WO2017171425A1 - 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법 - Google Patents
리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법 Download PDFInfo
- Publication number
- WO2017171425A1 WO2017171425A1 PCT/KR2017/003476 KR2017003476W WO2017171425A1 WO 2017171425 A1 WO2017171425 A1 WO 2017171425A1 KR 2017003476 W KR2017003476 W KR 2017003476W WO 2017171425 A1 WO2017171425 A1 WO 2017171425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- fluorine
- cathode active
- coating layer
- lithium
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
Definitions
- the present invention relates to a positive electrode active material particle and a method for producing the same, including a core including lithium cobalt oxide and a coating layer containing boron and fluorine.
- lithium secondary batteries exhibiting high energy density and operating potential, long cycle life, and low self discharge rate It is commercially used and widely used.
- LiCoO 2 LiCoO 2
- Samsung SDI NMC / NCA
- LiMnO 4 LiFePO 4
- LiCoO 2 the price of cobalt is high and the capacity of the same voltage is lower than that of the Samsung division, and thus the usage of the Samsung division is gradually increasing to increase the capacity of the secondary battery.
- LiCoO 2 also has advantages such as high rolling density, many LiCoO 2 have been used until now, and researches to increase the voltage used to develop high capacity secondary batteries have been conducted.
- the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
- the positive electrode active material particles are Li 1 + x Co 1 - x O 2 A core comprising lithium cobalt oxide represented by ( ⁇ 0.03 ⁇ x ⁇ 0.1); And a coating layer coated on the surface of the core and including boron (B) and fluorine (F), to improve surface stability of the positive electrode active material particles and to reduce side reactions on the surface of the positive electrode active material. It was confirmed that the high temperature life characteristics were improved, and the present invention was completed.
- the cathode active material particle for a secondary battery according to the present invention includes a core including lithium cobalt oxide represented by Chemical Formula 1; And a coating layer coated on the surface of the core and including boron (B) and fluorine (F).
- the electrolyte salt is decomposed, the electrolyte is decomposed on the surface of the cathode active material particles by being converted into a material having low reactivity by reacting with boron or fluorine on the surface of the cathode active material particles. It is effective in suppressing side reactions such as reactions.
- boron and fluorine in the coating layer may be present in a chemical bond with lithium.
- the boron and fluorine may be present in a state in which a chemical bond with the lithium of the core.
- lithium of the core may form a chemical bond with boron and fluorine of the coating layer.
- the bonding force between the core and the coating layer is further improved, thereby increasing the surface stability.
- the boron and fluorine may be present while forming a compound of a lithium chemical bond independently to the core.
- the compound in which lithium, boron, and fluorine are independently chemically bonded to the coating layer is dissolved in the electrolyte and acts as a kind of additive to the electrolyte, thereby improving the high temperature life characteristics.
- the boron and fluorine may be present as LiBF 4 together with lithium.
- the weight of the coating layer relative to the weight of the core may be 0.5% by weight to 5% by weight, and in detail, may be 1% by weight to 3% by weight.
- the weight of the coating layer is less than 0.5% by weight of the core, the surface stabilization effect of the coating layer is not sufficient, and the performance improvement is insignificant. May decrease.
- the positive electrode active material particles may have a 50-cycle capacity retention rate of 90% or more, measured in coin half cells at an upper limit of 4.5V at 45 ° C., in detail, 91% or more.
- This invention also provides the method of manufacturing the positive electrode active material particle for secondary batteries.
- step (c) a process of heat treatment after dry mixing of step (b);
- the positive electrode active material particles are the positive electrode active material particles.
- a manufacturing method comprising a core comprising a lithium cobalt oxide represented by Formula 1 and a coating layer coated on a surface of the core and comprising boron and fluorine:
- the content of lithium in the core represented by Formula 1 may be lower than the lithium content of the lithium cobalt oxide represented by Formula 2.
- y may be determined in a condition range in which the ratio (molar ratio) of Li 1 + y to Co 1 -y is greater than the ratio (molar ratio) of Li 1 + x to Co 1 -x .
- y may be determined in a condition range in which the ratio (molar ratio) of Li 1 + y to Co 1 -y is greater than the ratio (molar ratio) of Li 1 + x to Co 1 -x .
- y may be 0.03 ⁇ y ⁇ 0.07.
- the content of the coating layer in the positive electrode active material particles is excessively increased, the energy density is low, or the coating layer is formed too thin may reduce the surface stabilization effect.
- the first compound is NH 4 BF 4 , NaBF 4 , (CH 3 ) 3 O (BF 4 ), (C 2 H 5 ) 4 N (BF 4 ), (C 6 H 5 ) 3 C (BF 4 ), (CH 3 ) 4 N (BF 4 ) , (CH 3 CH 2 CH 2 ) 4 N (BF 4 ), and C 3 H 10 BF 4 P
- the second compound is B 2 O 3 , H 3 BO 3 , (C 6 H 5 O) 3 B, B 2 H 4 O 4 , C 6 H 5 B (OH) 2 , CH 3 OC 6 H 4 B (OH) 2 , and C 6 H 12 BNO At least one selected from the group consisting of three .
- the third compound is NH 4 HF 2 , NH 4 F, (CH 3 ) 4 NF, (CH 3 CH 2 ) 4 NF, polyvinylidene fluoride (PVdF), PVdF-HFP (poly (vinylidene fluoride-co-hexafluoropropylene)) It may be one or more selected from the group consisting of polyvinyl fluoride (PVF), polytetrafluoroethylene (PTFE) and ethylene tetrafluoroethylene (ETFE).
- PVdF polyvinylidene fluoride-HFP
- the dry mixing in process (b) may be by high energy milling.
- process (c) may be heat treated for 3 hours to 7 hours.
- the present invention also provides a secondary battery including a cathode, an anode, and an electrolyte including the cathode active material particles.
- the electrolytic solution has, and is included as a lithium salt is LiPF 6, minutes of the LiPF 6 seafood of PF 5 is a PF 6 relatively low reactive anions than PF 5 reacts with the cathode active material particle coating layer - Can be converted to
- LiPF 6 contained in the electrolyte may be decomposed into LiF and PF 5 , and HF may be generated in the electrolyte to damage the surface of the cathode material, thereby reducing the life characteristics of the secondary battery.
- LiBF 4 contained in the coating layer of the positive electrode active material particles as in the present invention forms BF 4 ⁇ and reacts with unstable PF 5 to convert it into PF 6 ⁇ , which is a less reactive anion. Can be significantly reduced.
- At least a part of the coating layer of the positive electrode active material particles may be dissolved into the electrolyte, and through this, the dissolved coating layer acts as a kind of additive to the electrolyte, thereby improving the high temperature life characteristics.
- the positive electrode may be prepared by applying a positive electrode mixture in which a positive electrode active material, a conductive material, and a binder are mixed to a positive electrode current collector, and a filler may be further added to the positive electrode mixture as necessary.
- the positive electrode current collector is generally manufactured to a thickness of 3 to 201 ⁇ m, and is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
- stainless steel, aluminum, nickel, titanium , And one selected from surface treated with carbon, nickel, titanium, or silver on the surface of aluminum or stainless steel may be used, and in detail, aluminum may be used.
- the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the conductive material is typically added in an amount of 0.1 to 30% by weight based on the total weight of the mixture including the positive electrode active material.
- a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- the binder included in the positive electrode is a component that assists in bonding the active material, the conductive material and the like to the current collector, and is generally added in an amount of 0.1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
- binders examples include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
- CMC carboxymethyl cellulose
- EPDM ethylene-propylene-diene terpolymer
- EPDM ethylene-propylene-diene terpolymer
- EPDM ethylene-propylene-diene terpolymer
- EPDM ethylene-propylene-diene terpolymer
- sulfonated EPDM styrene-butadiene rubber
- fluorine rubber various copolymers, and the like.
- the separator may be a polyolefin-based film commonly used in the art, for example, high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polyethylene terephthalate ( polyethyleneterephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, It may be a sheet consisting of one or more selected from the group consisting of polyethersulfone, polyphenyleneoxide, polyphenylenesulfidro, polyethylenenaphthalene, and mixtures thereof.
- the separator may be made of the same material, but is not limited thereto, and may be made of different materials depending on the safety, energy density, and overall performance of the battery cell.
- the pore size and porosity of the separator or the separation film is not particularly limited, porosity is 10 to 95% range, pore size (diameter) may be 0.1 to 50 ⁇ m. When the pore size and porosity are less than 0.1 ⁇ m and 10%, respectively, it acts as a resistive layer, and when the pore size and porosity exceeds 50 ⁇ m and 95%, it is difficult to maintain mechanical properties.
- the electrolyte may be a lithium salt-containing non-aqueous electrolyte, the lithium salt-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithium salt, the non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte and the like are used, but these It is not limited only.
- non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile Nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, dioxoron derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, Aprotic organic solvents such as tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.
- organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, and ions. Polymerizers containing a sex dissociation group and the like can be used.
- Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
- the lithium salt is a good material to dissolve in the nonaqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carbonate, lithium tetraphenylborate, imide and the like can be used.
- nonaqueous electrolytes include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, for the purpose of improving charge and discharge characteristics, flame retardancy, and the like.
- Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. have.
- a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
- lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
- Lithium salt-containing nonaqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
- the present invention also provides a battery pack including the secondary battery and a device including the battery pack.
- the device may be, for example, a laptop computer, a netbook, a tablet PC, a mobile phone, an MP3, a wearable electronic device, a power tool, an electric vehicle (EV), or a hybrid electric vehicle (HEV).
- PHEVs Plug-in hybrid electric vehicles
- E-bikes electric bikes
- E-scooters electric golf carts
- Example 1 is an SEM image of the positive electrode active material particles according to Example 1;
- Example 2 is an SEM image of the positive electrode active material particles according to Example 2;
- Figure 4 is a graph measuring the capacity retention rate during the 50 cycles with an upper limit of 4.5V at 45 °C according to Experimental Example 2.
- a coating layer including LiBF 4 is formed on the surfaces of the positive electrode active material particles of Examples 1 and 2.
- PVdF as the positive electrode active material particles
- binders prepared in Examples 1 and 2 and Comparative Example 1 and natural graphite as the conductive material were used.
- a positive electrode active material: a binder: a conductive material was mixed well in NMP so that the weight ratio is 96: 2: 2, and then coated on Al foil having a thickness of 20 ⁇ m, followed by drying at 130 ° C. to prepare a positive electrode.
- the half-coin cell thus prepared was measured at a maximum voltage of 4.5 V at 45 ° C. to measure capacity retention rate during 50 cycles. The results are shown in Table 1 and FIG. 4.
- Examples 1 and 2 including a coating layer containing LiBF 4 formed on the surface of the lithium cobalt oxide core, the surface stability is improved even under high voltage conditions of 4.5V, even after 50 cycles It can be seen that the capacity retention rate is 90% or more, and more specifically 91.8% or more. On the other hand, in the case of Comparative Example 1, since the coating layer is not formed on the surface of the lithium cobalt oxide, the surface is unstable under high voltage conditions of 4.5V, it can be seen that the capacity retention rate is 82.2%, which is significantly lower than the embodiments. have.
- the positive electrode active material particles are Li 1 + x Co 1 - x O 2
- a core comprising lithium cobalt oxide represented by ( ⁇ 0.03 ⁇ x ⁇ 0.1);
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 하기 화학식 1로 표현되는 리튬 코발트 산화물을 포함하는 코어; 및 상기 코어의 표면 상에 코팅되어 있고 붕소(B) 및 불소(F)를 포함하는 코팅층;을 포함하는 것을 특징으로 하는 양극 활물질 입자에 관한 것이다: Li1+xCo1-xO2 (1) 상기 식에서, -0.03≤x≤0.1이다.
Description
본 출원은 2016.03.31. 자 한국 특허 출원 제10-2016-0038865호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
현재 리튬 이차전지의 양극재로는 LiCoO2, 삼성분계(NMC/NCA), LiMnO4, LiFePO4 등이 사용되고 있다. 이중에서 LiCoO2의 경우 코발트의 가격이 고가이고, 삼성분계에 비해 동일 전압에서 용량이 낮은 문제가 있어, 이차전지를 고용량화 하기 위해서 삼성분계 등의 사용량이 점차 늘어나고 있다.
다만, LiCoO2의 경우, 높은 압연밀도 등의 장점 또한 분명히 존재하기 때문에 현재까지도 LiCoO2가 다수 사용되고 있는 편이며, 고용량 이차전지를 개발하기 위해 사용전압을 상승시키기 위한 연구가 진행되고 있는 실정이다.
리튬 코발트 산화물의 경우, 고용량화를 위한 고전압 적용 시, LiCoO2의 Li 사용량이 늘어나게 되면서 표면 불안정 및 구조 불안정 가능성이 상승하는 문제가 있다.
따라서, 고전압에서도 안정적으로 사용할 수 있는 리튬 코발트 산화물 기반의 양극 활물질 개발의 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 양극 활물질 입자가 Li1
+
xCo1
-
xO2
(-0.03≤x≤0.1) 로 표현되는 리튬 코발트 산화물을 포함하는 코어; 및 상기 코어의 표면 상에 코팅되어 있고 붕소(B) 및 불소(F)를 포함하는 코팅층;을 포함하는 경우, 양극 활물질 입자의 표면 안정성을 향상시키고, 양극 활물질의 표면에서의 부반응을 감소시키며, 고온 수명특성을 향상시킴을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 이차전지용 양극 활물질 입자는, 하기 화학식 1로 표현되는 리튬 코발트 산화물을 포함하는 코어; 및 상기 코어의 표면 상에 코팅되어 있고 붕소(B) 및 불소(F)를 포함하는 코팅층;을 포함하는 것을 특징으로 한다:
Li1
+
xCo1
-
xO2 (1)
상기 식에서, -0.03≤x≤0.1이다.
이와 같이, 상기 붕소 및 불소를 포함하는 코팅층을 포함하는 경우, 전해액 염이 분해되더라도, 양극 활물질 입자의 표면에서 붕소 또는 불소와 반응하여 반응성이 낮은 물질로 전환됨으로써, 양극 활물질 입자의 표면에서 전해액 분해 반응등과 같은 부반응을 억제하는 효과가 있다.
하나의 구체적인 예에서, 상기 코팅층에서 붕소와 불소는 리튬과 화학 결합을 이룬 상태로 존재할 수 있다.
또한, 상기 붕소와 불소는 코어의 리튬과 화학 결합을 이룬 상태로 존재 할 수 있다. 상기 코어의 경우 리튬이 과함량으로 존재할 수 있으므로, 코어의 리튬이 코팅층의 붕소 및 불소와 화학 결합을 이룰 수 있다. 이와 같이 상기 붕소와 불소가 코어에 존재하는 리튬과 화학 결합을 하는 경우, 코어와 코팅층 사이의 결합력이 더욱 향상되어 표면의 안정성이 더욱 증가하는 효과가 있다.
한편, 상기 붕소와 불소는 코어에 대해 독립적으로 리튬화학 결합의 화합물을 형성하면서 존재할 수 있다. 이 경우 코팅층에 독립적으로 존재하는 리튬, 붕소 및 불소가 화학적으로 결합되어 있는 화합물은, 전해액으로 용해되면서, 전해액에 대해 일종의 첨가제로 작용하여 고온 수명특성을 향상시키는 효과가 있다.
상세하게는, 상기 붕소와 불소는 리튬과 함께 LiBF4로 존재하는 것일 수 있다.
하나의 구체적인 예에서, 상기 코어의 중량 대비 코팅층의 중량은 0.5 중량% 내지 5 중량%일 수 있고, 상세하게는, 1 중량% 내지 3 중량%일 수 있다. 상기 코어의 중량 대비 코팅층의 중량이 0.5 중량% 미만인 경우에는 코팅층의 표면 안정화 효과가 충분하지 않아 성능향상이 미미하고, 5 중량% 초과인 경우에는 코어의 중량이 상대적으로 감소하여, 에너지 밀도 등이 감소할 수 있다.
하나의 구체적인 예에서, 상기 양극 활물질 입자는 45℃에서 상한 전압 4.5V로 코인하프셀에서 측정한 50 사이클 용량 유지율이 90% 이상일 수 있고, 상세하게는 91% 이상일 수 있다.
본 발명은 또한, 이차전지용 양극 활물질 입자를 제조하는 방법을 제공한다.
상기 제조 방법은,
(a) 하기 화학식 2로 표현되는 제 1 리튬 코발트 산화물을 준비하는 과정;
Li1
+
yCo1
-
yO2 (2)
(상기 식에서, -0.03≤y≤0.1이다)
(b) 상기 제 1 리튬 코발트 산화물, 및 붕소와 불소를 모두 포함하는 제 1 화합물을 건식 혼합하거나, 또는 상기 제 1 리튬 코발트 산화물, 붕소를 포함하는 제 2 화합물, 및 불소를 포함하는 제 3 화합물을 건식 혼합하는 과정; 및
(c) 상기 과정(b)의 건식 혼합 후 열처리하는 과정;
을 포함할 수 있다.
하나의 구체적인 예에서, 상기 양극 활물질 입자는,
하기 화학식 1로 표현되는 리튬 코발트 산화물을 포함하는 코어와, 상기 코어의 표면 상에 코팅되어 있고 붕소 및 불소를 포함하는 코팅층을 포함하는 것을 특징으로 하는 제조 방법:
Li1
+
xCo1
-
xO2 (1)
상기 식에서, -0.03≤x≤0.1이다.
