WO2012115411A2 - 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지 - Google Patents

출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2012115411A2
WO2012115411A2 PCT/KR2012/001258 KR2012001258W WO2012115411A2 WO 2012115411 A2 WO2012115411 A2 WO 2012115411A2 KR 2012001258 W KR2012001258 W KR 2012001258W WO 2012115411 A2 WO2012115411 A2 WO 2012115411A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
lithium
mixed
positive electrode
Prior art date
Application number
PCT/KR2012/001258
Other languages
English (en)
French (fr)
Other versions
WO2012115411A3 (ko
Inventor
박정환
오송택
정근창
이민희
아라이주이치
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2013551921A priority Critical patent/JP5750814B2/ja
Priority to EP12749914.3A priority patent/EP2680347B1/en
Priority to CN201280003378.6A priority patent/CN103181005B/zh
Priority to US13/467,368 priority patent/US8741482B2/en
Publication of WO2012115411A2 publication Critical patent/WO2012115411A2/ko
Publication of WO2012115411A3 publication Critical patent/WO2012115411A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery and a positive electrode and a positive electrode active material used therein.
  • lithium secondary batteries have been used in various fields including portable electronic devices such as mobile phones, PDAs, and laptop computers.
  • portable electronic devices such as mobile phones, PDAs, and laptop computers.
  • lithium secondary batteries having high energy density and discharge voltage as driving sources of electric vehicles that can replace fossil fuels such as gasoline and diesel vehicles, which are one of the main causes of air pollution are developed.
  • Research on batteries is actively underway and some commercialization stages are in progress.
  • in order to use a lithium secondary battery as a driving source of such an electric vehicle it must be able to maintain a stable output in a SOC section with high output.
  • Electric vehicles are typical electric vehicles (EVs), battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and plug-in hybrids depending on the type of driving source.
  • Electric Vehicle, PHEV Electric Vehicle
  • a HEV Hybrid Electric Vehicle
  • engine internal combustion engine
  • electric battery an electric battery.
  • the driving is mainly performed through an engine, and requires more power than usual, such as driving uphill. Only when the battery supports the engine's lack of power, it regains the SOC by charging the battery when the car is stopped.
  • the main driving source in the HEV is the engine, and the battery is used only intermittently as the auxiliary driving source.
  • the Plug-in Hybrid Electric Vehicle is a vehicle that is connected to an engine and an external power source and obtains driving power from a combination of a rechargeable battery.
  • the PHEV is divided into a parallel type PHEV and a series type PHEV.
  • the parallel type PHEV has an equal relationship between the engine and the battery as the driving source, and the engine or the battery alternately serves as the main driving source depending on the situation.
  • the battery compensates for the insufficient power of the engine
  • the engine operates in parallel to each other in a manner that compensates for the insufficient output of the battery.
  • tandem PHEV is basically a battery-powered car, and the engine only charges the battery. Therefore, unlike the above-described HEV or parallel PHEV, the driving of the vehicle is entirely dependent on the battery rather than the engine. Therefore, the stable output maintenance according to the characteristics of the battery in the SOC section used for driving stability is relatively higher than that of other types of electric vehicles. This is a very important factor, and EV also requires a battery with a wide range of available SOC intervals.
  • LiCoO 2 which is a typical cathode material
  • LiCoO 2 has reached an increase in energy density and a practical limit of output characteristics.
  • LiMnO 2 having a layered crystal structure LiMn 2 O 4 having a spinel crystal structure
  • lithium-containing nickel oxide LiNiO 2
  • Many studies have been conducted on the layered lithium manganese oxide represented by the following Chemical Formula 1 in which Mn is added to the lithium manganese oxide having a layered structure as a necessary transition metal in a larger amount than other transition metals (except lithium).
  • M is any one element selected from the group consisting of Al, Mg, Mn, Ni, Co, Cr, V and Fe, or two or more elements Applied simultaneously.
  • the lithium manganese oxide has a relatively large capacity and has a relatively high output characteristic in the high SOC region, but has a disadvantage in that the resistance rapidly increases in the operating voltage terminal, that is, in the low SOC region, and thus the output rapidly decreases. There is a problem that the irreversible capacity is large.
  • the layered cathode material for example, LiCoO 2 , LiMn 0.5 Ni 0.5 O 2 , LiMn 0.33 Ni 0.33 Co 0.33 O 2 And the disadvantage is lower than.
  • the use of the positive electrode active material materials of the conventional lithium secondary battery alone has disadvantages and limitations, and therefore, the use of a mixture of these materials is required.
  • the use of a mixture of these materials is required.
  • it in order to be used as a power source for medium and large devices, it has a high capacity in all SOC areas.
  • the present invention has been made to solve the above-mentioned demands and conventional problems, and one object of the present invention is to initially irreversible by mixing a second cathode active material capable of further absorption of lithium in a high capacity layered lithium manganese oxide
  • the present invention provides a mixed cathode active material having a high capacity and stable operating area that reduces capacity and enables additional lithium absorption in a low SOC region, thereby improving abrupt output reduction.
  • Still another object of the present invention is to provide a lithium secondary battery including the mixed cathode active material as described above.
  • the present invention is a lithium manganese oxide represented by the following [Formula 1] and the second represented by the following [Formula 2] having a flat level voltage profile (profile) at 2.5V to 3.3V It provides a mixed cathode active material comprising a cathode active material.
  • M is any one element selected from the group consisting of Al, Mg, Mn, Ni, Co, Cr, V and Fe, or two or more elements Applied simultaneously.
  • the second cathode active material may be included in an amount of 5 to 50 parts by weight based on 100 parts by weight of the mixed cathode active material.
  • the mixed cathode active material is characterized in that used in the PHEV battery of the series method.
  • the mixed cathode active material is characterized in that it is used in EV batteries.
  • the mixed cathode active material may further include a conductive material in addition to the lithium manganese oxide and the second cathode active material.
  • the conductive material is characterized in that consisting of graphite and conductive carbon,
  • the conductive material may be included in an amount of 0.5 to 15 parts by weight based on 100 parts by weight of the mixed cathode active material.
  • the conductive carbon is carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black carbon black or one of the crystal structure is selected from the group consisting of a material containing graphene or graphite. Or more characterized in that the mixed material.
  • the mixed cathode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium cobalt-nickel oxide, lithium cobalt-manganese oxide, lithium manganese-nickel oxide, lithium cobalt-nickel-manganese oxide, and ellipsoids thereof (S) is one or more lithium-containing metal oxides selected from the group consisting of substituted or doped oxides.
  • the ellipsoid is selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, and Bi. It is characterized by more than one species.
  • the lithium-containing metal oxide is characterized in that it is included within 50 parts by weight based on 100 parts by weight of the mixed cathode active material.
  • the present invention also provides a cathode, wherein the mixed cathode active material is coated on a current collector.
  • the present invention provides a lithium secondary battery comprising the positive electrode.
  • the lithium secondary battery is characterized in that the output in the SOC 20 to 40% section is 20% or more compared to the output in the SOC 50%.
  • the present invention is inexpensive by mixing a second bipolar cathode active material capable of absorbing additional lithium into a layered lithium manganese oxide having a relatively inexpensive, stable and high capacity, and having a gentle profile without sudden voltage drop across the entire SOC region.
  • a secondary battery can be provided.
  • the secondary battery has a wide available SOC section and is applied to an operation device that requires such a battery, in particular, PHEV or EV, so that these devices can be stably operated.
  • Figure 2 is a graph measuring the resistance according to each SOC of the lithium secondary battery according to the examples and comparative examples of the present invention.
  • FIG 3 is a graph of the output according to each SOC of the lithium secondary battery according to the embodiment and the comparative example of the present invention.
  • the present invention is to solve the above problems
  • a mixed cathode active material in which a lithium manganese oxide having a layered structure represented by Chemical Formula 1 is mixed with a second cathode active material having a flat range lower than that of the lithium manganese oxide.
  • M is any one element selected from the group consisting of Al, Mg, Mn, Ni, Co, Cr, V and Fe, or two or more elements Applied simultaneously.
