WO2015026080A1 - 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법 - Google Patents

양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법 Download PDF

Info

Publication number
WO2015026080A1
WO2015026080A1 PCT/KR2014/007255 KR2014007255W WO2015026080A1 WO 2015026080 A1 WO2015026080 A1 WO 2015026080A1 KR 2014007255 W KR2014007255 W KR 2014007255W WO 2015026080 A1 WO2015026080 A1 WO 2015026080A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
lithium
zro
secondary battery
Prior art date
Application number
PCT/KR2014/007255
Other languages
English (en)
French (fr)
Inventor
진주홍
이대진
신선식
공우연
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL14837821T priority Critical patent/PL3012890T3/pl
Priority to JP2016529720A priority patent/JP6135000B2/ja
Priority to EP14837821.9A priority patent/EP3012890B1/en
Priority to US14/907,659 priority patent/US9905841B2/en
Priority to CN201480044433.5A priority patent/CN105453313B/zh
Publication of WO2015026080A1 publication Critical patent/WO2015026080A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material, a lithium secondary battery comprising the same, and a method of manufacturing the same, and more particularly, to preparing a predetermined lithium metal oxide, and dry mixing the lithium metal oxide with zirconium and fluorine-containing precursors. And, after the dry mixing and heat treatment to convert the zirconium and fluorine-containing precursor to ZrO 2 and a portion of the oxygen (O) anion is substituted for F, ZrO 2 and F coated positive electrode active material, characterized in that It relates to a manufacturing method.
  • Lithium secondary batteries exhibit high energy density, operating potential, long cycle life, and low self-discharge rate, and thus are widely used in mobile devices as well as medium and large devices such as electric vehicles, hybrid electric vehicles, and power storage devices.
  • Lithium-containing cobalt oxide (LiCoMO 2 ) is mainly used as a cathode active material of a lithium secondary battery.
  • lithium-containing nickel oxide (LiNiMO 2 ), layered lithium manganese oxide (LiMnMO 2 ), and spinel structured lithium manganese oxide The use of (LiMn 2 MO 4 ) has also been considered, and LiMO 2 (M is Co, Ni and Mn) has recently been used.
  • LiMO 2 M: Co, Ni, Mn
  • a large amount of Li by-products are generated during the synthesis process, and most of these Li by-products are composed of compounds of Li 2 CO 3 and LiOH.
  • the problem of gelation and the generation of gas due to the progress of charging and discharging after electrode production are caused.
  • an electrolyte is essential as a medium for transferring ions in a lithium secondary battery, and the electrolyte is generally composed of a solvent and a lithium salt, and the lithium salt includes lithium tetrafluoroborate (in terms of solubility of a salt and chemical stability).
  • LiBF 4 lithium hexafluorophosphate (6LiPF 6 ), and the like are mainly used.
  • the electrolyte in which the lithium salt containing fluorine (F) is dissolved reacts with a small amount of water in the electrolyte to form hydrofluoric acid (HF), and the hydrofluoric acid causes a problem of decomposing the electrode.
  • lithium carbonate Li 2 CO 3
  • HF hydrofluoric acid
  • CO 2 carbon dioxide
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • an object of the present invention is to prevent contact of impurities (Li 2 CO 3 , LiOH) present on the surface of the positive electrode active material with hydrofluoric acid (HF) in the electrolyte by the ZrO 2 and F coating layers, and ZrO 2 in the electrolyte
  • the present invention provides a method for producing a positive electrode active material having excellent safety and cycle characteristics by reacting with hydrofluoric acid (HF) to produce a stable material.
  • Still another object of the present invention is to provide a positive electrode active material having a novel structure prepared by the above method.
  • step (c) thermal mixing after dry mixing in step (b) to convert the zirconium and fluorine containing precursors to ZrO 2 and to replace some of the oxygen (O) anions with F;
  • the ZrO 2 and F films formed according to the method of the present invention may prevent contact of impurities (Li 2 CO 3 , LiOH) present on the surface of the positive electrode active material with hydrofluoric acid (HF) in the electrolyte, and the ZrO 2 film may be By reacting with hydrofluoric acid (HF) in the electrolyte it can form a stable form of ZrO 2 ⁇ 5HF.H 2 O to act to stabilize the surface of the positive electrode active material.
  • impurities Li 2 CO 3 , LiOH
  • HF hydrofluoric acid
  • the positive electrode active material prepared according to the present invention can suppress the breakdown of the structure of the positive electrode active material due to contact with the electrolyte and the generation of carbon dioxide as a side reaction product, lithium secondary battery comprising the improved safety due to the minimization of swelling phenomenon It has the effect that a cycle characteristic improves.
  • the lithium metal oxide of Formula 1 may have a nickel content (a) and a manganese content (b), in detail, 0.1 to 0.8 or less, and more specifically, the lithium metal oxide of Formula 1 may be Li 1 Ni 1/3 Mn 1/3 Co 1/3 O 2 or LiNi 0.5 Mn 0.3 Co 0.2 O 2 .
  • the lithium transition metal oxide particles may be prepared according to a manufacturing method known in the art such as a solid phase method and a coprecipitation method, a detailed description thereof will be omitted.
  • the zirconium and fluorine-containing precursor as a compound capable of providing Zr and F, is not particularly limited, but may be specifically ZrF 4 .
  • ZrO coated on the lithium transition metal oxide in step (b) 2 can be mixed to adjust the amount of the lithium transition metal oxide so that the amount of F is 0.001 to 0.100% by weight based on the total weight of the positive electrode active material, it can be mixed to be 0.001 to 0.010% by weight in detail.
  • Dry mixing of step (b) can be achieved, for example, by simple mixing or high energy milling.
  • high energy milling can be achieved using, for example, a mechanofusion device, or a nobilta device, and the mechano fusion is a method of forming a mixture by strong physical rotational force in a dry state. This is how electrostatic binding between components is formed.
  • the heat treatment may be performed, for example, under an air atmosphere at a temperature of 400 to 1000 ° C. for 4 to 10 hours, in which the zirconium and fluorine-containing precursors are converted into ZrO 2 and a part of the oxygen (O) anion. May be substituted with F to prepare a ZrO 2 and F coated lithium transition metal oxide.
  • the heat treatment temperature range is an optimal range for obtaining a desired positive electrode active material in the present invention, and when the heat treatment temperature is too high or low, problems such as impurities, crystal bonding, and cracking of the specimen may occur, which is not preferable.
  • the present invention also provides a cathode active material for a secondary battery, which is coated with ZrO 2 and F prepared using the above production method.
  • the thickness of the coating layer may be specifically 0.01 to 0.1 ⁇ m, more specifically 0.01 to 0.05 ⁇ m. When the thickness of the coating layer is too thin, contact with the electrolyte may not be prevented or may be easily damaged during the operation of the battery. If the coating layer is too thick, the specific capacity may be reduced, which is not preferable.
  • the ZrO 2 and F may be applied, for example, with a coating area of 60 to 100% based on the surface area of the positive electrode active material, and specifically, may be applied with a coating area of 80 to 100%. When the area of the coating layer is too small, the contact area between the positive electrode active material and the electrolyte may increase, which is not preferable.
  • the present invention also provides a secondary battery positive electrode mixture contained in the positive electrode active material as described above, and a secondary battery positive electrode to which the positive electrode mixture is coated.
  • the cathode mixture may optionally include a conductive material, a binder, a filler, and the like.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive agent to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the positive electrode according to the present invention may be prepared by applying a slurry prepared by mixing a positive electrode mixture including the above compounds in a solvent such as NMP on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the positive electrode current collector may be formed on a surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. The surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the present invention also provides a lithium secondary battery composed of the positive electrode, the negative electrode, the separator, and a lithium salt-containing nonaqueous electrolyte.
  • the negative electrode is manufactured by applying a negative electrode mixture including a negative electrode active material on a negative electrode current collector and then drying the negative electrode mixture.
  • the negative electrode mixture may include components as described above, as necessary.
  • the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used as the electrolyte solution.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 has a nitride, halides, sulfates, such as Li, such as S-SiS 2 can be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included.
  • carbonate), PRS (propene sultone), FPC (Fluoro-Propylene carbonate) may be further included.
  • the secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • the present invention provides a battery pack including the battery module as a power source of the medium and large devices, the medium and large device is an electric vehicle (EV), a hybrid electric vehicle (HEV), plug-in hybrid An electric vehicle and an electric power storage device including an electric vehicle (Plug-in Hybrid Electric Vehicle PHEV) and the like, but are not limited thereto.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • plug-in hybrid an electric vehicle
  • an electric power storage device including an electric vehicle (Plug-in Hybrid Electric Vehicle PHEV) and the like, but are not limited thereto.
  • the positive electrode active material was a slurry in which the ratio of the active material, the conductive agent, and the binder was 95: 2.5: 2.5, and coated on an Al-foil having a thickness of 20 ⁇ m, thereby manufacturing a coin-type battery.
  • Li-metal was used as a negative electrode, and LiPF 6 1M was used for EC: EMC: DEC (1: 2: 1) as an electrolyte.
  • a coin-type battery was produced in the same manner as in Example 1.
  • Example 2 The battery prepared in Example and Comparative Example 1 was shown in Figure 2 by analyzing the life characteristics after 200 cycles at 45 °C.
  • the battery of Example 1 according to the present invention can be seen that the life characteristics are significantly improved compared to the battery of Comparative Example 1.
  • the coating layer on the surface of the battery has the effect of significantly improving the life characteristics and capacity characteristics of the battery.
  • the method of manufacturing a cathode active material according to the present invention includes a step of dry mixing and then heat-treating a zirconium and fluorine-containing precursor and a lithium transition metal oxide, thereby ZrO 2 and F
  • the coating can react with hydrofluoric acid (HF) in the electrolyte to produce a stable material.
  • the structure collapse of the cathode active material due to contact with the electrolyte and generation of carbon dioxide as a side reaction product can be suppressed, and the lithium secondary battery including the same has improved safety due to minimization of swelling phenomenon and improved cycle characteristics. It is effective.

Abstract

본 발명은 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법으로서, (a) 하기 화학식 1의 리튬 금속 산화물을 제조하는 단계; Li1+zNiaMnbCo1-(a+b)O2 (1) (상기 식에서, 0≤z≤0.1, 0.1≤a≤0.8, 0.1≤b≤0.8 및 a+b<1이다.) (b) 상기 리튬 금속 산화물과 지르코늄 및 불소 함유 전구체를 건식 혼합하는 단계; 및 (c) 단계(b)의 건식 혼합 후 열처리하여 지르코늄 및 불소 함유 전구체를 ZrO2로 변환시키고 산소(O) 음이온의 일부가 F로 치환되는 단계; 를 포함하는 것을 특징으로 하는, ZrO2 및 F가 코팅된 양극 활물질의 제조 방법 및 이를 사용하여 제조되는 양극 활물질을 제공한다.

Description

양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
본 발명은 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법에 관한 것으로, 더욱 상세하게는, 소정의 리튬 금속 산화물을 제조하는 단계, 상기 리튬 금속 산화물과 지르코늄 및 불소 함유 전구체를 건식 혼합하는 단계, 및 이러한 건식 혼합 후 열처리하여 지르코늄 및 불소 함유 전구체를 ZrO2로 변환시키고 산소(O) 음이온의 일부가 F로 치환되는 단계를 포함하는 것을 특징으로 하는, ZrO2 및 F가 코팅된 양극 활물질의 제조 방법에 관한 것이다.
리튬 이차전지는 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기방전율이 낮아, 모바일 디바이스뿐만 아니라, 전기자동차, 하이브리드 전기자동차, 전력저장 장치 등과 같은 중대형 디바이스 등에도 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 함유 코발트 산화물 (LiCoMO2)이 주로 사용되고 있고, 그 외에도, 리튬 함유 니켈 산화물 (LiNiMO2), 층상 구조의 리튬 망간 산화물(LiMnMO2), 스피넬 구조의 리튬 망간 산화물(LiMn2MO4) 의 사용도 고려되고 있으며, 최근에는 LiMO2(M은 Co, Ni 및 Mn)이 사용되고 있다.
이러한 LiMO2(M: Co, Ni, Mn) 표면에는 합성 과정 중에 다량의 Li 부산물이 발생하게 되고, 이들 Li 부산물의 대부분은 Li2CO3 및 LiOH의 화합물로 이루어져 있어서, 양극 페이스트의 제조시 젤(gel)화 되는 문제점과, 전극 제조 후 충방전 진행에 따른 가스 발생의 원인이 된다.
한편, 리튬 이차전지에는 이온을 전달하는 매개체로서 전해질이 필수적이고, 상기 전해질은 일반적으로 용매와 리튬염으로 구성되어 있으며, 상기 리튬염으로는 염의 용해도와 화학적 안정성 등의 관계에서 4불화붕산리튬(LiBF4), 6불화인산리튬(6LiPF6) 등이 주로 사용되고 있다. 그러나, 상기와 같이 불소(F)를 포함하는 리튬염을 용해시킨 전해질은 전해질 내의 미량의 수분과 반응하여 불산(HF)을 형성하고, 상기 불산은 전극을 분해하는 문제점을 초래한다.
또한, 탄산 리튬(Li2CO3)은 비수용성 순수용매에서는 용출되지 않고 안정하게 존재하지만, 불산(HF)과 반응하는 경우에는 전해질로 용출되어 이산화탄소(CO2)를 발생시키기 때문에, 저장 또는 사이클 동안 과량의 가스가 발생하는 단점이 있다. 그에 따라, 전지의 스웰링(swelling) 현상을 유발하며, 고온 안전성을 저하시키는 문제점을 가지고 있다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 목적은, ZrO2 및 F 코팅층에 의해 양극 활물질의 표면에 존재하는 불순물(Li2CO3, LiOH)과 전해질내의 불산(HF)과의 접촉을 막고, ZrO2이 전해질 내의 불산(HF)와 반응하여 안정한 물질을 생성함으로써 안전성과 사이클 특성이 우수한 양극 활물질의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 방법으로 제조된 새로운 구조의 양극 활물질을 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 양극 활물질의 제조방법은,
(a) 하기 화학식 1의 리튬 금속 산화물을 제조하는 단계, Li1+zNiaMnbCo1-(a+b)O2 (1)
(상기 식에서, 0≤z≤0.1, 0.1≤a≤0.8, 0.1≤b≤0.8 및 a+b<1이다);
(b) 상기 리튬 금속 산화물과 지르코늄 및 불소 함유 전구체를 건식 혼합하는 단계; 및
(c) 단계(b)의 건식 혼합 후 열처리하여 지르코늄 및 불소 함유 전구체를 ZrO2로 변환시키고 산소(O) 음이온의 일부가 F로 치환되는 단계;
를 포함하고 있어서, ZrO2 및 F가 코팅된 양극 활물질을 제공한다.
본 발명의 제조방법에 따라 형성된 ZrO2 및 F 피막은 양극 활물질 표면에 존재하는 불순물(Li2CO3, LiOH)과 전해질 내의 불산(HF)의 접촉을 막을 수 있고, 또한, 상기 ZrO2 피막은 전해질 내의 불산(HF)과 반응하여 안정한 형태의 ZrO2·5HF·H2O를 형성할 수 있어 양극 활물질의 표면을 안정화시키는 작용을 한다.
따라서, 본 발명에 따라 제조되는 양극 활물질은 전해액과 접촉으로 인한 양극 활물질의 구조 붕괴 및 부반응 산물로서 이산화탄소의 발생을 억제할 수 있으므로, 이를 포함하는 리튬 이차전지는 스웰링 현상의 최소화로 인해 향상된 안전성을 갖고, 사이클 특성이 향상되는 효과를 발휘한다.
상기 화학식 1의 리튬 금속 산화물은 니켈의 함량(a) 및 망간의 함량(b)이, 상세하게는, 각각 0.1 이상 내지 0.8 이하일 수 있고, 더욱 상세하게는, 상기 화학식 1의 리튬 금속 산화물은 Li1Ni1/3Mn1/3Co1/3O2 또는LiNi0.5Mn0.3Co0.2O2일 수 있다.
이러한 리튬 전이금속 산화물 입자는 고상법, 공침법 등 당업계에서 공지된 제조방법에 따라 준비될 수 있으므로, 이에 대한 자세한 설명은 생략 하기로 한다.
본 발명에 따른 제조방법에서, 상기 지르코늄 및 불소 함유 전구체는, Zr 및 F를 제공할 수 있는 화합물로서, 특별히 제한되는 것은 아니나, 구체적으로는 ZrF4일 수 있다.
하나의 구체적인 예에서, 상기 단계(b)에서 리튬 전이금속 산화물에 코팅되는 ZrO2 및 F의 양이 양극 활물질 전체 중량을 기준으로 0.001 내지 0.100 중량%가 되도록, 리튬 전이금속 산화물의 양을 조절하여 혼합할 수 있고, 상세하게는 0.001 내지 0.010 중량%가 되도록 혼합할 수 있다.
상기 ZrO2 및 F의 양이 지나치게 작을 경우 소망하는 효과를 발휘하기 어렵고, 지나치게 많을 경우 비용량(specific capacity)이 감소될 수 있어 바람직하지 않다.
상기 단계(b)의 건식 혼합은, 예를 들어, 단순 혼합 또는 고에너지 밀링(high energy milling)에 의해 이루어질 수 있다. 특히, 고에너지 밀링(high energy milling)은 예컨대 메카노퓨전 장치, 또는 노빌타 장치 등을 이용하여 달성할 수 있고, 상기 메카노 퓨전은 건식 상태에서 강한 물리적인 회전력에 의해 혼합물을 형성시키는 방법으로, 구성물질들 간의 정전기적인 결착력이 형성되는 방법이다.
상기 열처리는, 예를 들어, 400 내지 1000℃의 온도에서 4 시간 내지 10시간 동안 공기 분위기 하에서 수행될 수 있으며, 이러한 열처리로 지르코늄 및 불소 함유 전구체가 ZrO2로 변환되고 산소(O) 음이온의 일부가 F로 치환되어 ZrO2 및 F가 코팅된 리튬 전이금속 산화물을 제조할 수 있다.
상기 열처리 온도 범위는 본 발명에서 소망하는 양극 활물질을 얻을 수 있는 최적의 범위로서, 상기 열처리 온도가 지나치게 높거나 낮은 경우, 불순물, 결정 결합, 시편 깨짐 등의 문제점이 발생할 수 있어 바람직하지 않다.
본 발명은, 또한, 상기 제조 방법을 사용하여 제조한 ZrO2 및 F가 코팅되어 있는 것을 특징으로 하는 이차전지용 양극 활물질을 제공한다.
상기 코팅층의 두께는 구체적으로는 0.01 내지 0.1 ㎛일 수 있고, 더욱 구체적으로는 0.01 내지 0.05 ㎛일 수 있다. 상기 코팅층의 두께가 지나치게 얇을 경우에는 전해액과의 접촉을 방지할 수 없거나 전지의 작동 과정에서 손상되기 쉬울 수 있고, 지나치게 두꺼운 경우에는 비용량(specific capacity)이 감소될 수 있어 바람직하지 않다.
상기 ZrO2 및 F는 양극 활물질의 표면적을 기준으로, 예를 들어, 60 내지 100%의 코팅 면적으로 도포될 수 있고, 구체적으로는 80 내지 100%의 코팅 면적으로 도포될 수 있다. 상기 코팅층의 면적이 지나치게 작은 경우, 양극 활물질과 전해액과의 접촉 면적이 늘어날 수 있어 바람직하지 않다.
본 발명은 또한 상기와 같은 양극 활물질이 포함하는 이차전지용 양극 합체 및 상기 양극 합체를 도포되어 있는 이차전지용 양극을 제공한다.
상기 양극 합제에는 상기 양극 활물질 이외에, 선택적으로 도전재, 바인더, 충진제 등이 포함될 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
본 발명에 따른 양극은 상기와 같은 화합물들을 포함하는 양극 합제를 NMP 등의 용매에 혼합하여 만들어진 슬러리를 양극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
본 발명은 또한 상기 양극과, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성된 리튬 이차전지를 제공한다.
상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 성분들이 포함될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene carbonate), PRS(Propene sultone), FPC(Fluoro-Propylene carbonate) 등을 더 포함시킬 수 있다.
본 발명에 따른 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지 모듈에 단위전지로도 바람직하게 사용될 수 있다.
또한, 본 발명은 상기 전지모듈을 중대형 디바이스의 전원으로 포함하는 전지팩을 제공하고, 상기 중대형 디바이스는 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle PHEV) 등을 포함하는 전기차 및 전력 저장장치 등을 들 수 있으나, 이에 한정되는 것은 아니다.
도 1은 본 발명에 따른 하나의 실시예에서 얻어진 전이금속 산화물의 전자현미경 사진이다;
도 2는 실험예 1에 따른 수명특성을 나타내는 그래프이다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
삼성분계 리튬 전이금속 산화물로 Li1+zNiaMnbCo1-(a+b)O2 (0≤z≤0.1, 0.1≤a≤0.8, 0.1≤b≤0.8 및 a+b<1)를 사용하고, 0.01 내지 0.20 중량%의 ZrF4를 혼합한 후, 300 내지 700℃의 온도에서 3 내지 10 시간 동안 열처리 하여, 도 1에서 보는 바와 같이, 표면에 ZrF가 코팅된 양극 활물질을 합성하였다.
상기 양극 활물질을 활물질, 도전제 및 바인더의 비율을 95 : 2.5 : 2.5로 하여 슬러리를 만들고 두께 20 ㎛의 Al-foil 위에 코팅한 후 코인 형태의 전지를 제작하였다. 음극으로는 Li-metal을 사용하였으며, 전해액으로 EC : EMC : DEC(1 : 2 : 1)에 LiPF6 1M을 사용하였다.
<비교예 1>
상기 리튬 전이금속 산화물로 표면에 ZrF가 코팅되지 않은 LiNi3/5Mn1/5Co1/5O2 로 표시되는 리튬 금속 산화물을 사용한 것을 제외하고는 양극 제조 및 전지의 제조방법에 있어서는 상기 실시예 1과 동일한 방법으로 코인형 전지를 제작하였다.
<실험예 1>
상기 실시예 및 비교예 1에서 제조된 전지를 45℃ 에서 200 사이클 진행 후 수명특성을 분석하여 도 2 에 나타내었다.
실험 결과, 도 2 에서 보는 바와 같이, 본 발명에 따른 실시예 1의 전지의 경우 비교예 1의 전지에 비하여 수명특성이 크게 향상되는 것을 볼 수 있다. 이는 전지 표면의 코팅층으로 인해 전지의 수명특성 및 용량특성을 현저하게 향상시키는 효과가 있음을 확인할 수 있다.
본 발명이 속한 분양에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 양극 활물질의 제조방법은 지르코늄 및 불소 함유 전구체와 리튬 전이금속 산화물을 건식 혼합 후 열처리하는 단계를 포함함으로써, 이에 따라 제조되는 양극 활물질 표면에 ZrO2 및 F가 코팅되어, 전해질 내의 불산(HF)과 반응하여 안정한 물질을 생성할 수 있다.
따라서, 전해액과의 접촉으로 인한 양극 활물질의 구조 붕괴 및 부반응 산물로서 이산화탄소의 발생을 억제할 수 있고, 이를 포함하는 리튬 이차전지는 스웰링 현상의 최소화로 인해 향상된 안전성을 가지며, 사이클 특성이 향상되는 효과를 발휘한다.

Claims (15)

  1. 이차전지용 양극 활물질의 제조 방법으로서,
    (a) 하기 화학식 1의 리튬 금속 산화물을 제조하는 단계; Li1+zNiaMnbCo1-(a+b)O2 (1)
    (상기 식에서, 0≤z≤0.1, 0.1≤a≤0.8, 0.1≤b≤0.8 및 a+b<1이다.)
    (b) 상기 리튬 금속 산화물과 지르코늄 및 불소 함유 전구체를 건식 혼합하는 단계; 및
    (c) 단계(b)의 건식 혼합 후 열처리하여 지르코늄 및 불소 함유 전구체를 ZrO2로 변환시키고 산소(O) 음이온의 일부가 F로 치환되는 단계;
    를 포함하는 것을 특징으로 하는, ZrO2 및 F가 코팅된 양극 활물질의 제조 방법.
  2. 제 1 항에 있어서, 상기 화학식 1의 리튬 금속 산화물은 Li1Ni1/3Mn1/3Co1/3O2 또는LiNi0.5Mn0.3Co0.2O2인 것을 특징으로 하는 제조 방법.
  3. 제 1 항에서 있어서, 상기 지르코늄 및 불소 함유 전구체는 ZrF4인 것을 특징으로 하는 제조 방법.
  4. 제 1 항에 있어서, 상기 단계(b)에서 리튬 전이금속 산화물에 코팅되는 ZrO2 및 F의 총량이 양극 활물질 전체 중량을 기준으로 0.001 내지 0.100 중량%가 되도록 리튬 전이금속 산화물의 양을 조절하여 혼합하는 것을 특징으로 하는 제조 방법.
  5. 제 4 항에 있어서, 상기 ZrO2 및 F의 총량이 양극 활물질 전체 중량을 기준으로 0.001 내지 0.010 중량%가 되도록 리튬 전이금속 산화물의 양을 조절하여 혼합하는 것을 특징으로 하는 제조 방법.
  6. 제 1 항에 있어서, 단계(b)의 건식 혼합은 고에너지 밀링(high energy milling)에 의해 이루어지는 것을 특징으로 하는 제조 방법.
  7. 제 1 항에 있어서, 상기 열처리는 400 내지 1000℃에서 4 내지 7시간 동안 수행되는 것을 특징으로 하는 제조 방법.
  8. 제 1 항에 따른 제조 방법을 사용하여 제조한 ZrO2 및 F가 코팅되어 있는 것을 특징으로 하는 이차전지용 양극 활물질.
  9. 제 8 항에 있어서, 상기 ZrO2 및 F 코팅의 두께는 0.01 내지 0.10 ㎛인 것을 특징으로 하는 이차전지용 양극 활물질.
  10. 제 8 항에 있어서, 상기 ZrO2 및 F는 양극 활물질 표면적을 기준으로 60 내지 100%의 코팅 면적으로 도포되는 것을 특징으로 하는 이차전지용 양극 활물질.
  11. 제 8 항에 따른 양극 활물질을 포함하는 것을 특징으로 하는 양극 합제.
  12. 제 11 항에 따른 양극 합제가 집전체 상에 도포되어 있는 것을 특징으로 하는 이차전지용 양극.
  13. 제 12 항에 따른 이차전지용 양극을 포함하는 것을 특징으로 하는 리튬 이차전지.
  14. 제 13 항에 있어서, 상기 리튬 이차전지는 중대형 디바이스의 전원인 전지모듈의 단위전위인 것을 특징으로 하는 리튬 이차전지.
  15. 제 14 항에 있어서, 상기 중대형 디바이스는 전기자동차, 하이브리드 자동차, 플러그-인 하이브리드 전기자동차 또는 전력 저장용 시스템인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/007255 2013-08-22 2014-08-06 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법 WO2015026080A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL14837821T PL3012890T3 (pl) 2013-08-22 2014-08-06 Sposób wytwarzania aktywnego materiału katody do akumulatorów
JP2016529720A JP6135000B2 (ja) 2013-08-22 2014-08-06 正極活物質及びそれを含むリチウム二次電池とその製造方法
EP14837821.9A EP3012890B1 (en) 2013-08-22 2014-08-06 Method of manufacturing a cathode active material for secondary batteries
US14/907,659 US9905841B2 (en) 2013-08-22 2014-08-06 Cathode active material and lithium secondary battery including the same, and method of manufacturing cathode active material
CN201480044433.5A CN105453313B (zh) 2013-08-22 2014-08-06 正极活性材料和包含其的锂二次电池以及制备正极活性材料的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0099400 2013-08-22
KR20130099400A KR20150022090A (ko) 2013-08-22 2013-08-22 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2015026080A1 true WO2015026080A1 (ko) 2015-02-26

Family

ID=52483820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007255 WO2015026080A1 (ko) 2013-08-22 2014-08-06 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법

Country Status (8)

Country Link
US (1) US9905841B2 (ko)
EP (1) EP3012890B1 (ko)
JP (1) JP6135000B2 (ko)
KR (1) KR20150022090A (ko)
CN (1) CN105453313B (ko)
PL (1) PL3012890T3 (ko)
TW (1) TWI559603B (ko)
WO (1) WO2015026080A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065007A (ja) * 2013-09-25 2015-04-09 旭硝子株式会社 リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
CN108370027A (zh) * 2015-12-10 2018-08-03 日立汽车系统株式会社 二次电池
JP2018533157A (ja) * 2015-11-30 2018-11-08 エルジー・ケム・リミテッド 二次電池用正極活物質およびそれを含む二次電池
US20190067694A1 (en) * 2016-04-29 2019-02-28 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Cathode active material, method for manufacturing same, and lithium secondary battery comprising same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101768374B1 (ko) * 2016-04-29 2017-08-14 주식회사 엘지화학 복합 전이금속산화물계 전구체 및 이의 제조방법, 상기 전구체를 이용한 양극활물질
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20190059249A (ko) 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
US11205799B2 (en) * 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6507220B1 (ja) * 2017-12-19 2019-04-24 住友化学株式会社 非水電解液二次電池
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
KR102617870B1 (ko) * 2018-07-25 2023-12-22 주식회사 엘지에너지솔루션 리튬 이차전지용 리튬 금속의 전처리 방법
US11876157B2 (en) * 2018-09-28 2024-01-16 Lg Chem, Ltd. Positive electrolyte active material for secondary battery, preparation method thereof, and lithium secondary battery including same
KR20220014190A (ko) * 2020-07-28 2022-02-04 주식회사 엘지에너지솔루션 이차 전지용 전극 및 이를 포함하는 이차 전지
CN114284499B (zh) * 2021-12-20 2023-05-12 中国科学院物理研究所 尖晶石结构包覆改性钴酸锂基材料及制备方法和锂电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060109305A (ko) * 2005-04-15 2006-10-19 대정화금주식회사 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법
KR20080099132A (ko) * 2007-05-07 2008-11-12 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질의 제조방법, 이 방법으로제조된 리튬 이차 전지용 양극 활물질 및 이를 포함하는리튬 이차 전지
US20110076556A1 (en) * 2009-08-27 2011-03-31 Deepak Kumaar Kandasamy Karthikeyan Metal oxide coated positive electrode materials for lithium-based batteries
KR20130033154A (ko) * 2011-09-26 2013-04-03 전자부품연구원 리튬 이차전지용 양극 활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434278B2 (ja) * 2009-05-29 2014-03-05 Tdk株式会社 活物質及び電極の製造方法、活物質及び電極
KR20120098591A (ko) * 2009-10-29 2012-09-05 에이지씨 세이미 케미칼 가부시키가이샤 리튬 이온 이차 전지용 정극 재료의 제조 방법
US20110219607A1 (en) * 2010-03-12 2011-09-15 Nanjundaswamy Kirakodu S Cathode active materials and method of making thereof
JP6070551B2 (ja) 2011-06-24 2017-02-01 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池の製造方法
JPWO2013018692A1 (ja) 2011-07-29 2015-03-05 三洋電機株式会社 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池
KR20130030660A (ko) * 2011-09-19 2013-03-27 삼성전자주식회사 전극활물질, 그 제조방법 및 이를 채용한 전극 및 리튬전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060109305A (ko) * 2005-04-15 2006-10-19 대정화금주식회사 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법
KR20080099132A (ko) * 2007-05-07 2008-11-12 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질의 제조방법, 이 방법으로제조된 리튬 이차 전지용 양극 활물질 및 이를 포함하는리튬 이차 전지
US20110076556A1 (en) * 2009-08-27 2011-03-31 Deepak Kumaar Kandasamy Karthikeyan Metal oxide coated positive electrode materials for lithium-based batteries
KR20130033154A (ko) * 2011-09-26 2013-04-03 전자부품연구원 리튬 이차전지용 양극 활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3012890A4 *
YUN, SU HYUN ET AL.: "The electrochemical property of ZrFx-coated Li [Nil/3Col/3Mnl/3]O2 cathode material", JOURNAL OF POWER SOURCES, vol. 195, 13 November 2009 (2009-11-13), pages 6108 - 6115, XP027148150 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065007A (ja) * 2013-09-25 2015-04-09 旭硝子株式会社 リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
JP2018533157A (ja) * 2015-11-30 2018-11-08 エルジー・ケム・リミテッド 二次電池用正極活物質およびそれを含む二次電池
US10439216B2 (en) 2015-11-30 2019-10-08 Lg Chem, Ltd. Positive electrode active material for secondary battery, and secondary battery including the same
US10910641B2 (en) 2015-11-30 2021-02-02 Lg Chem, Ltd. Positive electrode active material for secondary battery, and secondary battery including the same
CN108370027A (zh) * 2015-12-10 2018-08-03 日立汽车系统株式会社 二次电池
US20190067694A1 (en) * 2016-04-29 2019-02-28 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Cathode active material, method for manufacturing same, and lithium secondary battery comprising same
US10763505B2 (en) 2016-04-29 2020-09-01 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Cathode active material, method for manufacturing same, and lithium secondary battery comprising same
US11258064B2 (en) 2016-04-29 2022-02-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Cathode active material, method for manufacturing same, and lithium secondary battery comprising same

Also Published As

Publication number Publication date
US20160181593A1 (en) 2016-06-23
EP3012890B1 (en) 2019-05-15
JP2016528686A (ja) 2016-09-15
JP6135000B2 (ja) 2017-05-31
CN105453313B (zh) 2019-03-26
TW201523988A (zh) 2015-06-16
TWI559603B (zh) 2016-11-21
PL3012890T3 (pl) 2019-11-29
US9905841B2 (en) 2018-02-27
CN105453313A (zh) 2016-03-30
EP3012890A1 (en) 2016-04-27
EP3012890A4 (en) 2017-03-08
KR20150022090A (ko) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
KR101658503B1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2011065651A9 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
WO2011084003A2 (ko) 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질
KR20180002055A (ko) 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
KR102120271B1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 리튬이 결핍인 쉘을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
WO2014081252A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2013109038A1 (ko) 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
WO2011065650A9 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2014081249A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2011122865A2 (ko) 양극 활물질 및 이를 이용한 리튬 이차전지
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2015026121A1 (ko) 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질
WO2015016531A1 (ko) 수명 특성이 향상된 이차전지용 음극 활물질
WO2014010867A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2013157811A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2011136550A2 (ko) 양극 활물질 및 이를 이용한 리튬 이차전지
WO2010047522A2 (ko) 전극 효율 및 에너지 밀도 특성이 개선된 양극 합제
WO2015016621A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법
WO2010147389A2 (ko) 리튬 이차전지용 양극 활물질

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044433.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014837821

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016529720

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14907659

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE