WO2013157867A1 - 레이트 특성이 향상된 리튬 이차전지 - Google Patents

레이트 특성이 향상된 리튬 이차전지 Download PDF

Info

Publication number
WO2013157867A1
WO2013157867A1 PCT/KR2013/003294 KR2013003294W WO2013157867A1 WO 2013157867 A1 WO2013157867 A1 WO 2013157867A1 KR 2013003294 W KR2013003294 W KR 2013003294W WO 2013157867 A1 WO2013157867 A1 WO 2013157867A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
lithium secondary
formula
propionate
Prior art date
Application number
PCT/KR2013/003294
Other languages
English (en)
French (fr)
Inventor
전종호
김유석
양두경
김슬기
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201380019108.9A priority Critical patent/CN104221206A/zh
Priority to EP13778107.6A priority patent/EP2822083B1/en
Priority to US14/022,681 priority patent/US20140011098A1/en
Publication of WO2013157867A1 publication Critical patent/WO2013157867A1/ko
Priority to US14/813,604 priority patent/US10170796B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery having improved rate characteristics. More particularly, in a lithium secondary battery including a separator and an electrolyte interposed between the positive electrode, the negative electrode, and the positive electrode and the negative electrode, the electrolyte solution is a cyclic carbonate-based material. And a mixed solvent of propionate-based material, wherein the positive electrode includes a lithium manganese composite oxide represented by a specific formula as an active material, and the negative electrode includes a lithium metal oxide represented by a specific formula as an active material. It relates to a lithium secondary battery.
  • the lithium secondary battery has a structure in which a non-aqueous electrolyte containing lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode on which an active material is coated on an electrode current collector.
  • Such lithium secondary batteries generally use metal oxides such as lithium cobalt oxide, lithium manganese oxide, and lithium nickel oxide as the cathode active material and carbon material as the anode active material, and interpose a polyolefin porous separator between the anode and the cathode. And impregnated with a non-aqueous electrolyte solution containing a lithium salt such as LiPF 6 .
  • a non-aqueous electrolyte solution containing a lithium salt such as LiPF 6 .
  • electrolytes should basically be stable in the battery's operating voltage range of 0 to 4.2V and have the ability to transfer ions at a sufficiently fast rate.
  • a technique has been developed that uses a mixed solvent in which cyclic carbonate compounds such as ethylene carbonate and propylene carbonate and linear carbonate compounds such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate are appropriately mixed as a solvent of an electrolyte solution.
  • lithium secondary batteries have a high operating potential, high energy may flow instantaneously, and thus, when overcharged to 4.2 V or more, the electrolyte may also be decomposed, and the higher the temperature, the easier it is to reach the ignition point and ignite the problem. have.
  • by-products such as gas may be generated by oxidizing the electrolyte solution, which is a factor to further reduce the safety of the secondary battery.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • a cyclic carbonate-based material and a proton in a lithium secondary battery including a lithium manganese composite oxide as a cathode active material and a lithium metal oxide as a cathode active material, as described later.
  • electrolyte solution containing the mixed solvent of a pioneate system material it confirmed that the desired effect can be achieved and came to complete this invention.
  • the lithium secondary battery according to the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, the electrolyte is a mixed solvent of a cyclic carbonate-based material and a propionate-based material
  • the positive electrode comprises a lithium manganese composite oxide represented by the formula (1) as an active material
  • the negative electrode is characterized in that it comprises a lithium metal oxide represented by the formula (2) as an active material.
  • M is Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr At least one element selected from the group consisting of Nb, Mo, Sr, Sb, W, Ti, and Bi; A is at least one anion of -1 or -divalent.
  • M ' is at least one element selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al and Zr; a and b are 0.1 ⁇ a ⁇ 4; 0.2 ⁇ b Is determined according to the oxidation number of M 'in the range of ⁇ 4; c is determined according to the oxidation number in the range of 0 ⁇ c ⁇ 0.2; A is at least one anion of -1 or -2.
  • low viscosity linear carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and cyclic carbonate as solvents of the electrolyte solution
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • cyclic carbonate as solvents of the electrolyte solution
  • SEI negative electrode protective film
  • the lithium manganese composite oxide is used as the positive electrode active material
  • the voltage of the positive electrode is driven at a higher voltage than lithium
  • decomposition of the electrolyte due to the problem of low oxidation voltage of VC and components of the positive electrode active material, for example, transition Materials such as metals and oxygen are eluted, and the eluted components are electrodeposited on the surface of the negative electrode to deteriorate battery performance or decompose components of the electrolyte, for example, solvents or lithium salts. It causes a secondary problem that makes it worse.
  • the improvement in rate characteristic is lower than when using a low content.
  • the conductivity of lithium ions increases, the high rate charge / discharge characteristics of the battery are known to be improved, and the actual content ratio of the cyclic carbonate is about 30% or less, for example, 10 to 20%.
  • the result is a decrease in the ionic conductivity, but the actual rate characteristics are rather increased when the cyclic carbonate is included in a low content.
  • the inventors of the present application after extensive research, when using a mixed solvent of low cyclic carbonate-based material and propionate-based material in the composition of the electrolyte while using lithium metal oxide as the negative electrode active material, high reduction In the negative electrode having high potential and stability of reducing the electrolyte, the reduction problem does not occur, the rate characteristic is improved, and at the same time, the positive electrode active material component that may occur when using a high voltage positive electrode active material such as a lithium manganese composite oxide It has been found that the problem of suppressing or reducing the formation of by-products such as carbon dioxide and carbon monoxide due to the elution and surface reaction of
  • propionate-based material which is one of the components of the mixed solvent may be represented by the following formula (3).
  • R 1 is substituted or unsubstituted ethyl and R 2 is substituted or unsubstituted C 1 -C 4 straight or branched alkyl.
  • the propionate-based material is, for example, a group consisting of methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), butyl propionate (BP), and combinations thereof. It may be selected from, and more specifically may be methyl propionate.
  • the propionate-based materials as described above exhibit high ionic conductivity at room temperature and low temperature by appropriately coordinating lithium ions, and increase resistance to electrolyte decomposition reactions at the anode during battery charging, thereby improving overall battery performance, particularly rate characteristics. Improve.
  • the cyclic carbonate material forming a mixed solvent with the propionate-based material is ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluoroethylene carbonate (FEC), ⁇ Butyrolactone and combinations thereof, but is not limited thereto. Since the cyclic carbonate dissolves lithium ions well, the ionic conductivity of the electrolyte solution itself can be increased.
  • the cyclic carbonate-based material may be included in 1% by weight to 30% by weight based on the total weight of the electrolyte.
  • the cyclic carbonate-based material When the cyclic carbonate-based material is included in less than 1% by weight, the effect of improving ionic conductivity, which is an advantage of the cyclic carbonate-based material, cannot be obtained, and when it is included in excess of 30% by weight, the content of the propionate-based material is relatively higher. This is undesirable because the desired effect of improving the rate characteristics and the oxidation stability on the surface of the high voltage anode is not obtained.
  • the mixing ratio of the cyclic carbonate-based material and propionate-based material may be 5 ⁇ 15: 85 ⁇ 95, more specifically, 10: 90 by weight.
  • the inventors of the present application have found that the above mixing ratio is an optimal range for improving secondary battery performance such as charge and discharge characteristics.
  • the linear carbonate is not added as a basic constituent of the mixed solvent, but does not exclude the addition of a trace amount within a range that does not lower the object of the present invention.
  • an electrode assembly is prepared by interposing a porous separator between a positive electrode and a negative electrode each having an active material coated on an electrode current collector. It is prepared by impregnating an electrolyte solution containing a lithium salt and the mixed solvent.
  • the electrode assembly comprises a jelly-roll (wound) electrode assembly having a structure in which long sheets of positive and negative electrodes are wound with a separator interposed therebetween, and a plurality of positive and negative electrodes cut in units of a predetermined size through a separator.
  • Stacked electrode assembly having a structure of sequentially stacked state, or bi-cell or full cells stacked in a state where a predetermined unit of positive and negative electrodes are interposed with a separator, and have a long length It may be a stack / foldable electrode assembly of a structure wound using a conventional separator sheet.
  • the positive electrode is prepared by applying a mixture of a positive electrode active material, a conductive material and a binder on a positive electrode current collector, followed by drying and pressing. If necessary, a filler may be further added to the mixture.
  • the cathode active material may include a lithium manganese complex oxide.
  • the lithium manganese complex oxide is a lithium nickel manganese complex oxide represented by Formula 4 below (Lithium Nickel Manganese complex oxide: LNMO) ), And more specifically, LiNi 0.5 Mn 1.5 O 4 Or LiNi 0.4 Mn 1.6 O 4 It can be.
  • the cathode active material may further include other active materials.
  • the cathode active material may be replaced with a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or one or more transition metals.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating, drying, and pressing a negative electrode active material on a negative electrode current collector, and optionally, the conductive material, binder, filler, etc. may be further included as necessary.
  • the negative electrode active material may include lithium metal oxide.
  • the lithium metal oxide may be lithium titanium oxide (LTO) represented by Chemical Formula 5, and specifically, Li 0.8 Ti 2.2 O 4 , Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O 4, etc., but are not limited thereto, and more specifically, , Having a spinel structure with little change in crystal structure during charge and discharge and excellent reversibility, and may be Li 1.33 Ti 1.67 O 4 or LiTi 2 O 4 .
  • LTO lithium titanium oxide
  • the method for producing lithium titanium oxide represented by Chemical Formula 5 is well known in the art, for example, lithium and lithium in a solution in which lithium salts such as lithium hydroxide, lithium oxide, lithium carbonate and the like are dissolved in water as a lithium source. According to the atomic ratio of titanium, titanium oxide or the like is added as a titanium source, followed by stirring and drying to prepare a precursor and then firing it.
  • the negative electrode active material may also include other active materials in addition to lithium metal oxide, for example, carbon such as non-graphitized carbon and graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • Lithium salt contained in the electrolyte is a material that is good to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6 , LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (propene sultone), etc. may be further included.
  • the present invention also provides a battery module including the lithium secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack.
  • the device may comprise, for example, a power tool driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • a negative electrode active material Li 1.33 Ti 1.67 O 4
  • a conductive material Denka black
  • a binder PVdF
  • NMP NMP in a weight ratio of 95: 2.5: 2.5 and mixed to prepare a negative electrode mixture
  • the copper foil 20 ⁇ m thickness
  • the negative electrode mixture was coated to a thickness of 200 ⁇ m, and then rolled and dried to prepare a negative electrode.
  • LiNi 0.5 Mn 1.5 O 4 was used as an active material, and a conductive material (Denka black) and a binder (PVdF) were mixed in NMP at a weight ratio of 95: 2.5: 2.5, respectively, and mixed in an aluminum foil having a thickness of 20 ⁇ m. Coated, rolled and dried to prepare a positive electrode.
  • a polyethylene membrane (Celgard, thickness: 20 ⁇ m) as a separator between the cathode and the anode thus prepared.
  • Example 1 coin in the same manner as in Example 1, except that a liquid electrolyte in which LiPF 6 is dissolved in 1M in a solvent mixed with propylene carbonate, methyl propionate 10: 90 wt% as an electrolyte solution
  • the battery was prepared.
  • Example 1 the same as that of Example 1, except that a liquid electrolyte in which LiPF 6 was dissolved in 1M in a solvent in which ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate were mixed at 30:30:40 vol% was used as the electrolyte.
  • the 2016 coin cell was manufactured by the method.
  • Example 1 the 2016 coin cell was prepared in the same manner as in Example 1, except that a liquid electrolyte in which LiPF 6 was dissolved in 1 M in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at 10: 90 wt% was used as the electrolyte. Prepared.
  • Example 1 a 2016 coin battery was manufactured in the same manner as in Example 1, except that a liquid electrolyte in which LiPF 6 was dissolved in 1M in a solvent in which propylene carbonate and dimethyl carbonate were mixed at 10:90 wt% was used as the electrolyte. Prepared.
  • Example 1 2016 coin in the same manner as in Example 1 except for using a liquid electrolyte in which LiPF 6 dissolved in 1M in a solvent mixed with ethylene carbonate, methyl propionate 30: 70 wt% as an electrolyte solution
  • the battery was prepared.
  • Example 1 coin in the same manner as in Example 1 except for using a liquid electrolyte in which LiPF 6 dissolved in 1M in a solvent mixed with 50: 50 wt% of ethylene carbonate, methyl propionate as an electrolyte solution
  • the battery was prepared.
  • Example 1 and Example 2 using the propionate-based MP shows excellent rate characteristics compared to Comparative Examples 1 to 3 using the DMC is a linear carbonate-based material have.
  • a lithium manganese composite oxide used for high voltage is used as a cathode active material by using an electrolyte solution containing a mixed solvent of a cyclic carbonate material and a propionate material. It is also stable in a lithium secondary battery including a lithium metal oxide having a high operating potential as a negative electrode active material, thereby improving the rate characteristic of the battery.

Abstract

본 발명은 레이트 특성이 향상된 리튬 이차전지에 관한 것으로, 더욱 상세하게는, 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액으로 구성되는 리튬 이차전지에 있어서, 상기 전해액은 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하고, 상기 양극은 하기 화학식 1로 표시되는 리튬 망간 복합 산화물을 활물질로 포함하며, 상기 음극은 하기 화학식 2로 표시되는 리튬 금속 산화물을 활물질로 포함하는 것을 특징으로 하는 리튬 이차전지에 관한 것이다. LixMyMn2-yO4-zAz (1) (상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고; M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며; A는 -1 또는 -2가의 하나 이상의 음이온이다.) LiaM'bO4-cAc (2) (상기 식에서, M'은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M'의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.)

Description

레이트 특성이 향상된 리튬 이차전지
본 발명은 레이트 특성이 향상된 리튬 이차전지에 관한 것으로, 더욱 상세하게는, 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액으로 구성되는 리튬 이차전지에 있어서, 상기 전해액은 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하고, 상기 양극은 특정 화학식으로 표시되는 리튬 망간 복합 산화물을 활물질로 포함하며, 상기 음극은 특정 화학식으로 표시되는 리튬 금속 산화물을 활물질로 포함하는 것을 특징으로 하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.
리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해질이 함침되어 있는 구조로 이루어져 있다.
이러한 리튬 이차전지는 일반적으로 양극 활물질로 리튬 코발트계 산화물, 리튬 망간계 산화물, 리튬 니켈계 산화물 등의 금속 산화물과 음극 활물질로 탄소 재료를 사용하며, 음극과 양극 사이에 폴리올레핀계 다공성 분리막을 개재하고, LiPF6 등의 리튬염을 가진 비수성 전해액을 함침시켜 제조된다. 충전 시에는 양극 활물질의 리튬 이온이 방출되어 음극의 탄소 층으로 삽입되고, 방전시에는 탄소 층의 리튬 이온이 방출되어 양극 활물질로 삽입되며, 비수성 전해액은 음극과 양극 사이에서 리튬 이온을 이동시키는 매질 역할을 한다.
이러한 전해액은 기본적으로 전지의 작동 전압 범위인 0 ~ 4.2V에서 안정해야 하고, 충분히 빠른 속도로 이온을 전달할 수 있는 성능을 가져야 한다. 이를 위하여, 에틸렌 카보네이트, 프로필렌 카보네이트 등의 환형 카보네이트 화합물 및 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트 등의 선형 카보네이트 화합물이 적절히 혼합된 혼합 용매를 전해액의 용매로 이용하는 기술이 개발되었다.
그러나, 리튬 이차전지는 작동 전위가 높기 때문에 순간적으로 고에너지가 흐를 수 있고, 이로 인해 4.2V 이상으로 과충전 되면 상기 전해액 역시 분해되기 시작하고, 고온일수록 발화점에 쉽게 도달하여 발화할 가능성이 높아지는 문제점이 있다.
더욱이, 최근에는 전극 활물질로서 종래 사용하는 재료를 벗어나, 스피넬 구조의 리튬 망간 복합 산화물을 양극 활물질에 사용하거나, 리튬 금속 산화물, 특히 리튬 티타늄 산화물 등을 음극 활물질로 사용하는 것에 대한 연구가 많이 진행되고 있다.
특히, 상기 리튬 망간 복합 산화물 중, 4.7V의 평균 전압을 나타내어 고전압용으로 사용되는 LixNiyMn2-yO4 (y = 0.01 ~ 0.6 임)와 같은 스피넬 구조의 리튬 니켈 망간 복합 산화물의 경우, 전해액의 산화전위에 도달하여, 전해액이 산화됨으로써 가스 등 부산물이 발생할 수 있고, 이는 이차전지의 안전성을 더욱 저하시키는 요인이 된다.
따라서, 이러한 문제점을 유발하지 않으면서 고전압 조건에서 안정적이면서 레이트(rate) 특성을 향상시킬 수 있는 전해액 기술에 대한 필요성이 매우 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 양극 활물질로서 리튬 망간 복합 산화물을, 음극 활물질로서 리튬 금속 산화물을 포함하는 리튬 이차전지에 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하는 전해액을 사용하는 경우, 소망하는 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 리튬 이차전지는 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액으로 구성되는 리튬 이차전지에 있어서, 상기 전해액은 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하고, 상기 양극은 하기 화학식 1로 표시되는 리튬 망간 복합 산화물을 활물질로 포함하며, 상기 음극은 하기 화학식 2로 표시되는 리튬 금속 산화물을 활물질로 포함하는 것을 특징으로 한다.
LixMyMn2-yO4-zAz (1)
(상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고; M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며; A는 -1 또는 -2가의 하나 이상의 음이온이다.)
LiaM'bO4-cAc (2)
(상기 식에서, M'은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M'의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.)
일반적으로, 그라파이트(graphite)를 음극 활물질로 하는 이차전지에서는, 전해액의 용매로 저점도 선형 카보네이트, 예를 들어 디메틸 카보네이트(DMC), 에틸 메틸 카보네이트(EMC), 디에틸 카보네이트(DEC) 및 환형 카보네이트의 혼합 용매를 사용하는 경우, 환형 카보네이트의 함량이 30% 이하인 전해액을 사용하면, 음극 보호 피막(SEI)의 형성에 문제가 발생하게 되어 수명 특성의 급격한 열화가 발생하게 되는 문제가 있고, 상기 선형 카보네이트를 대체하여 선형 에스테르를 사용하는 경우에도, 음극에서 환원반응이 카보네이트계 저점도 용매 대비 크게 되는 문제가 있어, 환형 카보네이트를 고함량으로 사용하거나, VC(vinylene carbonate) 등의 음극 보호 피막 형성 첨가제를 사용할 수 밖에 없었다.
그러나, 본 출원의 발명자들이 확인한 바에 따르면, 양극 활물질로서 리튬 망간 복합 산화물을, 음극 활물질로서 리튬 금속 산화물을 사용하는 이차전지에 상기 전해액과 동일한 구성을 적용시키는 경우에는 문제점이 존재한다.
첫째로, 양극 활물질로서 리튬 망간 복합 산화물을 사용할 경우, 양극의 전압이 리튬 대비 고전압에서 구동되기 때문에, VC의 낮은 산화 전압의 문제로 인한 전해액의 분해 및 양극 활물질의 구성성분, 예를 들어, 전이금속, 산소 등의 물질들이 용출되는 문제가 있고, 이렇게 용출된 구성성분들이 음극의 표면에 전착되어 전지 성능을 열화시키거나, 전해액의 구성성분, 예를 들어, 용매나 리튬염을 분해시켜 성능을 악화시키는 2차적인 문제를 야기한다.
둘째로, 음극 활물질로서 고율 충방전 특성을 위해 사용되는 리튬 금속 산화물을 포함하는 리튬 이차전지에 30% 이상의 환형 카보네이트를 포함하는 전해액 조성을 적용할 경우, 레이트 특성의 향상이 저함량을 사용할 경우보다 떨어지게 된다. 업계 통상의 논리로 볼 때, 리튬 이온의 전도도가 증가하게 될 경우, 전지의 고율 충방전 특성이 향상되는 것으로 알려져 있고, 실제 환형 카보네이트의 함량비가 약 30% 이하, 예를 들어, 10 ~ 20% 수준으로 낮아지게 되면, 이온 전도도가 떨어지는 결과를 확인할 수 있으나, 실제 레이트 특성은 환형 카보네이트가 저함량으로 포함될 때 오히려 상승하는 결과를 보인다.
이에, 본 출원의 발명자들은 심도 있는 연구를 거듭한 끝에, 음극 활물질로서 리튬 금속 산화물을 사용하면서 전해액의 조성으로 저함량의 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 사용하는 경우, 높은 환원전위를 가져 전해액의 환원에 대한 안정성이 큰 음극에서는 환원문제가 발생하지 않고, 레이트 특성이 향상될 뿐만 아니라, 동시에 리튬 망간 복합 산화물과 같은 고전압 양극 활물질을 사용하는 경우에 발생할 수 있는 양극 활물질 구성성분의 용출 및 표면 반응으로 인한 이산화탄소나 일산화탄소와 같은 부산물의 생성 문제를 억제 또는 감소시킬 수 있음을 밝혀내었다.
하나의 구체적인 예에서, 상기 혼합 용매의 구성성분 중 하나인 프로피오네이트계 물질은 하기 화학식 3으로 표시될 수 있다.
R1-COO-R2 (3)
상기 식에서, R1은 치환 또는 비치환의 에틸이고, R2는 치환 또는 비치환의 C1-C4 직쇄 또는 측쇄 알킬이다.
상기 프로피오네이트계 물질은, 예를 들어, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP), 프로필 프로피오네이트(PP), 부틸 프로피오네이트(BP) 및 이들의 조합으로 이루어진 군에서 선택될 수 있고, 더욱 상세하게는 메틸 프로피오네이트일 수 있다.
상기와 같은 프로피오네이트계 물질은 리튬 이온을 적절하게 배위하여 상온 및 저온에서 높은 이온 전도도를 나타내고, 전지 충전시 양극에서의 전해액 분해 반응에 대한 저항성을 높임으로서 전지의 전반적인 성능, 특히 레이트 특성을 향상시킨다.
하나의 구체적인 예에서, 상기 프로피오네이트계 물질과 함께 혼합 용매를 이루는 환형 카보네이트 물질은 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC), 및 플루오르에틸렌 카보네이트(FEC), γ-부티로락톤 및 이들의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 한정되지 않는다. 상기 환형 카보네이트는 리튬 이온을 잘 용해시키므로, 전해액 자체의 이온 전도도를 높일 수 있다.
이 때, 상기 환형 카보네이트계 물질은 전해액 전체 중량을 기준으로 1 중량% 내지 30 중량%로 포함될 수 있다.
환형 카보네이트계 물질이 1 중량% 미만으로 포함되는 경우에는 환형 카보네이트계 물질의 장점인 이온 전도도 향상의 효과를 얻을 수 없고, 30 중량%를 초과하여 포함되는 경우에는 상대적으로 프로피오네이트계 물질의 함량이 줄어들게 되어 레이트 특성과 고전압 양극 표면에서의 산화 안정성 향상이라는 소망하는 효과를 얻을 수 없는 바 바람직하지 않다.
하나의 구체적인 예에서, 상기 환형 카보네이트계 물질과 프로피오네이트계 물질의 혼합비는 중량을 기준으로 5~15 : 85~95, 더욱 상세하게는, 10 : 90일 수 있다. 본 출원의 발명자들은 상기와 같은 혼합비율이 충방전 특성 등의 이차전지 성능을 향상시킬 수 있는 최적의 범위임을 밝혀내었다.
선형 카보네이트는 상기 혼합 용매의 기본 구성 성분으로 첨가되지 않으나, 본 발명의 목적을 저하시키지 않는 범위 내에서 미량 첨가하는 것을 배제하는 것은 아니다.
본 발명에 따른 리튬 이차전지의 제조방법은, 공지된 바와 크게 다르지 않으며, 구체적으로, 전극 집전체 상에 각각 활물질을 도포한 양극과 음극 사이에 다공성의 분리막을 개재시켜 전극조립체를 제조하고, 이에 리튬염 및 상기 혼합 용매를 포함하는 전해액을 함침시켜 제조한다.
상기 전극 조립체는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 구조의 스택형(적층형) 전극조립체, 또는 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 바이셀(Bi-cell) 또는 풀셀(Full cell)들을 긴 길이의 연속적인 분리막 시트를 이용하여 권취한 구조의 스택/폴딩형 전극조립체일 수 있다.
상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조 및 프레싱하여 제조되며, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 앞서 살펴본 바와 같이, 리튬 망간 복합 산화물을 포함할 수 있는데, 하나의 구체적인 예에서, 상기 리튬 망간 복합 산화물은 하기 화학식 4로 표시되는 리튬 니켈 망간 복합 산화물(Lithium Nickel Manganese complex Oxide: LNMO)일 수 있고, 더욱 상세하게는, LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4일 수 있다.
LixNiyMn2-yO4 (4)
상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
상기 양극 활물질로는 리튬 망간 복합 산화물이외에도 다른 활물질이 더 포함될 수 있는데, 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등이 더 포함될 수 있다. 이 경우, 리튬 망간 복합 산화물의 함량은 전체 양극 활물질의 중량을 기준으로 40 ~ 100%일 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 활물질은 앞서 살펴본 바와 같이, 리튬 금속 산화물을 포함할 수 있는데, 하나의 구체적인 예에서, 상기 리튬 금속 산화물은 하기 화학식 5로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)일 수 있고, 구체적으로, Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4, Li1.14Ti1.71O4 등 일 수 있으나, 이들만으로 한정되는 것은 아니고, 더욱 상세하게는, 충방전시 결정 구조의 변화가 적고 가역성이 우수한 스피넬 구조를 갖는 것으로서, Li1.33Ti1.67O4 또는 LiTi2O4일 수 있다.
LiaTibO4 (5)
상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
상기 화학식 5로 표시되는 리튬 티타늄 산화물을 제조하는 방법은 당업계에 공지되어 있는 바, 예를 들어, 리튬 소스로서 수산화 리튬, 산화 리튬, 탄산 리튬 등의 리튬염을 물에 용해시킨 용액에 리튬과 티탄의 원자비에 따라 티탄 소스로서 산화 티탄 등을 투입한 다음, 교반 및 건조시켜 전구체를 제조한 후 이를 소성하여 제조할 수 있다.
상기 음극 활물질로는 리튬 금속 산화물 이외에 다른 활물질 역시 포함될 수 있는데, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물 등을 포함될 수 있다. 이 경우, 리튬 금속 산화물의 함량은 전체 음극 활물질의 중량을 기준으로 예를 들어 40 내지 100%일 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 전해액에 포함되는 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다
본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩을 제공하는 한편, 상기 전지팩을 포함하는 디바이스를 제공한다.
상기 디바이스는, 예를 들어, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하에서는 실시예를 통해 본 발명의 내용을 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
음극 활물질(Li1.33Ti1.67O4), 도전재(Denka black), 바인더(PVdF)를 95: 2.5: 2.5 의 중량비로 NMP에 넣고 믹싱하여 음극 합제를 제조하고, 20 ㎛ 두께의 구리 호일에 상기 음극 합제를 200 ㎛ 두께로 코팅한 후 압연 및 건조하여 음극을 제조하였다.
또한, 양극으로는 LiNi0.5Mn1.5O4를 활물질로 사용하고 도전재(Denka black), 바인더(PVdF)를 각각 95: 2.5: 2.5 의 중량비로 NMP에 넣고 믹싱한 후 20 ㎛ 두께의 알루미늄 호일에 코팅하고, 압연 및 건조하여 양극을 제조하였다.
이렇게 제조된 음극과 양극 사이에 분리막으로서 폴리에틸렌 막(Celgard, 두께: 20 ㎛)을 개재하고, 에틸렌 카보네이트, 메틸 프로피오네이트가 10: 90 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 2016 코인 전지를 제조하였다.
<실시예 2>
상기 실시예 1에서, 전해액으로 프로필렌 카보네이트, 메틸 프로피오네이트가 10: 90 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<비교예 1>
상기 실시예 1에서, 전해액으로 에틸렌 카보네이트, 에틸 메틸 카보네이트, 디메틸 카보네이트가 30: 30: 40 vol%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<비교예 2>
상기 실시예 1에서, 전해액으로 에틸렌 카보네이트, 디메틸 카보네이트가 10: 90 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<비교예 3>
상기 실시예 1에서, 전해액으로 프로필렌 카보네이트, 디메틸 카보네이트가 10: 90 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<실시예 3>
상기 실시예 1에서, 전해액으로 에틸렌 카보네이트, 메틸 프로피오네이트가 30: 70 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<비교예 4>
상기 실시예 1에서, 전해액으로 에틸렌 카보네이트, 메틸 프로피오네이트가 50: 50 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<실험예1>
실시예 1 내지 3 및 비교예 1 내지 4에서 각각 제조된 코인 전지들에 대해 레이트(rate) 테스트를 실시하였고, 그 결과를 하기 표 1에 나타내었다.
표 1
Figure PCTKR2013003294-appb-T000001
상기 표 1을 참조하면, 프로피오네이트계 물질인 MP를 사용하는 실시예 1 및 실시예 2가 선형 카보네이트계 물질인 DMC를 사용한 비교예 1 내지 비교에 3에 비하여 우수한 레이트 특성을 나타내는 것을 확인할 수 있다.
또한, 실시예 1 내지 3 및 비교예 4를 비교하면, 환형 카보네이트계 물질인 EC를 30 wt% 이하로 적게 포함하는 경우에 더 우수한 레이트 특성을 나타내는 것을 확인할 수 있다. 이는 환형 카보네이트계 물질의 첨가량이 많아질수록 상대적으로 프로피오네이트계 물질의 함량이 줄어 이온의 이동성이 감소하고, 특히 일정량 이상으로 포함되는 경우에는 리튬 이온의 해리성이 감소하기 때문인 것으로 보인다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
상기에서 설명한 바와 같이, 본 발명에 따른 리튬 이차전지는, 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하는 전해액을 사용함으로써, 고전압용으로 사용되는 리튬 망간 복합 산화물을 양극 활물질로서, 높은 작동 전위를 갖는 리튬 금속 산화물을 음극 활물질로서 포함하는 리튬 이차전지에서도 안정하여 전지의 레이트(rate) 특성을 향상시키는 효과가 있다.

Claims (14)

  1. 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액으로 구성되는 리튬 이차전지에 있어서,
    상기 전해액은 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하고, 상기 양극은 하기 화학식 1로 표시되는 리튬 망간 복합 산화물을 활물질로 포함하며, 상기 음극은 하기 화학식 2로 표시되는 리튬 금속 산화물을 활물질로 포함하는 것을 특징으로 하는 리튬 이차전지:
    LixMyMn2-yO4-zAz (1)
    (상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고; M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며; A는 -1 또는 -2가의 하나 이상의 음이온이다.)
    LiaM'bO4-cAc (2)
    (상기 식에서, M'은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M'의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.)
  2. 제 1 항에 있어서, 상기 프로피오네이트계 물질은 하기 화학식 3으로 표시되는 것을 특징으로 하는 리튬 이차전지.
    R1-COO-R2 (3)
    상기 식에서, R1은 치환 또는 비치환의 에틸이고, R2는 치환 또는 비치환의 C1-C4 직쇄 또는 측쇄 알킬이다.
  3. 제 1 항에 있어서, 상기 프로피오네이트계 물질은 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP), 프로필 프로피오네이트(PP), 부틸 프로피오네이트(BP) 및 이들의 조합으로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬 이차전지.
  4. 제 1 항에 있어서, 상기 환형 카보네이트계 물질은 전해액 전체 중량을 기준으로 1 중량% 내지 30 중량%로 포함되어 있는 것을 특징으로 하는 리튬 이차전지.
  5. 제 1 항에 있어서, 상기 환형 카보네이트계 물질과 프로피오네이트계 물질의 혼합비는 중량을 기준으로 5~15 : 85~95인 것을 특징으로 하는 리튬 이차전지.
  6. 제 5 항에 있어서, 상기 환형 카보네이트계 물질과 프로피오네이트계 물질의 혼합비는 중량을 기준으로 10 : 90인 것을 특징으로 하는 리튬 이차전지용 전해액.
  7. 제 1 항에 있어서, 상기 화학식 1의 리튬 망간 복합 산화물은 하기 화학식 4로 표시되는 리튬 니켈 망간 복합 산화물(Lithium Nickel Manganese complex Oxide: LNMO)인 것을 특징으로 하는 리튬 이차전지.
    LixNiyMn2-yO4 (4)
    상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
  8. 제 7 항에 있어서, 상기 화학식 4의 리튬 니켈 망간 복합 산화물은 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4인 것을 특징으로 하는 리튬 이차전지.
  9. 제 1 항에 있어서, 상기 화학식 2의 리튬 금속 산화물은 하기 화학식 5로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)인 것을 특징으로 하는 리튬 이차전지.
    LiaTibO4 (5)
    상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
  10. 제 9 항에 있어서, 상기 화학식 5의 리튬 티타늄 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4인 것을 특징으로 하는 리튬 이차전지.
  11. 제 1 항에 따른 리튬 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  12. 제 11 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  13. 제 12 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.
  14. 제 13 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
PCT/KR2013/003294 2012-04-20 2013-04-18 레이트 특성이 향상된 리튬 이차전지 WO2013157867A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380019108.9A CN104221206A (zh) 2012-04-20 2013-04-18 具有提高的倍率特性的锂二次电池
EP13778107.6A EP2822083B1 (en) 2012-04-20 2013-04-18 Lithium secondary battery having improved rate characteristics
US14/022,681 US20140011098A1 (en) 2012-04-20 2013-09-10 Lithium secondary battery of improved rate capability
US14/813,604 US10170796B2 (en) 2012-04-20 2015-07-30 Lithium secondary battery of improved rate capability with cathode containing nickel manganese complex oxide for high-voltage applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0041297 2012-04-20
KR20120041297 2012-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/022,681 Continuation US20140011098A1 (en) 2012-04-20 2013-09-10 Lithium secondary battery of improved rate capability

Publications (1)

Publication Number Publication Date
WO2013157867A1 true WO2013157867A1 (ko) 2013-10-24

Family

ID=49383745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003294 WO2013157867A1 (ko) 2012-04-20 2013-04-18 레이트 특성이 향상된 리튬 이차전지

Country Status (6)

Country Link
US (2) US20140011098A1 (ko)
EP (1) EP2822083B1 (ko)
KR (2) KR101603079B1 (ko)
CN (1) CN104221206A (ko)
TW (1) TWI487172B (ko)
WO (1) WO2013157867A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991514B2 (en) * 2013-08-29 2018-06-05 Lg Chem, Ltd. Method of manufacturing lithium nickel complex oxide, lithium nickel complex oxide manufactured thereby, and cathode active material including the same
KR101764266B1 (ko) 2014-12-02 2017-08-04 주식회사 엘지화학 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US9834117B2 (en) * 2015-10-06 2017-12-05 Ford Global Technologies, Llc Release mechanism for a reclining vehicle seat
KR102160709B1 (ko) * 2017-04-14 2020-09-28 주식회사 엘지화학 고분자 고체 전해질 및 이를 포함하는 리튬 이차전지
KR102140127B1 (ko) * 2017-04-25 2020-07-31 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이것을 포함하는 리튬 이차전지
JP6746549B2 (ja) * 2017-09-19 2020-08-26 株式会社東芝 二次電池、電池パック及び車両
WO2019065288A1 (ja) 2017-09-26 2019-04-04 Tdk株式会社 リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
EP3703175A4 (en) * 2017-10-26 2021-06-23 Kabushiki Kaisha Toshiba NON-AQUEOUS ELECTROLYTE BATTERY AND BATTERY PACK
EP3707766A1 (en) * 2017-11-07 2020-09-16 CPS Technology Holdings LLC Lithium-ion battery cell and module
WO2019216267A1 (ja) * 2018-05-07 2019-11-14 本田技研工業株式会社 非水電解質二次電池
KR102328260B1 (ko) * 2018-10-31 2021-11-18 주식회사 엘지에너지솔루션 리튬 이차전지
US20230268555A1 (en) * 2022-02-22 2023-08-24 Enevate Corporation Prevention of gassing in si dominant lithium-ion batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262852B1 (ko) * 1997-12-11 2000-08-01 유현식 리튬 이차전지용 양극활물질인 lixmymn-2-yo4 분말 및 그 제조방법
US20050191551A1 (en) * 2000-03-30 2005-09-01 Hisashi Tsujimoto Material for positive electrode and secondary battery
JP2008050259A (ja) * 2007-09-25 2008-03-06 Nippon Chem Ind Co Ltd リチウムマンガン複合酸化物及びリチウム二次電池
US20110165472A1 (en) * 2007-02-08 2011-07-07 Kim Jonghwan Lithium secondary battery of improved high-temperature cycle life characteristics
US20110206999A1 (en) * 2008-11-13 2011-08-25 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574490A (ja) * 1991-09-13 1993-03-26 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP3502118B2 (ja) * 1993-03-17 2004-03-02 松下電器産業株式会社 リチウム二次電池およびその負極の製造法
JP4644895B2 (ja) * 2000-01-24 2011-03-09 株式会社豊田中央研究所 リチウム二次電池
JP4197237B2 (ja) * 2002-03-01 2008-12-17 パナソニック株式会社 正極活物質の製造方法
US20050123834A1 (en) 2003-12-03 2005-06-09 Nec Corporation Secondary battery
US7476467B2 (en) 2004-03-29 2009-01-13 Lg Chem, Ltd. Lithium secondary battery with high power
JP4245532B2 (ja) 2004-08-30 2009-03-25 株式会社東芝 非水電解質二次電池
JP2007207617A (ja) 2006-02-02 2007-08-16 Sony Corp 非水溶媒、非水電解質組成物及び非水電解質二次電池
US20070287071A1 (en) 2006-06-11 2007-12-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte solution
JP4855331B2 (ja) * 2007-05-09 2012-01-18 株式会社豊田中央研究所 リチウムイオン二次電池
CN102522591A (zh) * 2007-06-12 2012-06-27 株式会社Lg化学 一种用于二次电池的非水电解质
US8421405B2 (en) 2007-06-13 2013-04-16 Kyocera Corporation Charge system, mobile electronic device, cell terminal used for them, and secondary cell
EP2526578B1 (en) * 2007-08-16 2015-09-30 LG Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US9105943B2 (en) * 2007-09-12 2015-08-11 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US20100266905A1 (en) * 2007-09-19 2010-10-21 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
KR100987280B1 (ko) * 2008-01-02 2010-10-12 주식회사 엘지화학 파우치형 리튬 이차전지
US20120231325A1 (en) * 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262852B1 (ko) * 1997-12-11 2000-08-01 유현식 리튬 이차전지용 양극활물질인 lixmymn-2-yo4 분말 및 그 제조방법
US20050191551A1 (en) * 2000-03-30 2005-09-01 Hisashi Tsujimoto Material for positive electrode and secondary battery
US20110165472A1 (en) * 2007-02-08 2011-07-07 Kim Jonghwan Lithium secondary battery of improved high-temperature cycle life characteristics
JP2008050259A (ja) * 2007-09-25 2008-03-06 Nippon Chem Ind Co Ltd リチウムマンガン複合酸化物及びリチウム二次電池
US20110206999A1 (en) * 2008-11-13 2011-08-25 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
EP2822083B1 (en) 2017-07-19
US20140011098A1 (en) 2014-01-09
KR101603079B1 (ko) 2016-03-14
US10170796B2 (en) 2019-01-01
TWI487172B (zh) 2015-06-01
KR101611195B1 (ko) 2016-04-11
KR20130118809A (ko) 2013-10-30
KR20150008024A (ko) 2015-01-21
CN104221206A (zh) 2014-12-17
US20150340740A1 (en) 2015-11-26
EP2822083A1 (en) 2015-01-07
TW201405919A (zh) 2014-02-01
EP2822083A4 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2013157883A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2016089099A1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
WO2013157867A1 (ko) 레이트 특성이 향상된 리튬 이차전지
WO2012144785A2 (ko) 양극 활물질 및 그것을 포함한 리튬 이차전지
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2014204185A1 (ko) 수명 특성이 향상된 리튬 이차전지
WO2013157806A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2017171425A1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
WO2015053478A1 (ko) 규소계 화합물을 포함하는 이차전지
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2013157855A1 (ko) 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2013157857A1 (ko) 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013157811A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2013157862A1 (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
KR102459627B1 (ko) 디설포네이트계 첨가제 및 이를 포함하는 리튬이차전지
WO2015012625A1 (ko) 가교화 화합물 입자 및 이를 포함하는 이차전지
WO2011122877A2 (ko) 이차전지용 신규 양극
WO2015016621A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법
WO2019017617A1 (ko) 집전체가 없는 전극 및 이를 포함하는 이차전지
WO2013157873A1 (ko) 이차전지용 전극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778107

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013778107

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013778107

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE