WO2015016506A1 - 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 - Google Patents

에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015016506A1
WO2015016506A1 PCT/KR2014/006419 KR2014006419W WO2015016506A1 WO 2015016506 A1 WO2015016506 A1 WO 2015016506A1 KR 2014006419 W KR2014006419 W KR 2014006419W WO 2015016506 A1 WO2015016506 A1 WO 2015016506A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
range
less
lithium
Prior art date
Application number
PCT/KR2014/006419
Other languages
English (en)
French (fr)
Inventor
하회진
김경호
김일홍
김제영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016510633A priority Critical patent/JP6130051B2/ja
Priority to US14/787,992 priority patent/US10741841B2/en
Priority to CN201480024480.3A priority patent/CN105164834B/zh
Publication of WO2015016506A1 publication Critical patent/WO2015016506A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode active material having an improved energy density and a lithium secondary battery including the same.
  • lithium secondary batteries with high energy density and voltage, long cycle life, and low self discharge rate It is commercially used and widely used.
  • Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as the lithium secondary battery, and lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium-containing nickel oxide (LiNiO). The use of 2 ) is also under consideration.
  • LiCoO 2 has been widely used because of its excellent physical properties such as excellent cycle characteristics. However, the safety is low, and due to the limited resources of cobalt as a raw material, there is a limitation in using it as a power source in fields such as electric vehicles. LiNiO 2 is difficult to apply to the actual production process at a reasonable cost, due to its manufacturing method.
  • lithium manganese oxides such as LiMnO 2 , LiMn 2 O 4 has the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting much attention as a cathode active material that can replace LiCoO 2 .
  • these lithium manganese oxides also have the disadvantage of poor cycle characteristics.
  • LiMnO 2 has a small initial capacity, in particular dozens of charge and discharge cycles are required until reaching a constant capacity.
  • LiMn 2 O 4 has a disadvantage in that the capacity is severely degraded as the cycle continues, and particularly, the cycle characteristics are rapidly decreased due to decomposition of the electrolyte and elution of manganese at a high temperature of 50 degrees or more.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the electrode active material includes a first electrode active material: and a second electrode active material: wherein the first electrode active material and the second electrode active material are each represented by the following general formula (1).
  • the composition of the first electrode active material has a ratio of lithium to metal in the range of 1.4 or more and 1.7 or less, and the second electrode active material has a ratio of lithium to metal in the range of 1.2 or more and less than 1.4. do.
  • M is at least one selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and bicycle transition metals;
  • A is at least one selected from the group consisting of anions of PO 4 , BO 3 , CO 3 , F and NO 3 ,
  • the first electrode active material has a molar content of manganese (Mn) in a range of 60 mol% or more and 80 mol% or less based on the molar content of all metals, and the second electrode active material has a molar amount of manganese (Mn).
  • the content may be in the range of more than 30 mol% to less than 60 mol% based on the molar content of the total metal.
  • the second electrode active material may be formed of a third electrode active material having a molar content of manganese (Mn) in a range of more than 30 mol% to less than 50 mol% based on the molar content of the entire metal.
  • Mn manganese
  • the second electrode active material may include a fourth electrode active material having a molar content of manganese (Mn) in a range of more than 40 mol% to less than 60 mol% based on the molar content of all metals.
  • Mn manganese
  • the second electrode active material includes both the third electrode active material and the fourth electrode active material, and a mixing ratio of the third electrode active material and the fourth electrode active material is within a range of 5:95 to 95: 5 in weight ratio. Can be.
  • the mixing ratio of the first electrode active material and the second electrode active material may be in a range of 5:95 to 95: 5 by weight.
  • the first electrode active material may have an average particle diameter (D50) in a range of 3 ⁇ m or more and 20 ⁇ m or less.
  • the second electrode active material may have an average particle diameter (D50) in a range of 3 ⁇ m or more and 20 ⁇ m or less.
  • the third electrode active material may have an average particle diameter D50 of 3 ⁇ m or more and 20 ⁇ m or less
  • the fourth electrode active material may have an average particle diameter D50 of 3 ⁇ m or more and 20 ⁇ m or less.
  • the first electrode active material may be spherical, elliptical, fusiform, flaky, fibrous, rod-shaped, core-shell, or amorphous.
  • the second electrode active material may be spherical, elliptical, fusiform, flaky, fibrous, rod-shaped, core-shell, or amorphous.
  • the first electrode active material further includes a conductive coating layer present on the surface, and the conductive coating layer may have a thickness in a range of 0.1 nm or more and 100 nm or less.
  • the second electrode active material further includes a conductive coating layer present on the surface, and the conductive coating layer may have a thickness in a range of 0.1 nm or more and 100 nm or less.
  • the third electrode active material further includes a conductive coating layer present on the surface, and the conductive coating layer may have a thickness in a range of 0.1 nm or more and 100 nm or less.
  • the fourth electrode active material further includes a conductive coating layer present on the surface, and the conductive coating layer may have a thickness in a range of 0.1 nm or more to 100 nm or less.
  • the first electrode active material is a secondary particle made of primary particles, the secondary particles may be in the range of 1% or more to 50% or less porosity.
  • the second electrode active material may be secondary particles formed of primary particles, and the secondary particles may have a porosity in a range of 1% or more and 50% or less.
  • the third electrode active material is secondary particles made of primary particles, and the secondary particles may have a porosity in a range of 1% or more and 50% or less.
  • the fourth electrode active material is secondary particles made of primary particles, and the secondary particles may have a porosity in a range of 1% or more and 50% or less.
  • the conductive coating layer may include one or more conductive particles.
  • the conductive coating layer may include conductive carbon black.
  • the conductive carbon black may be at least one selected from the group consisting of acetylene black, Ketjen black, furnace black, oil-furnace black, Columbia carbon, channel black, lamp black, and summer black.
  • the present invention can also provide a lithium secondary battery comprising the electrode active material as a positive electrode active material.
  • the lithium secondary battery may include a carbon-based material and / or Si as a negative electrode active material.
  • the lithium secondary battery may be one selected from the group consisting of a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery.
  • the positive electrode is prepared by applying an electrode mixture, which is a mixture of a positive electrode active material, a conductive material, and a binder, onto a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • an electrode mixture which is a mixture of a positive electrode active material, a conductive material, and a binder, onto a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the elastic graphite-based material may be used as the conductive material, or may be used together with the materials.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the present invention also provides a secondary battery including the electrode, and the secondary battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
  • the lithium secondary batteries are generally composed of a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and a lithium salt-containing nonaqueous electrolyte, and other components of the lithium secondary battery will be described below.
  • the negative electrode is prepared by coating, drying, and pressing the negative electrode active material on the negative electrode current collector, and optionally, the conductive material, binder, filler, etc. may be further included as necessary.
  • the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing nonaqueous electrolyte is composed of a nonaqueous electrolyte and lithium.
  • a nonaqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte and the like are used as the nonaqueous electrolyte, but are not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 has a nitride, halides, sulfates, such as Li, such as S-SiS 2 can be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • the lithium salt-containing non-aqueous electrolyte includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexa for the purpose of improving charge and discharge characteristics and flame retardancy.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
  • Lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
  • the present invention can provide a battery pack using the lithium secondary battery, and a device using the battery pack as an energy source.
  • specific examples of the device may include a power tool moving by being driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Lithium manganese oxide containing Mn as an essential transition metal and having a layered crystal structure in which 0.5 Li 2 MnO 3 0.5Li (Ni 0.45 Mn 0.35 Ni 0.20 ) O 2 and a ratio of lithium to metal 1: 1.5
  • a positive electrode active material was prepared by mixing 0.25Li 2 MnO 3 .0.75Li (Ni 0.45 Mn 0.40 Ni 0.15 ) O 2 having a ratio of lithium of about 1.25 to a weight ratio of 1: 1.
  • the positive electrode active material was a slurry in which the ratio of the active material, the conductive agent, and the binder was 90: 5: 5, coated on an Al-foil having a thickness of 20 ⁇ m, and a coin-shaped and single-layer pouch-type battery was manufactured.
  • Artificial graphite was used as a negative electrode, and 1M LiPF 6 was used for EC: EMC (1: 2) to which 2wt% LiBF 4 was added as an electrolyte.
  • a positive electrode active material was manufactured.
  • a coin type or single layer pouch type battery was manufactured in the same manner as in Example 1.
  • the coin-type batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to an initial capacity characteristic experiment by flowing a current of 0.1 C-rate at a voltage range of 2.75 to 4.65 V, and 0.5 C at a voltage range of 2.75 to 4.65 V. Capacitance experiments were conducted according to the rate by flowing a current of -rate. At this time, each capacity characteristic is shown in Table 1 below.
  • the single layer pouch type batteries manufactured in Examples 1 and 2 and Comparative Example 2 were subjected to output characteristics experiments under pulse conditions of 10 seconds in a voltage range of 3.0 to 4.35V, and the respective output characteristics in SOC20 are shown in Table 2.
  • the single-layer pouch type batteries manufactured in Examples 1, 2 and Comparative Example 2 were subjected to life characteristics experiments by flowing a current of 45 degrees 0.5 / 1.0 C-rate at a voltage range of 3.0 to 4.35 V, and the life characteristics were 300 cycles. It is shown in Table 3 to evaluate the retention after the initial dose.
  • the 0.1C capacity is 2.5 to 5.5% smaller than that of the electrode active material alone, and is 0.5. It can be seen that the C dose is 1.5 to 2% difference.
  • the electrode active material according to the present invention may provide an electrode active material having an effect of improving high voltage stability and energy density and a lithium secondary battery including the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 상세하게는, 제 1 전극 활물질:과 제 2 전극 활물질:을 포함하고, 상기 제 1 전극 활물질과 제 2 전극 활물질은, 각각 하기 화학식 (1)로 표현되는 조성을 가지며, 상기 제 1 전극 활물질은, 금속에 대한 리튬의 비가 1.4 이상 내지 1.7 이하의 범위 내이고, 상기 제 2 전극 활물질은, 금속에 대한 리튬의 비가 1.2 이상 내지 1.4 미만의 범위 내인 것을 특징으로 하는 전극 활물질을 제공한다. (1-x)LiM'O2-yAy -xLi2MnO3-y'Ay' (1) 상기 식에서, M'은 MnaMb이고; M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며; A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고, 0<x<1; 0<y≤0.02; 0<y'≤0.02; 0.5≤a≤1.0; 0≤b≤0.5; a + b = 1 이다.

Description

에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
본 발명은 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은리튬 이차전지가 상용화되어 널리 사용되고 있다.
이러한 리튬 이차전지로는 주로 리튬 함유 코발트 산화물(LiCoO2)이 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 현재 많이 사용되고 있지만, 안전성이 낮으며, 원료로서 코발트의 자원적 한계로 인해 고가이고 전기자동차 등과 같은 분야의 동력원으로 대량 사용하는 함에는 한계가 있다. LiNiO2은 그것의 제조방법에 따른 특성상, 합리적인 비용으로 실제 양산공정에 적용하기에 어려움이 있다.
반면에, LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로서 많은 관심을 모으고 있다. 그러나, 이들 리튬 망간 산화물 역시 사이클 특성 등이 나쁘다는 단점을 가지고 있다.
우선, LiMnO2은 초기 용량이 작고, 특히 일정한 용량에 이를 때까지 수십 회의 충방전 사이클이 필요하다는 단점을 가지고 있다. 또한, LiMn2O4 은 사이클이 계속됨에 따라 용량 저하가 심각하고, 특히 50도 이상의 고온에서 전해액의 분해, 망간의 용출 등으로 인해 사이클 특성이 급격히 저하되는 단점을 가지고 있다.
한편, 리튬 함유 망간 산화물 중에는 LiMnO2, LiMn2O4 이외에 Li2MnO3이 있다. Li2MnO3은 구조적 안정성이 매우 우수하지만 전기화학적으로 불성이므로, 그 자체로는 이차전지의 양극 활물질로서 사용되지 못한다. 따라서, 일부 선행기술 중에는 Li2MnO3를 LiMO2 (M = Co, Ni, Ni0.5Mn0.5, Mn)와 고용체를 형성하여 양극 활물질로 사용하는 기술을 제시하고 있다. 이러한 고용체 양극 활물질은 4.5 V의 고전압에서 Li과 O가 결정구조로부터 이탈되어 전기화학적 활성을 나타내게 되지만, 고전압에서 전해액의 분해 및 가스 발생의 가능성이 높으며, 상기 LiMO2 (M = Co, Ni, Ni0.5Mn0.5, Mn)와 같은 상대적으로 고가의 물질을 다량 사용하여야 하는 문제점이 있다.
또한, 리튬 함유 망간 산화물의 결정 구조적 특성으로 인해, 소망하는 정도의 안정성을 담보하기 어렵고 에너지 밀도의 향상을 기대하는데 한계가 있다.
따라서, 이러한 문제점을 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명의 목적은, 고전압 안정성 및 에너지 밀도가 향상되는 효과가 있는 전극 활물질 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.
따라서, 본 발명의 비제한적인 예에서 전극 활물질은, 제 1 전극 활물질:과 제 2 전극 활물질:을 포함하고, 상기 제 1 전극 활물질과 제 2 전극 활물질은, 각각 하기 화학식 (1)로 표현되는 조성을 가지며, 상기 제 1 전극 활물질은, 금속에 대한 리튬의 비가 1.4 이상 내지 1.7 이하의 범위 내이고, 상기 제 2 전극 활물질은, 금속에 대한 리튬의 비가 1.2 이상 내지 1.4 미만의 범위 내인 것을 특징으로 한다.
(1-x)LiM’O2-yAy -xLi2MnO3-y’Ay’ (1)
상기 식에서,
M’은 MnaMb이고;
M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;
A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고,
0<x<1; 0<y≤0.02; 0<y’≤0.02; 0.5≤a≤1.0; 0≤b≤0.5; a + b = 1 이다.
상기 제 1 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 60 몰% 이상 내지 80 몰% 이하의 범위 내이고, 상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 30 몰% 초과 내지 60 몰% 미만의 범위 내일 수 있다.
상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 30 몰% 초과 내지 50 몰% 미만의 범위 내인 제 3 전극 활물질로 이루어질 수 있다.
상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 40 몰% 초과 내지 60 몰% 미만의 범위 내인 제 4 전극 활물질로 이루어질 수 있다.
상기 제 2 전극 활물질은, 제 3 전극 활물질과 제 4 전극 활물질을 모두 포함하고, 상기 제 3 전극 활물질과 상기 제 4 전극 활물질의 혼합비는, 중량비로 5 : 95 이상 내지 95 : 5 이하의 범위 내일 수 있다.
상기 제 1 전극 활물질과 상기 제 2 전극 활물질의 혼합비는, 중량비로 5 : 95 이상 내지 95 : 5 이하의 범위 내일 수 있다.
상기 제 1 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내일 수 있다.
상기 제 2 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내일 수 있다.
상기 제 3 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내이고, 상기 제 4 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내일 수 있다.
상기 제 1 전극 활물질은, 구형, 타원형, 방추형, 인편형, 섬유형, 막대형, 코어-쉘형, 또는 비정형의 형상일 수 있다.
상기 제 2 전극 활물질은, 구형, 타원형, 방추형, 인편형, 섬유형, 막대형, 코어-쉘형, 또는 비정형의 형상일 수 있다.
상기 제 1 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내일 수 있다.
상기 제 2 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내일 수 있다.
상기 제 3 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내일 수 있다.
상기 제 4 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내일 수 있다.
상기 제 1 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내일 수 있다.
상기 제 2 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내일 수 있다.
상기 제 3 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내일 수 있다.
상기 제 4 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내일 수 있다.
상기 도전성 코팅층은, 하나 이상의 도전성 입자를 포함할 수 있다.
상기 도전성 코팅층은, 도전성 카본블랙을 포함할 수 있다.
상기 도전성 카본블랙은, 아세틸렌 블랙, 케첸 블랙, 퍼니스 블랙, 오일-퍼니스 블랙, 콜럼비아 탄소, 채널 블랙, 램프 블랙, 서머 블랙으로 이루어진 군에서 선택된 하나 이상일 수 있다.
본 발명은 또한, 상기 전극 활물질을 양극 활물질로서 포함하는 리튬 이차전지를 제공할 수 있다.
상기 리튬 이차전지는, 음극 활물질로서, 탄소계 물질, 및/또는 Si을 포함할 수 있다.
상기 리튬 이차전지는, 리튬 이온 전지, 리튬 이온 폴리머 전지, 리튬 폴리머 전지로 이루어진 군에서 선택된 하나일 수 있다.
일반적으로, 상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물인 전극 합제를 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은, 상기 화학식 1 로 표현되는 전극 활물질 외에, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
한편, 상기 탄성을 갖는 흑연계 물질이 도전재로 사용될 수 있고, 상기 물질들과 함께 사용될 수도 있다..
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
본 발명은 또한, 상기 전극을 포함하는 이차전지를 제공하고, 상기 이차전지는 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 리튬 폴리머 전지일 수 있다.
상기 리튬 이차전지들은 일반적으로 양극, 음극, 및 상기 양극과 음극에 개재되는 분리막 및 리튬염 함유 비수 전해질로 구성되어 있으며, 리튬 이차전지의 기타 성분들에 대해 이하에서 설명한다.
상기 음극은 상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있고, 상세하게는 탄소계 물질 및/또는 Si을 포함할 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수 전해질은, 비수 전해질과 리튬으로 이루어져 있고, 비수 전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 상기 리튬염 함유 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은, 상기 리튬 이차전지를 전지팩, 및 상기 전지팩을 에너지원으로 사용하는 디바이스를 제공할 수 있다.
이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
필수 전이금속으로서 Mn을 포함하고 층상 결정 구조를 가진 리튬 망간계 산화물로서, 금속에 대한 리튬의 비가 1 : 1.5 인 0.5Li2MnO3·0.5Li(Ni0.45Mn0.35Ni0.20)O2과 금속에 대한 리튬의 비가 1 : 1.25 인 0.25Li2MnO3·0.75Li(Ni0.45Mn0.40Ni0.15)O2 를 중량비 1 : 1로 혼합하여 양극 활물질을 제조 하였다.
상기 양극 활물질을 활물질, 도전제 및 바인더의 비율을 90 : 5 : 5로 하여 슬러리를 만들고 두께 20 ㎛의 Al-foil 위에 코팅한 후 코인 형태 및 단층 파우치 형태의 전지를 제작하였다. 음극으로는 인조흑연을 사용하였으며, 전해액으로 2wt% LiBF4가 첨가된 EC : EMC(1 : 2)에 1M LiPF6을 사용하였다.
<실시예 2>
상기 양극 활물질의 혼합물 대신에 금속에 대한 리튬의 비가 1 : 1.5 인 0.5Li2MnO3·0.5Li(Ni0.45Mn0.35Ni0.20)O2과 금속에 대한 리튬의 비가 1 : 1.25 인 0.25Li2MnO3·0.75Li(Ni0.45Mn0.40Ni0.15)O2 를 중량비 7 : 3로 혼합하여 양극 활물질을 제조하였다는 점을 제외하고는, 전지의 제조방법에 있어서 상기 실시예 1과 동일한 방법으로 코인형 또는 단층 파우치형 전지를 제작하였다.
<비교예 1>
상기 양극 활물질의 혼합물 대신에 Li2MnO3 상이 존재하지 않는 Li(Ni0.33Mn0.33Ni0.33)O2의 리튬 3성분계 산화물을 단독으로 사용하여 양극 활물질을 제조하였다는 점을 제외하고는, 전지의 제조방법에 있어서 상기 실시예 1과 동일한 방법으로 코인형 또는 단층 파우치형 전지를 제작하였다.
<비교예 2>
상기 양극 활물질의 혼합물 대신에 금속에 대한 리튬의 비가 1 : 1.5 인 0.5Li2MnO3·0.5Li(Ni0.45Mn0.35Ni0.20)O2의 리튬 망간계 산화물을 단독으로 사용하여 양극 활물질을 제조하였다는 점을 제외하고는, 전지의 제조방법에 있어서 상기 실시예 1과 동일한 방법으로 코인형 또는 단층 파우치형 전지를 제작하였다.
<실험예 1>
실시예 1, 2 및 비교예 1, 2에서 제조된 코인형 전지를 2.75 내지 4.65V 전압 범위에서 0.1 C-rate의 전류를 흘려 초기 용량 특성 실험을 진행하였고, 2.75 내지 4.65V 전압 범위에서 0.5 C-rate의 전류를 흘려 rate에 따른 용량 특성 실험을 진행하였다. 이때 각 용량 특성을 하기 표 1 에 나타내었다.
<실험예 2>
실시예 1, 2 및 비교예 2에서 제조된 단층 파우치형 전지를 3.0 내지 4.35V 전압 범위에서 10초 pulse 조건으로 출력특성 실험을 진행하였고, 이때 SOC20에서의 각 출력 특성을 표 2 에 나타내었다.
<실험예 3>
실시예 1, 2 및 비교예 2에서 제조된 단층 파우치형 전지를 3.0 내지 4.35V 전압 범위에서 45도 0.5/1.0 C-rate의 전류를 흘려 수명특성 실험을 진행하였고, 이때 수명 특성을 300 사이클 진행 후 초기 용량 대비 유지율로 평가하여 하기 표 3 에 나타내었다.
표 1
Figure PCTKR2014006419-appb-T000001
표 2
Figure PCTKR2014006419-appb-T000002
표 3
Figure PCTKR2014006419-appb-T000003
상기 표 1 에 따르면, 화학식 1에 따른 전극 활물질을 혼합하여 사용하는 실시예 1 및 2의 전지의 경우, 상기 전극 활물질을 단독으로 사용한 경우보다 0.1C 용량은 2.5 내지 5.5% 작은 수치를 나타내고, 0.5C 용량은 1.5 내지 2% 차이가 나는 것으로 확인할 수 있다.
상기 표 2 에 따르면, 화학식 1에 따른 전극 활물질을 혼합하여 사용하는 실시예 1 및 2의 전지의 경우, 상기 전극 활물질을 단독으로 사용한 경우보다 2.7배 내지 4배 이상 높은 출력 특성을 나타내는 것으로 확인할 수 있다.
상기 표 3 에 따르면, 화학식 1에 따른 전극 활물질을 혼합하여 사용하는 실시예 1 및 2의 전지의 경우, 상기 전극 활물질을 단독으로 사용한 경우보다 수명 특성이 현저히 향상되었음을 확인할 수 있다. 이는 화학식 1에 따른 리튬 망간계 산화물에서 금속에 대한 리튬의 비가 각각 1.4이상 내지 1.7 이하의 범위 및 1.2 이상 내지 1.4 미만의 범위의 리튬 망간계 산화물을 혼합하여 사용함으로써, 각 전극 활물질의 장점을 복합화하여 에너지밀도의 향상과 함께 낮은 SOC 영역에서의 저항 감소 및 출력 향상, 수명 특성 향상을 모두 획득함에 기여하기 때문이다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
상기에서 설명한 바와 같이, 본 발명에 따른 전극 활물질은, 고전압 안정성 및 에너지 밀도가 향상되는 효과가 있는 전극 활물질 및 이를 포함하는 리튬 이차전지를 제공할 수 있다.

Claims (27)

  1. 제 1 전극 활물질:과 제 2 전극 활물질:을 포함하고,
    상기 제 1 전극 활물질과 제 2 전극 활물질은, 각각 하기 화학식 (1)로 표현되는 조성을 가지며,
    상기 제 1 전극 활물질은, 금속에 대한 리튬의 비가 1.4 이상 내지 1.7 이하의 범위 내이고,
    상기 제 2 전극 활물질은, 금속에 대한 리튬의 비가 1.2 이상 내지 1.4 미만의 범위 내인 것을 특징으로 하는 전극 활물질:
    (1-x)LiM’O2-yAy -xLi2MnO3-y’Ay’ (1)
    상기 식에서,
    M’은 MnaMb이고;
    M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;
    A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고,
    0<x<1; 0<y≤0.02; 0<y’≤0.02; 0.5≤a≤1.0; 0≤b≤0.5; a + b = 1 이다.
  2. 제 1 항에 있어서, 상기 제 1 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 60 몰% 이상 내지 80 몰% 이하의 범위 내이고, 상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 30 몰% 초과 내지 60 몰% 미만의 범위 내인 것을 특징으로 하는 전극 활물질.
  3. 제 2 항에 있어서, 상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 30 몰% 초과 내지 50 몰% 미만의 범위 내인 제 3 전극 활물질로 이루어진 것을 특징으로 하는 전극 활물질.
  4. 제 2 항에 있어서, 상기 제 2 전극 활물질은, 망간(Mn)의 몰함량이 전체 금속의 몰함량을 기준으로 40 몰% 초과 내지 60 몰% 미만의 범위 내인 제 4 전극 활물질로 이루어진 것을 특징으로 하는 전극 활물질.
  5. 제 2 항에 있어서, 상기 제 2 전극 활물질은, 제 3 전극 활물질과 제 4 전극 활물질을 모두 포함하고, 상기 제 3 전극 활물질과 상기 제 4 전극 활물질의 혼합비는, 중량비로 5 : 95 이상 내지 95 : 5 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  6. 제 1 항에 있어서, 상기 제 1 전극 활물질과 상기 제 2 전극 활물질의 혼합비는, 중량비로 5 : 95 이상 내지 95 : 5 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  7. 제 1 항에 있어서, 상기 제 1 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  8. 제 1 항에 있어서, 상기 제 2 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  9. 제 5 항에 있어서, 상기 제 3 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내이고, 상기 제 4 전극 활물질은, 평균 입경(D50)이 3 ㎛ 이상 내지 20 ㎛ 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  10. 제 1 항에 있어서, 상기 제 1 전극 활물질은, 구형, 타원형, 방추형, 인편형, 섬유형, 막대형, 코어-쉘형, 또는 비정형의 형상인 것을 특징으로 하는 전극 활물질.
  11. 제 1 항에 있어서, 상기 제 2 전극 활물질은, 구형, 타원형, 방추형, 인편형, 섬유형, 막대형, 코어-쉘형, 또는 비정형의 형상인 것을 특징으로 하는 전극 활물질.
  12. 제 1 항에 있어서, 상기 제 1 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  13. 제 1 항에 있어서, 상기 제 2 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  14. 제 5 항에 있어서, 상기 제 3 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  15. 제 5 항에 있어서, 상기 제 4 전극 활물질은, 표면에 존재하는 도전성 코팅층을 더 포함하고, 상기 도전성 코팅층은, 두께가 0.1 nm 이상 내지 100 nm 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  16. 제 1 항에 있어서, 상기 제 1 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  17. 제 1 항에 있어서, 상기 제 2 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  18. 제 5 항에 있어서, 상기 제 3 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  19. 제 5 항에 있어서, 상기 제 4 전극 활물질은, 1차 입자로 이루어진 2차 입자이고, 상기 2차 입자는 공극도가 1% 이상 내지 50% 이하의 범위 내인 것을 특징으로 하는 전극 활물질.
  20. 제 12 항 내지 제 15 항 중 어느 하나에 있어서, 상기 도전성 코팅층은, 하나 이상의 도전성 입자를 포함하는 것을 특징으로 하는 전극 활물질.
  21. 제 20 항에 있어서, 상기 도전성 코팅층은, 도전성 카본블랙을 포함하고 있는 것을 특징으로 하는 전극 활물질.
  22. 제 21 항에 있어서, 상기 도전성 카본블랙은, 아세틸렌 블랙, 케첸 블랙, 퍼니스 블랙, 오일-퍼니스 블랙, 콜럼비아 탄소, 채널 블랙, 램프 블랙, 서머 블랙으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 전극 활물질.
  23. 제 1 항에 따른 전극 활물질을 양극 활물질로서 포함하는 것을 특징으로 하는 리튬 이차전지.
  24. 제 23 항에 있어서, 상기 리튬 이차전지는, 음극 활물질로서, 탄소계 물질, 및/또는 Si을 포함하는 것을 특징으로 하는 리튬 이차전지.
  25. 제 23 항에 있어서, 상기 리튬 이차전지는, 리튬 이온 전지, 리튬 이온 폴리머 전지, 리튬 폴리머 전지로 이루어진 군에서 선택된 하나인 것을 특징으로 하는 리튬 이차전지.
  26. 제 23 항에 따른 리튬 이차전지를 포함하는 것을 특징으로 하는 전지팩.
  27. 제 26 항에 따른 전지팩을 에너지원으로 사용하는 것을 특징으로 하는 디바이스.
PCT/KR2014/006419 2013-07-29 2014-07-16 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 WO2015016506A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016510633A JP6130051B2 (ja) 2013-07-29 2014-07-16 エネルギー密度が向上した電極活物質及びそれを含むリチウム二次電池
US14/787,992 US10741841B2 (en) 2013-07-29 2014-07-16 Electrode active material having improved energy density and lithium secondary battery including the same
CN201480024480.3A CN105164834B (zh) 2013-07-29 2014-07-16 能量密度提高的电极活性材料和包含其的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0089858 2013-07-29
KR20130089858 2013-07-29

Publications (1)

Publication Number Publication Date
WO2015016506A1 true WO2015016506A1 (ko) 2015-02-05

Family

ID=52431990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006419 WO2015016506A1 (ko) 2013-07-29 2014-07-16 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (1) US10741841B2 (ko)
JP (1) JP6130051B2 (ko)
KR (1) KR101666402B1 (ko)
CN (1) CN105164834B (ko)
WO (1) WO2015016506A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102473532B1 (ko) * 2015-12-31 2022-12-05 삼성전자주식회사 양극 활물질 및 상기 양극 활물질을 채용한 양극과 리튬 전지
CN109075334A (zh) 2016-03-14 2018-12-21 苹果公司 用于锂离子电池的阴极活性材料
WO2018057621A1 (en) 2016-09-21 2018-03-29 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
DE102016223246A1 (de) * 2016-11-24 2018-05-24 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, positive Elektrode und Batteriezelle
KR102464769B1 (ko) 2017-07-17 2022-11-08 주식회사 엘지에너지솔루션 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
JP7041023B2 (ja) * 2018-07-31 2022-03-23 トヨタ自動車株式会社 リチウムイオン電池用正極活物質及びリチウムイオン電池
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) * 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
DE102018218624A1 (de) * 2018-10-31 2020-04-30 Robert Bosch Gmbh Elektrode, Batteriezelle und Verwendung derselben
US12074321B2 (en) 2019-08-21 2024-08-27 Apple Inc. Cathode active materials for lithium ion batteries
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
CN111430703B (zh) * 2020-03-18 2023-09-22 蜂巢能源科技有限公司 用于锂离子电池的富锂锰基正极材料及其制备方法、正极片、锂离子电池和电动汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070105724A (ko) * 2006-04-27 2007-10-31 삼성에스디아이 주식회사 양극판과 이를 이용한 리튬 이차전지 및 양극판 제조방법
KR101063214B1 (ko) * 2008-11-28 2011-09-07 전자부품연구원 리튬이차전지용 구형 양극 활물질 제조방법
KR20120109407A (ko) * 2011-03-23 2012-10-08 에스비리모티브 주식회사 리튬 이차 전지용 비수 전해질, 이를 포함하는 리튬 이차 전지 및 리튬이차전지의 제조방법
KR101215829B1 (ko) * 2010-07-22 2012-12-27 주식회사 에코프로 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
KR20130000849A (ko) * 2011-06-24 2013-01-03 한국과학기술연구원 리튬이온 이차전지용 전극 활물질 제조 방법 및 이를 이용한 리튬이온 이차전지

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258841B2 (ja) * 1994-12-16 2002-02-18 三洋電機株式会社 リチウム二次電池
JP2005149906A (ja) 2003-11-14 2005-06-09 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池および非水電解質二次電池の製造方法
JP5176441B2 (ja) 2006-09-12 2013-04-03 住友化学株式会社 リチウム複合金属酸化物および非水電解質二次電池
US20100181527A1 (en) * 2007-06-19 2010-07-22 Peter Nesvadba Nitroxide containing electrode materials for secondary batteries
JP5407117B2 (ja) * 2007-06-26 2014-02-05 日産自動車株式会社 リチウムイオン電池
WO2011040383A1 (ja) 2009-09-30 2011-04-07 戸田工業株式会社 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
CN102055012B (zh) * 2009-10-29 2013-07-24 上海比亚迪有限公司 一种锂离子电池及其制备方法
JP2011171012A (ja) 2010-02-16 2011-09-01 Toyota Motor Corp リチウム二次電池用正極
JP5099168B2 (ja) 2010-04-16 2012-12-12 株式会社豊田自動織機 リチウムイオン二次電池
JP2012048959A (ja) 2010-08-26 2012-03-08 Sanyo Electric Co Ltd 非水電解質二次電池用電極及び非水電解質二次電池
JP5605641B2 (ja) 2010-12-16 2014-10-15 トヨタ自動車株式会社 リチウム二次電池
WO2012115411A2 (ko) 2011-02-21 2012-08-30 주식회사 엘지화학 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지
JP2013075773A (ja) 2011-09-29 2013-04-25 Tanaka Chemical Corp リチウム過剰型のリチウム金属複合酸化物
CN103035922B (zh) 2011-10-07 2019-02-19 株式会社半导体能源研究所 蓄电装置
KR20130111834A (ko) * 2012-04-02 2013-10-11 삼성정밀화학 주식회사 리튬이온 이차전지 및 그것의 제조방법
JP5877898B2 (ja) 2012-05-31 2016-03-08 株式会社日立製作所 リチウムイオン二次電池用正極活物質
CN102938458A (zh) * 2012-11-09 2013-02-20 中国第一汽车股份有限公司 一种锂电池用富锂材料的熔融盐-草酸盐共沉淀制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070105724A (ko) * 2006-04-27 2007-10-31 삼성에스디아이 주식회사 양극판과 이를 이용한 리튬 이차전지 및 양극판 제조방법
KR101063214B1 (ko) * 2008-11-28 2011-09-07 전자부품연구원 리튬이차전지용 구형 양극 활물질 제조방법
KR101215829B1 (ko) * 2010-07-22 2012-12-27 주식회사 에코프로 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
KR20120109407A (ko) * 2011-03-23 2012-10-08 에스비리모티브 주식회사 리튬 이차 전지용 비수 전해질, 이를 포함하는 리튬 이차 전지 및 리튬이차전지의 제조방법
KR20130000849A (ko) * 2011-06-24 2013-01-03 한국과학기술연구원 리튬이온 이차전지용 전극 활물질 제조 방법 및 이를 이용한 리튬이온 이차전지

Also Published As

Publication number Publication date
KR20150014398A (ko) 2015-02-06
CN105164834B (zh) 2018-02-27
US20160133929A1 (en) 2016-05-12
JP2016518687A (ja) 2016-06-23
JP6130051B2 (ja) 2017-05-17
US10741841B2 (en) 2020-08-11
CN105164834A (zh) 2015-12-16
KR101666402B1 (ko) 2016-10-24

Similar Documents

Publication Publication Date Title
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
WO2013122352A1 (ko) 수계 바인더를 포함하는 음극을 구비한 리튬 이차전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2012144785A2 (ko) 양극 활물질 및 그것을 포함한 리튬 이차전지
WO2013157806A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015016548A1 (ko) 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2013009078A9 (ko) 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2014010854A1 (ko) 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
WO2011065651A2 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2014196816A1 (ko) 신규한 이차전지
WO2011065650A9 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2013157811A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015026121A1 (ko) 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
WO2014010867A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2015016540A1 (ko) 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024480.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510633

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14787992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832555

Country of ref document: EP

Kind code of ref document: A1