즉, 상기 화학식 2로 표현되는 리튬 코발트 산화물에 포함되어 있던 과함량 리튬 중 일부가 붕소 및 불소와 반응하여, 양극 활물질 입자의 코팅층의 적어도 일부를 형성하는 것으로 이해할 수 있다. 따라서, 화학식 1 표현되는 코어에서 리튬의 함량은 화학식 2로 표현되는 리튬 코발트 산화물의 리튬 함량에 비해 낮을 수 있다.
상세하게는, Co1
-y 대비 Li1
+y의 비율(몰비)이 Co1
-x 대비 Li1
+x의 비율(몰비)보다 큰 조건 범위에서 y가 결정될 수 있다. 예를 들어, 0.01≤y<0.1일 수 있다.
하나의 구체적인 예에서, 상기 y는 0.03≤y≤0.07일 수 있다. 이러한 범위를 초과하는 경우, 상기 양극 활물질 입자 내에서 코팅층이 함량이 과도하게 증가하여 에너지 밀도가 낮아지거나, 코팅층이 너무 얇게 형성되어 표면 안정화 효과가 감소할 수 있다.
한편, 상기 제 1 화합물은 NH4BF4, NaBF4, (CH3)3O(BF4), (C2H5)4N(BF4), (C6H5)3C(BF4), (CH3)4N(BF4), (CH3CH2CH2)4N(BF4), 및 C3H10BF4P로 이루어진 군에서 선택된 하나 이상일 수 있고, 제 2 화합물은 B2O3, H3BO3, (C6H5O)3B, B2H4O4, C6H5B(OH)2, CH3OC6H4B(OH)2, 및 C6H12BNO3로 이루어진 군에서 선택된 하나 이상일 수 있다.
상기 제 3 화합물은 NH4HF2, NH4F, (CH3)4NF, (CH3CH2)4NF, PVdF(polyvinylidene fluoride), PVdF-HFP(poly(vinylidene fluoride-co-hexafluoropropylene)), PVF(polyvinyl fluoride), PTFE(polytetrafluoroethylene) 및 ETFE(ethylene tetrafluoroethylene)로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
하나의 구체적인 예에서, 상기 과정(b)에서 건식 혼합은 고에너지 밀링(high energy milling)에 의해 이루어질 수 있다.
상기 과정(c)에서 300℃ 내지 600℃로 열처리 할 수 있고, 상세하게는 450℃ 내지 500℃로 열처리 할 수 있다.
상기 과정(c)에서 3시간 내지 7시간 동안 열처리할 수 있다.
본 발명은 또한, 상기 양극 활물질 입자를 포함하는 양극, 음극 및 전해액을 포함하는 이차전지를 제공한다.
하나의 구체적인 예에서, 상기 전해액에는 리튬염으로서 LiPF6이 포함되어 있고, 상기 LiPF6의 분해산물인 PF5는 양극 활물질 입자의 코팅층과 반응하여 PF5보다 상대적으로 반응성이 낮은 음이온인 PF6
-로 변환될 수 있다. 상세하게는, 전해액에 포함되어 있는 LiPF6는 LiF 및PF5로 분해될 수 있고, 전해액 내에서 HF를 생성시켜 양극재 표면을 손상하여, 이차전지의 수명특성이 감소하는 원인이 될 수 있다. 본 발명과 같이 양극 활물질 입자의 코팅층에 포함되어 있는 LiBF4는 BF4
-를 형성하여, 불안정한 PF5와 반응시킴으로써, 반응성이 낮은 음이온인 PF6
-로 변환시켜, 결국, 양극재 표면의 부반응을 현저하게 감소시킬 수 있다.
상기 양극 활물질 입자의 코팅층은 적어도 일부가 전해액 내로 용해될 수 있고, 이를 통해, 용해된 코팅층이 전해액에 대해 일종의 첨가제로 작용하여 고온 수명특성을 향상시키는 효과가 있다.
이하, 상기 이차전지의 기타 성분에 대해 설명한다.
상기 양극은, 예를 들어, 양극 집전체에 양극 활물질, 도전재 및 바인더가 혼합된 양극 합제를 도포하여 제조될 수 있고, 필요에 따라서는 상기 양극 합제에 충진제를 더 첨가할 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 201 ㎛의 두께로 제조되며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티타늄, 및 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티타늄 또는 은으로 표면처리 한 것 중에서 선택되는 하나를 사용할 수 있고, 상세하게는 알루미늄이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은, 예를 들어, 상기 양극 활물질 외에, 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1
+
xMn2
-
xO4
(여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1
-
xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 더 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 0.1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 양극에 포함되는 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 0.1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
하나의 구체적인 예에서, 상기 분리막은, 당업계에서 통상적으로 사용되는 폴리올레핀 계열의 필름일 수 있고, 예를 들어, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트 (polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드로(polyphenylenesulfidro), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 및 이들의 혼합체로 이루어진 군으로부터 선택된 하나 이상으로 이루어진 시트일 수 있다.
상기 분리막은, 서로 동일한 물질로 이루어진 것일 수 있지만, 이에 한정되는 것은 아니고, 전지셀의 안전성, 에너지 밀도, 및 전반적인 성능에 따라서, 서로 상이한 물질로 이루어질 수 있음은 물론이다.
상기 분리막 또는 분리필름의 기공 크기 및 기공도는 특별한 제한이 없으나, 기공도는 10 내지 95% 범위, 기공 크기(직경)는 0.1 내지 50 ㎛일 수 있다. 기공 크기 및 기공도가 각각 0.1 ㎛ 및 10% 미만인 경우에는 저항층으로 작용하게 되며, 기공 크기 및 기공도가 50 ㎛ 및 95%를 초과할 경우에는 기계적 물성을 유지하기가 어렵게 된다.
상기 전해액은 리튬염 함유 비수 전해질일 수 있고, 상기 리튬염 함유 비수 전해질은 비수 전해질과 리튬염으로 이루어져 있으며, 상기 비수 전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수 전해질을 제조할 수 있다.
본 발명은 또한, 상기 이차전지를 포함하는 전지팩 및 이러한 전지팩을 포함하는 디바이스를 제공한다.
상기 디바이스는, 예를 들어, 노트북 컴퓨터, 넷북, 태블릿 PC, 휴대폰, MP3, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전기 자전거(E-bike), 전기 스쿠터(E-scooter), 전기 골프 카트(electric golf cart), 또는 전력저장용 시스템일 수 있지만, 이들만으로 한정되지 않음은 물론이다.
이러한 디바이스의 구조 및 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.
도 1은 실시예 1에 따른 양극 활물질 입자의 SEM 이미지이다;
도 2는 실시예 2에 따른 양극 활물질 입자의 SEM 이미지이다;
도 3은 비교예 1에 따른 양극 활물질 입자의 SEM 이미지이다;
도 4는 실험예 2에 따른 45℃에서 상한 전압 4.5V로 하여 50회 사이클 진행 시 용량 유지율을 측정한 그래프이다.
이하에서는, 본 발명에 따른 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
몰비로 Li/Co=1.06인 리튬 과함량의 리튬 코발트 산화물을 준비하였다. 리튬 코발트 산화물 100 중량부, PVdF 1.30 중량부, 및 B2O3 0.4 중량부를 건식 혼합한 후, 500℃에서 5시간 동안 열처리하여, 코팅층에 LiBF4를 포함하는 양극 활물질 입자를 제조하였다.
<실시예 2>
몰비로 Li/Co=1.06인 리튬 과함량의 리튬 코발트 산화물을 준비하였다. 리튬 코발트 산화물 100 중량부 및 NH4BF4 1.0중량부를 건식 혼합한 후, 500℃에서 5시간 동안 열처리하여, 코팅층에 LiBF4를 포함하는 양극 활물질 입자를 제조하였다.
<비교예 1>
몰비로 Li/Co=1.05인 리튬 과함량의 리튬 코발트 산화물을 양극 활물질 입자로 사용하였다.
<실험예 1>
실시예 1, 2및 비교예 1에서 제조된 양극 활물질 입자의 SEM 이미지를 촬영하여 도 1 내지 도 3에 각각 나타내었다.
도 3과 비교하여, 도 1 및 도 2를 참조하면, 실시예 1 및 2의 양극 활물질 입자의 표면에는 LiBF4를 포함하는 코팅층이 형성되어 있음을 확인할 수 있다.
<실험예 2>
실시예 1, 2 및 비교예 1에서 제조된 양극 활물질 입자, 바인더로서 PVdF 및 도전재로서 천연 흑연을 사용하였다. 양극 활물질: 바인더: 도전재를 중량비로 96: 2 : 2가 되도록 NMP에 잘 섞어 준 후 20 ㎛ 두께의 Al 호일에 도포한 후 130℃에서 건조하여 양극을 제조하였다. 음극으로는 리튬 호일을 사용하고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M의 LiPF6가 들어있는 전해액을 사용하여 하프코인셀을 제조하였다.
이와 같이 제조된 하프코인셀을, 45℃에서 상한 전압 4.5V로 하여 50회 사이클 진행 시 용량 유지율을 측정하였다. 그 결과를 하기 표 1 및 도 4에 나타내었다.
실시예 1 | 실시예 2 | 비교예 1 | |
용량 유지율(%) | 91.8 | 93.1 | 82.2 |
상기 표 1을 참조하면, 실시예 1 및 2의 경우, 리튬 코발트 산화물 코어의 표면에 형성되어 있는 LiBF4를 포함하는 코팅층을 포함하여, 4.5V의 고전압 조건에서도 표면의 안정성이 향상되어 50 사이클 이후에도, 용량 유지율이 90% 이상이고, 상세하게는 91.8% 이상임을 확인할 수 있다. 반면에, 비교예 1의 경우에는 리튬 코발트 산화물의 표면에 코팅층이 형성되어 있지 않으므로, 4.5V의 고전압 조건에서 표면이 불안정하여, 용량 유지율이 82.2%로 실시예들에 비해 현저하게 낮음을 확인할 수 있다.
이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
상기에서 설명한 바와 같이, 본 발명에 따른, 양극 활물질 입자가 Li1
+
xCo1
-
xO2
(-0.03≤x≤0.1) 로 표현되는 리튬 코발트 산화물을 포함하는 코어; 및 상기 코어의 표면 상에 코팅되어 있고 붕소(B) 및 불소(F)를 포함하는 코팅층;을 포함하여, 양극 활물질 입자의 표면 안정성을 향상시키고, 양극 활물질의 표면에서의 부반응을 감소시키며, 고온 수명특성을 향상시킬 수 있다.
Claims (22)
- 하기 화학식 1로 표현되는 리튬 코발트 산화물을 포함하는 코어; 및상기 코어의 표면 상에 코팅되어 있고 붕소(B) 및 불소(F)를 포함하는 코팅층;을 포함하는 것을 특징으로 하는 양극 활물질 입자:Li1 + xCo1 - xO2 (1)상기 식에서, -0.03≤x≤0.1이다.
- 제 1 항에 있어서, 상기 코팅층에서 붕소와 불소는 리튬과 화학 결합을 이루고 있는 것을 특징으로 하는 양극 활물질 입자.
- 제 1 항에 있어서, 상기 붕소와 불소는 코어의 리튬과 화학 결합을 이루고 있는 것을 특징으로 하는 양극 활물질 입자.
- 제 1 항에 있어서, 상기 붕소와 불소는 코어에 대해 독립적으로 리튬화학 결합의 화합물을 형성하고 있는 것을 특징으로 하는 양극 활물질 입자.
- 제 2 항에 있어서, 상기 붕소와 불소는 리튬과 함께 LiBF4로 존재하는 것을 특징으로 하는 양극 활물질 입자.
- 제 1 항에 있어서, 상기 코어의 중량 대비 코팅층의 중량은 0.5 중량% 내지 5 중량%인 것을 특징으로 하는 양극 활물질 입자.
- 제 1 항에 있어서, 상기 양극 활물질 입자는 45℃에서 상한 전압 4.5V로 코인하프셀에서 측정한 50 사이클 용량 유지율이 90% 이상인 것을 특징으로 하는 양극 활물질 입자.
- 이차전지용 양극 활물질 입자를 제조하는 방법으로서,(a) 하기 화학식 2로 표현되는 제 1 리튬 코발트 산화물을 준비하는 과정;Li1 + yCo1 - yO2 (2)(상기 식에서, -0.03≤y≤0.1이다)(b) 상기 제 1 리튬 코발트 산화물, 및 붕소와 불소를 모두 포함하는 제 1 화합물을 건식 혼합하거나, 또는 상기 제 1 리튬 코발트 산화물, 붕소를 포함하는 제 2 화합물, 및 불소를 포함하는 제 3 화합물을 건식 혼합하는 과정; 및(c) 상기 과정(b)의 건식 혼합 후 열처리하는 과정;을 포함하는 것을 특징으로 하는 양극 활물질 입자의 제조 방법.
- 제 8 항에 있어서, 상기 양극 활물질 입자는,하기 화학식 1로 표현되는 리튬 코발트 산화물을 포함하는 코어와, 상기 코어의 표면 상에 코팅되어 있고 붕소 및 불소를 포함하는 코팅층을 포함하는 것을 특징으로 하는 제조 방법:Li1 + xCo1 - xO2 (1)상기 식에서, -0.03≤x≤0.1이다.
- 제 8 항에 있어서, 상기 y는 0.03≤y≤0.07인 것을 특징으로 하는 제조 방법.
- 제 8 항에 있어서, 상기 제 1 화합물은 NH4BF4 , NaBF4, (CH3)3O(BF4), (C2H5)4N(BF4), (C6H5)3C(BF4), (CH3)4N(BF4), (CH3CH2CH2)4N(BF4), 및 C3H10BF4P로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 제조 방법.
- 제 8 항에 있어서, 상기 제 2 화합물은 B2O3. H3BO3, (C6H5O)3B, B2H4O4, C6H5B(OH)2, CH3OC6H4B(OH)2, 및 C6H12BNO3로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 제조 방법.
- 제 9 항에 있어서, 상기 제 3 화합물은 NH4HF2, NH4F, (CH3)4NF, (CH3CH2)4NF, PVdF(polyvinylidene fluoride), PVdF-HFP(poly(vinylidene fluoride-co-hexafluoropropylene)), PVF(polyvinyl fluoride), PTFE(polytetrafluoroethylene) 및 ETFE(ethylene tetrafluoroethylene)로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 제조 방법.
- 제 8 항에 있어서, 상기 과정(b)에서 건식 혼합은 고에너지 밀링(high energy milling)에 의해 이루어지는 것을 특징으로 하는 제조 방법.
- 제 8 항에 있어서, 상기 과정(c)에서 300℃ 내지 600℃로 열처리하는 것을 특징으로 하는 제조 방법.
- 제 8 항에 있어서, 상기 과정(c)에서 450℃ 내지 500℃로 열처리하는 것을 특징으로 하는 제조 방법.
- 제 8 항에 있어서, 상기 과정(c)에서 3시간 내지 7시간 동안 열처리하는 것을 특징으로 하는 제조 방법.
- 제 1 항에 따른 양극 활물질 입자를 포함하는 양극, 음극 및 전해액을 포함하는 것을 특징으로 하는 이차전지.
- 제 18 항에 있어서, 상기 전해액에는 리튬염으로서 LiPF6이 포함되어 있고, 상기 LiPF6의 분해산물인 PF5는 양극 활물질 입자의 코팅층과 반응하여 PF5보다 상대적으로 반응성이 낮은 음이온인 PF6 -로 변환되는 것을 특징으로 하는 이차전지.
- 제 18 항에 있어서, 상기 양극 활물질 입자의 코팅층은 적어도 일부가 전해액 내로 용해되는 것을 특징으로 하는 이차전지.
- 제 18 항에 따른 이차전지를 포함하는 것을 특징으로 하는 전지팩.
- 제 21 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17775849.7A EP3346527B1 (en) | 2016-03-31 | 2017-03-30 | Positive electrode active material particle including core containing lithium cobalt oxide and coating layer containing boron and fluorine, and preparation method thereof |
PL17775849T PL3346527T3 (pl) | 2016-03-31 | 2017-03-30 | Cząstka materiału aktywnego elektrody dodatniej, w tym rdzeń zawierający tlenek litowo-kobaltowy i warstwę powlekającą zawierającą bor i fluor, oraz sposób ich wytwarzania |
CN201780003808.7A CN108352512B (zh) | 2016-03-31 | 2017-03-30 | 包括含有锂钴氧化物的核和含有硼和氟的涂层的正极活性物质颗粒及其制备方法 |
US15/770,102 US10868309B2 (en) | 2016-03-31 | 2017-03-30 | Positive electrode active material particle including core containing lithium cobalt oxide and coating layer containing boron and fluorine, and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160038865A KR102066266B1 (ko) | 2016-03-31 | 2016-03-31 | 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법 |
KR10-2016-0038865 | 2016-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017171425A1 true WO2017171425A1 (ko) | 2017-10-05 |
Family
ID=59966185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/003476 WO2017171425A1 (ko) | 2016-03-31 | 2017-03-30 | 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10868309B2 (ko) |
EP (1) | EP3346527B1 (ko) |
KR (1) | KR102066266B1 (ko) |
CN (1) | CN108352512B (ko) |
PL (1) | PL3346527T3 (ko) |
WO (1) | WO2017171425A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108807926A (zh) * | 2018-06-22 | 2018-11-13 | 格林美(无锡)能源材料有限公司 | 一种Co/B共包覆镍钴锰锂离子正极材料及其制备方法 |
CN114890402A (zh) * | 2022-05-26 | 2022-08-12 | 刘文洁 | 一种六氟磷酸盐的制备方法 |
CN115916703A (zh) * | 2020-06-29 | 2023-04-04 | 松下知识产权经营株式会社 | 正极材料和电池 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108987680B (zh) * | 2017-05-31 | 2020-07-03 | 宁德时代新能源科技股份有限公司 | 锂离子电池 |
US11876157B2 (en) | 2018-09-28 | 2024-01-16 | Lg Chem, Ltd. | Positive electrolyte active material for secondary battery, preparation method thereof, and lithium secondary battery including same |
CN110970658B (zh) * | 2018-09-28 | 2021-08-06 | 宁德时代新能源科技股份有限公司 | 锂离子电池 |
KR102217302B1 (ko) * | 2018-11-30 | 2021-02-18 | 주식회사 포스코 | 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 |
CN112670510B (zh) * | 2020-12-23 | 2023-05-26 | 中南大学 | 一种NaCrO2@MFx/C复合材料及其制备和在钠离子电池中的应用 |
US20220263092A1 (en) * | 2021-02-08 | 2022-08-18 | Nissan North America, Inc. | Composite Cathode Material for Lithium Batteries |
US11715827B2 (en) | 2021-02-08 | 2023-08-01 | Nissan North America, Inc. | Anode interlayer for lithium batteries |
CN114551826B (zh) * | 2022-01-18 | 2023-08-01 | 惠州锂威新能源科技有限公司 | 包覆改性的钴酸锂材料及其制备方法、正极片及锂离子电池 |
WO2024204453A1 (ja) * | 2023-03-29 | 2024-10-03 | 株式会社村田製作所 | 二次電池 |
CN117790761B (zh) * | 2024-02-26 | 2024-05-24 | 西北工业大学 | 一种具有三合一改性界面的富锂正极制备方法 |
CN118507698A (zh) * | 2024-07-17 | 2024-08-16 | 赣州诺威科技有限公司 | 一种包覆改性的富锂锰基正极材料及其制备方法、应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012036372A2 (ko) * | 2010-09-16 | 2012-03-22 | 전자부품연구원 | 음극 활물질, 그를 갖는 비수계 리튬이차전지 및 그의 제조 방법 |
KR20150050458A (ko) * | 2013-10-29 | 2015-05-08 | 주식회사 엘지화학 | 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질 |
KR20150137888A (ko) * | 2014-05-30 | 2015-12-09 | 삼성전자주식회사 | 복합 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지 |
KR101595562B1 (ko) * | 2013-05-30 | 2016-02-18 | 주식회사 엘지화학 | 리튬 이차전지 |
KR20160026402A (ko) * | 2014-09-01 | 2016-03-09 | 주식회사 엘지화학 | 리튬이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100326455B1 (ko) | 1999-03-30 | 2002-02-28 | 김순택 | 리튬 이차 전지용 양극 활물질 및 그 제조 방법 |
US8148011B2 (en) | 2006-05-31 | 2012-04-03 | Uchicago Argonne, Llc | Surface stabilized electrodes for lithium batteries |
US20080038637A1 (en) * | 2006-08-14 | 2008-02-14 | Hiroshi Minami | Non-aqueous electrolyte secondary battery |
CN101901907B (zh) | 2010-07-22 | 2013-10-16 | 东莞新能源科技有限公司 | 锂离子二次电池及其正极材料 |
US20130101893A1 (en) | 2011-10-25 | 2013-04-25 | Apple Inc. | High-voltage lithium-polymer batteries for portable electronic devices |
CN102501997B (zh) | 2011-10-28 | 2013-07-10 | 杭州永创智能设备股份有限公司 | 一种打包机 |
KR101465490B1 (ko) | 2011-11-30 | 2014-11-26 | 주식회사 코캄 | 안전성과 안정성이 향상된 리튬 이차 전지 |
JP5793411B2 (ja) | 2011-12-02 | 2015-10-14 | 日立マクセル株式会社 | リチウム二次電池 |
CN103762334B (zh) | 2011-12-30 | 2019-03-29 | 宁德新能源科技有限公司 | 锂离子二次电池及其正极 |
CN102623694A (zh) | 2012-03-19 | 2012-08-01 | 宁德新能源科技有限公司 | 一种高电压锂离子电池及其正极材料 |
CN102637894B (zh) | 2012-04-06 | 2014-11-05 | 宁德新能源科技有限公司 | 一种非水电解液二次电池 |
CN102723459B (zh) | 2012-06-20 | 2014-08-27 | 东莞新能源科技有限公司 | 一种锂离子二次电池及其正极片 |
JP5978024B2 (ja) | 2012-06-21 | 2016-08-24 | 日立マクセル株式会社 | 非水二次電池 |
CN103137961B (zh) | 2012-07-19 | 2016-08-03 | 东莞新能源科技有限公司 | 正极材料及其制备方法及包含该正极材料的锂离子电池 |
EP2851988B1 (en) | 2012-08-01 | 2016-11-23 | LG Chem, Ltd. | Electrode assembly for secondary battery and lithium secondary battery comprising same |
CN103000880B (zh) | 2012-11-29 | 2016-05-18 | 东莞新能源科技有限公司 | 正极材料及其制备方法及包含该正极材料的锂离子电池 |
CN103022499B (zh) | 2012-12-03 | 2016-09-07 | 东莞新能源科技有限公司 | 一种锂离子电池混合正极材料 |
JP5954153B2 (ja) | 2012-12-13 | 2016-07-20 | 日亜化学工業株式会社 | 非水電解液二次電池用正極活物質 |
KR101409837B1 (ko) | 2012-12-27 | 2014-06-20 | 한국전자통신연구원 | 폴리도파민을 이용한 리튬 이차전지용 양극 활물질의 표면개질 방법 |
CN103066282B (zh) | 2013-01-10 | 2016-12-28 | 东莞新能源科技有限公司 | 高电压锂离子电池正极材料及包含该材料的锂离子电池 |
AU2014248900C1 (en) | 2013-03-12 | 2017-06-08 | Apple Inc. | High voltage, high volumetric energy density Li-ion battery using advanced cathode materials |
KR101547919B1 (ko) | 2013-06-04 | 2015-09-02 | 주식회사 엘지화학 | 수명특성이 향상된 이차전지용 양극 활물질 및 이의 제조방법 |
US9905850B2 (en) | 2013-07-26 | 2018-02-27 | Lg Chem, Ltd. | Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same |
EP2995589B1 (en) | 2013-07-26 | 2017-04-12 | LG Chem, Ltd. | Anode active material and method for manufacturing same |
KR101633256B1 (ko) * | 2014-06-09 | 2016-06-27 | 주식회사 포스코 | 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
US9716265B2 (en) | 2014-08-01 | 2017-07-25 | Apple Inc. | High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries |
-
2016
- 2016-03-31 KR KR1020160038865A patent/KR102066266B1/ko active IP Right Grant
-
2017
- 2017-03-30 PL PL17775849T patent/PL3346527T3/pl unknown
- 2017-03-30 WO PCT/KR2017/003476 patent/WO2017171425A1/ko active Application Filing
- 2017-03-30 EP EP17775849.7A patent/EP3346527B1/en active Active
- 2017-03-30 US US15/770,102 patent/US10868309B2/en active Active
- 2017-03-30 CN CN201780003808.7A patent/CN108352512B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012036372A2 (ko) * | 2010-09-16 | 2012-03-22 | 전자부품연구원 | 음극 활물질, 그를 갖는 비수계 리튬이차전지 및 그의 제조 방법 |
KR101595562B1 (ko) * | 2013-05-30 | 2016-02-18 | 주식회사 엘지화학 | 리튬 이차전지 |
KR20150050458A (ko) * | 2013-10-29 | 2015-05-08 | 주식회사 엘지화학 | 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질 |
KR20150137888A (ko) * | 2014-05-30 | 2015-12-09 | 삼성전자주식회사 | 복합 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지 |
KR20160026402A (ko) * | 2014-09-01 | 2016-03-09 | 주식회사 엘지화학 | 리튬이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3346527A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108807926A (zh) * | 2018-06-22 | 2018-11-13 | 格林美(无锡)能源材料有限公司 | 一种Co/B共包覆镍钴锰锂离子正极材料及其制备方法 |
CN108807926B (zh) * | 2018-06-22 | 2021-04-06 | 格林美(无锡)能源材料有限公司 | 一种Co/B共包覆镍钴锰锂离子正极材料及其制备方法 |
CN115916703A (zh) * | 2020-06-29 | 2023-04-04 | 松下知识产权经营株式会社 | 正极材料和电池 |
CN114890402A (zh) * | 2022-05-26 | 2022-08-12 | 刘文洁 | 一种六氟磷酸盐的制备方法 |
CN114890402B (zh) * | 2022-05-26 | 2024-05-03 | 刘文洁 | 一种六氟磷酸盐的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180316015A1 (en) | 2018-11-01 |
CN108352512A (zh) | 2018-07-31 |
EP3346527A4 (en) | 2018-10-03 |
KR20170112177A (ko) | 2017-10-12 |
US10868309B2 (en) | 2020-12-15 |
PL3346527T3 (pl) | 2022-05-30 |
EP3346527B1 (en) | 2022-03-02 |
EP3346527A1 (en) | 2018-07-11 |
KR102066266B1 (ko) | 2020-01-14 |
CN108352512B (zh) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017171425A1 (ko) | 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법 | |
WO2015016563A1 (ko) | 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극 | |
WO2016148383A1 (ko) | 다층 구조 전극 및 이를 포함하는 리튬 이차전지 | |
WO2016089099A1 (ko) | 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2012144785A2 (ko) | 양극 활물질 및 그것을 포함한 리튬 이차전지 | |
WO2013122352A1 (ko) | 수계 바인더를 포함하는 음극을 구비한 리튬 이차전지 | |
WO2015053478A1 (ko) | 규소계 화합물을 포함하는 이차전지 | |
WO2015026080A1 (ko) | 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법 | |
WO2013157883A1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2014073833A1 (ko) | 이차전지용 양극 활물질 및 이를 포함하는 이차전지 | |
WO2013157806A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
WO2013157832A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
WO2014204185A1 (ko) | 수명 특성이 향상된 리튬 이차전지 | |
WO2014196816A1 (ko) | 신규한 이차전지 | |
WO2013157863A1 (ko) | 전극 및 이를 포함하는 이차전지 | |
WO2013157856A1 (ko) | 다층구조 전극 및 그 제조방법 | |
WO2013157867A1 (ko) | 레이트 특성이 향상된 리튬 이차전지 | |
WO2015016506A1 (ko) | 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2015012640A1 (ko) | 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지 | |
WO2015141997A1 (ko) | 양극 활물질과 이를 포함하는 리튬 이차전지 | |
WO2013157811A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
WO2013157854A1 (ko) | 성능이 우수한 리튬 이차전지 | |
WO2012161474A2 (ko) | 출력 밀도 특성이 향상된 고출력의 리튬 이차전지 | |
WO2012036474A2 (ko) | 양극 활물질 및 이를 이용한 리튬 이차전지 | |
WO2012111951A2 (ko) | 이차전지용 양극 합제 및 이를 포함하는 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15770102 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |