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 5 항에 있어서, 상기 제 3 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 5 항에 있어서, 상기 제 4 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 1 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 있어서, 상기 제 2 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 5 항에 있어서, 상기 제 3 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 5 항에 있어서, 상기 제 4 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
- 제 12 항 내지 제 15 항 중 어느 하나에 있어서, 상기 도전성 코팅층은, 하나 이상의 도전성 입자를 포함하는 것을 특징으로 하는 전극 활물질.
- 제 20 항에 있어서, 상기 도전성 코팅층은, 도전성 카본블랙을 포함하고 있는 것을 특징으로 하는 전극 활물질.
- 제 21 항에 있어서, 상기 도전성 카본블랙은, 아세틸렌 블랙, 케첸 블랙, 퍼니스 블랙, 오일-퍼니스 블랙, 콜럼비아 탄소, 채널 블랙, 램프 블랙, 서머 블랙으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 전극 활물질.
- 제 1 항에 따른 전극 활물질을 양극 활물질로서 포함하는 것을 특징으로 하는 리튬 이차전지.
- 제 23 항에 있어서, 상기 리튬 이차전지는, 음극 활물질로서, 탄소계 물질, 및/또는 Si을 포함하는 것을 특징으로 하는 리튬 이차전지.
- 제 23 항에 있어서, 상기 리튬 이차전지는, 리튬 이온 전지, 리튬 이온 폴리머 전지, 리튬 폴리머 전지로 이루어진 군에서 선택된 하나인 것을 특징으로 하는 리튬 이차전지.
- 제 23 항에 따른 리튬 이차전지를 포함하는 것을 특징으로 하는 전지팩.
- 제 26 항에 따른 전지팩을 에너지원으로 사용하는 것을 특징으로 하는 디바이스.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016510633A JP6130051B2 (ja) | 2013-07-29 | 2014-07-16 | エネルギー密度が向上した電極活物質及びそれを含むリチウム二次電池 |
US14/787,992 US10741841B2 (en) | 2013-07-29 | 2014-07-16 | Electrode active material having improved energy density and lithium secondary battery including the same |
CN201480024480.3A CN105164834B (zh) | 2013-07-29 | 2014-07-16 | 能量密度提高的电极活性材料和包含其的锂二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0089858 | 2013-07-29 | ||
KR20130089858 | 2013-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016506A1 true WO2015016506A1 (ko) | 2015-02-05 |
Family
ID=52431990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/006419 WO2015016506A1 (ko) | 2013-07-29 | 2014-07-16 | 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10741841B2 (ko) |
JP (1) | JP6130051B2 (ko) |
KR (1) | KR101666402B1 (ko) |
CN (1) | CN105164834B (ko) |
WO (1) | WO2015016506A1 (ko) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102473532B1 (ko) * | 2015-12-31 | 2022-12-05 | 삼성전자주식회사 | 양극 활물질 및 상기 양극 활물질을 채용한 양극과 리튬 전지 |
CN109075334A (zh) | 2016-03-14 | 2018-12-21 | 苹果公司 | 用于锂离子电池的阴极活性材料 |
WO2018057621A1 (en) | 2016-09-21 | 2018-03-29 | Apple Inc. | Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same |
DE102016223246A1 (de) * | 2016-11-24 | 2018-05-24 | Robert Bosch Gmbh | Aktivmaterial für eine positive Elektrode einer Batteriezelle, positive Elektrode und Batteriezelle |
KR102464769B1 (ko) | 2017-07-17 | 2022-11-08 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
JP7041023B2 (ja) * | 2018-07-31 | 2022-03-23 | トヨタ自動車株式会社 | リチウムイオン電池用正極活物質及びリチウムイオン電池 |
US11695108B2 (en) | 2018-08-02 | 2023-07-04 | Apple Inc. | Oxide mixture and complex oxide coatings for cathode materials |
US11749799B2 (en) * | 2018-08-17 | 2023-09-05 | Apple Inc. | Coatings for cathode active materials |
DE102018218624A1 (de) * | 2018-10-31 | 2020-04-30 | Robert Bosch Gmbh | Elektrode, Batteriezelle und Verwendung derselben |
US12074321B2 (en) | 2019-08-21 | 2024-08-27 | Apple Inc. | Cathode active materials for lithium ion batteries |
US11757096B2 (en) | 2019-08-21 | 2023-09-12 | Apple Inc. | Aluminum-doped lithium cobalt manganese oxide batteries |
CN111430703B (zh) * | 2020-03-18 | 2023-09-22 | 蜂巢能源科技有限公司 | 用于锂离子电池的富锂锰基正极材料及其制备方法、正极片、锂离子电池和电动汽车 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070105724A (ko) * | 2006-04-27 | 2007-10-31 | 삼성에스디아이 주식회사 | 양극판과 이를 이용한 리튬 이차전지 및 양극판 제조방법 |
KR101063214B1 (ko) * | 2008-11-28 | 2011-09-07 | 전자부품연구원 | 리튬이차전지용 구형 양극 활물질 제조방법 |
KR20120109407A (ko) * | 2011-03-23 | 2012-10-08 | 에스비리모티브 주식회사 | 리튬 이차 전지용 비수 전해질, 이를 포함하는 리튬 이차 전지 및 리튬이차전지의 제조방법 |
KR101215829B1 (ko) * | 2010-07-22 | 2012-12-27 | 주식회사 에코프로 | 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지 |
KR20130000849A (ko) * | 2011-06-24 | 2013-01-03 | 한국과학기술연구원 | 리튬이온 이차전지용 전극 활물질 제조 방법 및 이를 이용한 리튬이온 이차전지 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3258841B2 (ja) * | 1994-12-16 | 2002-02-18 | 三洋電機株式会社 | リチウム二次電池 |
JP2005149906A (ja) | 2003-11-14 | 2005-06-09 | Nichia Chem Ind Ltd | 非水電解質二次電池用正極活物質、非水電解質二次電池および非水電解質二次電池の製造方法 |
JP5176441B2 (ja) | 2006-09-12 | 2013-04-03 | 住友化学株式会社 | リチウム複合金属酸化物および非水電解質二次電池 |
US20100181527A1 (en) * | 2007-06-19 | 2010-07-22 | Peter Nesvadba | Nitroxide containing electrode materials for secondary batteries |
JP5407117B2 (ja) * | 2007-06-26 | 2014-02-05 | 日産自動車株式会社 | リチウムイオン電池 |
WO2011040383A1 (ja) | 2009-09-30 | 2011-04-07 | 戸田工業株式会社 | 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池 |
CN102055012B (zh) * | 2009-10-29 | 2013-07-24 | 上海比亚迪有限公司 | 一种锂离子电池及其制备方法 |
JP2011171012A (ja) | 2010-02-16 | 2011-09-01 | Toyota Motor Corp | リチウム二次電池用正極 |
JP5099168B2 (ja) | 2010-04-16 | 2012-12-12 | 株式会社豊田自動織機 | リチウムイオン二次電池 |
JP2012048959A (ja) | 2010-08-26 | 2012-03-08 | Sanyo Electric Co Ltd | 非水電解質二次電池用電極及び非水電解質二次電池 |
JP5605641B2 (ja) | 2010-12-16 | 2014-10-15 | トヨタ自動車株式会社 | リチウム二次電池 |
WO2012115411A2 (ko) | 2011-02-21 | 2012-08-30 | 주식회사 엘지화학 | 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지 |
JP2013075773A (ja) | 2011-09-29 | 2013-04-25 | Tanaka Chemical Corp | リチウム過剰型のリチウム金属複合酸化物 |
CN103035922B (zh) | 2011-10-07 | 2019-02-19 | 株式会社半导体能源研究所 | 蓄电装置 |
KR20130111834A (ko) * | 2012-04-02 | 2013-10-11 | 삼성정밀화학 주식회사 | 리튬이온 이차전지 및 그것의 제조방법 |
JP5877898B2 (ja) | 2012-05-31 | 2016-03-08 | 株式会社日立製作所 | リチウムイオン二次電池用正極活物質 |
CN102938458A (zh) * | 2012-11-09 | 2013-02-20 | 中国第一汽车股份有限公司 | 一种锂电池用富锂材料的熔融盐-草酸盐共沉淀制备方法 |
-
2014
- 2014-07-16 US US14/787,992 patent/US10741841B2/en active Active
- 2014-07-16 CN CN201480024480.3A patent/CN105164834B/zh active Active
- 2014-07-16 JP JP2016510633A patent/JP6130051B2/ja active Active
- 2014-07-16 WO PCT/KR2014/006419 patent/WO2015016506A1/ko active Application Filing
- 2014-07-28 KR KR1020140095899A patent/KR101666402B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070105724A (ko) * | 2006-04-27 | 2007-10-31 | 삼성에스디아이 주식회사 | 양극판과 이를 이용한 리튬 이차전지 및 양극판 제조방법 |
KR101063214B1 (ko) * | 2008-11-28 | 2011-09-07 | 전자부품연구원 | 리튬이차전지용 구형 양극 활물질 제조방법 |
KR101215829B1 (ko) * | 2010-07-22 | 2012-12-27 | 주식회사 에코프로 | 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지 |
KR20120109407A (ko) * | 2011-03-23 | 2012-10-08 | 에스비리모티브 주식회사 | 리튬 이차 전지용 비수 전해질, 이를 포함하는 리튬 이차 전지 및 리튬이차전지의 제조방법 |
KR20130000849A (ko) * | 2011-06-24 | 2013-01-03 | 한국과학기술연구원 | 리튬이온 이차전지용 전극 활물질 제조 방법 및 이를 이용한 리튬이온 이차전지 |
Also Published As
Publication number | Publication date |
---|---|
KR20150014398A (ko) | 2015-02-06 |
CN105164834B (zh) | 2018-02-27 |
US20160133929A1 (en) | 2016-05-12 |
JP2016518687A (ja) | 2016-06-23 |
JP6130051B2 (ja) | 2017-05-17 |
US10741841B2 (en) | 2020-08-11 |
CN105164834A (zh) | 2015-12-16 |
KR101666402B1 (ko) | 2016-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015016563A1 (ko) | 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극 | |
WO2013122352A1 (ko) | 수계 바인더를 포함하는 음극을 구비한 리튬 이차전지 | |
WO2015016506A1 (ko) | 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2012144785A2 (ko) | 양극 활물질 및 그것을 포함한 리튬 이차전지 | |
WO2013157806A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
WO2015016548A1 (ko) | 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제 | |
WO2015026080A1 (ko) | 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법 | |
WO2013009078A9 (ko) | 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지 | |
WO2014073833A1 (ko) | 이차전지용 양극 활물질 및 이를 포함하는 이차전지 | |
WO2014010854A1 (ko) | 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2013157863A1 (ko) | 전극 및 이를 포함하는 이차전지 | |
WO2011065651A2 (ko) | 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지 | |
WO2013157856A1 (ko) | 다층구조 전극 및 그 제조방법 | |
WO2015012640A1 (ko) | 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지 | |
WO2014196816A1 (ko) | 신규한 이차전지 | |
WO2011065650A9 (ko) | 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지 | |
WO2013157832A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
WO2015141997A1 (ko) | 양극 활물질과 이를 포함하는 리튬 이차전지 | |
WO2013157811A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
WO2015026121A1 (ko) | 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질 | |
WO2013157854A1 (ko) | 성능이 우수한 리튬 이차전지 | |
WO2015012473A1 (ko) | 리튬 망간계 산화물 및 이를 포함하는 양극 활물질 | |
WO2014010867A1 (ko) | 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2015016540A1 (ko) | 이차전지용 전극 및 이를 포함하는 리튬 이차전지 | |
WO2016209014A1 (ko) | 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480024480.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14832555 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016510633 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14787992 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14832555 Country of ref document: EP Kind code of ref document: A1 |