WO2011090235A1 - 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지 Download PDF

Info

Publication number
WO2011090235A1
WO2011090235A1 PCT/KR2010/003041 KR2010003041W WO2011090235A1 WO 2011090235 A1 WO2011090235 A1 WO 2011090235A1 KR 2010003041 W KR2010003041 W KR 2010003041W WO 2011090235 A1 WO2011090235 A1 WO 2011090235A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
active material
secondary battery
lithium secondary
composite oxide
Prior art date
Application number
PCT/KR2010/003041
Other languages
English (en)
French (fr)
Inventor
진봉수
김현수
도칠훈
정지화
진경민
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2011090235A1 publication Critical patent/WO2011090235A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material used in a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery using the same, and in particular, by forming a glass carbon coating layer on the surface of the lithium metal composite oxide particles having low electron conductivity to improve electron conductivity.
  • the present invention relates to a positive electrode active material for a lithium secondary battery having an excellent output characteristic and a simple manufacturing method, and a method of manufacturing the same and a lithium secondary battery using the same.
  • LiCoO 2 a representative cathode active material of a lithium secondary battery, is a material used by most battery manufacturers as a cathode active material. LiCoO 2 exhibits excellent electronic conductivity, excellent high rate discharge characteristics, and excellent life characteristics and potential flatness according to stable charging and discharging behavior, but the price of Co is higher than other materials, and it is charged when the battery is misused. Due to the poor thermal safety, the internal temperature of the battery rises sharply, leading to problems such as desorption of lattice oxygen.
  • LiNiO 2 is less expensive than LiCoO 2 , has a higher cost, and shows a slightly lower discharge voltage, resulting in less oxidation of the electrolyte.However, the commercialization of LiNiO 2 is difficult due to the difficulty in synthesizing powder and the unstable thermal safety in the charged state. It is not happening.
  • LiMn 2 O 4 is cheaper than other positive electrode active materials, and is easily synthesized, and thus, LiMn 2 O 4 having a spinel structure of three-dimensional tunnel structure has a theoretical capacity of 148 mAh /. g, it has a low specific capacity and tap density compared to other materials, making it difficult to manufacture a battery with high energy density.
  • the battery has a high diffusion resistance of ions during charging and discharging, and the oxidation number of manganese falls below 3.5 in the operating voltage range, Due to the Jahn-Teller Effect, a phase transition from a cube to a cube occurs, resulting in poor lifetime characteristics.
  • the battery characteristics rapidly deteriorate due to elution of Mn due to side reaction with the electrolyte during charging and discharging above 60 ° C.
  • Li metal complex oxide Li 1-x Fe x PO 4 (0 ⁇ x ⁇ 1) having olivine structure
  • the mechanically agitated mechanical particles of lithium metal composite oxides and amorphous carbon particles are mechanically agitated to induce friction between the particles, thereby inducing the friction between the particles.
  • the amount of the amorphous carbon particles introduced is about 3 to 15% by weight based on the total weight of the particles of the low electron conductivity lithium metal composite oxide and the amorphous carbon particles. Since particles are introduced, there is a disadvantage in that the tap density of the electrode is lowered.
  • the technical problem to be solved by the present invention is to solve the above problems, to improve the electronic conductivity of the low-electroconductivity lithium metal composite oxide, a positive electrode active material and a lithium secondary battery using the same to produce a lithium secondary battery with excellent output characteristics To provide.
  • Another technical problem to be achieved by the present invention is to provide a method of manufacturing a positive electrode active material which is simple and economically improved the electron conductivity of low-electroconductivity lithium metal composite oxide.
  • the present invention is characterized in that the particles having a low electron conductivity lithium metal composite oxide having an electron conductivity of less than 10 ⁇ 5 S / Cm and the lithium metal composite oxide particle surface are formed of a glassy carbon coating layer.
  • the positive electrode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery using the same are the technical gist of the invention.
  • the forming material of the glass coating layer is made of any one of epoxy resins, polyester resins, polyamides, polyurethane resins, and furan resins or composites thereof.
  • the low electron conductivity lithium metal composite oxide, the cathode active material for a lithium secondary battery characterized in that any one selected from the group consisting of Formula 1 to Formula 4;
  • M is at least one element selected from the group consisting of Mn, Co, Ni, Cr, Al, Ti and Mg, 0 ⁇ x ⁇ 1,
  • M is at least one element selected from the group consisting of Ti, Sn, Mg, and W, 0.5 ⁇ x + y ⁇ 1.0, 0.1 ⁇ y ⁇ 0.6, 0 ⁇ z ⁇ 0.1,
  • M is at least one element selected from the group consisting of Co, Ni, Cr, Al, and Mg, preferably 0 ⁇ x ⁇ 0.1.
  • the glass carbon coating layer is preferably formed in an amount of 1 to 15 parts by weight based on the total weight of the positive electrode active material, and the particle diameter of the lithium metal composite oxide is preferably 1 to 20 ⁇ m.
  • the positive electrode active material is manufactured by a method of coating a lithium metal composite oxide with a plastic or curable polymer solution and firing to form a glass carbon coating layer on the surfaces of the particles of the lithium metal composite oxide.
  • the negative electrode including a negative electrode active material; A positive electrode including a positive electrode active material; And a separator interposed between the positive electrode and the negative electrode, wherein the positive electrode active material is a lithium secondary battery having a glass carbon coating layer formed on a particle surface of a low electron conductive lithium metal composite oxide having an electron conductivity of less than 10 ⁇ 5 S / Cm. It is preferable.
  • lithium metal composite oxide particles having a glass carbon coating layer formed thereon according to the present invention have improved electron conductivity, thereby improving output characteristics and thermal safety of the battery when used as a cathode active material of a lithium secondary battery.
  • Such a cathode active material of the present invention could be produced simply and economically by mixing and firing particles of a lithium metal composite oxide and a polymer solution.
  • the lithium secondary battery to which the cathode active material of the present invention is applied may be used as a power source for driving a cellular phone, an electric tool, an electric bicycle, an electric vehicle, an uninterruptible power supply, and the like with excellent output characteristics.
  • FIG. 2 is a view showing the surface of the positive electrode active material powder formed with a glass carbon coating layer according to an embodiment of the present invention.
  • Figure 3- shows the specific capacity at various charge and discharge current densities of LiFeMnPO 4 cells with a Li / / glass carbon coating layer according to the present invention.
  • FIG. 1 is a graph showing a manufacturing process of a lithium carbon composite oxide coated with a glass carbon prepared according to an embodiment of the present invention in comparison with the existing process
  • Figure 2 is a cathode active material prepared according to Example 1 of the present invention 3 is a SEM photograph
  • FIG. 3 is a graph illustrating a result of comparing and measuring output characteristics of a half cell prepared by using a cathode active material prepared according to Example 1 of the present invention.
  • the cathode active material for a lithium secondary battery of the present invention includes particles of a low electron conductivity lithium metal composite oxide having an electron conductivity of less than 10 ⁇ 5 S / Cm; And a glassy carbon layer coated on the particle surface of the lithium metal composite oxide.
  • the low electron conductivity lithium metal composite oxide is preferably any one selected from the group consisting of the following Chemical Formulas 1 to 4.
  • M is at least one element selected from the group consisting of Mn, Co, Ni, Cr, Al, Ti, and Mg, 0 ⁇ x ⁇ 1.
  • M is at least one element selected from the group consisting of Ti, Sn, Mg, and W, 0.5 ⁇ x + y ⁇ 1.0, 0.1 ⁇ y ⁇ 0.6, and 0 ⁇ z ⁇ 0.1.
  • M is at least one element selected from the group consisting of Co, Ni, Cr, Al, and Mg, and 0 ⁇ x ⁇ 0.1.
  • the method of manufacturing a positive electrode active material of the present invention (a1) mechanically comprises a plastic or hardenable polymer solution, which is a raw material of glassy carbon and particles of low electron conductivity lithium metal composite oxide having an electron conductivity of less than 10 -5 S / Cm. Mixing; (a2) drying the mixed slurry; And heat treating the cathode active material dried according to steps (a3) and (a2) at 300 ° C. to 1200 ° C. for 30 minutes to 6 hours in an electric furnace in an argon atmosphere.
  • a plastic or hardenable polymer solution which is a raw material of glassy carbon and particles of low electron conductivity lithium metal composite oxide having an electron conductivity of less than 10 -5 S / Cm.
  • the cathode active material for a lithium secondary battery of the present invention has a glass carbon coating layer coated on particles of a low electron conductivity lithium metal composite oxide having an electron conductivity of less than 10 ⁇ 5 S / Cm and a particle surface of the lithium metal composite oxide. Is done. As described above, most of the high amount of low price compared to LiCoO 2 and the cost, as a lithium metal composite oxide is electronic conductivity of less than about 10 -5 S / Cm which exhibits excellent life characteristics at room temperature, e the active material itself, compared to LiCoO 2 The low conductivity makes the large current discharge characteristic poor.
  • the present invention by forming a glass carbon coating layer having excellent conductivity on the surface of the particles of the low electron conductive lithium metal composite oxide, it improves the electron conductivity of the positive electrode active material and maintains a uniform current distribution between the active materials during charging and discharging.
  • the low electron conductive lithium metal composite oxide is preferably any one selected from the group consisting of the following Chemical Formulas 1 to 4.
  • LiFe 1-x M x PO 4 having an olivine structure, in Formula 1, M is at least one element selected from the group consisting of Mn, Co, Ni, Cr, Al, Ti, and Mg, and 0 ⁇ x ⁇ 1.
  • M is at least one element selected from the group consisting of Ti, Sn, Mg, and W, 0.5 ⁇ x + y ⁇ 1.0, 0.1 ⁇ y ⁇ 0.6, and 0 ⁇ z ⁇ 0.1.
  • M is at least one element selected from the group consisting of Co, Ni, Cr, Al, and Mg, and 0 ⁇ x ⁇ 0.1.
  • the manufacturing method of the positive electrode active material of the present invention (a1) mechanically mixing the polymer solution of the raw material of the glass carbon particles and particles of low electron conductivity lithium metal composite oxide having an electron conductivity of less than 10 -5 S / Cm Step (a2) drying the mixed slurry; And (a3) heat treating the cathode active material dried according to step (a2) for 30 minutes to 6 hours at 300 to 1200 in an electric furnace in an inert atmosphere.
  • particles of a low electron conductivity lithium metal composite oxide having an electron conductivity of less than 10 ⁇ 5 S / Cm and a plastic or curable polymer solution, which is a raw material of a glass carbon are introduced into a mechanical mixer (a1).
  • Particles of the low electron conductive lithium metal composite oxide are preferably selected from one or more of the particles of the lithium metal composite oxide represented by the above-described formulas (1) to (4).
  • the polymer solution, which is a raw material of the glass carbon may be appropriately selected from polymer resins such as epoxy resins, polyester resins, polyamides, polyurethane resins, and furan resins, but is not limited thereto.
  • the average particle diameter of the particles of the low electron conductive lithium metal composite oxide to be added is not important, and the particle diameter of the lithium metal composite oxide particles that are commonly used is preferably 1 to 20 ⁇ m. If the average particle diameter is small, the specific surface area of the positive electrode active material becomes large, and a larger amount of polymer resin solution is required to coat the surface of the positive electrode active material.
  • the amount of the coated glass carbon is preferably about 1 to 15% by weight based on the weight of the low electron conductive lithium metal composite oxide. If the amount of the coated glass carbon is added more than 15% by weight, the amount of active material in the same volume electrode is reduced, the amount of charge electricity is reduced, the electrical properties are lowered. When the added amount is less than 1% by weight, there is little effect of improving the electron conductivity by the glass carbon coating.
  • a slurry in which the lithium metal composite oxide and the polymer solution are mixed is put in an electric oven and dried to remove the solvent in the polymer solution, thereby forming a polymer layer on the surfaces of the particles of the lithium metal composite oxide.
  • it is heat-treated at 300 ° C. to 1200 ° C. for 30 minutes to 6 hours in an inert atmosphere electric furnace to make the polymer on the surface of the lithium metal composite oxide into glass carbon.
  • the heat treatment temperature is 300 ° C. or lower, the carbonization of the polymer (glass carbon raw material) is not sufficiently achieved, and when the heat treatment temperature is higher than 1200 ° C., the structural deformation may occur due to side reaction of lithium metal composite oxide. It is preferable to proceed at. Since this process is a process performed at high temperature, in order to prevent oxidation, it is preferable to carry out in inert atmosphere, such as nitrogen and argon.
  • the method of manufacturing the cathode active material according to the present invention described above is a method of coating a glass carbon on the surface of lithium metal composite oxide particles, and economically obtaining a dense glass carbon coating layer together with the formation of the structure of the lithium metal composite oxide by one step heat treatment. It is a recipe.
  • the cathode active material according to the present invention may be used as a cathode active material of a lithium secondary battery according to a conventional application method.
  • a lithium secondary battery includes a negative electrode including a negative electrode active material, a positive electrode including a positive electrode active material, and a separator interposed between the positive electrode and the negative electrode.
  • a lithium metal composite oxide positive electrode active material having improved electron conductivity is used in a lithium secondary battery by a conventional method of preparing a slurry by adding a solvent to a solvent together with a binder and then applying the same to a positive electrode.
  • FIG. 1 is a flow chart showing the difference between the above-described method of manufacturing a lithium metal composite oxide (having a glass carbon coating layer formed) and a conventional active material manufacturing method.
  • a lithium metal composite oxide having a glass carbon coating layer formed
  • a conventional active material manufacturing method carbon black is used and dry mixing
  • the present invention has a difference in using a polymer solution and wet mixing.
  • Figure 2 is a SEM photograph of the LiFe 1-x M x PO 4 particles formed with a glass carbon coating layer prepared according to an embodiment of the present invention. It can be seen that the glass coating layer is uniformly formed on the surface of the LiFe 1-x M x PO 4 particles. The glass carbon coating layer is formed on the surface of the lithium metal composite oxide particles while carbonizing the polymer.
  • a lithium secondary battery was manufactured by the following method using the cathode active material powder according to the embodiment prepared by the above method. 70 parts by weight of LiFe 1-x M x PO 4 particles and 20 parts by weight of carbon black (Super P, MMA Carbon, Belgium) powder having a glass carbon coating layer prepared as described above, polyvinylidene fluoride (PVDF) as a binder 10 parts by weight of an organic solvent, N-methyl-2-pyrrolidone (NMP) was added, and then a slurry was prepared through stirring.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the slurry was applied to one side of a positive electrode current collector made of aluminum having a thickness of 15 ⁇ m and pressed to prepare a positive electrode.
  • the negative electrode was prepared by pressing a lithium metal on one side of the negative electrode current collector made of 12 ⁇ m copper.
  • each of the positive electrode and the negative electrode manufactured by the above-described method was punched to a constant size, and the battery part was manufactured by laminating a porous polyethylene film having a thickness (16 ⁇ m) therebetween.
  • Lithium hexafluorophosphate (LiPF 6 ) was stored in a non-aqueous solvent in which the above-mentioned battery unit was accommodated in a polypropylene film molded into an encapsulated shape, and ethylene carbonate, diethyl carbonate and ethyl methyl carbonate were mixed at a volume ratio of 40:30:30.
  • a nonaqueous electrolyte secondary battery was assembled so as to have a nonaqueous electrolyte solution dissolved at a concentration of 1.0 mol / L so as to be 3.57 g per 1 Ah of battery capacity, to assemble a nonaqueous electrolyte secondary battery.
  • the performance of each of the manufactured secondary batteries was evaluated as follows.
  • Figure 3 is a graph showing the measurement results of the rate characteristics of the lithium metal composite oxide prepared by the above-described method (with a carbon carbon coating layer formed) and the lithium metal composite oxide prepared by the conventional method. It can be seen that the characteristics of the battery made of LiFe 1-x M x PO 4 particles having a glass carbon coating layer prepared according to an embodiment of the present invention at a high rate of 2C or more are excellent.
  • the lithium secondary battery using the positive electrode active material according to the present invention shows a significantly improved result in charge and discharge output characteristics by reducing the resistance according to the excellent conduction characteristics. It is possible to maintain a uniform current distribution between active materials during charging and discharging by coating the surface of the lithium metal composite oxide having a lower electron conductivity than LiCoO 2 with a highly conductive glass carbon, thereby improving the electronic conductivity to be more effective. This is because the diffusion of lithium ions can be induced. In addition, it is expected to inhibit the glass carbon coating layer from interfacial decomposition reaction between the lithium metal composite oxide surface and the electrolyte solution, and the thermal properties at high temperature may be improved.
  • the present invention can be used for a positive electrode active material used in a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery using the same, and more specifically, by forming a glass carbon coating layer on the surface of a lithium metal composite oxide particle having low electron conductivity, By improving the output characteristics, the manufacturing method is simple and economical cathode active material for a lithium secondary battery, a manufacturing method and a lithium secondary battery using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지에 사용되는 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지에 관한 것으로서, 본 발명의 리튬 이차전지용 양극 활물질은 리튬금속복합산화물 입자 표면에 피복된 글래시카본 피복층으로 이루어지며, 상기 글래시카본 피복층은 경화성 고분자의 열처리에 의해서 제조되는 것을 기술적 요지로 한다. 이에 의해 본 발명의 리튬 이차전지용 양극 활물질을 이용한 리튬 이차전지는 출력특성이 향상되므로, 셀룰러폰, 노트북 컴퓨터, 캠코더는 물론이고 전동공구용 배터리, 전기자동차용 배터리 등으로 유용하게 사용될 수 있는 이점이 있다.

Description

리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지
본 발명은 리튬 이차전지에 사용되는 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지에 관한 것으로, 특히 저전자전도성의 리튬금속복합산화물 입자 표면에 글래시카본 피복층을 형성하여 전자전도도를 향상시키므로서 출력특성이 우수하고, 제조방법이 간단하여 경제적인 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지에 관한 것이다.
전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 이들 휴대용 전자통신기기들을 구동할 수 있는 동력원으로서 리튬 이차전지의 수요가 나날이 증가하고 있다. 특히 친환경 동력원으로서 전기자동차, 무정전 전원장치, 전동공구 및 인공위성 등의 응용과 관련하여 국내는 물론 일본, 유럽 및 미국 등지에서 연구개발이 활발히 진행되고 있다.
리튬 이차전지의 대표적인 양극 활물질인 LiCoO2는 대부분의 전지제조업체에서 양극 활물질로 사용하고 있는 물질이다. LiCoO2는 우수한 전자전도성을 나타내며, 아울러 고율방전특성이 우수하고 안정된 충방전 거동에 따라 수명특성 및 전위 평탄성 또한 우수하지만, Co의 가격이 타재료에 비해 고가라는 점과 전지 오사용시 충전된 상태에서 열적안전성이 떨어져 전지의 내부온도가 급격히 상승하므로서 격자산소가 탈리되는 등의 문제점을 갖고 있다.
한편, LiNiO2는 LiCoO2에 비해 가격이 저렴하고 비용량이 높으며 약간 낮은 방전전압을 보여 전해액의 산화가 적을 것으로 생각되지만, 분말의 합성이 어렵고 충전상태에서의 열적안전성이 불안정하여 상품화가 본격적으로 진행되고 있지 못한 상황이다.
또한, LiMn2O4는 다른 양극 활물질에 비해 가격이 싸고, 합성이 용이하여 저가격 제품의 일부에 사용되고 있는 양극 활물질이나, 스피넬구조의 3차원 터널구조를 갖는 LiMn2O4는 이론 용량이 148mAh/g으로 다른 재료에 비해 비용량 및 탭밀도가 낮아 고에너지 밀도의 전지제조가 어렵고, 전지의 충방전시 이온의 확산저항이 크고 작동전압 구간에서 망간의 산화수가 3.5미만으로 떨어지면 잔-텔러 효과(Jahn-Teller Effect)에 의해 입방체에서 정방체로의 상전이가 일어나 수명특성을 떨어진다. 특히 60℃이상에서 충·방전 시 전해액과의 부반응에 따른 Mn의 용출로 전지특성이 급격히 열화되는 문제점을 안고 있다.
따라서, 최근에는 가격이 저렴하고 비용량이 높으며, 우수한 상온 수명특성을 나타내는 양극 활물질들이 제안되고 있는데, 예를 들어, LiNi(1-x-y)CoxMnyO2 및 LiNi(1-x-y)CoxMnyMzO2와 같이 LiMM'O2 (M=Ni,Co,Mn M'=Cr,V,Fe,W,Ta,Ti 등의 원소가 1종 이상 함유됨)으로 표시되는 층상구조를 갖은 리튬금속복합산화물, 감람석(Olivine)구조를 갖는 Li1-xFexPO4 (0≤x≤1), 큐빅구조를 갖는 Li[Mn2-xMx]O4 (M=Co,Ni,Cr,Al,Mg, 0≤x≤0.1) 등을 꼽을 수 있다. 이들 재료들은 대부분 LiCoO2에 비해 가격이 저렴하고 비용량이 높으며, 우수한 상온 수명특성을 나타낸다. 그러나, 이들 재료들은 전자 전도도가 약 10-5S/Cm인 LiCoO2에 비해 활물질 자체의 전자전도성이 낮아 대전류 방전 특성이 취약하다.
따라서 이러한 저전자전도성 리튬금속복합산화물의 낮은 전도성을 향상시키기 위해, 미국특허 제6808848호에서는 LiNiCoMnO2와 LiMn2O4의 이종의 양극활물질을 적용하여 출력특성 향상에 대한 제안을 하고 있으나, 아직까지 출력특성이 충분히 개선되었다는 보고는 발표되고 있지 않다. 또한, 감람석(Olivine)구조를 갖는 Li1-xFexPO4 및 큐빅구조를 갖는 Li[Mn2-xMx]O4의 낮은 전자전도성 문제를 해결하기 위해, 미국 공개특허 US2004/0157126에는 아세틸렌, 부탄 등 탄소원료기체를 이용하여 LiFeP04 및 Li[Mn2-xMx]O4 등을 코팅하는 방법이 개시되어 있으나, 제조 시 분위기 제어가 어렵고 공정 중 리튬의 휘발을 유발할 수 있고 또한 균일한 코팅 활물질을 제조하기 어려워 만족스러운 전지특성을 실현할 수 없다.
국내 공개특허 2006-0093842에는 기계적 회전식 가공기에서 리튬 금속복합산화물로 된 입자들과 비정질계 탄소입자들을 기계적으로 교반시켜 입자들 사이에 마찰을 유도하므로서 리튬금속복합산화물로 된 입자들 표면에 비정질계 탄소 코팅층을 형성하는 방법이 제시되었으나, 투입되는 비정질계 탄소입자들의 양은 저전자전도성 리튬금속복합산화물로 된 입자들과 비정질계 탄소입자들의 총 중량을 기준으로 약3~15중량%로 많은 량의 탄소입자가 투입되기 때문에 전극의 탭밀도가 낮아지는 단점이 있다.
본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여, 저전자전도성의 리튬금속복합산화물의 전자전도도를 향상시키므로서 출력특성이 우수한 리튬 이차전지를 제조할 수 있는 양극 활물질 및 이를 이용한 리튬 이차전지를 제공하는데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는 간단하고 경제적으로 저전자전도성의 리튬금속복합산화물의 전자전도도를 향상시킨 양극 활물질을 제조하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여 본 발명은 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자 및 상기 리튬금속복합산화물 입자 표면이 글래시카본(glassy carbon) 피복층으로 이루어진 것을 특징으로 하는 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지를 기술적 요지로 한다.
또한, 상기 글래시카본 피복층의 형성물질은, 에폭시수지, 폴리에스테르수지, 폴리아미드, 폴리우레탄 수지 및 퓨란수지 중의 어느 하나 또는 이들의 복합물로 이루어진 것이 바람직하다.
또한, 상기 저전자전도성 리튬금속복합산화물은, 하기 화학식 1 내지 화학식 4로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬 이차전지용 양극 활물질;
<화학식 1>
감람석(Olivine)구조를 갖는 LiFe1-xMxPO4
상기 화학식 1에서, M은 Mn, Co, Ni, Cr, Al, Ti 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤1임,
<화학식 2>
육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyO2
상기 화학식 2에서, M은 Ti, Sn, Mg 및 W로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0.5<x+y<1.0이고, 0.1<y<0.6이고, 0<z<0.1임,
<화학식 3>
육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyO2
상기 화학식 3에서, 0.5<x+y<1.0이고, 0.1<y<0.6임,
<화학식 4>
큐빅구조를 갖는 Li[Mn2-xMx]O4
상기 화학식 4에서, M은 Co, Ni, Cr, Al 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤0.1인 것이 바람직하다.
또한, 상기 글래시카본 피복층은 양극 활물질 총 중량부를 기준으로 1 내지 15중량부의 함량으로 형성되는 것이 바람직하며, 또한, 상기 리튬금속복합산화물로 된 입자의 입경은 1 내지 20㎛인 것이 바람직하다.
또한, 가소성 또는 경화성 고분자 용액으로 리튬금속복합산화물을 코팅하고 소성시켜 리튬금속복합산화물로 된 입자들 표면에 글래시카본 피복층을 형성하는 제조방법에 의해 양극 활물질이 제조되는 것이 바람직하다.
또한, 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 구비하되, 상기 양극 활물질은 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자 표면에 글래시카본 피복층이 형성된 리튬이차전지인 것이 바람직하다.
이상에서 살펴본 바와 같이, 본 발명에 따라 글래시카본 피복층이 형성된 리튬금속복합산화물 입자는 전자전도도가 향상되므로, 리튬 이차전지의 양극 활물질로 사용시 전지의 출력특성 및 열적 안전성을 향상시킬 수 있다. 이러한 본 발명의 양극 활물질은 리륨금속복합산화물로 된 입자들과 고분자 용액을 혼합하고 소성함으로써 간단하고 경제적으로 제조할 수 있었다.
또한, 본 발명의 양극 활물질이 적용된 리튬 이차전지는 출력특성이 우수하여 셀룰러폰, 전동공구, 전기 자전거, 전지 자동차, 무정전 전원장치 등을 구동시키는 전원으로서 사용될 수 있다.
도 1 - 본 발명의 일실시예에 따른 제조공정과 기존 제조공정을 비교하여 나타낸 활물질 제조 공정도.
도 2 - 본 발명의 일실시예에 따른 글래시카본 피복층이 형성된 양극 활물질 분말의 표면을 나타낸 도.
도 3 - 본 발명에 따른 Li//글래시카본 피복층이 형성된 LiFeMnPO4 전지의 여러 충방전 전류밀도에서의 비용량을 나타낸 도.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 실시예에 따라 제조한 글래시 카본이 피복된 리튬금속복합산화물의 제조공정을 기존 공정과 비교하여 나타낸 그래프이고, 도 2는 본 발명의 실시예 1에 따라 제조한 양극 활물질의 SEM 사진이고, 도 3은 본 발명의 실시예 1에 따라 제조한 양극 활물질로 제조한 반전지의 출력특성을 비교 측정한 결과 그래프이다.
상기 기술적 과제를 달성하기 위하여 본 발명의 리튬 이차전지용 양극 활물질은 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자; 및 상기 리튬금속복합산화물로 된 입자 표면에 피복된 glassy carbon 층으로 이루어진다.
본 발명의 리튬 이차전지용 양극 활물질에 있어서, 저전자전도성 리튬금속복합산화물은 하기 화학식 1 내지 화학식 4로 이루어진 군으로부터 선택된 어느 하나인 것이 바람직하다.
<화학식 1>
감람석(Olivine)구조를 갖는 LiFe1-xMxPO4
상기 화학식 1에서, M은 Mn, Co, Ni, Cr, Al, Ti 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤1이다.
<화학식 2>
육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyMzO2, 상기 화학식 2에서, M은 Ti, Sn, Mg 및 W로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0.5<x+y<1.0이고, 0.1<y<0.6이고, 0<z<0.1이다.
<화학식 3>
육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyO2 ,화학식 3에서, 0.5<x+y<1.0이고, 0.1<y<0.6이다.
<화학식 4>
큐빅구조를 갖는 Li[Mn2-xMx]O4, 상기 화학식 4에서, M은 Co, Ni, Cr, Al 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤0.1이다.
또한, 본 발명의 양극 활물질의 제조방법은 (a1) 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자들과 glassy carbon의 원료 물질인 가소성 또는 경화성 고분자 용액을 기계적으로 혼합하는 단계; (a2) 혼합된 슬러리를 건조하는 단계; 및 (a3), (a2)단계에 따라 건조된 양극 활물질을 아르곤 분위기의 전기로에서 300℃ 내지 1200℃에서 30분 내지 6시간 동안 열처리하는 단계로 구성되어 있다.
이하, 본 발명의 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 리튬 이차전지용 양극 활물질은 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자 및 상기 리튬금속복합산화물로 된 입자 표면에 피복된 글래시카본(glassy carbon) 피복층으로 이루어진다. 전술한 바와 같이, 대부분 LiCoO2에 비해 가격이 저렴하고 비용량이 높으며, 우수한 상온 수명특성을 나타내는 리튬금속복합산화물은 전자 전도도가 약 10-5S/Cm 미만으로서, LiCoO2에 비해 활물질 자체의 전자전도성이 낮아 대전류 방전 특성이 취약하다. 본 발명에서는 이러한 저전자 전도성 리튬금속복합산화물로 된 입자 표면에 도전성이 우수한 글래시카본 피복층을 형성하므로서, 양극 활물질의 전자전도성을 향상시키고 충방전시 활물질 간의 균일한 전류분포를 유지시키게 된다.
또한, 본 발명의 리튬 이차전지용 양극 활물질에 있어서, 저전자전도성 리튬금속복합산화물은 하기 화학식 1 내지 화학식 4로 이루어진 군으로부터 선택된 어느 하나인 것이 바람직하다.
<화학식 1>
감람석(Olivine)구조를 갖는 LiFe1-xMxPO4, 상기 화학식 1에서, M은 Mn, Co, Ni, Cr, Al, Ti 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤1이다.
<화학식 2>
육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyMzO2, 상기 화학식 2에서, M은 Ti, Sn, Mg 및 W로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0.5<x+y<1.0이고, 0.1<y<0.6이고, 0<z<0.1이다.
<화학식 3>
육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyO2, 상기 화학식 3에서, 0.5<x+y<1.0이고, 0.1<y<0.6이다.
<화학식 4>
큐빅구조를 갖는 Li[Mn2-xMx]O4, 상기 화학식 4에서, M은 Co, Ni, Cr, Al 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤0.1이다.
또한, 본 발명의 양극 활물질의 제조방법은 (a1) 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자들과 글래시카본의 원료 물질인 고분자 용액을 기계적으로 혼합하는 단계 (a2) 혼합된 슬러리를 건조하는 단계; 및 (a3) (a2)단계에 따라 건조된 양극 활물질을 비활성 분위기의 전기로에서 300 내지 1200에서 30분 내지 6시간 동안 열처리하는 단계로 구성되어 있다.
먼저, 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자들과 글래시카본의 원료 물질인 가소성 또는 경화성 고분자 용액을 기계식 혼합기에 투입한다(a1). 저전자전도성 리튬금속복합산화물로 된 입자들은 전술한 화학식 1 내지 4로 표시된 리튬금속복합산화물로 된 입자들 중에서 1종 이상 선택하는 것이 바람직하다. 또한, 글래시 카본의 원료 물질인 고분자 용액은 에폭시수지, 폴리에스테르수지, 폴리아미드, 폴리우레탄 수지, 퓨란수지 등 고분자 수지 중에서 적절히 선택하여 사용할 수 있으나, 이에 한정되지 않는다.
투입되는 저전자전도성 리튬금속복합산화물로 된 입자들의 평균입경은 중요치 않으며 통상적으로 사용되는 리튬금속복합산화물 입자들의 입경은 1~20㎛가 바람직하다. 평균입경이 작으면 양극활물질의 비표면적이 커지게 되어 양극활물질 표면상을 코팅하기 위해 보다 많은 양의 고분자 수지 용액이 요구된다.
코팅되는 글래시카본의 양은 저전자전도성 리튬금속복합산화물의 중량을 기준으로 약1~15중량%인 것이 바람직하다. 코팅되는 글래시카본의 양이 15중량%보다 많이 첨가되면, 동일 부피 전극 중의 활물질 량이 줄어들게 됨으로 충전전기량이 감소하여 전기적 특성이 저하된다. 그 첨가량이 1중량%보다 작게 되면 글래시카본 코팅에 의한 전자전도성 개선 효과가 거의 없다.
이어서, 리튬 금속복합산화물과 고분자 용액이 혼합된 슬러리를 전기오븐에 넣어서 건조시켜 고분자용액중의 용매를 제거하므로서 리튬금속복합산화물로 된 입자들 표면에 고분자 층을 형성한다. 이어서, 이를 비활성 분위기의 전기로에서 300℃ 내지 1200℃에서 30분 내지 6시간 동안 열처리하여 리튬금속복합산화물 표면의 고분자를 글래시카본으로 만든다. 열처리 온도가 300℃ 이하가 되면 고분자(글래시카본 원료)의 카본화가 충분히 이루어지 않고, 열처리온도가 1200℃보다 높으면 리튬 금속복합산화물의 부반응으로 구조변형이 발생할 수 있기 때문에 상기에 기술된 온도범위에서 진행하는 것이 바람직하다. 이 과정은 고온에서 처리되는 과정이므로 산화를 방지하기 위해서 질소나 아르곤 등의 비활성 분위기에서 실시하는 것이 바람직하다.
전술한 본 발명에 따른 양극 활물질의 제조방법은 리튬 금속복합산화물 입자 표면에 글래시카본을 코팅시키는 방법으로 1단계의 열처리로 리튬 금속복합산화물의 구조형성과 함께 치밀한 글래시카본 피복층이 얻어지는 경제적인 제조법이다.
본 발명에 따른 양극 활물질은 통상의 적용방법에 따라 리튬 이차전지의 양극 활물질로 이용될 수 있다. 리튬 이차전지는 잘 알려진 바와 같이, 음극 활물질을 포함하는 음극, 양극 활물질을 포함하는 양극 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 구비한다. 본 발명에 따라 전자 전도도가 개선된 리튬금속복합산화물 양극 활물질은 결착제와 함께 용매에 부가하여 슬러리를 제조한 다음, 양극에 적용하는 통상적인 방법으로 리튬 이차전지에 이용된다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어져서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되어 지는 것이다.
<실시예>
LiFe1-xMxPO4(M=Mn, Co, Ni, Cr, Al, Ti 및 Mg, 0≤x≤1)의 양극활물질을 제조하기 위하여 아래와 같은 방법으로 활물질 제조를 진행하였다.
먼저, 인산철(Fe3(PO4)2*8H2O)과 인산망간(Mn3(PO4)2*4H2O)을 인산리튬(Li3PO4)을 각각의 몰비 만큼 취해 볼밀 통에 넣고 지르코니아볼과 2-프로판올을 추가하여 24시간동안 볼밀링을 행하여 전구체 슬러리를 만든다. 이 전구체 슬러리를 100℃ 오븐에서 건조시킨다. 건조된 전구체에 폴리에스테르를 아세톤에 희석한 용액을 첨가하여 기계적 혼합기에서 1시간동안 혼합한다. 이 혼합물을 100℃ 오븐에서 건조시킨다. 건조된 고분자/전구체 혼합물을 알루미나 포트에 옮겨 담고 아르곤 가스가 흐르는 튜브형 전기로에서 700℃에서 6시간 열처리하여 소성시켰다. 이렇게 제조된 분말을 몰타르 그라인딩하여 LiFe1-xMxPO4 입자들을 얻었다.
도 1은 전술한 리튬금속복합산화물(글래시카본 피복층이 형성된 것) 제조법과 기존 활물질 제조방법의 차이를 보여주기 위한 흐름도이다. 기존 활물질 제조방법에서는 카본블랙을 사용하고 건식혼합을 하는데 비해 본 발명법은 고분자용액을 사용하고 습식혼합을 하는 차이가 있다.
한편, 도 2는 본 발명의 실시예에 따라 제조한 글래시카본 피복층이 형성된 LiFe1-xMxPO4 입자의 SEM 사진이다. LiFe1-xMxPO4 입자의 표면에 글래시카본 피복층이 균일하게 형성되어 있음을 알 수 있다. 이러한 글래시카본 피복층은 고분자의 탄화되면서 리튬금속복합 산화물 입자 표면에 형성된 것이다.
전술한 방법으로 제조한 실시예에 따른 양극 활물질 분말을 이용하여 다음과 같은 방법으로 리튬 이차전지를 제조하였다. 상기와 같이 제조된 글래시카본 피복층이 형성된 LiFe1-xMxPO4 입자 70중량부와 카본블랙(Super P,MMA Carbon,벨기에) 분말 20중량부, 결착제로서 폴리불화 비닐리덴(PVDF) 10중량부를 유기용매인 N-메틸-2-피롤리돈(NMP) 가한 후 교반을 통해 슬러리를 제조했다.
상기 슬러리를 두께가 15㎛의 알루미늄으로 이루어진 양극 집전체의 한면에 도포하고 프레스하여 양극을 제작했다. 한편, 음극은 12㎛의 구리로 이루어진 음극 집전체의 한면에 리튬금속을 압착하여 제조하였다. 다음으로, 전술한 방법으로 제조한 각각의 양극과 음극을 일정한 크기로 펀칭하여 그 사이에 두께(16㎛)의 다공성 폴리에틸렌 필름을 개재시켜 적층하여 전지부를 제작했다.
봉지 형상으로 성형한 폴리프로필렌 필름 내에 전술한 전지부를 수납한 다음, 에틸렌 카보네이트와 디에틸카보네이트 및 에틸메틸카보네이트가 40:30:30의 체적비율로 혼합된 비수용매에 육불화인산리튬(LiPF6)의 농도가 1.0몰/L이 되도록 용해시킨 비수전해액을 전지용량 1Ah당 3.57g이 되도록 전지부에 주입하여, 비수전해질 이차전지를 조립했다. 제조한 각각의 이차전지들의 성능을 다음과 같이 평가하였다.
도3은 전술한 방법에 따라 제조한 리튬금속복합산화물(글래시카본 피복층이 형성된 것)과 기존 방법에 의해 제조된 리튬금속복합산화물의 율특성 측정결과를 나타낸 그래프이다. 2C 이상의 고율에서 본 발명의 실시예에 따라 제조한 글래시카본 피복층이 형성된 LiFe1-xMxPO4 입자로 제조된 전지의 특성이 우수함을 알 수 있다.
본 발명에 따른 양극 활물질을 이용한 리튬 이차전지는 우수한 전도특성 발현에 따라 저항을 감소시킴으로서 충방전 출력특성에 있어 상당히 개선된 결과를 보여주고 있다. 이는 LiCoO2보다 낮은 전자전도성을 갖는 리튬금속복합산화물의 표면을 도전성이 우수한 글래시카본으로 코팅하여 충방전시 활물질간의 균일한 전류분포를 유지시킬 수 있음은 물론 전자전도성을 충분히 향상시킴으로서, 보다 효과적인 리튬이온의 확산을 유도할 수 있기 때문이다. 또한, 리튬금속복합산화물 표면과 전해액과의 계면 분해 반응을 글래시카본 피복층 억제할 것으로 기대되어 고온에서의 열적특성도 향상될 것으로 사료된다.
본 발명은 리튬 이차전지에 사용되는 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지에 이용 가능한 것이며, 더 자세하게는 저전자전도성의 리튬금속복합산화물 입자 표면에 글래시카본 피복층을 형성하여 전자전도도를 향상시키므로서 출력특성이 우수하고, 제조방법이 간단하여 경제적인 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지에 이용 가능한 것이다.

Claims (8)

  1. 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자 및 상기 리튬금속복합산화물 입자 표면이 글래시카본(glassy carbon) 피복층으로 이루어진 리튬 이차전지용 양극 활물질.
  2. 제1항에 있어서, 상기 글래시카본 피복층의 형성물질은,
    에폭시수지, 폴리에스테르수지, 폴리아미드, 폴리우레탄 수지 및 퓨란수지 중의 어느 하나 또는 이들의 복합물로 이루어진 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  3. 제1항에 있어서, 상기 저전자전도성 리튬금속복합산화물은,
    하기 화학식 1 내지 화학식 4로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬 이차전지용 양극 활물질;
    <화학식 1>
    감람석(Olivine)구조를 갖는 LiFe1-xMxPO4
    상기 화학식 1에서, M은 Mn, Co, Ni, Cr, Al, Ti 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤1임,
    <화학식 2>
    육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyO2
    상기 화학식 2에서, M은 Ti, Sn, Mg 및 W로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0.5<x+y<1.0이고, 0.1<y<0.6이고, 0<z<0.1임,
    <화학식 3>
    육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyO2
    상기 화학식 3에서, 0.5<x+y<1.0이고, 0.1<y<0.6임,
    <화학식 4>
    큐빅구조를 갖는 Li[Mn2-xMx]O4
    상기 화학식 4에서, M은 Co, Ni, Cr, Al 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤0.1임.
  4. 제1항 또는 제2항에 있어서, 상기 글래시카본 피복층은 양극 활물질 총 중량부를 기준으로 1 내지 15중량부의 함량으로 형성된 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  5. 제1항 또는 제3항에 있어서, 상기 리튬금속복합산화물로 된 입자의 입경은 1 내지 20㎛인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
  6. 가소성 또는 경화성 고분자 용액으로 리튬금속복합산화물을 코팅하고 소성시켜 리튬금속복합산화물로 된 입자들 표면에 글래시카본 피복층을 형성하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  7. 음극 활물질을 포함하는 음극;
    양극 활물질을 포함하는 양극; 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 구비하되, 상기 양극 활물질은 전자 전도도가 10-5S/Cm 미만인 저전자전도성 리튬금속복합산화물로 된 입자 표면에 글래시카본 피복층이 형성된 것을 특징으로 하는 리튬 이차전지.
  8. 제7항에 있어서, 상기 저전자전도성 리튬금속복합산화물은 하기 화학식 1 내지 화학식 4로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬 이차전지;
    <화학식 1>
    감람석(Olivine)구조를 갖는 LiFe1-xMxPO4
    상기 화학식 1에서, M은 Mn, Co, Ni, Cr, Al, Ti 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤1임,
    <화학식 2>
    육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyO2
    상기 화학식 2에서, M은 Ti, Sn, Mg 및 W로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0.5<x+y<1.0이고, 0.1<y<0.6이고, 0<z<0.1임,
    <화학식 3>
    육방정계의 층상암염 구조를 갖는 LiNi(1-x-y)CoxMnyO2
    상기 화학식 1에서, 0.5<x+y<1.0이고, 0.1<y<0.6임,
    <화학식 4>
    큐빅구조를 갖는 Li[Mn2-xMx]O4
    상기 화학식 4에서, M은 Co, Ni, Cr, Al 및 Mg로 이루어진 군으로부터 선택된 적어도 하나 이상의 원소이고, 0≤x≤0.1임.
PCT/KR2010/003041 2010-01-25 2010-05-14 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지 WO2011090235A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0006392 2010-01-25
KR1020100006392A KR101243941B1 (ko) 2010-01-25 2010-01-25 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2011090235A1 true WO2011090235A1 (ko) 2011-07-28

Family

ID=44307034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003041 WO2011090235A1 (ko) 2010-01-25 2010-05-14 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지

Country Status (2)

Country Link
KR (1) KR101243941B1 (ko)
WO (1) WO2011090235A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018108515A1 (de) * 2016-12-16 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Lithiumzelle mit glaskohlenstoffschicht
CN117038956A (zh) * 2023-10-09 2023-11-10 浙江帕瓦新能源股份有限公司 无钴高镍正极材料及其制备方法、锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092025A (ko) 2017-02-08 2018-08-17 한국전기연구원 카본블랙이 코팅된 나트륨 도핑 인산염계 양극활물질 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040071852A (ko) * 2003-02-07 2004-08-16 삼성에스디아이 주식회사 카본 화합물이 흡착된 정극 활물질 및 이를 채용한 리튬전지
KR20070042551A (ko) * 2004-08-16 2007-04-23 쇼와 덴코 가부시키가이샤 리튬전지용 정극 및 이를 이용하는 리튬전지
KR20080047536A (ko) * 2005-09-21 2008-05-29 칸토 덴카 코교 가부시키가이샤 정극 활물질의 제조 방법 및 그것을 사용한 비수 전해질전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756927B1 (ko) * 2005-02-22 2007-09-07 주식회사 코캄 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한리튬 이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040071852A (ko) * 2003-02-07 2004-08-16 삼성에스디아이 주식회사 카본 화합물이 흡착된 정극 활물질 및 이를 채용한 리튬전지
KR20070042551A (ko) * 2004-08-16 2007-04-23 쇼와 덴코 가부시키가이샤 리튬전지용 정극 및 이를 이용하는 리튬전지
KR20080047536A (ko) * 2005-09-21 2008-05-29 칸토 덴카 코교 가부시키가이샤 정극 활물질의 제조 방법 및 그것을 사용한 비수 전해질전지

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018108515A1 (de) * 2016-12-16 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Lithiumzelle mit glaskohlenstoffschicht
US11005140B2 (en) 2016-12-16 2021-05-11 Bayerische Motoren Werke Aktiengesellschaft Lithium cell having a glassy carbon layer
CN117038956A (zh) * 2023-10-09 2023-11-10 浙江帕瓦新能源股份有限公司 无钴高镍正极材料及其制备方法、锂离子电池
CN117038956B (zh) * 2023-10-09 2024-01-23 浙江帕瓦新能源股份有限公司 无钴高镍正极材料及其制备方法、锂离子电池

Also Published As

Publication number Publication date
KR101243941B1 (ko) 2013-03-13
KR20110086973A (ko) 2011-08-02

Similar Documents

Publication Publication Date Title
WO2012115411A2 (ko) 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2012165758A1 (ko) 리튬 이차전지
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
KR20160034799A (ko) 비수전해질 이차 전지용 전극 활물질 및 그것을 구비한 비수전해질 이차 전지
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
CN104641495A (zh) 用于锂离子电池的具有受控不可逆容量损失的复合阴极材料
WO2012108702A2 (ko) 출력특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2014126312A1 (ko) 리튬이차전지용 양극복합소재 제조방법 및 이를 이용한 전극 제조방법 및 상기 전극의 충방전 방법
WO2014021686A1 (ko) 출력 특성과 안전성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2019240496A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
CN101499522B (zh) 锂电池正极材料、其制造方法及应用此材料的锂二次电池
WO2013042957A1 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬이차전지
WO2016153136A1 (ko) 이차 전지용 음극 활물질, 그리고 이를 포함하는 음극, 전극 조립체 및 이차전지
WO2012118338A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
KR20070066453A (ko) 정극 활물질. 그 제조방법 및 이를 구비한 리튬 이차 전지
KR100756927B1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한리튬 이차전지
KR100743982B1 (ko) 활물질. 그 제조방법 및 이를 구비한 리튬 이차 전지
WO2013162213A1 (ko) 출력 특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2011090235A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지
KR20060085085A (ko) 리튬이차전지용 양극활 물질 및 이를 포함한 리튬이차전지
KR101142533B1 (ko) 금속계 아연 음극 활물질 및 이를 이용한 리튬이차전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2021246830A1 (ko) 리튬 이차전지용 양극 활물질의 전기화학적 특성을 활성화시키는 방법 및 리튬 이차전지용 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844031

Country of ref document: EP

Kind code of ref document: A1