  • Lithium manganese oxide (hereinafter referred to as Mn-rich) having a layered structure represented by Chemical Formula 1 includes Mn as an essential transition metal, and the content of Mn is greater than that of other metals except lithium, and is large when overcharged at high voltage. It is a kind of lithium transition metal oxide that expresses a capacity, and Mn included as an essential transition metal in the lithium manganese oxide of the layered structure is contained in a larger amount than other metals (except lithium). It is preferable that it is 50-80 mol% based on the total amount. If the amount of Mn is too small, the safety and the manufacturing cost may increase, and it may be difficult to exhibit the unique properties of the Mn-rich. On the contrary, too much Mn content may result in poor cycle stability.
  • the lithium is inserted into the material because the desorbed oxygen cannot reversibly enter the lithium manganese oxide of the layered structure, and at the same time, only the Mn 3+ is reduced to cause a large irreversible capacity of the material. .
  • the Mn-rich has a flat level of a certain section above the oxidation / reduction potential caused by the oxidation number change of the components in the positive electrode active material.
  • the battery when overcharged at a high voltage of 4.5V or more based on the anode potential, it has a flat level section in the vicinity of 4.5V to 4.8V.
  • the Mn-rich has a relatively high output in the high SOC section, but there is a problem that the output sharply decreases in the low SOC section (SOC 50% or less) to increase the resistance.
  • the cathode active material according to the present invention has a lower initial operating voltage than the Mn-rich, thereby improving a sudden power reduction phenomenon in the SOC region and further absorbing lithium (Li), thereby allowing a large initial irreversibility of the layered lithium manganese oxide. It is characterized by including a second cathode active material capable of reducing the capacity.
  • the second positive electrode active material is mixed for the purpose of assisting the output reduction in the low SOC section of the Mn-rich, the positive electrode active material having a flat level at a voltage lower than the voltage of the operating voltage terminal region of the Mn-rich It costs to be.
  • the second positive electrode active material may be one having a flat level voltage profile in the region of 2.0V to 3.3V, and more preferably, the positive electrode having a flat level voltage profile in the range of 2.5V to 3.3V. It needs to be an active material.
  • the second positive electrode active material when the second positive electrode active material is mixed with the Mn-rich, SOC is higher than that of the positive electrode active material used as the Mn-rich alone due to the ratio of the Mn-rich reduced by the fraction of the second positive electrode active material included.
  • the output in the section may be slightly lower, but in the case of lithium secondary batteries used in series PHEV or EV, the output of 2.5V or more in a wide SOC section is higher than that of a secondary battery having a high capacity at a specific voltage in a limited range. Since a lithium secondary battery that can be maintained is required, the mixed cathode material and the lithium secondary battery including the same according to the present invention may have a more preferable effect when applied to such an operation device.
  • the second cathode active material needs to be a lithium transition metal oxide having a flat level voltage profile at 2.0 to 3.3 V, and further, 2.5 to 3.3 V, preferably lithium represented by the following Chemical Formula 2 It is required to be a transition metal oxide.
  • the crystal structure of the cathode active material of the formula is a complex structure containing Li 2 MnO 3 and ⁇ / ⁇ -MnO 2 , the crystal structure of only ⁇ / ⁇ -MnO 2 May easily collapse, but may form a composite structure with Li 2 MnO 3 , which is a relatively hard material.
  • the CDMO shows higher discharge characteristics than ⁇ / ⁇ -MnO 2 in the cycle test at the 0.14e / Mn terminal, and the cycle performance at the 0.26e / Mn terminal is higher than the LiMn 2 O 4 of the spinel structure.
  • the CDMO alone cannot charge and discharge, and thus cannot use only CDMO as a cathode active material.However, when the CDMO is mixed with other cathode active materials, the CDMO has an operating voltage in a region of about 2.5 to 3.3V and is charged at 200mAh / g. Has an initial theoretical capacity of.
  • the CDMO may serve to assist the output at the operating voltage terminal of the Mn-rich.
  • the CDMO serves to reduce the large initial irreversible capacity of the Mn-rich, the Mn-rich Mn-rich used in the present invention because the irreversible capacity may vary depending on its composition, surface coating, etc.
  • the amount of Li contained in the CDMO can be adjusted according to the irreversible capacity of.
  • the mixed cathode active material according to the present invention has an operating voltage at 2.5 to 3.3 V with the Mn-rich, and exhibits a relatively high capacity by including a CDMO capable of absorbing additional lithium. It is noted that the output characteristics also provide a greatly improved cathode active material, and in particular, it can be preferably applied to an actuator such as a series PHEV or EV.
  • the series PHEV is an electric vehicle driven only by the battery, unlike the HEV, which is the main driving source of the engine, or the parallel type PHEV, in which the engine and the battery operate in the same relationship as the driving source. It can be used only in the SOC section where the abnormality is maintained, and EV also requires a wide available SOC section.
  • the mixed positive electrode material and the lithium secondary battery including the same according to the present invention have a more preferable effect when applied to an operating device that requires a battery capable of maintaining a certain output or more in a wide SOC section such as PHEV or EV in series. Can be expressed.
  • a method of forming the mixed cathode active material by mixing the Mn-rich and the second cathode active material is not particularly limited, and various methods known in the art may be adopted.
  • the composition ratio does not need to be particularly limited, but preferably Mn-rich: CDMO may be included in a ratio of 95: 5 to 50: 50, More preferably, it may be included in the ratio of 80:20 to 65:35.
  • the content of the second positive electrode active material exceeds 50 parts by weight, it may be difficult to achieve high density and high energy of the lithium secondary battery, and when the content of the second positive electrode active material is less than 5 parts by weight, the content of the second positive electrode active material may be too small. It may be difficult to achieve the purpose of assisting output in the SOC section, thereby improving safety and reducing irreversible capacity.
  • the mixed positive electrode active material according to the present invention is uniform in particle size or shape of the Mn-rich and CDMO, so that the conductive material coated on the mixed positive electrode material is biased only by one positive electrode active material having a large (specific) surface area, and thereby the conductive material. It is possible to prevent the phenomenon that the conductivity of the other positive electrode active material in which the ash is relatively less distributed is greatly weakened, and as a result, the conductivity of the mixed cathode material can be greatly improved.
  • a method of forming a positive electrode active material having particles of relatively small size as secondary particles as described above A method of forming a small particle size or a method of applying both simultaneously may be used.
  • the mixed cathode material may include two or more conductive materials having different particle sizes or shapes.
  • the method of including the conductive material is not particularly limited, and conventional methods known in the art, such as coating on the positive electrode active material, may be adopted.
  • graphite and conductive carbon may be used simultaneously as the conductive material. It may be.
  • the mixed cathode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium cobalt-nickel oxide, lithium cobalt-manganese oxide, lithium manganese-nickel oxide, lithium cobalt-nickel-manganese oxide and ellipsoids thereof S) may be further included one or more lithium-containing metal oxide selected from the group consisting of substituted or doped oxide, the ellipsoid is Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B , Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and Bi may be one or more selected from the group consisting of.
  • the lithium-containing metal oxide may be included within 50 parts by weight based on 100 parts by weight of the mixed positive electrode mixture.
  • the graphite and the conductive carbon are not particularly limited as long as they have excellent electrical conductivity and have conductivity without causing side reactions in the internal environment of the lithium secondary battery or causing chemical changes in the battery.
  • the graphite is not limited to natural graphite or artificial graphite
  • the conductive carbon is preferably a highly conductive carbon-based material, specifically, carbon black, acetylene black, Ketjen black, channel black, furnace black, Carbon black, such as lamp black, summer black, or a mixture of one or more selected from the group consisting of a material having a crystal structure including graphene or graphite may be used.
  • a conductive polymer having high conductivity is also possible.
  • the conductive material made of graphite and conductive carbon is preferably contained in 0.5 to 15 parts by weight based on 100 parts by weight of the mixed cathode material. If the content of the conductive material is too small, less than 0.5 parts by weight, it is difficult to expect the effects as described above. If the content of the conductive material is more than 15 parts by weight, the amount of the positive electrode active material is relatively small, which makes it difficult to achieve high capacity or high energy density. Can be.
  • the content of the conductive carbon may be included in an amount of 1 to 13 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the cathode material.
  • the present invention provides a lithium secondary battery positive electrode, characterized in that the positive electrode material containing the mixed positive electrode active material and the positive electrode material is coated on the current collector, further comprising a positive electrode such as a lithium secondary battery. .
  • a lithium secondary battery in general, includes a positive electrode composed of a positive electrode material and a current collector, a negative electrode composed of a negative electrode material and a current collector, and a separator capable of blocking electron conduction and conducting lithium ions between the positive electrode and the negative electrode.
  • the void of the membrane material contains an electrolyte for conducting lithium ions.
  • the positive electrode and the negative electrode are usually prepared by applying a mixture of an electrode active material, a conductive material and a binder on a current collector and then drying, and a filler may be further added to the mixture as necessary.
  • the lithium secondary battery of the present invention can be manufactured according to a conventional method in the art. Specifically, a porous separator may be placed between the positive electrode and the negative electrode, and the nonaqueous electrolyte may be added thereto.
  • a power variation in a specific SOC section may be limited to a certain range.
  • the lithium secondary battery may have an output in the SOC 10 to SOC 40 section is 20% or more compared to the output in the SOC 50, more preferably, the output in the SOC 10 to SOC 40 section is SOC 50 It may be more than 50% of the output from.
  • the mixed positive electrode material, the positive electrode, and the lithium secondary battery according to the present invention are more preferable when applied to the series PHEV or EV, and the low output characteristics due to the rapid increase in resistance of the Mn-rich in the low SOC period are reduced by CDMO.
  • SOC SOC 10 to 40
  • the available SOC interval can be widened and at the same time improved safety.
  • 0.5Li 2 MnO 3 ⁇ 0.5LiMn 1/3 Ni 1/3 Co 1/3 O 2 (85 wt%) and 2 ⁇ 0.5Li 2 MnO 3 mixture 0.5MnO consisting of (15 wt%) 90 wt. %, 6% by weight of denca black as a conductive material, and 4% by weight of PVDF as a binder were added to NMP to make a slurry.
  • a polymer electrolyte was manufactured by injecting a lithium electrolyte solution through a separator of porous polyethylene between the positive electrode and the graphite negative electrode prepared as described above.
  • the secondary battery according to an embodiment of the present invention although the output in the high SOC section is somewhat lower than the comparative example, low SOC section (about SOC 50 ⁇ 10% in the drawing In the region), the output remains stable and hardly decreases, indicating that the available SOC interval is quite wide.
  • the lithium secondary battery according to the present invention mixes a second positive electrode active material such as CDMO with Mn-rich having a high capacity, and compensates for the low output of Mn-rich in a low SOC section, thereby exceeding the required output in a wide SOC region. It was confirmed that it is possible to provide a lithium secondary battery having a wider range of available SOC and improved safety.
  • a second positive electrode active material such as CDMO

Abstract

본 발명은 하기 [화학식 1]로 표시되는 층상구조의 리튬 망간산화물과 2.5V 내지 3.3V에서 평탄준위 전압 프로파일(profile)을 갖는 제2의 양극활물질을 포함하는 혼합 양극활물질, 및 이를 포함하는 리튬이차전지에 관한 것이다. [화학식 1] aLi2MnO3·(1-a)LixMO2 여기서, 0<a<1이고, 0.9≤x≤1.2이며, M은 Al, Mg, Mn, Ni, Co, Cr, V 및 Fe로 이루어진 군에서 선택되는 어느 하나의 원소, 또는 2 이상의 원소가 동시에 적용된 것이다. 상기 혼합 양극활물질 및 이를 포함하는 리튬 이차전지는 향상된 안전성을 가짐과 동시에 저SOC 구간에서의 낮은 출력을 상기 제2의 양극활물질이 보완하여 요구출력 이상으로 출력을 유지할 수 있는 SOC 구간을 넓힘으로써 이와 같은 배터리를 필요로 하는 작동기기에 더욱 바람직하게 적용될 수 있다.

Description

출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지
본 출원은 2011년 2월 21일 한국특허청에 제출된 특허출원 제10-2011-0014960호의 우선권을 청구하며, 본 명세서에서 참조로서 통합된다.
본 발명은 2차 전지와 이에 사용되는 양극 및 양극 활물질에 관한 것이다.
근래, 휴대전화, PDA, 랩탑 컴퓨터 등 휴대 전자기기를 비롯해 다방면에서 리튬이차전지가 사용되고 있다. 특히 환경문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인 중 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기자동차의 구동원으로서 높은 에너지 밀도와 방전 전압을 갖는 리튬이차전지에 대한 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다. 한편 리튬이차전지를 이러한 전기자동차의 구동원으로 사용하기 위해서는 높은 출력과 더불어 사용 SOC 구간에서 안정적으로 출력을 유지할 수 있어야 한다.
전기자동차는 구동원의 종류에 따라 전형적인 전기자동차(Electric Vehicle, EV), 배터리식 전기자동차(Battery Electric Vehicle, BEV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등으로 분류된다.
이 중 HEV(Hybrid Electric Vehicle)는 종래의 내연기관(엔진)과 전기 배터리의 결합으로부터 구동력을 얻는 자동차로서, 그 구동은 주로 엔진을 통해 이루어지고, 오르막 주행 등 통상적인 경우보다 많은 출력을 요구하는 경우에만 배터리가 엔진의 부족한 출력을 보조해주며, 자동차 정지 시 등에 배터리의 충전을 통해 다시 SOC를 회복하는 방식이다. 즉 HEV에서 주된 구동원은 엔진이고, 배터리는 보조적인 구동원으로서 단지 간헐적으로만 사용된다.
PHEV(Plug-in Hybrid Electric Vehicle)는 엔진과 외부전원에 연결되어 재충전이 가능한 배터리의 결합으로부터 구동력을 얻는 자동차로서, 크게 병렬방식(parallel type) PHEV와 직렬방식(series type) PHEV로 구분된다.
이 중 병렬방식 PHEV는 엔진과 배터리가 구동원으로서 대등한 관계에 있는 것으로서, 상황에 따라 엔진 또는 배터리가 주된 구동원으로서 교대로 작용하게 된다. 즉 엔진이 주된 구동원이 되는 경우에는 배터리가 엔진의 부족한 출력을 보충해 주고, 배터리가 주된 구동원이 되는 경우에는 엔진이 배터리의 부족한 출력을 보충해 주는 방식으로 상호 병렬적으로 운영된다.
그러나, 직렬방식 PHEV는 기본적으로 배터리만으로 구동되는 자동차로서 엔진은 단지 배터리를 충전해주는 역할만을 수행한다. 따라서 상기한 HEV 또는 병렬방식 PHEV와는 달리, 자동차의 구동에 있어 엔진보다는 배터리에 전적으로 의존하므로 주행의 안정성을 위해서는 사용하는 SOC 구간에서 배터리의 특성에 따른 안정적인 출력 유지가 다른 종류의 전기자동차들보다 상대적으로 매우 중요한 요소가 되며, EV 또한 넓은 범위의 가용 SOC 구간을 갖는 배터리를 필요로 한다.
한편, 고용량 리튬이차전지의 양극재로서, 기존의 대표적 양극물질인 LiCoO2의 경우 에너지 밀도의 증가와 출력 특성의 실용 한계치에 도달하고 있고 특히, 고에너지 밀도 응용 분야에 사용될 경우 그 구조적 불안정성으로 인하여 고온 충전상태에서 구조 변성과 더불어 구조 내의 산소를 방출하여 전지 내의 전해질과 발열 반응을 일으켜 전지 폭발의 주원인이 된다. 이러한 LiCoO2의 안전성 문제를 개선하기 위하여 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬함유 망간산화물과 리튬함유 니켈산화물(LiNiO2)의 사용이 고려되어 왔으며, 최근에는 고용량의 재료로서 층상 구조의 리튬망간산화물에 필수 전이금속으로 Mn을 다른 전이 금속들(리튬 제외)보다 다량으로 첨가하는 하기 화학식 1로 표시되는 층상구조의 리튬망간산화물에 대해 많은 연구가 진행되고 있다.
[화학식 1] aLi2MnO3·(1-a)LixMO2
(여기서, 0<a<1이고, 0.9≤x≤1.2이며, M은 Al, Mg, Mn, Ni, Co, Cr, V 및 Fe로 이루어진 군에서 선택되는 어느 하나의 원소, 또는 2 이상의 원소가 동시에 적용된 것이다.)
상기 리튬망간산화물은 비교적 큰 용량을 나타내고 높은 SOC 영역에서는 출력 특성 또한 비교적 높은 편이나, 작동 전압 말단, 즉, 낮은 SOC 영역에서는 저항이 급격하게 상승하여 이에 따라 출력이 급격히 저하되는 단점이 있으며, 초기 비가역 용량이 크다는 문제가 있다.
이에 대해서는 다양한 설명들이 이루어지고 있으나, 일반적으로 다음과 같이 설명되고 있다. 즉, 하기 반응식과 같이, 초기 충전시 양극전위 기준으로 4.5V 이상의 고전압 상태에서 상기 층상구조의 리튬망간산화물 복합체를 구성하는 Li2MnO3로부터, 2개의 리튬 이온과 2개의 전자가 산소가스와 함께 탈리되나, 방전시에는 1개의 리튬 이온과 1개의 전자만이 가역적으로 양극에 삽입되기 때문이다.
(충전) Li2Mn4+O3 → 2Li+ + 2e- + 1/2O2 + Mn4+O2
(방전) Mn4+O2 + Li+ + e- → LiMn3+O2
따라서 aLi2MnO3·(1-a)LiMO2 (0<a<1, M= Co, Ni, Mn 등)의 초기 충방전 효율은 Li2MnO3함량(a값)에 따라 다르나, 보통의 층상구조 양극재, 예를 들어 LiCoO2, LiMn0.5Ni0.5O2, LiMn0.33Ni0.33Co0.33O2 등 보다 낮다는 단점이 있다.
이 경우, aLi2MnO3·(1-a)LiMO2 의 큰 비가역 용량에 따른 초기 사이클에서 음극에서의 리튬 석출을 막기 위해서는 음극의 용량을 과다 설계해야 하므로 실제 가역 용량이 작아지는 문제점이 있을 수 있으며, 이에 표면코팅 등으로 이와 같은 비가역 특성을 조절하려는 노력들이 진행되고 있으나 아직까지 생산성 등의 문제가 완전히 해결되지 않은 상황이다. 또한, 층상구조 물질의 경우, 안전성에서도 일부 문제가 보고되고 있다.
이와 같이, 종래 알려진 리튬 이차 전지의 양극활물질 재료들의 단독 사용에는 단점 및 한계가 있어 이들 재료 간 혼합된 혼합물의 사용이 요구되며, 특히 중대형 디바이스의 전원으로 사용하기 위해서는 고용량을 가지면서 전 SOC 영역에서 급격한 전압강하 없이 고른 프로파일(profile)을 나타냄으로써 안전성이 개선된 리튬 이차 전지에 대한 필요성이 절실하다.
본 발명은 상기와 같은 요구 및 종래문제를 해결하기 위하여 안출된 것으로, 본 발명의 하나의 목적은 고용량의 층상구조의 리튬망간산화물에 리튬의 추가 흡수가 가능한 제2의 양극활물질을 혼합함으로써 초기 비가역 용량을 줄이고 낮은 SOC 영역에서의 추가적인 리튬 흡수가 가능하도록 하여 급격한 출력 저하를 개선한 고용량의 안정적인 작동영역을 갖는 혼합 양극활물질을 제공하는 것에 있다.
본 발명의 또 하나의 목적은 상기와 같은 혼합 양극활물질을 포함하는 리튬이차전지를 제공하는 것에 있다.
상기와 같은 과제를 해결하기 위하여 본 발명은, 하기 [화학식 1]로 표시되는 리튬 망간산화물과 2.5V 내지 3.3V에서 평탄준위 전압 프로파일(profile)을 갖는 하기 [화학식 2]로 표시되는 제2의 양극활물질을 포함하는 혼합 양극활물질을 제공한다.
[화학식 1] aLi2MnO3·(1-a)LixMO2
(여기서, 0<a<1이고, 0.9≤x≤1.2이며, M은 Al, Mg, Mn, Ni, Co, Cr, V 및 Fe로 이루어진 군에서 선택되는 어느 하나의 원소, 또는 2 이상의 원소가 동시에 적용된 것이다.)
[화학식 2] xMnO2 ·(1-x)Li2MnO3 (여기서, 0<x<1이다.)
또한, 상기 제2의 양극활물질은 상기 혼합 양극활물질 100 중량부에 대하여 5 내지 50 중량부로 포함되는 것을 특징으로 한다.
또한, 상기 혼합 양극활물질은 직렬방식의 PHEV용 배터리에 사용되는 것을 특징으로 한다.
또한, 상기 혼합 양극활물질은 EV용 배터리에 사용되는 것을 특징으로 한다.
또한, 상기 혼합 양극활물질은 상기 리튬 망간산화물과 제2의 양극활물질 이외에 도전재를 더 포함하는 것을 특징으로 한다.
상기 도전재는 흑연 및 도전성 탄소로 이루어진 것을 특징으로 하며,
상기 도전재는 상기 혼합 양극활물질 100 중량부에 대하여 0.5 내지 15 중량부로 포함되는 것을 특징으로 한다.
또한, 상기 도전성 탄소는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙 및 서머 블랙으로 이루어진 카본블랙 또는 결정구조가 그라펜이나 그라파이트를 포함하는 물질로 이루어진 군에서 선택되는 하나 또는 그 이상이 혼합된 물질인 것을 특징으로 한다.
또한, 상기 혼합 양극활물질은 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 코발트-니켈 산화물, 리튬 코발트-망간 산화물, 리튬 망간-니켈 산화물, 리튬 코발트-니켈-망간 산화물 및 이들에 타원소(들)가 치환 또는 도핑된 산화물로 이루어진 군에서 선택되는 1종 이상의 리튬 함유 금속 산화물이 더 포함된 것을 특징으로 한다.
상기 타원소는 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 한다.
또한, 상기 리튬 함유 금속 산화물은 상기 혼합 양극활물질 100 중량부에 대하여 50 중량부 이내로 포함되는 것을 특징으로 한다.
본 발명은 또한, 상기 혼합 양극활물질이 집전체 상에 도포되어 있는 것을 특징으로 하는 양극을 제공한다.
한편, 본 발명은, 상기 양극을 포함하는 것을 특징으로 하는 리튬이차전지를 제공한다.
상기 리튬이차전지는 SOC 20 내지 40% 구간에서의 출력이 SOC 50%에서의 출력 대비 20% 이상인 것을 특징으로 한다.
본 발명은 비교적 저렴하고 안정적이며 고용량을 갖는 층상구조 리튬망간산화물에 추가적인 리튬의 흡수가 가능한 제2이 양극활물질을 혼합함으로써 저렴하면서도 전 SOC 영역에 걸쳐 급격한 전압강하 없이 완만한 프로파일(profile)을 갖는 이차전지를 제공할 수 있다.
상기 이차전지는 넓은 가용 SOC 구간을 갖는바 이러한 배터리를 요하는 작동기기, 특히, PHEV 또는 EV 등에 적용되어 이들 기기가 안정적으로 작동되도록 한다.
도 1은 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 각 용량을 측정한 그래프이다.
도 2는 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 각 SOC에 따른 저항을 측정한 그래프이다.
도 3은 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 각 SOC에 따른 출력에 대한 그래프이다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명은 상기와 같은 과제를 해결하기 위한 것으로,
하기 화학식 1로 표시되는 층상구조의 리튬망간산화물에 평탄준위를 갖는 전압 범위가 상기 리튬망간산화물보다 낮은 제2의 양극활물질을 혼합한 혼합 양극활물질을 제공한다.
[화학식 1] aLi2MnO3·(1-a)LixMO2
(여기서, 0<a<1이고, 0.9≤x≤1.2이며, M은 Al, Mg, Mn, Ni, Co, Cr, V 및 Fe로 이루어진 군에서 선택되는 어느 하나의 원소, 또는 2 이상의 원소가 동시에 적용된 것이다.)
상기 화학식 1로 표시되는 층상 구조의 리튬망간산화물(이하, Mn-rich라 함)은 필수 전이금속으로 Mn을 포함하며, Mn의 함량이 리튬을 제외한 기타 금속들의 함량보다 많고, 고전압에서 과충전시 큰 용량을 발현하는 리튬 전이금속 산화물의 일종인 것으로, 상기 층상 구조의 리튬망간산화물에 필수 전이금속으로 포함되는 Mn은 기타 금속들(리튬 제외)의 함량보다 다량으로 포함되는바, 리튬을 제외한 금속들의 전체량을 기준으로 50~80몰%인 것이 바람직하다. Mn의 함량이 너무 적으면 안전성이 저하되고 제조비용이 증가할 수 있으며, 상기 Mn-rich의 독특한 특성을 발휘하기 어려울 수 있다. 반대로 Mn의 함량이 너무 많으면 사이클 안정성이 떨어질 수 있다.
상기 Mn-rich에 포함되는 Li2MnO3는 아래 화학 반응식에 나타나는 것과 같이, Mn이 4가 이므로 일반적인 리튬 이온 전지의 작동 전압에서는 더 이상 산화될 수 없어 전기화학적 활성이 거의 없으며, 산소가 리튬과 함께 Li2O의 형태로 탈리되는 과정을 거치게 된다. 그러나 방전시에는 탈리된 산소가 가역적으로 상기 층상구조의 리튬망간산화물 내부로 들어갈 수 없기 때문에 리튬만이 재료 내부에 삽입되며, 동시에 Mn3+로만 환원되게 되어 재료의 비가역 용량을 크게 하는 원인이 된다.
(충전) Li2Mn4+O3 → 2Li+ + 2e- + 1/2O2 + Mn4+O2
(방전) Mn4+O2 + Li+ + e- → LiMn3+O2
따라서 고용량을 구현하기 위하여 상기 Mn-rich에 Li2MnO3의 함량비를 증가시키는 경우에는 고용량은 얻을 수 있으나 재료의 초기 비가역 용량을 커지게 되어 문제가 발생한다.
한편, 상기 Mn-rich는 양극활물질내에서 구성성분의 산화수 변화에 의해 나타나는 산화/환원 전위 이상에서 일정구간의 평탄 준위를 갖고 있다. 구체적으로, 양극전위를 기준으로 4.5V 이상의 고전압에서의 과충전시 4.5V ~ 4.8V 부근에서 평탄준위 구간을 갖게 된다.
그러나 상기 Mn-rich는 고SOC 구간에서는 비교적 높은 출력을 갖지만, 낮은 SOC 구간(SOC 50% 이하)에서는 급격하게 저항이 상승하여 출력이 크게 저하되는 문제가 있다.
따라서 되도록 넓은 SOC 영역에서 일정한 전압 이상의 상태를 유지함으로써 배터리의 가용 SOC 구간이 넓을 것을 요하는 PHEV 또는 EV와 같은 작동기기의 배터리용 양극재로 사용되기에는 어려움이 있다.
이와 같은 현상은 상기 Mn-rich보다 작동전압이 높은 양극활물질을 혼합하는 경우에도 마찬가지이며, 이는 낮은 SOC 구간에서는 여전히 상기 Mn-rich만이 단독으로 작동하기 때문이다.
본 발명에 따른 양극활물질은, 상기 Mn-rich보다 작동전압이 낮아 낮은 SOC 영역에서의 급격한 출력 저하 현상을 개선하고, 추가적인 리튬(Li)의 흡수가 가능하여 상기 층상구조 리튬망간산화물의 큰 초기 비가역용량을 줄일 수 있는 제2의 양극활물질을 포함하는 것을 특징으로 한다.
상기 제2의 양극활물질은 상기 Mn-rich의 저 SOC 구간에서의 출력 저하를 보조하기 위한 목적으로 혼합되는 것으로, 상기 Mn-rich의 작동전압 말단 영역의 전압보다 낮은 전압에서 평탄준위를 갖는 양극활물질일 것을 요한다.
바람직하게는 상기 제2의 양극활물질은 2.0V ~ 3.3V 영역에서 평탄준위 전압 프로파일(profile)을 갖는 것일 수 있으며, 보다 바람직하게는 2.5V ~ 3.3V에서 평탄준위 전압 프로파일(profile)을 갖는 양극활물질일 것을 요한다.
그 결과 상기 Mn-rich의 낮은 SOC 구간인 3.3V ~ 2.0V 영역에서, 상기 Mn-rich 외에 제2의 양극활물질이 Li의 삽입, 탈리 과정에 관여함으로써 상기 전압대에서 Mn-rich의 낮은 출력을 보완하여 가용 SOC 구간이 크게 넓어진 리튬이차전지를 제공할 수 있다.
다만, 상기 Mn-rich에 제2의 양극활물질을 혼합하는 경우, 포함되는 제2의 양극활물질의 분율만큼 작아진 상기 Mn-rich의 비율로 인해 Mn-rich단독으로 사용한 양극활물질의 경우보다 높은 SOC 구간에서의 출력은 다소 낮을 수 있으나, 직렬방식의 PHEV 또는 EV에 사용되는 리튬이차전지의 경우에는, 한정된 범위의 특정 전압에서 높은 용량이 발현되는 이차전지보다는 되도록 넓은 SOC 구간에서 2.5V 이상의 출력을 유지할 수 있는 리튬이차전지를 필요로 하는바, 본 발명에 따른 혼합 양극재 및 이를 포함하는 리튬이차전지는 상기와 같은 작동기기에 적용되는 경우 더욱 바람직한 효과를 나타낼 수 있다.
상기한 바와 같이, 제2의 양극활물질은 2.0 ~ 3.3V, 나아가 2.5 ~ 3.3V에서 평탄준위 전압 프로파일(profile)을 갖는 리튬 전이금속산화물일 것을 요하며, 바람직하게는 하기 화학식 2로 표시되는 리튬 전이금속 산화물일 것을 요한다.
[화학식 2] xMnO2 ·(1-x)Li2MnO3 (여기서, 0<x<1)
상기 화학식 2의 양극활물질(composite-dimensional manganese oxide; 이하 CDMO라 함)의 결정 구조는 Li2MnO3와 γ/β-MnO2가 포함된 복합체구조로서, γ/β-MnO2만으로는 결정의 구조가 쉽게 무너질 수 있으나, Li2MnO3와 복합체 구조를 형성함으로 비교적 단단한 구조를 갖는 재료라 할 수 있다.
상기 CDMO는 0.14e/Mn 말단에서의 사이클 테스트에서 γ/β-MnO2보다 높은 방전특성을 나타내며, 0.26e/Mn 말단에서의 사이클 성능은 스피넬 구조의 LiMn2O4보다 높은 방전 특성을 나타낸다.
상기 CDMO는 단독으로는 충방전이 진행될 수 없어 양극활물질로 CDMO만을 이용할 수는 없으나, 상기 CDMO는 다른 양극활물질과 혼합되는 경우, 충방전시 대략 2.5 ~ 3.3V 영역에서 작동전압을 갖고 200mAh/g의 초기 이론용량을 갖는다.
상기 CDMO는 상기와 같은 작동전압을 나타내므로 상기 Mn-rich의 작동 전압 말단에서 출력을 보조해 줄 수 있는 역할을 할 수 있다. 또한, 상기 CDMO는 상기 Mn-rich의 큰 초기비가역 용량을 줄이는 역할을 하는바, 상기 Mn-rich는 그 조성이나, 표면 코팅 여부 등에 따라 비가역 용량이 달라질 수 있으므로, 본 발명에 이용되는 Mn-rich의 비가역 용량에 따라 CDMO에 포함되는 Li의 양을 조절할 수 있다.
본 발명에 따른 혼합 양극활물질은 상기 Mn-rich와 2.5 ~ 3.3V에서 작동전압을 갖고, 추가적인 리튬의 흡수가 가능한 CDMO를 포함함으로써 비교적 높은 용량을 나타내면, 전 SOC 영역에 걸쳐 고른 프로파일(profile)을 나타내는바, 출력 특성 또한 크게 개선된 양극활물질을 제공하며, 특히, 직렬방식 PHEV 또는 EV와 같은 작동기기에 바람직하게 적용될 수 있다.
전술한 바와 같이, 직렬방식 PHEV는 엔진이 주된 구동원인 HEV나 엔진과 배터리가 구동원으로서 상호 대등적 관계에서 작용하는 병렬방식 PHEV와는 달리, 배터리만으로 구동되는 전기자동차이므로 배터리의 특성상 운행에 있어 요구되는 출력 이상이 유지되는 SOC 구간에서만 사용이 가능하며 EV 또한 넓은 가용 SOC 구간을 필요로 한다.
따라서 본 발명에 따른 혼합 양극재 및 이를 포함하는 리튬이차전지는 직렬방식의 PHEV 또는 EV와 같이 되도록 넓은 SOC 구간에서 일정 출력 이상을 유지할 수 있는 배터리를 필요로 하는 작동기기에 적용되는 경우 더욱 바람직한 효과를 발현할 수 있다.
한편, 본 발명에 있어 상기 Mn-rich과 제2의 양극활물질을 혼합하여 혼합 양극활물질을 형성하는 방법은 크게 제한되지 않으며, 당업계에 공지된 다양한 방법을 채택할 수 있다.
본 발명의 혼합 양극활물질은 Mn-rich와 CDMO를 포함하는 것이라면 그 조성비를 특별히 제한할 필요는 없을 것이나, 바람직하게는 Mn-rich : CDMO는 95 : 5 내지 50 : 50의 비율로 포함될 수 있고, 보다 바람직하게는 80 : 20 내지 65 : 35의 비율로 포함될 수 있다.
제2의 양극활물질의 함량이 50 중량부를 초과할 경우 리튬 이차전지의 고밀도, 고에너지화 어려울 수 있고, 5 중량부 미만일 경우 포함되는 제2의 양극활물질의 함량이 너무 적어 본 발명이 추구하는 저SOC 구간에서의 출력 보조 및 이에 따른 안전성 향상, 비가역 용량의 축소라는 목적 달성이 어려워질 수 있다.
또한 본 발명에 따른 혼합 양극활물질은 상기 Mn-rich와 CDMO의 입자 크기나 형태를 되도록 균일하게 함으로써, 혼합 양극재에 코팅되는 도전재가 (비)표면적이 큰 어느 한쪽 양극활물질로만 편중되고 이로 인하여 도전재가 상대적으로 적게 분포되는 다른 양극활물질의 도전성이 크게 약화되는 현상을 방지할 수 있으며, 결과적으로 혼합 양극재의 도전성을 크게 향상시킬 수 있다.
혼합되는 2 이상 양극활물질의 입자크기 내지 비표면적 차이를 줄이기 위해서는 상기와 같이 상대적으로 작은 크기의 입자를 갖는 양극활물질을 2차 입자로 크게 형성하는 방법이나, 상대적으로 입자의 크기가 큰 양극활물질의 입자크기를 작게 형성하는 방법 또는 두 가지를 동시에 적용하는 방법 등을 사용할 수 있다.
다음으로, 상기 혼합 양극재는 입자 크기나 형태가 다른 2 이상의 도전재를 포함한 것일 수 있다. 도전재를 포함시키는 방법은 크게 제한되지 않으며, 양극활물질에의 코팅 등 당업계에 공지된 통상적인 방법을 채택할 수 있다. 이는 전술한 바와 같이, 혼합되는 양극활물질들 간의 입자 크기 차이로 인해 도전재가 어느 한쪽으로 편중되는 현상을 방지하기 위함으로, 본 발명의 바람직한 일 실시예에서는 상기 도전재로서 흑연 및 도전성 탄소를 동시에 사용할 수도 있다.
혼합 양극재에 도전재로서 입자의 크기 및 형태가 다른 흑연과 도전성 탄소를 동시에 코팅함으로써, 상기 Mn-rich와 CDMO간의 입자크기 내지 표면적 차이에 기인한 전체 양극활물질의 도전성 감소 또는 낮은 출력의 문제를 보다 효과적으로 향상시킬 수 있으며, 동시에 넓은 가용 SOC 구간을 갖는 고용량의 직렬방식 PHEV 또는 EV용 양극재를 제공할 수 있다.
나아가, 상기 혼합 양극활물질은 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 코발트-니켈 산화물, 리튬 코발트-망간 산화물, 리튬 망간-니켈 산화물, 리튬 코발트-니켈-망간 산화물 및 이들에 타원소(들)가 치환 또는 도핑된 산화물로 이루어진 군에서 선택되는 1종 이상의 리튬 함유 금속 산화물이 더 포함될 수 있으며, 상기 타원소는 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 1종 이상인 것일 수 있다.
이때, 상기 리튬 함유 금속 산화물은 상기 혼합 양극혼합물 100 중량부에 대하여 50 중량부 이내로 포함될 수 있다.
상기 흑연 및 도전성 탄소는 전기전도도가 우수하고 리튬 이차전지의 내부 환경에서 부반응을 유발하거나 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 갖는 것이라면 특별히 제한되지 않는다.
구체적으로, 상기 흑연은 천연 흑연이나 인조 흑연 등을 제한하지 아니하며, 도전성 탄소는 전도성이 높은 카본계 물질이 특히 바람직한데, 구체적으로는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙 또는 결정구조가 그라펜이나 그라파이트를 포함하는 물질로 이루어진 군에서 선택되는 하나 또는 그 이상이 혼합된 물질을 사용할 수 있다. 경우에 따라서는, 전도성이 높은 전도성 고분자도 가능함은 물론이다.
여기서, 상기 흑연 및 도전성 탄소로 이루어진 도전재는 상기 혼합 양극재 100 중량부에 대하여 0.5 내지 15 중량부로 포함되는 것이 바람직하다. 도전재의 함량이 0.5 중량부 미만으로 너무 적으면 전술한 바와 같은 효과를 기대하기 어렵고, 도전제의 함량이 15 중량부를 초과하여 너무 많으면 상대적으로 양극활물질의 양이 적어져서 고용량 혹은 고에너지 밀도화가 어려울 수 있다.
이때 상기 도전성 탄소의 함량은 상기 양극재 100 중량부에 대하여 1 내지 13 중량부, 바람직하게는 3 내지 10 중량부로 포함시킬 수 있다.
한편, 본 발명은 상기 혼합 양극활물질을 포함하는 양극재 및 상기 양극재가 집전체 상에 도포되어 있는 것을 특징으로 하는 리튬이차전지 양극, 나아가 이러한 양극을 포함하는 것을 특징으로 하는 리튬이차전지를 제공한다.
일반적으로 리튬이차전지는 양극재와 집전체로 구성된 양극, 음극재와 집전체로 구성된 음극, 및 상기 양극과 음극 사이에서 전자전도를 차단하고 리튬이온을 전도할 수 있는 분리막으로 구성되며, 전극과 분리막 재료의 void에는 리튬이온의 전도를 위한 전해액이 포함되어 있다.
상기 양극 및 음극은 보통 집전체 상에 전극활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라 상기 혼합물에 충진제를 추가로 첨가할 수 있다.
본 발명의 리튬 이차전지는 당업계의 통상적인 방법에 따라 제조 가능하다. 구체적으로, 양극과 음극 사이에 다공성의 분리막을 넣고, 비수전해액을 투입함으로써 제조할 수 있다.
바람직하게는, 저SOC 구간에서의 안정적인 출력 유지 및 안전성 향상을 위해 특정 SOC 구간에서의 출력 편차(power variation)를 일정 범위로 제한할 수 있다.
본 발명의 바람직한 실시예에서 상기 리튬 이차전지는 SOC 10 내지 SOC 40 구간에서의 출력이 SOC50에서의 출력 대비 20% 이상인 것일 수 있으며, 더욱 바람직하게는 SOC 10 내지 SOC 40 구간에서의 출력이 SOC 50에서의 출력 대비 50% 이상인 것일 수 있다.
본 발명에 따른 혼합 양극재, 양극 및 리튬 이차전지는 직렬방식 PHEV 또는 EV에 적용되는 경우 더욱 바람직한 것으로, 저SOC 구간에서 상기 Mn-rich의 급격한 저항 상승에 따른 낮은 출력특성을 CDMO가 보완함으로써 낮은 SOC(SOC 10 내지 40)에서도 요구출력 이상으로 유지되어, 가용 SOC 구간이 넓어지고 동시에 안전성이 향상된 것일 수 있다.
이하, 구체적인 실시예를 통해 본 발명의 내용을 더욱 상세히 설명한다.
실시예
양극의 제조
양극활물질로, 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2(85 중량%)와 0.5MnO2·0.5Li2MnO3 (15중량%)로 구성된 혼합물 90중량%, 도전재인 뎅카블랙 6 중량%, 바인더인 PVDF 4중량%와 함께 NMP에 첨가하여 슬러리를 만들었다. 이를 양극 집전체인 알루미늄(Al) 포일 위에 코팅하고 압연 및 건조하여 리튬 이차전지용 양극을 제조하였다.
리튬 이차전지의 제조
상기와 같이 제조된 양극과 흑연계 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 리튬 전해액을 주입하여, 폴리머 타입 리튬이차전지를 제조하였다.
상기 폴리머 타입 리튬이차전지를 4.7V에서 포메이션 한 뒤, 4.5V와 2.0V 사이에서 충방전 하면서 SOC에 따라 출력을 측정하였다. (C-rate =1C).
비교예
양극활물질로 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2만을 사용한 것을 제외하고는, 실시예와 동일하다.
실험예
상기 실시예 및 비교예에 의해 제조된 풀셀(full cell) 리튬이차전지에 대해 4.7V ~ 2.0V의 전압범위에서 전지의 용량 및 SOC에 따른 저항, 출력 변화를 측정하여 도 1 내지 도 3에 기재하였으며, 비가역 용량은 아래 표 1에 기재하였다.
표 1
Figure PCTKR2012001258-appb-T000001
즉, 상기 표 1에 나타난 효율에서 확인되는 바와 같이, 본 발명의 실시예에 따른 이차전지의 효율이 약 5%정도 더 높게 나타남에 따라 본 발명에 따른 양극활물질의 비가역 용량이 크게 줄어든 것을 확인 할 수 있다.
또한, 도 1 내지 도 3에서 확인 되는 바와 같이, 본 발명의 실시예에 따른 이차전지는 높은 SOC 구간에서의 출력은 비교예보다 다소 낮지만, 낮은 SOC 구간(도면상으로 약 SOC 50 ~ 10% 영역)에서 출력이 거의 감소하지 않고 안정적으로 유지되어 가용 SOC 구간이 상당히 넓음을 알 수 있다.
반면 비교예의 경우 높은 SOC 구간에서의 출력은 실시예보다 다소 높지만, 낮은 SOC 구간(도면상으로 약 SOC 50 ~ 10% 영역)에서 출력이 급격히 감소하여 가용 SOC 구간이 협소해짐을 알 수 있다. (도 1 ~ 3에 나타낸 데이터는 하나의 예시일 뿐, SOC에 따른 세부적인 Power 수치는 셀의 스펙에 따라 달라질 것인바, 세부적 수치보다는 그래프의 경향이 중요하다고 할 수 있다.)
결국, 본 발명에 따른 리튬이차전지는 고용량을 갖는 Mn-rich에 CDMO와 같은 제2의 양극활물질을 혼합함으로써, 저SOC 구간에서 Mn-rich의 낮은 출력을 보완함으로써 넓은 SOC 영역에서 요구출력 이상으로 유지할 수 있어, 가용 SOC 구간이 넓고 안전성이 향상된 리튬이차전지를 제공할 수 있음을 확인하였다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (14)

  1. 하기 [화학식 1]로 표시되는 리튬 망간산화물과 2.5V 내지 3.3V에서 평탄준위 전압 프로파일(profile)을 갖는 하기 [화학식 2]로 표시되는 제2의 양극활물질을 포함하는 혼합 양극활물질.
    [화학식 1] aLi2MnO3·(1-a)LixMO2
    상기 [화학식 1]에서, 0<a<1이고, 0.9≤x≤1.2이며, M은 Al, Mg, Mn, Ni, Co, Cr, V 및 Fe로 이루어진 군에서 선택되는 어느 하나의 원소, 또는 2 이상의 원소가 동시에 적용된 것이다.
    [화학식 2] xMnO2 ·(1-x)Li2MnO3
    상기 [화학식 2]에서, 0<x<1이다.
  2. 제1항에 있어서, 상기 제2의 양극활물질은 상기 혼합 양극활물질 100 중량부에 대하여 5 내지 50 중량부로 포함되는 것을 특징으로 하는 혼합 양극활물질.
  3. 제1항에 있어서, 상기 혼합 양극활물질은 직렬방식의 PHEV용 배터리에 사용되는 것을 특징으로 하는 혼합 양극활물질.
  4. 제1항에 있어서, 상기 혼합 양극활물질은 EV용 배터리에 사용되는 것을 특징으로 하는 혼합 양극활물질.
  5. 제1항에 있어서, 상기 혼합 양극활물질은 상기 리튬 망간산화물과 제2의 양극활물질 이외에 도전재를 더 포함하는 것을 특징으로 하는 혼합 양극활물질.
  6. 제5항에 있어서, 상기 도전재는 흑연 및 도전성 탄소로 이루어진 것을 특징으로 하는 혼합 양극활물질.
  7. 제5항에 있어서, 상기 도전재는 상기 혼합 양극활물질 100 중량부에 대하여 0.5 내지 15 중량부로 포함되는 것을 특징으로 하는 혼합 양극활물질.
  8. 제6항에 있어서, 상기 도전성 탄소는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙 및 서머 블랙으로 이루어진 카본블랙 또는 결정구조가 그라펜이나 그라파이트를 포함하는 물질로 이루어진 군에서 선택되는 하나 또는 그 이상이 혼합된 물질인 것을 특징으로 하는 혼합 양극활물질.
  9. 제1항에 있어서, 상기 혼합 양극활물질은 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 코발트-니켈 산화물, 리튬 코발트-망간 산화물, 리튬 망간-니켈 산화물, 리튬 코발트-니켈-망간 산화물 및 이들에 타원소(들)가 치환 또는 도핑된 산화물로 이루어진 군에서 선택되는 1종 이상의 리튬 함유 금속 산화물이 더 포함된 것을 특징으로 하는 혼합 양극활물질.
  10. 제9항에 있어서, 상기 타원소는 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 혼합 양극활물질.
  11. 제9항에 있어서, 상기 리튬 함유 금속 산화물은 상기 혼합 양극활물질 100 중량부에 대하여 50 중량부 이내로 포함되는 것을 특징으로 하는 혼합 양극활물질.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 혼합 양극활물질이 집전체 상에 도포되어 있는 것을 특징으로 하는 양극.
  13. 제12항에 따른 양극을 포함하는 것을 특징으로 하는 리튬이차전지.
  14. 제13항에 있어서, 상기 리튬이차전지는 SOC 20 내지 40% 구간에서의 출력이 SOC 50%에서의 출력 대비 20% 이상인 것을 특징으로 하는 리튬이차전지.
PCT/KR2012/001258 2011-02-21 2012-02-20 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지 WO2012115411A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013551921A JP5750814B2 (ja) 2011-02-21 2012-02-20 出力特性が向上した混合正極活物質及びこれを含むリチウム二次電池
EP12749914.3A EP2680347B1 (en) 2011-02-21 2012-02-20 Positive electrode active material having improved output characteristics, and lithium secondary battery comprising same
CN201280003378.6A CN103181005B (zh) 2011-02-21 2012-02-20 具有改善的功率特性的混合正极活性材料和包含其的锂二次电池
US13/467,368 US8741482B2 (en) 2011-02-21 2012-05-09 Mixed cathode active material having improved power characteristics and lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110014960 2011-02-21
KR10-2011-0014960 2011-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/467,368 Continuation US8741482B2 (en) 2011-02-21 2012-05-09 Mixed cathode active material having improved power characteristics and lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
WO2012115411A2 true WO2012115411A2 (ko) 2012-08-30
WO2012115411A3 WO2012115411A3 (ko) 2012-12-20

Family

ID=46721317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001258 WO2012115411A2 (ko) 2011-02-21 2012-02-20 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US8741482B2 (ko)
EP (1) EP2680347B1 (ko)
JP (1) JP5750814B2 (ko)
KR (1) KR101369951B1 (ko)
CN (1) CN103181005B (ko)
WO (1) WO2012115411A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2642565A1 (en) * 2012-03-22 2013-09-25 Samsung Corning Precision Materials Co., Ltd. Positive electrode active material for a lithium ion secondary battery, method of preparing and lithium ion secondary battery including the same
JP2016518012A (ja) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド 非可逆添加剤が含まれている二次電池用正極合剤
JP2016518687A (ja) * 2013-07-29 2016-06-23 エルジー・ケム・リミテッド エネルギー密度が向上した電極活物質及びそれを含むリチウム二次電池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515678B1 (ko) 2011-12-07 2015-04-28 주식회사 엘지화학 출력특성이 향상된 복합 양극 활물질 및 이를 포함하는 이차전지
PL2894486T3 (pl) * 2012-11-29 2020-11-30 Lg Chem, Ltd. Urządzenie i sposób do szacowania mocy baterii akumulatorowej zawierającej zmieszany materiał katodowy
JP6204581B2 (ja) 2013-07-31 2017-09-27 エルジー・ケム・リミテッド リチウム二次電池用正極活物質の製造方法
KR101692795B1 (ko) * 2013-07-31 2017-01-05 주식회사 엘지화학 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
KR101646994B1 (ko) 2013-11-29 2016-08-10 울산과학기술원 리튬 이차전지용 양극 활물질, 이들의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102192085B1 (ko) 2013-12-06 2020-12-16 삼성전자주식회사 양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
JP6469450B2 (ja) * 2014-02-27 2019-02-13 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP6195118B2 (ja) 2014-09-02 2017-09-13 トヨタ自動車株式会社 非水電解液二次電池
CN108933242B (zh) * 2018-07-10 2019-12-10 江西迪比科股份有限公司 一种锂离子电池混合正极的制备方法
CN109301158B (zh) * 2018-10-09 2019-11-05 浙江永高电池股份有限公司 一种阴极浆料的制备方法
WO2021234424A1 (ja) * 2020-05-20 2021-11-25 日産自動車株式会社 二次電池の回復制御方法、二次電池の回復制御システム、及び車両制御システム
KR20240037784A (ko) 2022-09-15 2024-03-22 에스케이온 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR20240037782A (ko) 2022-09-15 2024-03-22 에스케이온 주식회사 리튬 이차 전지 및 이의 작동 방법
KR20240037783A (ko) 2022-09-15 2024-03-22 에스케이온 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079577B2 (ja) * 1990-12-19 2000-08-21 東ソー株式会社 リチウム含有二酸化マンガン及びその製造方法並びにその用途
US20050048366A1 (en) * 2003-08-27 2005-03-03 Bowden William L. Cathode material and method of manufacturing
ES2620809T3 (es) * 2004-09-03 2017-06-29 Uchicago Argonne, Llc Electrodos compuestos de óxido de manganeso par baterías de litio
CN103762351A (zh) * 2005-08-16 2014-04-30 株式会社Lg化学 阴极活性材料及包含该阴极活性材料的锂二次电池
KR100932256B1 (ko) * 2006-03-20 2009-12-16 주식회사 엘지화학 성능이 우수한 리튬 이차전지용 양극 재료
JP4827931B2 (ja) * 2006-12-27 2011-11-30 三洋電機株式会社 非水電解質二次電池およびその製造方法
JP5103961B2 (ja) * 2007-03-14 2012-12-19 パナソニック株式会社 リチウムイオン二次電池
KR101328986B1 (ko) 2007-06-12 2013-11-13 삼성에스디아이 주식회사 복합 활물질을 포함하는 캐소드 및 이를 채용한 리튬 전지
JP5407117B2 (ja) * 2007-06-26 2014-02-05 日産自動車株式会社 リチウムイオン電池
KR20070095261A (ko) 2007-09-05 2007-09-28 오민희 레이저 발사기를 사용한 신속 대응 사격 훈련 시스템 및 그방법
US8835027B2 (en) 2007-09-21 2014-09-16 Uchicago Argonne, Llc Positive electrodes for lithium batteries
KR101093705B1 (ko) * 2009-04-29 2011-12-19 삼성에스디아이 주식회사 리튬 이차 전지
EP2541654B1 (en) 2010-02-24 2014-11-19 LG Chem, Ltd. High-capacity positive electrode active material and lithium secondary battery comprising same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2680347A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2642565A1 (en) * 2012-03-22 2013-09-25 Samsung Corning Precision Materials Co., Ltd. Positive electrode active material for a lithium ion secondary battery, method of preparing and lithium ion secondary battery including the same
JP2016518687A (ja) * 2013-07-29 2016-06-23 エルジー・ケム・リミテッド エネルギー密度が向上した電極活物質及びそれを含むリチウム二次電池
US10741841B2 (en) 2013-07-29 2020-08-11 Lg Chem, Ltd. Electrode active material having improved energy density and lithium secondary battery including the same
JP2016518012A (ja) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド 非可逆添加剤が含まれている二次電池用正極合剤
US10218002B2 (en) 2013-07-30 2019-02-26 Lg Chem, Ltd. Positive electrode mix for secondary batteries including irreversible additive

Also Published As

Publication number Publication date
EP2680347A4 (en) 2014-01-15
US8741482B2 (en) 2014-06-03
KR20120095803A (ko) 2012-08-29
WO2012115411A3 (ko) 2012-12-20
CN103181005A (zh) 2013-06-26
EP2680347B1 (en) 2015-09-16
JP5750814B2 (ja) 2015-07-22
EP2680347A2 (en) 2014-01-01
CN103181005B (zh) 2016-05-18
US20120244432A1 (en) 2012-09-27
KR101369951B1 (ko) 2014-03-06
JP2014509043A (ja) 2014-04-10

Similar Documents

Publication Publication Date Title
WO2012115411A2 (ko) 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지
WO2014021685A1 (ko) 출력 특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2012108702A2 (ko) 출력특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2011105833A9 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2013048112A2 (ko) 안전성 및 수명특성이 향상된 양극활물질 및 이를 포함하는 리튬 이차전지
WO2013085317A1 (ko) 출력특성이 향상된 복합 양극 활물질, 및 이를 포함하는 이차전지, 전지 모듈 및 전지 팩
WO2014021686A1 (ko) 출력 특성과 안전성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2013042957A1 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬이차전지
WO2016060300A1 (ko) 저온 특성 개선용 첨가제를 포함하는 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2013162213A1 (ko) 출력 특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
KR101551521B1 (ko) 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2013002559A2 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
WO2011090235A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지
KR101288742B1 (ko) 양극활물질 및 이를 포함하는 리튬 이차전지
KR20120113008A (ko) 직렬방식 phev용 리튬이차전지 양극재 및 이를 포함하는 리튬이차전지
WO2023090944A1 (ko) 리튬이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749914

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012749914

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013551921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE