WO2013157811A1 - 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 - Google Patents

리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 Download PDF

Info

Publication number
WO2013157811A1
WO2013157811A1 PCT/KR2013/003177 KR2013003177W WO2013157811A1 WO 2013157811 A1 WO2013157811 A1 WO 2013157811A1 KR 2013003177 W KR2013003177 W KR 2013003177W WO 2013157811 A1 WO2013157811 A1 WO 2013157811A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
current collector
active material
electrode active
Prior art date
Application number
PCT/KR2013/003177
Other languages
English (en)
French (fr)
Inventor
김대홍
이성민
이민희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP13778476.5A priority Critical patent/EP2802031B1/en
Priority to JP2014558692A priority patent/JP5860174B2/ja
Priority to CN201380010685.1A priority patent/CN104137307B/zh
Publication of WO2013157811A1 publication Critical patent/WO2013157811A1/ko
Priority to US14/457,197 priority patent/US10026952B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing an electrode for a secondary battery, the electrode active material is applied to the current collector, and to an electrode manufactured using the same, in detail, the surface roughness (R a ) of 0.001 ⁇ 10 ⁇ m size over the entire surface Surface treatment of the current collector to have a morphology to be formed, and the surface treatment is performed by chemical or electrical etching by wet method or reactive gas or ion etching by dry method to improve adhesion between electrode active material and current collector.
  • the present invention relates to a method for manufacturing an electrode for a secondary battery, and an electrode manufactured using the same.
  • the lithium secondary battery has a structure in which a non-aqueous electrolyte containing lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode on which an active material is coated on an electrode current collector.
  • the binder provides adhesion between the electrode active materials and between the electrode active material and the current collector, and has an important effect on battery characteristics by suppressing volume expansion due to charging and discharging of the battery.
  • the amount of the conductive material or the electrode active material is relatively decreased, so that the conductivity of the electrode is reduced or the battery capacity is reduced. There may be a problem that the process of applying the electrode is not easy to be diluted.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the present invention is a method of manufacturing an electrode for secondary batteries, the electrode active material is applied to the current collector, the surface of the current collector so as to have a morphology to form a surface roughness (R a ) of 0.001 ⁇ 10 ⁇ m size over the entire surface
  • the surface treatment is performed by chemical or electrical etching by wet method or reactive gas or ion etching by dry method to improve adhesion between the electrode active material and the current collector. to provide.
  • the electrode mixture is mixed into an organic solvent with an electrode active material, a conductive material, a binder, and the like to form a slurry.
  • the amount of the binder is increased, the amount of the electrode active material and the conductive material is relatively increased. As a result, there is a problem that the conductivity of the electrode is lowered or the battery capacity is lowered.
  • the current collector surface-treated to have a predetermined morphology by the manufacturing method according to the present invention because of the fine roughness formed on the surface, the surface area is increased, the adhesion between the electrode active material and the current collector is significantly increased, the charge and discharge Various performances of the secondary battery, such as cycle characteristics, can be improved.
  • the current collector may have a morphology that forms a surface roughness Ra of 0.1 to 1 ⁇ m over the entire surface.
  • the surface roughness is too small, it is difficult to form fine concavities and convexities, which makes it difficult to disperse the stress during volume expansion of the electrode active material.
  • the surface roughness is too large, stress dispersion of the electrode active material in the large concavities and convexities and The problem that the relaxation effect is lowered may occur, which is not preferable.
  • the interval between the irregularities formed on the surface of the current collector may be 0.001 ⁇ 10 ⁇ m
  • the depth of the valley between the irregularities may be 0.001 ⁇ 10 ⁇ m.
  • the method of forming the fine concavo-convex by treating the surface of the current collector may vary.
  • a mixture of FeCl 3 / HCl / H 2 O may be used, and in particular, Cu may be used as the current collector.
  • a mixture of FeCl 3 / HCl / H 2 O (ratio 1: 1: 8.5: 33.7 (vol.%)) May be used as the etchant. Since the etching time may vary depending on various factors such as the type of the negative electrode current collector and the type of the etchant, it may be determined under such a condition that the surface morphology may be formed in consideration of these factors.
  • the present invention provides an electrode for a secondary battery manufactured by the above manufacturing method.
  • Such electrodes may be positive or negative electrodes, or positive and negative electrodes.
  • the positive electrode may include a lithium metal oxide having a spinel structure represented by Chemical Formula 1 as a positive electrode active material.
  • M is Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, At least one element selected from the group consisting of Nb, Mo, Sr, Sb, W, Ti and Bi;
  • A is -1 or -divalent one or more anions.
  • the lithium metal oxide may be represented by the following Chemical Formula 2 in more detail.
  • the lithium metal oxide may be LiNi 0.5 Mn 1.5 O 4 or LiNi 0.4 Mn 1.6 O 4 .
  • the negative electrode may include a lithium metal oxide represented by Chemical Formula 3 as a negative electrode active material.
  • M ' is at least one element selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al and Zr; a and b are 0.1 ⁇ a ⁇ 4; Determined according to the oxidation number of M 'in the range of 0.2 ⁇ b ⁇ 4; c is determined depending on the oxidation number in the range of 0 ⁇ c ⁇ 0.2; A is -1 or -divalent one or more anions.
  • the lithium metal oxide may be represented by the following formula (4).
  • the lithium metal oxide may be Li 1.33 Ti 1.67 O 4 or LiTi 2 O 4 .
  • the positive electrode is manufactured by coating, drying, and pressing a positive electrode active material on a positive electrode current collector, and optionally, the conductive material, binder, filler, and the like as described above may be further included.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is prepared by coating, drying and pressing the negative electrode active material on the negative electrode current collector, and optionally, the conductive material, binder, filler, etc. may be further included as necessary.
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; Conductive polymers such as poly
  • LTO lithium titanium oxide
  • the electron structure of the LTO itself may be low, and thus the electrode structure may be the same as described above.
  • the present invention provides a secondary battery having a structure in which a lithium salt-containing electrolyte is impregnated into an electrode assembly having a separator interposed between the positive electrode and the negative electrode.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing electrolyte solution is composed of an electrolyte solution and a lithium salt, and the electrolyte solution, but non-aqueous organic solvent, organic solid electrolyte, inorganic solid electrolyte and the like are used, but are not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates, and the like of Li, such as Li 4 SiO 4 —LiI-LiOH, Li 3 PO 4 —Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • a lithium salt such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2
  • a lithium salt is a linear form of cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which is a low viscosity solvent.
  • the lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of carbonate.
  • the present invention also provides a battery module including the secondary battery as a unit cell, and provides a battery pack including the battery module.
  • the battery pack may be used as a power source for medium and large devices requiring high temperature stability, long cycle characteristics, high rate characteristics, and the like.
  • Examples of the medium-to-large device include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Example 1 is a SEM (Scanning Electron Microscopy) photograph of the surface of the current collector in Example 1;
  • the surface of the aluminum current collector was etched using an etching solution in which FeCl 3 was mixed at a final concentration of 0.4 M in a 2.4 M HCl aqueous solution so that the surface on the aluminum current collector forms a surface roughness Ra of 0.5 ⁇ m.
  • the aluminum mixture prepared above was prepared by adding 95 wt% of Li 1.33 Ti 1.67 O 4 (negative electrode active material), 2.5 wt% of Super-P (conductive material) and 2.5 wt% of PVdF (binder) to NMP to prepare a negative electrode mixture. It apply
  • a negative electrode for a secondary battery was manufactured in the same manner as in Example 1, except that the surface of the aluminum current collector was not treated with the etching solution.
  • the current collector of FIG. 1 according to Example 1 shows a rough surface morphology, whereas the current collector of FIG. 2 according to Comparative Example 1 has a smooth surface. .
  • the method for manufacturing a secondary battery electrode according to the present invention has a specific morphology throughout the surface of the current collector by a chemical or electrical etching by a wet method or a reactive gas or ion etching method by a dry method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • ing And Chemical Polishing (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 전극 활물질이 집전체에 도포되어 있는 이차전지용 전극의 제조방법으로서, 표면 전반에 걸쳐 0.001 ~ 10 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지도록 집전체를 표면처리하는 과정을 포함하고 상기 표면처리는 습식법에 의한 화학적 또는 전기적 에칭이나 건식법에 의한 반응성 가스 또는 이온 에칭으로 행하여져, 전극 활물질과 집전체의 접착력을 개선시키는 것을 특징으로 하는 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극을 제공한다.

Description

리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
본 발명은 전극 활물질이 집전체에 도포되어 있는 이차전지용 전극의 제조방법 및 이를 사용하여 제조되는 전극에 관한 것으로서, 상세하게는, 표면 전반에 걸쳐 0.001 ~ 10 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지도록 집전체를 표면처리하는 과정을 포함하고 상기 표면처리는 습식법에 의한 화학적 또는 전기적 에칭이나 건식법에 의한 반응성 가스 또는 이온 에칭으로 행하여져, 전극 활물질과 집전체의 접착력을 개선시키는 것을 특징으로 하는 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.
리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해질이 함침되어 있는 구조로 이루어져 있다.
이러한 리튬 이차전지는 양극의 리튬 이온이 음극으로 삽입되고 탈리되는 과정을 반복하면서 충전과 방전이 진행된다. 전극 활물질의 종류에 따라 전지의 이론 용량은 차이가 있으나, 대체로 사이클이 진행됨에 따라 충전 및 방전 용량이 저하되는 문제점이 발생하게 된다.
이러한 현상은 전지의 충전 및 방전이 진행됨에 따라 발생하는 전극의 부피 변화에 의해 전극 활물질간 또는 전극 활물질과 집전체 사이가 분리되어 상기 활물질이 그 기능을 다하지 못하게 되는 것에 가장 큰 원인이 있다. 또한, 삽입 및 탈리되는 과정에서 음극에 삽입된 리튬 이온이 제대로 빠져 나오지 못하여 음극의 활성점이 감소하게 되고, 이로 인해 사이클이 진행됨에 따라 전지의 충방전 용량 및 수명 특성이 감소하기도 한다.
이와 관련하여 바인더는 전극 활물질들 상호간 및 전극 활물질과 전류 집전체 간에 접착력을 제공하며, 전지의 충방전에 따른 부피 팽창을 억제하여 전지 특성에 중요한 영향을 끼친다.
그러나, 접착력을 증가시키기 위하여 이차전지의 제조 공정에서 바인더를 다량 사용할 경우, 상대적으로 도전재 또는 전극 활물질의 양이 감소하므로 전극의 전도성이 떨어지거나, 전지 용량이 저하되며, 또한, 전극 슬러리가 너무 묽어질 수 있어 전극을 도포하는 과정이 용이하지 않은 문제점이 있다.
따라서, 적정량의 바인더를 사용하면서도 전극 활물질과 집전체 사이에 우수한 접착력을 제공하여 이차전지의 성능을 개선할 수 있는 기술에 대한 필요성이 매우 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 집전체 표면 전반에 걸쳐 특정 몰포로지를 가지도록 습식법에 의한 화학적 또는 전기적 에칭이나 건식법에 의한 반응성 가스 또는 이온 에칭방법으로 표면처리를 한 후, 전극 합제를 도포하는 경우, 소망하는 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명은 전극 활물질이 집전체에 도포되어 있는 이차전지용 전극의 제조방법으로서, 표면 전반에 걸쳐 0.001 ~ 10 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지도록 집전체를 표면처리하는 과정을 포함하고 상기 표면처리는 습식법에 의한 화학적 또는 전기적 에칭이나 건식법에 의한 반응성 가스 또는 이온 에칭으로 행하여져, 전극 활물질과 집전체의 접착력을 개선시키는 것을 특징으로 하는 이차전지용 전극의 제조 방법을 제공한다.
일반적으로 전극 합제는 전극 활물질, 도전재, 바인더 등을 유기용매에 혼합하여 슬러리로 만든다. 이 경우, 앞서 설명한 바와 같이, 충방전 과정에서 발생하는 전극의 부피 변화에 따른 전극 활물질과 집전체 사이가 분리되는 것을 방지하기 위하여, 바인더 양을 증가시키는 경우, 상대적으로 전극 활물질, 도전재의 양이 감소하므로, 전극의 전도성이 떨어지거나, 전지 용량이 저하되는 등의 문제점이 있다.
이에, 본 발명에 따른 제조방법에 의하여 소정의 몰포로지를 가지도록 표면처리된 집전체는 표면에 형성된 미세요철로 인하여, 표면적이 증가하므로, 전극 활물질과 집전체의 접착력이 현저히 증가하여, 충방전 사이클 특성 향상 등 이차전지의 제반 성능을 향상시킬 수 있다.
상기 집전체는 상세하게는, 표면 전반에 걸쳐 0.1 ~ 1 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가질 수 있다.
상기 표면 거칠기가 너무 작으면, 미세 요철의 형성이 어려워 전극 활물질의 부피 팽창시 응력의 분산이 어려워질 수 있고, 반대로, 표면 거칠기가 너무 크면, 커다랗게 형성된 요철 내에서의 전극 활물질의 응력 분산 및 완화 효과가 저하되는 문제점이 발생할 수 있으므로, 바람직하지 않다.
구체적으로, 집전체 표면에 형성되어 있는 요철들 간의 간격은 0.001 ~ 10 ㎛일 수 있고, 요철들 간의 골의 깊이는 0.001 ~ 10 ㎛일 수 있다.
집전체에 표면을 처리하여 미세한 요철을 형성하는 방법은 다양할 수 있으며, 하나의 예로서, 화학적 에칭의 경우, FeCl3/HCl/H2O의 혼합물을 사용할 수 있으며, 특히, 집전체로서 Cu 또는 Ni을 사용할 때, 에칭제로서 FeCl3/HCl/H2O의 혼합물(비율 = 1 : 8.5 : 33.7 (부피%))을 사용할 수 있다. 에칭 시간은 음극 집전체의 종류, 에칭제의 종류 등 다양한 요소에 의해 달라질 수 있으므로, 이러한 요소들을 고려하여 상기와 같은 표면 몰포로지가 형성될 수 있는 조건에서 결정할 수 있다.
본 발명은 상기 제조 방법에 의하여 제조된 이차전지용 전극을 제공한다. 이러한 전극은 양극 또는 음극, 또는 양극 및 음극일 수 있다.
상기 양극은 양극 활물질로 하기 화학식 1로 표시되는 스피넬 구조의 리튬 금속 산화물을 포함할 수 있다.
LixMyMn2-yO4-zAz (1)
상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고, M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며; A는 -1 또는 -2가의 하나 이상의 음이온이다.
상기 리튬 금속 산화물은 더욱 상세하게는, 하기 화학식 2으로 표시될 수 있다.
LixNiyMn2-yO4 (2)
상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
상기 리튬 금속 산화물은 좀 더 상세하게는 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4일 수 있다.
상기 음극은 음극 활물질로 하기 화학식 3으로 표시되는 리튬 금속 산화물을 포함할 수 있다.
LiaM'bO4-cAc (3)
상기 식에서, M'은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M'의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.
상기 리튬 금속 산화물은 하기 화학식 4로 표시될 수 있다.
LiaTibO4 (4)
더욱 상세하게는, 상기 리튬 금속 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4일 수 있다.
양극은 양극 집전체 상에 양극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 앞서 정의한 물질을 사용할 수 있으나, 예를 들어, 추가로 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물(x = 0.01 ~ 0.6 임); 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 사용할 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
반면에, 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤≤z8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있다.
하나의 예에서, 상기 음극 활물질로 리튬 티타늄 산화물(LTO)를 사용하는 경우, LTO 자체의 전자 전도도가 낮으므로 상기와 같은 전극 구조일 수 있다. 또한, 이 경우, LTO의 높은 전위로 인하여 상대적으로 고전위를 가지는 LiNixMn2-xO4(x = 0.01 ~ 0.6 임)의 스피넬 리튬 망간 복합 산화물을 양극 활물질로 사용할 수 있다.
또한, 본 발명은 상기 양극과 음극 사이에 분리막이 개재된 구조의 전극조립체에 리튬염 함유 전해액이 함침되어 있는 구조로 이루어진 이차전지를 제공한다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은 또한, 상기 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
도 1 은 실시예 1에서 집전체 표면의 SEM (Scanning Electron Microscopy) 사진이다; 및
도 2 은 비교예 1에서 집전체 표면의 SEM (Scanning Electron Microscopy) 사진이다.
<실시예 1>
알루미늄 집전체 상의 표면이 0.5 ㎛ 크기의 표면 거칠기(Ra)를 형성하도록, 2.4 M의 HCl 수용액에 FeCl3을 0.4 M의 최종 농도로 혼합한 에칭액을 사용하여 알루미늄 집전체의 표면을 에칭하였다. 그 후 Li1.33Ti1.67O4 (음극 활물질) 95 중량%, Super-P(도전재) 2.5 중량% 및 PVdF(결합제) 2.5 중량%를 NMP에 첨가하여 음극 합제를 제조하여 상기에서 제조된 알루미늄 집전체에 도포하여 이차전지용 음극을 제조하였다.
<비교예 1>
에칭액을 사용하여 알루미늄 집전체의 표면을 처리하지 않은 것을 제외하고는 실시예 1과 동일한 방법을 이용하여 이차전지용 음극을 제조하였다.
<실험예 1>
상기 실시예 1 및 비교예 1에서 에칭액으로 표면처리된 집전체 표면의 SEM (Scanning Electron Microscopy) 사진을 하기 도 1 및 도 2에 각각 나타내었다.
하기 도 1 및 도 2에 따르면, 실시예 1에 따른 도 1의 집전체는 거친 표면 몰포로지를 보여주고 있음에 반하여, 비교예 1에 따른 도 2의 집전체는 매끄러운 표면을 가짐을 알 수 있다.
<실험예 2>
상기 실시예 1 및 비교예 1에서 제조된 음극의 접착력을 측정하여 하기 표 1에 나타내었다.
<표 1>
Figure PCTKR2013003177-appb-I000001
상기 표 1에 따르면 애칭액으로 표면처리된 집전체를 사용하여 제조된 실시예 1의 음극의 경우 비교예 1의 음극과 비교하여 접착력이 향상되어 결과적으로 전지의 성능이 향상된 것을 알 수 있다.
상기에서 설명한 바와 같이, 본 발명에 따른 이차전지용 전극의 제조방법은 집전체의 표면에 습식법에 의한 화학적 또는 전기적 에칭이나 건식법에 의한 반응성 가스 또는 이온 에칭방법으로 표면 전반에 걸쳐 특정 몰포로지를 가지도록 집전체를 표면처리를 하는 과정을 포함하여 집전체의 표면적을 증가시킴으로써, 집전체와 전극 활물질 사이의 접착력을 향상시켜, 충방전 사이클 특성 향상 등 이차전지의 제반 성능을 향상시킬 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (17)

  1. 전극 활물질이 집전체에 도포되어 있는 이차전지용 전극의 제조방법으로서, 표면 전반에 걸쳐 0.001 ~ 10 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지도록 집전체를 표면처리하는 과정을 포함하고 상기 표면처리는 습식법에 의한 화학적 또는 전기적 에칭이나 건식법에 의한 반응성 가스 또는 이온 에칭으로 행하여져, 전극 활물질과 집전체의 접착력을 개선시키는 것을 특징으로 하는 이차전지용 전극의 제조 방법.
  2. 제 1 항에 있어서, 상기 집전체는 표면 전반에 걸쳐 0.1 ~ 1 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지는 것을 특징으로 하는 이차전지용 전극의 제조 방법.
  3. 제 1 항에 있어서, 화학적 에칭은 에칭제로서 FeCl3/HCl/H2O의 혼합물을 사용하는 것을 특징으로 하는 이차전지용 전극의 제조 방법.
  4. 제 1 항에 따른 제조방법으로 제조되는 것을 특징으로 하는 이차전지용 전극.
  5. 제 4 항에 있어서, 상기 전극은 양극 또는 음극, 또는 양극 및 음극인 것을 특징으로 하는 이차전지용 전극.
  6. 제 5 항에 있어서, 상기 양극은 양극 활물질로 하기 화학식 1로 표시되는 리튬 금속 산화물을 포함하는 이차전지용 전극:
    LixMyMn2-yO4-zAz (1)
    상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고,
    M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
    A는 -1 또는 -2가의 하나 이상의 음이온이다.
  7. 제 6 항에 있어서, 상기 화학식 1의 산화물은 하기 화학식 2으로 표시되는 것을 특징으로 하는 이차전지용 전극:
    LixNiyMn2-yO4 (2)
    상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
  8. 제 7 항에 있어서, 상기 산화물은 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4 인 것을 특징으로 하는 이차전지용 전극.
  9. 제 5 항에서 있어서, 상기 음극은 음극 활물질로 하기 화학식 3으로 표시되는 리튬 금속 산화물을 포함하는 이차전지용 전극:
    LiaM'bO4-cAc (3)
    상기 식에서, M'은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M'의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.
  10. 제 9 항에 있어서, 상기 리튬 금속 산화물은 하기 화학식 4로 표시되는 것을 특징으로 하는 이차전지용 전극:
    LiaTibO4 (4)
    상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
  11. 제 10 항에 있어서, 상기 리튬 금속 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4인 것을 특징으로 하는 이차전지용 전극.
  12. 제 4 항 내지 제 11 항 중 어느 하나에 따른 이차전지용 전극을 포함하는 것을 특징으로 하는 이차전지.
  13. 제 12 항에 있어서, 상기 이차전지는 리튬 이차전지인 것을 특징으로 하는 이차전지.
  14. 제 13 항에 따른 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  15. 제 14 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  16. 제 15 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.
  17. 제 16 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
PCT/KR2013/003177 2012-04-16 2013-04-16 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 WO2013157811A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13778476.5A EP2802031B1 (en) 2012-04-16 2013-04-16 Method for manufacturing electrode for lithium secondary battery and electrode manufactured by using same
JP2014558692A JP5860174B2 (ja) 2012-04-16 2013-04-16 リチウム二次電池用電極の製造方法
CN201380010685.1A CN104137307B (zh) 2012-04-16 2013-04-16 制造锂二次电池用电极的方法和使用其制造的电极
US14/457,197 US10026952B2 (en) 2012-04-16 2014-08-12 Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120039114 2012-04-16
KR10-2012-0039114 2012-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/457,197 Continuation US10026952B2 (en) 2012-04-16 2014-08-12 Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same

Publications (1)

Publication Number Publication Date
WO2013157811A1 true WO2013157811A1 (ko) 2013-10-24

Family

ID=49383701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003177 WO2013157811A1 (ko) 2012-04-16 2013-04-16 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극

Country Status (6)

Country Link
US (1) US10026952B2 (ko)
EP (1) EP2802031B1 (ko)
JP (1) JP5860174B2 (ko)
KR (1) KR101603082B1 (ko)
CN (1) CN104137307B (ko)
WO (1) WO2013157811A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516154B2 (en) 2016-07-01 2019-12-24 Lg Chem, Ltd. Positive electrode for lithium secondary battery and method for preparing the same
KR102492733B1 (ko) 2017-09-29 2023-01-27 삼성디스플레이 주식회사 구리 플라즈마 식각 방법 및 디스플레이 패널 제조 방법
CN110212153A (zh) * 2019-06-24 2019-09-06 珠海格力电器股份有限公司 一种集流体及其制备方法
WO2022041193A1 (zh) * 2020-08-31 2022-03-03 宁德新能源科技有限公司 极片、电化学装置和电子装置
CN114122312A (zh) * 2020-08-31 2022-03-01 宁德新能源科技有限公司 极片、电化学装置和电子装置
KR102575021B1 (ko) * 2021-02-26 2023-09-07 조인셋 주식회사 유연성 및 신축성이 있는 집전체를 갖는 이차전지용 전극, 이를 적용한 이차전지
CN114284504B (zh) * 2021-12-22 2023-11-28 上海恩捷新材料科技有限公司 复合集流体及其制备方法、其极片和电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260637A (ja) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
KR20060023899A (ko) * 2004-09-11 2006-03-15 강원대학교산학협력단 리튬 이차전지용 실리콘 박막 음극의 성능 개선 방법
KR20090038309A (ko) * 2007-10-15 2009-04-20 삼성전자주식회사 이차전지용 전극, 그 제조방법 및 이를 채용한 이차전지
KR20100086733A (ko) * 2009-01-23 2010-08-02 주식회사 엘지화학 습식에칭제를 포함하는 전극 슬러리 조성물
KR20110118129A (ko) * 2009-03-24 2011-10-28 후루카와 덴키 고교 가부시키가이샤 리튬 이온 이차 전지, 상기 전지용 전극, 상기 전지 전극용 전해 동박

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029913A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Method for producing material for electrode for lithium cell
JP4644895B2 (ja) * 2000-01-24 2011-03-09 株式会社豊田中央研究所 リチウム二次電池
US6815003B2 (en) * 2000-12-01 2004-11-09 Sanyo Electric Co., Ltd. Method for fabricating electrode for lithium secondary battery
JP2003007305A (ja) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2004335344A (ja) * 2003-05-09 2004-11-25 Sanyo Electric Co Ltd リチウム二次電池用正極及びリチウム二次電池
JP4210556B2 (ja) * 2003-06-09 2009-01-21 東洋アルミニウム株式会社 アルミニウム箔の製造方法
US9614214B2 (en) * 2004-12-16 2017-04-04 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
JP5194483B2 (ja) * 2007-02-23 2013-05-08 三菱化学株式会社 非水電解質二次電池用シリコン負極集電体、非水電解質二次電池用シリコン負極及びその製造方法、並びに非水電解質二次電池
JP2008282797A (ja) * 2007-04-12 2008-11-20 Panasonic Corp 非水二次電池用集電体、およびその製造方法
JP5295664B2 (ja) * 2007-07-12 2013-09-18 株式会社東芝 非水電解質電池用電極および非水電解質電池
JP5334485B2 (ja) * 2008-07-25 2013-11-06 日新製鋼株式会社 リチウムイオン二次電池用集電体および負極材料
JP5204574B2 (ja) * 2008-07-25 2013-06-05 日新製鋼株式会社 バイポーラ型リチウムイオン二次電池
JP2010135170A (ja) 2008-12-04 2010-06-17 Hitachi Vehicle Energy Ltd リチウム二次電池、二次電池モジュールおよび二次電池パック
JP2011076720A (ja) * 2009-09-29 2011-04-14 Panasonic Corp 非水電解質二次電池用正極およびその製造方法
JP2011089969A (ja) * 2009-10-26 2011-05-06 Toyota Central R&D Labs Inc 定量方法、プログラム及び定量装置
JP2012033279A (ja) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd リチウムイオン二次電池
CN102130363A (zh) * 2011-01-31 2011-07-20 北京神州远望科技有限公司 一种高倍率聚合物锂离子动力电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260637A (ja) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
KR20060023899A (ko) * 2004-09-11 2006-03-15 강원대학교산학협력단 리튬 이차전지용 실리콘 박막 음극의 성능 개선 방법
KR20090038309A (ko) * 2007-10-15 2009-04-20 삼성전자주식회사 이차전지용 전극, 그 제조방법 및 이를 채용한 이차전지
KR20100086733A (ko) * 2009-01-23 2010-08-02 주식회사 엘지화학 습식에칭제를 포함하는 전극 슬러리 조성물
KR20110118129A (ko) * 2009-03-24 2011-10-28 후루카와 덴키 고교 가부시키가이샤 리튬 이온 이차 전지, 상기 전지용 전극, 상기 전지 전극용 전해 동박

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2802031A4 *

Also Published As

Publication number Publication date
CN104137307B (zh) 2017-09-22
KR101603082B1 (ko) 2016-03-14
JP2015513763A (ja) 2015-05-14
JP5860174B2 (ja) 2016-02-16
EP2802031A4 (en) 2016-02-10
EP2802031A1 (en) 2014-11-12
US10026952B2 (en) 2018-07-17
US20140349171A1 (en) 2014-11-27
EP2802031B1 (en) 2017-05-31
CN104137307A (zh) 2014-11-05
KR20130116827A (ko) 2013-10-24

Similar Documents

Publication Publication Date Title
WO2013157806A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2013122352A1 (ko) 수계 바인더를 포함하는 음극을 구비한 리튬 이차전지
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2015053478A1 (ko) 규소계 화합물을 포함하는 이차전지
WO2017171425A1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
WO2013157883A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2013157811A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2014073898A1 (ko) 이차전지 제조 방법
WO2012011696A2 (ko) 접착력이 우수한 이차전지용 바인더
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2014196816A1 (ko) 신규한 이차전지
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2014196777A1 (ko) 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
WO2013157867A1 (ko) 레이트 특성이 향상된 리튬 이차전지
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
WO2014081249A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2012111951A2 (ko) 이차전지용 양극 합제 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778476

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013778476

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013778476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014558692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE