WO2011159083A2 - 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자 - Google Patents

전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자 Download PDF

Info

Publication number
WO2011159083A2
WO2011159083A2 PCT/KR2011/004337 KR2011004337W WO2011159083A2 WO 2011159083 A2 WO2011159083 A2 WO 2011159083A2 KR 2011004337 W KR2011004337 W KR 2011004337W WO 2011159083 A2 WO2011159083 A2 WO 2011159083A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrochemical device
monomer
solid electrolyte
lithium
Prior art date
Application number
PCT/KR2011/004337
Other languages
English (en)
French (fr)
Other versions
WO2011159083A3 (ko
Inventor
권요한
김제영
이상영
오병훈
김기태
하효정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2013515262A priority Critical patent/JP6005633B2/ja
Priority to CN201180029348.8A priority patent/CN102948000B/zh
Priority to EP11795949.4A priority patent/EP2581979B1/en
Publication of WO2011159083A2 publication Critical patent/WO2011159083A2/ko
Priority to US13/353,690 priority patent/US9142855B2/en
Publication of WO2011159083A3 publication Critical patent/WO2011159083A3/ko
Priority to US14/826,641 priority patent/US9318771B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte for an electrochemical device, a method of manufacturing the same, and an electrochemical device having the same.
  • a secondary battery which is a typical case of an electrochemical device, refers to a device that converts external electrical energy into chemical energy and stores it and generates electricity when needed.
  • the term “rechargeable battery” is also used to mean that it can be charged multiple times.
  • Commonly used secondary batteries include lead storage batteries, nickel cadmium batteries (NiCd), nickel hydrogen storage batteries (NiMH), lithium ion batteries (Li-ion), and lithium ion polymer batteries (Li-ion polymer). Secondary batteries offer both economic and environmental advantages over primary batteries that are used once and discarded.
  • Secondary batteries are currently used where low power is used. Examples are devices, handhelds, tools, and uninterruptible power supplies that help start up the car. Recently, the development of wireless communication technology has led to the popularization of portable devices, and there is also a tendency to wirelessize many kinds of conventional devices, and the demand for secondary batteries is exploding. In addition, hybrid vehicles and electric vehicles have been put to practical use in terms of preventing environmental pollution. These next-generation vehicles employ technologies that use secondary batteries to reduce value, weight, and increase lifespan.
  • secondary batteries are cylindrical, rectangular or pouch type batteries. This is because the secondary battery is manufactured by mounting an electrode assembly composed of a negative electrode, a positive electrode, and a separator inside a pouch-shaped case of a cylindrical or rectangular metal can or an aluminum laminate sheet, and injecting an electrolyte into the electrode assembly. Therefore, since a certain space for mounting the secondary battery is essentially required, the cylindrical, square or pouch type of the secondary battery has a problem in that it acts as a limitation for the development of various types of portable devices. Accordingly, there is a need for a new type of secondary battery that is easy to deform, and in particular, an electrolyte requires a suitable material such as an electrolyte having excellent ion conductivity without fear of leakage.
  • a liquid electrolyte which is an ion conductive organic liquid electrolyte in which salts are dissolved in a non-aqueous organic solvent, has been mainly used as an electrolyte for an electrochemical device using an electrochemical reaction.
  • the use of a liquid electrolyte in this manner is not only highly likely to degenerate the electrode material and volatilize the organic solvent, but also may cause safety problems such as combustion caused by an increase in the ambient temperature and the temperature of the battery itself.
  • a polymer electrolyte such as a gel polymer electrolyte or a solid polymer electrolyte has been proposed to overcome the safety problem of the liquid electrolyte.
  • the safety of the electrochemical device is improved in the order of liquid electrolyte ⁇ gel polymer electrolyte ⁇ solid polymer electrolyte, while the performance of the electrochemical device is known to decrease. Due to the performance of such inferior electrochemical devices, batteries using a solid polymer electrolyte have not been commercialized.
  • the gel polymer electrolyte is less ionic conductivity than the liquid electrolyte, there is a risk of leakage, there is a disadvantage that the mechanical properties are not excellent.
  • Korean Patent Laid-Open Publication No. 2008-33421 discloses an electrolyte using a plastic crystal matrix instead of a liquid organic solvent, which shows an ion conductivity that is inferior to the liquid electrolyte.
  • a plastic crystal matrix instead of a liquid organic solvent, which shows an ion conductivity that is inferior to the liquid electrolyte.
  • a separator for short circuit prevention is required.
  • a linear polymer matrix such as polyethylene oxide may be introduced to improve the mechanical strength of the plastic crystal matrix electrolyte.
  • such an electrolyte may not have mechanical properties that can replace the role of a separator.
  • an additional drying process is required because a solvent for dissolving the linear polymer is used in the manufacturing process.
  • an object of the present invention is to provide a plastic crystal matrix electrolyte excellent in ion conductivity and capable of securing mechanical strength, and a method of manufacturing the same.
  • an electrolyte comprising a composite of an ionic salt-doped plastic crystal matrix electrolyte and a polymer crosslinked structure.
  • Succinonitrile and the like can be used as the plastic crystal matrix.
  • the ionic salt is preferably a lithium salt, but lithium bis-trifluoromethanesulfonylimide, lithium bis-perfluoroethylsulfonylimide, lithium tetrafluoroborate and the like can be used.
  • the polymer crosslinked structure of the present invention is preferably a polymerized monomer having two or more functional groups, trimethylolpropane ethoxylate triacrylate, polyethylene glycol dimethacrylate , trimethylol Propane trimethacrylate, trimethylolpropane trimethacrylate, ethoxylated bis phenol A dimethacrylate, and divinyl benzene may be used.
  • the polymer crosslinked structure of the present invention may be a copolymer of a monomer having two or more functional groups and a monomer having one functional group.
  • a monomer having one functional group methyl methacrylate (methyl methacrylate), Ethyl methacrylate, butyl methacrylate, methyl acrylate, butyl acrylate, ethylene glycol methyl ethylene methyl acrylate, ethylene glycol Methyl ether methacrylate (ethylene glycol methyl ether methacrylate), acrylonitrile (acrylonitrile), vinyl acetate (vinyl acetate), vinyl chloride (vinylchloride) and vinyl fluoride (vinyl fluoride) and the like can be used.
  • a solution is formed by adding a monomer having two or more functional groups to the ionic salt-doped plastic crystal matrix electrolyte. And polymerizing the monomers in the solution.
  • the solution may further comprise a monomer having one functional group.
  • the electrolyte of the present invention has excellent ionic conductivity corresponding to the liquid electrolyte using plastic crystals, and has a mechanical strength corresponding to the solid electrolyte by introducing a polymer crosslinked structure.
  • the electrolyte manufacturing method of the present invention does not necessarily require a solvent, so the drying process can be omitted, and thus there is a simple manufacturing process.
  • Such electrolytes have high ionic conductivity and mechanical strength at the level of solid electrolytes, and thus are suitable for cable-type cells that are easily deformed.
  • Example 1 is a graph showing the electrochemical stability of the electrolyte of Example 1 and Comparative Example 2.
  • Example 2 is a graph showing the ion conductivity according to the change of temperature in Example 1 and Comparative Examples 1-2.
  • Example 3 is a graph showing the tensile strength of Example 1 and Comparative Example 2.
  • the electrolyte of the present invention is an electrolyte including a composite of a crystalline salt doped plastic crystal matrix electrolyte and a polymer crosslinked structure.
  • the electrolyte of the present invention which serves as a medium for transporting lithium ions in the positive and negative electrodes, includes a plastic crystal matrix electrolyte and a polymer crosslinked structure.
  • Plastic crystals are compounds in which molecules or ions exhibit rotational disorders, while the center of gravity occupies an aligned position in the crystal lattice structure.
  • the rotating phase of plastic crystals usually occurs as a solid-solid transition below the melting point, often forming plastic properties and mechanical fluidity and high conductivity.
  • the ionic salts when doped, it shows high ion conductivity and is suitable as an electrolyte for secondary batteries.
  • the plastic crystal electrolyte exhibits fluidity, mechanical properties are inferior, and thus, the polymer cross-linked structure is introduced in the present invention to improve the plastic crystal electrolyte.
  • the polymer cross-linked structure having a three-dimensional structure by chemical bonds between molecular chains forms a cross-linked structure unlike a linear polymer, and thus complements the fluidity of the plastic crystal matrix electrolyte.
  • the crosslinking is not easily deformed with respect to heat, the electrolyte of the present invention does not soften even when heat is applied, thereby ensuring thermal stability.
  • the electrolyte of the present invention is a complex of the ionic salt-doped plastic crystal matrix electrolyte and the polymer crosslinked structure, and the complex is obtained by uniformly mixing a monomer having two or more functional groups capable of crosslinking with the ionic salt-doped plastic crystal electrolyte The monomer can then be polymerized to form a crosslinked structure.
  • the composite may be a cross-linked structure by polymerizing the monomer after homogeneously mixing a monomer having two or more functional groups capable of crosslinking, a monomer having one functional group and a plastic crystal electrolyte doped with an ionic salt.
  • the polymer crosslinked structure formed thereby contributes to the improvement of the mechanical properties of the electrolyte and imparts corresponding mechanical properties to the solid electrolyte.
  • the plastic crystal matrix electrolyte is uniformly distributed, the ion conductivity is also excellent.
  • the solid electrolyte of the present invention includes a plastic crystal matrix electrolyte doped with ionic salts; And the weight ratio of the polymer crosslinked structure may be 30:70 to 90:10.
  • such a polymer crosslinked structure is polymerized with a monomer having two or more functional groups, and further preferably a monomer having two or more functional groups and a single amount having one functional group copolymerized.
  • the monomer having two or more functional groups and the monomer having one functional group are meant to include not only monomers but also oligomers having 2 to 20 repeating units.
  • the monomer having two or more functional groups is not limited in kind, but is not limited to trimethylolpropane ethoxylate triacrylate, polyethylene glycol dimethacrylate, and trimethylolpropane trimethacryl. Trimethylolpropane trimethacrylate, ethoxylated bis phenol A dimethacrylate, divinyl benzene, and the like can be used.
  • the monomer having one functional group is not limited to the kind thereof, but methyl methacrylate, ethyl methacrylate, butyl methacrylate and methyl acrylate. ), Butyl acrylate, ethylene glycol methyl ether acrylate, ethylene glycol methyl ether methacrylate, ethylene glycol methyl ether methacrylate, acrylonitrile, vinyl acetate acetate), vinyl chloride (vinylchloride) and vinyl fluoride (vinyl fluoride) may be used.
  • the plastic crystal matrix is not limited in kind, but succinonitrile is preferably used.
  • the ionic salts doped in the plastic crystal matrix electrolyte are preferably lithium salts, and lithium bis-trifluoromethanesulfonylimide, lithium bis-perfluoroethylsulfonylimide, lithium tetrafluoroborate, and the like can be used. Can be.
  • a method for preparing an electrolyte including a composite of a ionic salt-doped plastic crystal electrolyte and a polymer crosslinked structure is as follows.
  • a solution is prepared by mixing an ionic salt-doped plastic crystal matrix electrolyte and a monomer having two or more functional groups (step S1).
  • a plastic crystal matrix electrolyte doped with the ionic salts; And the weight ratio of the monomer may be 30: 70 to 90: 10.
  • the monomer having two or more functional groups capable of crosslinking and the monomer having one functional group is meant to include not only monomers but also oligomers having 2 to 20 repeating units, and the aforementioned monomers may be used.
  • the above-mentioned plastic crystalline matrix electrolyte and ionic salt can also be used.
  • the ionic salt may use a concentration of 0.1 to 3 moles relative to the plastic crystal matrix.
  • a solvent may be added at the time of mixing, but the solvent is not necessarily essential. However, when a solvent is used, a drying step for removing the solvent is additionally required. And a photoinitiator, such as benzoin, can be added selectively for the superposition
  • a photoinitiator such as benzoin
  • a solid electrolyte is prepared by polymerizing monomers having two or more functional groups in the solution (step S2).
  • polymerization is not specifically limited, The method of superposing
  • the solid electrolyte of the present invention described above may be used in an electrochemical device including a positive electrode and a negative electrode.
  • the electrochemical device of the present invention includes all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery among the secondary batteries is preferable.
  • the solid electrolyte of the present invention is manufactured into a lithium secondary battery by injecting an electrode structure composed of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode, the negative electrode, and the separator constituting the electrode structure all those conventionally used for manufacturing a lithium secondary battery may be used.
  • the electrolyte for a lithium secondary battery of the present invention is a solid electrolyte, the separator can be replaced.
  • the positive electrode and the negative electrode are composed of a current collector and an active material.
  • a lithium-containing transition metal oxide may be preferably used as the positive electrode active material.
  • sulfides, selenides and halides may also be used.
  • a carbon material capable of occluding and releasing lithium ions a lithium-containing titanium composite oxide (LTO); Metals (Me) which are Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And a complex of the metals (Me) and carbon; Etc.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • the negative electrode may include a binder, and the binder may include vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, Various kinds of binder polymers such as polymethylmethacrylate may be used.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can. In addition, it may be a cable type lithium secondary battery having a structure such as a linear wire.
  • TMPEOTA Trimethylolpropane ethoxylate triacrylate
  • the mixture was cast on a glass plate and irradiated with ultraviolet rays for 20 seconds to polymerize to prepare an electrolyte membrane.
  • Trimethylolpropane ethoxylate triacrylate (TMPEOTA) and the plastic crystal electrolyte were prepared in the same manner as in Example 1 with a weight ratio of 30:70.
  • Trimethylolpropane ethoxylate triacrylate (TMPEOTA) and the plastic crystal electrolyte were prepared in the same manner as in Example 1 with a weight ratio of 50:50.
  • Lithium bis-trifluoromethan sulfonylimide was added to succinonitrile to prepare a 1 M pure plastic crystal electrolyte.
  • Lithium bis-trifluoromethan sulfonylimide was added to succinonitrile to prepare a 1 M plastic crystal electrolyte.
  • PVdF-HFP and the prepared plastic crystal electrolyte were added in a weight ratio of 15:85, and acetone was added as a solvent to 20% of the total weight, and mixed to mix uniformly.
  • a coin-shaped half cell was manufactured by inserting the electrolyte membrane prepared in Example 1-3 between these electrodes using tin-plated copper as a working electrode and lithium metal as a counter electrode. It was.
  • Electrochemical stability measurements of the electrolytes prepared in Example 1 and Comparative Example 2 are shown in FIG. 1. Electrochemical stability measurement was made of a coin-type battery by inserting the electrolyte membrane prepared in Example 1 and Comparative Example 2 between these electrodes with stainless steel as the measuring electrode and lithium metal as the counter electrode. Electrochemical stability was measured by linear scanning voltammetry (LSV) up to 6V at a scan rate of 5mV / s.
  • LSV linear scanning voltammetry
  • the plastic crystal electrolyte of Example 1 having a polymer crosslinked structure showed an improved electrochemical stability, and in particular, an excellent electrochemical stability up to 5V, compared to the case of Comparative Example 2, which is a linear polymer matrix. .
  • Ion conductivity according to the polymer cross-linked structure component ratio for Example 1 was measured and shown in Table 1 below.
  • Example 1 shows a lower ion conductivity than that of Comparative Example 2, which is a linear polymer matrix plastic crystal electrolyte, but shows improved ion conducting properties than that of Comparative Example 1, which is a pure plastic crystal electrolyte.
  • Comparative Example 2 shows improved ion conducting properties than that of Comparative Example 1, which is a pure plastic crystal electrolyte.
  • Example 1 which is a polymer crosslinked structure
  • Comparative Example 2 which is a polymer matrix plastic crystal electrolyte
  • the half cell according to Preparation Example 1 of the present invention is slightly higher in resistance than the half cell of Comparative Preparation Example 1 using a liquid electrolyte / separation membrane, but it can be seen that the performance of a general half cell level is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질과 고분자 가교구조체의 복합체를 포함하는 전해질 및 그 제조방법에 관한 것이다. 이러한 전해질은 플라스틱 크리스탈을 사용하여 액체 전해질에 상응하는 우수한 이온전도성을 가지며, 고분자 가교 구조체를 도입하여 고체 전해질에 상응하는 기계적 강도를 가진다. 또한, 본 발명의 전해질 제조방법은 용매를 필수적으로 요구하지 아니하므로 제조고정이 간단한 장점이 존재한다. 이러한 전해질은 이온전도성과 기계적 강도가 모두 우수하므로 형태의 변형이 용이한 케이블형 전지에 적합하다.

Description

전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
본 발명은 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자에 관한 것이다.
본 출원은 2010년 6월 14일에 출원된 한국특허출원 제10-2010-0056062호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2011년 6월 14일에 출원된 한국특허출원 제10-2011-0057343호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
전기화학소자의 대표적인 경우인 이차전지는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치를 말한다. 여러 번 충전할 수 있다는 뜻으로 "충전식 전지"(rechargeable battery)라는 명칭도 쓰인다. 흔히 쓰이는 이차전지로는 납 축전지, 니켈 카드뮴 전지(NiCd), 니켈 수소 축전지(NiMH), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer)가 있다. 이차전지는 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다.
이차전지는 현재 낮은 전력을 사용하는 곳에 쓰인다. 이를테면 자동차의 시동을 돕는 기기, 휴대용 장치, 도구, 무정전 전원 장치를 들 수 있다. 최근 무선통신 기술의 발전은 휴대용 장치의 대중화를 주도하고 있으며, 종래의 많은 종류의 장치들을 무선화하는 경향도 있어, 이차전지에 대한 수요가 폭발하고 있다. 또한, 환경오염 등의 방지 측면에서 하이브리드 자동차, 전기 자동차가 실용화되고 있는데, 이들 차세대 자동차들은 이차전지를 사용하여 값과 무게를 줄이고 수명을 늘리는 기술을 채용하고 있다.
일반적으로 이차전지는 원통형, 각형 또는 파우치형의 전지가 대부분이다. 이는 이차전지는 음극, 양극 및 분리막으로 구성된 전극조립체를 원통형 또는 각형의 금속캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착하고, 상기 전극 조립체에 전해질을 주입시켜 제조하기 때문이다. 따라서, 이차전지 장착을 위한 일정한 공간이 필수적으로 요구되므로, 이러한 이차전지의 원통형, 각형 또는 파우치형의 형태는 다양한 형태의 휴대용 장치의 개발에 대한 제약으로 작용하게 되는 문제점이 있다. 이에, 형태의 변형이 용이한 신규한 형태의 이차전지가 요구되며, 특히 전해질의 경우에는 누액의 염려가 없고 이온전도성이 우수한 전해질과 같은 적합한 소재가 요구된다.
종래 전기 화학 반응을 이용한 전기화학소자용 전해질로는 비수계 유기 용매에 염을 용해한 이온전도성 유기 액체 전해질인 액체 상태의 전해질이 주로 사용되어 왔다. 그러나 이와 같이 액체 상태의 전해질을 사용하면, 전극 물질이 퇴화되고 유기 용매가 휘발될 가능성이 클 뿐만 아니라, 주변 온도 및 전지 자체의 온도 상승에 의한 연소 등과 같은 안전성에 문제가 있고, 누액의 염려가 있으며, 다양한 형태의 전기화학소자의 구현에 어려움이 따른다. 이에 따라, 이러한 액체 전해질의 안전성 문제를 극복하기 위해 겔 고분자 전해질 또는 고체 고분자 전해질과 같은 고분자 전해질이 제안되었다. 일반적으로, 전기화학소자의 안전성은 액체 전해질 < 겔 고분자 전해질 < 고체 고분자 전해질 순서로 향상되나, 이에 반해 전기화학소자의 성능은 감소하는 것으로 알려져 있다. 이러한 열등한 전기화학소자의 성능으로 인하여 아직까지 고체 고분자 전해질을 채택한 전지들은 상업화되지 않은 것으로 알려져 있다. 한편, 상기 겔 고분자 전해질은 액체 전해질에 비하여 이온전도성이 떨어지고 누액의 염려가 있으며, 기계적 물성이 우수하지 못한 단점이 존재한다.
최근 대한민국 공개특허 제2008-33421호에는 액체 유기 용매 대신에 플라스틱 크리스탈 매트릭스를 사용한 전해질이 개시되어 있으며, 이는 액체 전해질에 뒤떨어지지 않는 이온전도성을 보인다. 그러나, 액체에 가까운 유동성을 띠는 성상을 보이므로 기계적 물성이 열악하고, 실제로 전지의 구성시에는 단락 방지를 위한 세퍼레이터가 필요하게 된다. 또한, 플라스틱 크리스탈 매트릭스 전해질의 기계적 강도의 개선을 위해서 폴리에틸렌옥사이드와 같은 선형 고분자 매트릭스를 도입하는 경우도 있으나, 이 때에도 이러한 전해질은 세퍼레이터의 역할을 대신할 정도의 기계적 물성을 보유하지 못하는 단점이 있으며, 제조과정에서 선형 고분자를 용해시키기 위한 용매를 사용하기 때문에 추가적인 건조공정이 필요한 문제점이 있다.
이에, 플라스틱 크리스탈 매트릭스 전해질의 높은 이온전도성을 유지하면서 기계적 물성을 향상시킨 고체전해질의 개발이 시급하다.
따라서 본 발명이 해결하고자 하는 과제는, 이온전도성이 우수하고, 기계적 강도의 확보가 가능한 플라스틱 크리스탈 매트릭스 전해질 및 이의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질과 고분자 가교구조체의 복합체를 포함하는 전해질을 제공한다.
이러한 플라스틱 크리스탈 매트릭스로는 숙시노니트릴 등을 사용할 수 있다.
또한, 이온성염으로는 리튬염인 것이 바람직한데, 리튬 비스-트리플루오로메탄설포닐이미드, 리튬 비스-퍼플루오로에틸설포닐이미드 및 리튬 테트라플루오로보레이트 등을 사용할 수 있다.
본 발명의 고분자 가교구조체는 2개 이상의 관능기를 갖는 단량체가 중합된 것이 바람직하고, 트리메틸올프로판 에톡실레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate), 폴리에틸렌 글리콜 디메타크릴레이트(polyethylene glycol dimethacrylate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 에톡실레이트 비스페놀 에이 디메타크릴레이트(ethoxylated bis phenol A dimethacrylate) 및 디비닐벤젠(divinyl benzene) 등을 사용할 수 있다.
또한, 본 발명의 고분자 가교구조체는 상기 2개 이상의 관능기를 갖는 단량체와 1개의 관능기를 갖는 단량체가 공중합된 것을 사용할 수 있으며, 이러한 1개의 관능기를 갖는 단량체로는 메틸메타크릴레이트(methyl methacrylate), 에틸메타크릴레이트(ethyl methacrylate), 부틸메타크릴레이트(buthyl methacrylate), 메틸아크릴레이트(methyl acrylate), 부틸아크릴레이트(buthyl acrylate), 에틸렌 글리콜 메틸에테르아크릴레이트(ethylene glycol methyl ether acrylate), 에틸렌 글리콜 메틸에테르메타크릴레이트(ethylene glycol methyl ether methacrylate), 아크릴로니트릴(acrylonitrile), 비닐아세테이트(vinyl acetate), 비닐클로라이드(vinylchloride) 및 비닐플로라이드(vinyl fluoride) 등을 사용할 수 있다.
본 발명의 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질과 고분자 가교구조체의 복합체를 포함하는 전해질의 제조방법은 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질에 2개 이상의 관능기를 갖는 단량체를 첨가하여 용액을 생성하는 단계 및 상기 용액 내의 단량체를 중합시켜는 단계를 포함한다. 또한, 상기 용액은 1개의 관능기를 갖는 단량체를 추가로 포함할 수 있다.
본 발명의 전해질은 플라스틱 크리스탈을 사용하여 액체 전해질에 상응하는 우수한 이온전도성을 가지며, 고분자 가교 구조체를 도입하여 고체 전해질에 상응하는 기계적 강도를 가진다. 또한, 본 발명의 전해질 제조방법은 용매를 필수적으로 요구하지 아니하므로 건조공정이 생략 가능하므로 제조공정이 간단한 장점이 존재한다. 이러한 전해질은 높은 이온전도성을 가지고, 고체 전해질 수준의 기계적 강도를 가지므로 형태의 변형이 용이한 케이블형 전지에 적합하다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 실시예 1 및 비교예 2의 전해질의 전기화학적 안정성을 나타낸 그래프이다.
도 2는 실시예 1 및 비교예 1-2의 온도의 변화에 따른 이온전도도를 나타낸 그래프이다.
도 3은 실시예 1 및 비교예 2의 인장강도를 나타낸 그래프이다.
도 4는 제조예 1 및 비교제조예 1의 반쪽전지 성능을 나타낸 그래프이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 전해질은 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질과 고분자 가교구조체의 복합체를 포함하는 전해질이다.
양극 및 음극에서 리튬이온을 운송하는 매질의 역할을 하는, 본 발명의 전해질은 플라스틱 크리스탈 매트릭스 전해질 및 고분자 가교 구조체를 포함한다.
플라스틱 크리스탈은 분자 혹은 이온이 회전 무질서를 보이는 반면에 무게 중심은 결정 격자 구조에서 정렬된 위치를 차지하는 화합물이다. 플라스틱 크리스탈의 회전 상은 보통 녹는점 이하의 고체-고체 전이로 발생하여 종종 플라스틱 성질과 기계 유동성 및 높은 전도도를 형성한다. 특히, 이온성염을 도핑한 경우에는 높은 이온전도성을 보이므로 이차전지용 전해질로 적합하다. 그러나, 이러한 플라스틱 크리스탈 전해질은 유동성을 나타내므로 기계적 특성이 떨어지므로 이를 개선하기 위하여 본 발명에서는 고분자 가교 구조체를 도입하였다.
분자사슬 사이의 화학결합에 의해 3차원적 구조를 갖는 고분자 가교 구조체는 선형 고분자와 달리 가교 구조체를 형성하고 있으므로, 플라스틱 크리스탈 매트릭스 전해질의 유동성을 보완하게 된다. 또한, 이러한 가교결합은 열에 대하여 변형이 쉽게 일어나지 않으므로 본 발명의 전해질은 열을 가한 경우에도 연화가 발생하지 않으므로 열안정성이 확보된다.
본 발명의 전해질은 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질과 고분자 가교구조체의 복합체인 것으로, 이러한 복합체는 가교가 가능한 2개 이상의 관능기를 갖는 단량체와 이온성염이 도핑된 플라스틱 크리스탈 전해질을 균일하게 혼합시킨 후에 단량체를 중합시켜 가교 구조체를 형성시킬 수 있다. 또한, 상기 복합체는 가교가 가능한 2개 이상의 관능기를 갖는 단량체, 1개의 관능기를 갖는 단량체와 이온성염이 도핑된 플라스틱 크리스탈 전해질을 균일하게 혼합시킨 후에 단량체를 중합시켜 가교 구조체를 형성시킬 수도 있다. 이에 의해서 형성된 고분자 가교 구조체는 전해질의 기계적 물성의 향상에 기여하게 되어 고체 전해질에 상응하는 기계적 특성을 부여한다. 또한, 플라스틱 크리스탈 매트릭스 전해질이 균일하게 분포되어 이온전도성도 우수하다.
본 발명의 고체 전해질은 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질; 및 고분자 가교구조체의 중량비는 30: 70 내지 90: 10일 수 있다.
이러한 고분자 가교구조체는 2개 이상의 관능기를 갖는 단량체가 중합된 것이 바람직하고, 또한 2개 이상의 관능기를 갖는 단량체와 1개의 관능기를 갖는 단량가 공중합된 것이 바람직하다. 이러한 2개 이상의 관능기를 갖는 단량체와 1개의 관능기를 갖는 단량체는 단량체 뿐만 아니라 반복단위가 2 ~ 20인 저중합체인 경우를 포함하는 것을 의미한다.
2개 이상의 관능기를 갖는 단량체로는 그 종류를 한정하는 것은 아니지만, 트리메틸올프로판 에톡실레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate), 폴리에틸렌 글리콜 디메타크릴레이트(polyethylene glycol dimethacrylate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 에톡실레이트 비스페놀 에이 디메타크릴레이트(ethoxylated bis phenol A dimethacrylate) 및 디비닐벤젠(divinyl benzene) 등을 사용할 수 있다.
그리고, 1개의 관능기를 갖는 단량체는 그 종류를 한정하는 것은 아니지만, 메틸메타크릴레이트(methyl methacrylate), 에틸메타크릴레이트(ethyl methacrylate), 부틸메타크릴레이트(buthyl methacrylate), 메틸아크릴레이트(methyl acrylate), 부틸아크릴레이트(buthyl acrylate), 에틸렌 글리콜 메틸에테르아크릴레이트(ethylene glycol methyl ether acrylate), 에틸렌 글리콜 메틸에테르메타크릴레이트(ethylene glycol methyl ether methacrylate), 아크릴로니트릴(acrylonitrile), 비닐아세테이트(vinyl acetate), 비닐클로라이드(vinylchloride) 및 비닐플로라이드(vinyl fluoride) 등을 사용할 수 있다.
또한 이러한 플라스틱 크리스탈 매트릭스로는 그 종류를 한정하는 것은 아니지만, 숙시노니트릴을 사용하는 것이 바람직하다.
플라스틱 크리스탈 매트릭스 전해질에 도핑되는 이온성염으로는 리튬염인 것이 바람직한데, 리튬 비스-트리플루오로메탄설포닐이미드, 리튬 비스-퍼플루오로에틸설포닐이미드 및 리튬 테트라플루오로보레이트 등을 사용할 수 있다.
본 발명에 따라 이온성염이 도핑된 플라스틱 크리스탈 전해질과 고분자 가교구조체의 복합체를 포함하는 전해질을 제조하는 방법은 다음과 같다.
먼저, 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질과 2개 이상의 관능기를 갖는 단량체에 혼합하여 용액을 제조한다(S1 단계).
상기 용액에 1개의 관능기를 갖는 단량체를 더 첨가할 수도 있다.
또한, 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질을 미리 준비하지 않고, 이온성염, 플라스틱 크리스탈 매트릭스 및 가교가능한 2개 이상의 관능기를 갖는 단량체를 혼합하여 용액을 제조하는 것도 가능하다.
상기 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질; 및 상기 단량체의 중량비는 30: 70 내지 90: 10일 수 있다.
가교가 가능한 2개 이상의 관능기를 갖는 단량체와 1개의 관능기를 갖는 단량체는 단량체 뿐만 아니라 반복단위가 2 ~ 20인 저중합체인 경우를 포함하는 것을 의미하는 것으로, 상기 언급한 단량체를 사용할 수 있다. 또한, 플라스틱 크리스탈 매트릭스 전해질 및 이온성염도 상기 언급한 것을 사용할 수 있다. 이온성염은 플라스틱 크리스탈 매트릭스 대비하여 0.1 내지 3 몰농도를 사용할 수 있다.
혼합 시에 용매를 첨가할 수도 있지만, 반드시 용매가 필수적인 것은 아니다. 다만 용매를 사용한 경우에는 용매를 제거하기 위한 건조공정이 추가로 필요하다. 그리고, 단량체의 중합을 위해서 벤조인과 같은 광개시제를 선택적으로 추가 할 수 있다.
이어서, 상기 용액 내의 2개 이상의 관능기를 갖는 단량체를 중합시켜 고체 전해질을 제조한다(S2 단계).
중합하는 방법은 특별히 한정하는 것은 아니지만, 자외선을 조사하여 중합하는 방법을 사용할 수 있다. 중합된 단량체는 2개 이상의 관능기를 가지고 있으므로 3차원의 가교구조체를 형성하게 된다.
전술한 본 발명의 고체 전해질은, 양극 및 음극을 포함하는 전기화학소자에 사용될 수 있다. 본 발명의 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
특히, 리튬 이차전지인 경우에, 본 발명의 고체 전해질은 양극, 음극 및 양극과 음극 사이에 개재된 세퍼레이터로 이루어진 전극 구조체에 주입하여 리튬 이차전지로 제조된다. 전극 구조체를 이루는 양극, 음극 및 세퍼레이터는 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다. 다만, 본 발명의 리튬 이차전지용 전해질은 고체전해질이므로 세퍼레이터의 대체가 가능하다.
양극 및 음극은 집전체와 활물질로 구성되는데, 구체적인 예로, 양극 활물질로는 리튬함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다. 또한, 이러한 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다. 음극 활물질로는 통상적으로 리튬이온이 흡장 및 방출될 수 있는 탄소재, 리튬 함유 티타늄 복합 산화물(LTO); Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체; 등으로 이루어진 것이 사용 가능하다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 이때 음극은 결착제를 포함할 수 있으며, 결착제로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다. 또한, 선형의 전선과 같은 구조를 갖는 케이블형 리튬 이차전지일 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1. 고분자 가교 구조체/플라스틱 크리스탈(15/85) 전해질의 제조
리튬 비스-트리플로로메탄 설포닐이미드(lithium bis-trifluoromethan sulfonylimide)를 숙시노니트릴에 첨가하여 1M의 플라스틱 크리스탈 전해질을 준비하였다. 트리메틸올프로판 에톡실레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate, TMPEOTA)와 상기 준비한 플라스틱 크리스탈 전해질은 15: 85의 중량비로 서로 균일하게 섞이도록 혼합하였다. 또한, 자외선 개시제인 벤조인을 TMPEOTA 대비 3 중량%를 첨가하여 혼합물을 준비하였다.
이후에, 상기 혼합물을 유리판에 캐스팅하여 20초간 자외선을 조사하여 중합하여 전해질 막을 제조하였다.
실시예 2. 고분자 가교 구조체/플라스틱 크리스탈(30/70) 전해질의 제조
트리메틸올프로판 에톡실레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate, TMPEOTA)와 플라스틱 크리스탈 전해질은 30: 70의 중량비로 하여 상기 실시예 1과 동일한 방법으로 전해질 막을 제조하였다.
실시예 3. 고분자 가교 구조체/플라스틱 크리스탈(50/50) 전해질의 제조
트리메틸올프로판 에톡실레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate, TMPEOTA)와 플라스틱 크리스탈 전해질은 50: 50의 중량비로 하여 상기 실시예 1과 동일한 방법으로 전해질 막을 제조하였다.
비교예 1. 순수한 플라스틱 크리스탈 전해질의 제조
숙시노니트릴에 리튬 비스-트리플로로메탄 설포닐이미드(lithium bis-trifluoromethan sulfonylimide)를 첨가하고 1M의 순수한 플라스틱 크리스탈 전해질을 제조하였다.
비교예 2. 선형 고분자 매트릭스 크리스탈 전해질의 제조
리튬 비스-트리플로로메탄 설포닐이미드(lithium bis-trifluoromethan sulfonylimide)를 숙시노니트릴에 첨가하여 1M의 플라스틱 크리스탈 전해질을 준비하였다. PVdF-HFP와 상기 준비한 플라스틱 크리스탈 전해질을 15: 85의 중량비로 하고, 용매로서 아세톤을 전체 중량 대비 20%가 되도록 첨가하여 서로 균일하게 섞이도록 혼합하였다.
이후에, 상기 혼합물을 유리판에 캐스팅하여 글로브 박스 내의 아르곤 가스 분위기 내에서 10시간 동안 아세톤을 증발시켜 고체 형상의 전해질 막을 제조하였다.
제조예 1. 반쪽전지의 제조
주석이 도금된 구리를 측정전극(working electrode)으로 하고, 리튬 금속을 대전극(counter electrode)으로 하여 이들 전극 사이에 상기 실시예 1-3에서 제조된 전해질막을 삽입하여 코인형의 반쪽전지를 제조하였다.
비교제조예 1. 반쪽전지의 제조
주석이 도금된 구리를 측정전극(working electrode)으로 하고, 리튬 금속을 대전극(counter electrode)으로 하여 이들 전극 사이에 폴리에틸렌 분리막을 게재하여 전극 조립체를 제조하였다. 이후에, 1M의 LiPF6가 첨가된 에틸렌 카보네이트: 디에틸 카보네이트 = 1:2(부피비)로 혼합된 비수 용매로 이루어진 전해액을 주입하여 코인형의 반쪽전지를 제조하였다.
시험예 1. 전기화학적 안정성 측정
실시예 1과 비교예 2에서 각각 제조된 전해질에 대한 전기화학적 안정성 측정을 하여 도 1에 나타내었다. 전기화학적 안정성 측정은 스테인리스 스틸을 측정전극으로 하고 리튬 금속을 대전극으로 하여 이들 전극 사이에 상기 실시예 1과 비교예 2에서 제조된 전해질 막을 삽입하여 코인형 전지로 제조하였다. 5mV/s 스캔율(scan rate)로 하여 6V까지 선형주사 전압전류법(Linear Sweep Voltammetry, LSV)을 통하여 전기화학적 안정성 측정하였다.
도 1에서 보는 바와 같이 선형 고분자 매트릭스인 비교예 2의 경우에 비하여 고분자 가교구조체를 가지는 실시예 1의 플라스틱 크리스탈 전해질이 향상된 전기화학적 안정성을 보이며, 특히 5V까지 우수한 전기화학적 안정성을 나타냄을 알 수 있었다.
시험예 2. 고분자 가교 구조체 성분비에 따른 이온전도도의 측정
상기 실시예 1에 대한 고분자 가교 구조체 성분비에 따른 이온전도도를 측정하여 하기 표 1에 나타내었다.
표 1
플라스틱 크리스탈 고체 전해질 이온전도도(25℃, S/cm)
실시예 1 2.4×10-3
실시예 2 2.3×10-4
실시예 3 5.1×10-5
시험예 3. 온도 변화에 따른 이온전도도의 측정
상기 실시예 1 및 비교예 1-2에서 제조된 전해질의 온도를 30 ℃ 에서 70℃까지 점차로 증가시키면서 이온전도도를 측정하여 도 2에 나타내었다.
도 2에 따르면 온도의 증가에 따라 전해질의 이온전도도가 비례하여 상승하는 것을 알 수 있었다. 특히, 고분자 가교 구조체인 실시예 1의 경우가 선형 고분자 매트릭스 플라스틱 크리스탈 전해질인 비교예 2의 경우 보다 이온전도도가 다소 낮으나, 순수 플라스틱 크리스탈 전해질인 비교예 1의 경우보다는 향상된 이온 전도 특성을 보임을 알 수 있었다.
시험예 4. 기계적 물성의 측정
상기 실시예 1 및 비교예 2에서 제조된 전해질의 인장강도를 측정하여 도 3에 나타내었다. 고분자 가교 구조체인 실시예 1의 경우가 고분자 매트릭스 플라스틱 크리스탈 전해질인 비교예 2의 경우보다 기계적 물성이 크게 향상되었음을 알 수 있었다.
시험예 5. 반쪽전지 충방전 시험
상기 제조예 1 및 비교제조예 1에서 제조된 반쪽전지에 대하여, 반쪽전지의 0.5C의 전류밀도로 5mV까지 정전류 충전 후 정전압으로 5 mV로 일정하게 유지시켜 전류밀도가 0.005C가 되면 충전을 종료하였다. 방전시 0.1C의 전류밀도로 1.5V까지 CC 모드로 방전을 완료하였다. 동일한 조건으로 충반전을 하여 규준화한 그래프를 도 4에 나타내었다.
본 발명의 제조예 1에 따른 반쪽전지는 액체 전해액/분리막을 사용한 비교제조예 1의 반쪽전지에 비하여 전지의 저항은 다소 높지만, 일반적인 반쪽전지 수준의 성능을 보임을 알 수 있다.

Claims (19)

  1. 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질; 및 고분자 가교구조체의 복합체를 포함하는 전기화학소자용 고체 전해질.
  2. 제1항에 있어서,
    상기 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질; 및 고분자 가교구조체의 중량비는 30: 70 내지 90: 10인 것을 특징으로 하는 전기화학소자용 고체 전해질.
  3. 제1항에 있어서,
    상기 플라스틱 크리스탈 매트릭스 전해질은 숙시노니트릴을 포함하는 것을 특징으로 하는 전기화학소자용 고체 전해질.
  4. 제1항에 있어서,
    상기 이온성염은 리튬염인 것을 특징으로 하는 전기화학소자용 고체 전해질.
  5. 제4항에 있어서,
    상기 리튬염은 리튬 비스-트리플루오로메탄설포닐이미드, 리튬 비스-퍼플루오로에틸설포닐이미드 및 리튬 테트라플루오로보레이트 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 전기화학소자용 고체 전해질.
  6. 제1항에 있어서,
    상기 고분자 가교구조체는 2개 이상의 관능기를 갖는 단량체가 중합된 것; 또는 2개 이상의 관능기를 갖는 단량체와 1개의 관능기를 갖는 단량체가 공중합된 것을 특징으로 하는 전기화학소자용 고체 전해질.
  7. 제6항에 있어서,
    상기 2개 이상의 관능기를 갖는 단량체는 트리메틸올프로판 에톡실레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate), 폴리에틸렌 글리콜 디메타크릴레이트(polyethylene glycol dimethacrylate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate) 또는 에톡실레이트 비스페놀 에이 디메타크릴레이트(ethoxylated bis phenol A dimethacrylate), 폴리에틸렌글리콜 디아크릴레이트(polyethylene glycol diacrylate) 중에서 선택된 1종의 단량체 또는 2종 이상의 혼합물인 것을 특징으로 하는 전기화학소자용 고체 전해질.
  8. 제6항에 있어서,
    상기 1개의 관능기를 갖는 단량체는 메틸메타크릴레이트(methyl methacrylate), 에틸메타크릴레이트(ethyl methacrylate), 부틸메타크릴레이트(buthyl methacrylate), 메틸아크릴레이트(methyl acrylate), 부틸아크릴레이트(buthyl acrylate), 에틸렌 글리콜 메틸에테르아크릴레이트(ethylene glycol methyl ether acrylate), 에틸렌 글리콜 메틸에테르메타크릴레이트(ethylene glycol methyl ether methacrylate), 아크릴로니트릴(acrylonitrile), 비닐아세테이트(vinyl acetate), 비닐클로라이드(vinylchloride) 및 비닐플로라이드(vinyl fluoride) 중에서 선택된 1종의 단량체 또는 2종 이상의 혼합물인 것을 특징으로 하는 전기화학소자용 고체 전해질.
  9. (S1) 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질과 2개 이상의 관능기를 갖는 단량체를 혼합하여 용액을 제조하는 단계; 및
    (S2) 상기 용액 내의 단량체를 중합시키는 단계를 포함하는 제1항 내지 제8항 중에서 선택된 어느 한 항의 전기화학소자용 고체 전해질의 제조방법.
  10. 제9항에 있어서,
    상기 용액은 1개의 관능기를 갖는 단량체를 더 포함하는 것을 특징으로 하는 전기화학소자용 고체 전해질의 제조방법.
  11. 제9항 또는 제10항에 있어서,
    상기 이온성염이 도핑된 플라스틱 크리스탈 매트릭스 전해질; 및 상기 단량체의 중량비는 30: 70 내지 90: 10인 것을 특징으로 하는 전기화학소자용 고체 전해질의 제조방법.
  12. 제9항에 있어서,
    상기 플라스틱 크리스탈 매트릭스 전해질은 숙시노니트릴을 포함하는 것을 특징으로 하는 전기화학소자용 고체 전해질의 제조방법.
  13. 제9항에 있어서,
    상기 이온성염은 플라스틱 크리스탈 매트릭스 전해질 대비 0.1 내지 3 몰농도인 것을 특징으로 하는 전기화학소자용 고체 전해질의 제조방법.
  14. 제9항에 있어서,
    상기 이온성염은 리튬염인 것을 특징으로 하는 전기화학소자용 고체 전해질의 제조방법.
  15. 제14항에 있어서,
    상기 리튬염은 리튬 비스-트리플루오로메탄설포닐이미드, 리튬 비스-퍼플루오로에틸설포닐이미드 및 리튬 테트라플루오로보레이트 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 전기화학소자용 고체 전해질의 제조방법.
  16. 제9항에 있어서,
    상기 2개 이상의 관능기를 갖는 단량체는 트리메틸올프로판 에톡실레이트 트리아크릴레이트(trimethylolpropane ethoxylate triacrylate), 폴리에틸렌 글리콜 디메타크릴레이트(polyethylene glycol dimethacrylate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate) 또는 에톡실레이트 비스페놀 에이 디메타크릴레이트(ethoxylated bis phenol A dimethacrylate) 중에서 선택된 1종의 단량체 또는 2종 이상의 혼합물인 것을 특징으로 하는 전기화학소자용 고체 전해질의 제조방법.
  17. 제10항에 있어서,
    상기 1개의 관능기를 갖는 단량체는 메틸메타크릴레이트(methyl methacrylate), 에틸메타크릴레이트(ethyl methacrylate), 부틸메타크릴레이트(buthyl methacrylate), 메틸아크릴레이트(methyl acrylate), 부틸아크릴레이트(buthyl acrylate), 에틸렌 글리콜 메틸에테르아크릴레이트(ethylene glycol methyl ether acrylate), 에틸렌 글리콜 메틸에테르메타크릴레이트(ethylene glycol methyl ether methacrylate), 아크릴로니트릴(acrylonitrile), 비닐아세테이트(vinyl acetate), 비닐클로라이드(vinylchloride) 및 비닐플로라이드(vinyl fluoride) 중에서 선택된 1종의 단량체 또는 2종 이상의 혼합물인 것을 특징으로 하는 전기화학소자용 고체 전해질의 제조방법.
  18. 양극, 음극 및 전해질을 포함하는 전기화학소자에 있어서,
    상기 전해질은 제1항 내지 제8항 중 어느 한 항의 고체 전해질인 것을 특징으로 하는 전기화학소자.
  19. 제18항에 있어서,
    상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자.
PCT/KR2011/004337 2010-06-14 2011-06-14 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자 WO2011159083A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013515262A JP6005633B2 (ja) 2010-06-14 2011-06-14 電気化学素子用電解質、その製造方法、及びそれを備える電気化学素子
CN201180029348.8A CN102948000B (zh) 2010-06-14 2011-06-14 电化学装置用电解质、制备所述电解质的方法以及包含所述电解质的电化学装置
EP11795949.4A EP2581979B1 (en) 2010-06-14 2011-06-14 Electrolyte for an electrochemical device, method for preparing same, and electrochemical device comprising same
US13/353,690 US9142855B2 (en) 2010-06-14 2012-01-19 Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte
US14/826,641 US9318771B2 (en) 2010-06-14 2015-08-14 Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0056062 2010-06-14
KR20100056062 2010-06-14
KR10-2011-0057343 2011-06-14
KR1020110057343A KR101322694B1 (ko) 2010-06-14 2011-06-14 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/353,690 Continuation US9142855B2 (en) 2010-06-14 2012-01-19 Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte

Publications (2)

Publication Number Publication Date
WO2011159083A2 true WO2011159083A2 (ko) 2011-12-22
WO2011159083A3 WO2011159083A3 (ko) 2012-04-26

Family

ID=45503318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004337 WO2011159083A2 (ko) 2010-06-14 2011-06-14 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자

Country Status (6)

Country Link
US (2) US9142855B2 (ko)
EP (1) EP2581979B1 (ko)
JP (1) JP6005633B2 (ko)
KR (1) KR101322694B1 (ko)
CN (1) CN102948000B (ko)
WO (1) WO2011159083A2 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377613A1 (en) * 2013-05-07 2014-12-25 Lg Chem, Ltd. Cable-type secondary battery
US20140377618A1 (en) * 2013-05-07 2014-12-25 Lg Chem, Ltd. Cable-type secondary battery
US9040189B2 (en) 2013-05-07 2015-05-26 Lg Chem, Ltd. Cable-type secondary battery and preparation thereof
US9048501B2 (en) 2013-05-07 2015-06-02 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9054386B2 (en) 2013-05-07 2015-06-09 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9065143B2 (en) 2013-05-07 2015-06-23 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9203104B2 (en) 2013-05-07 2015-12-01 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9324978B2 (en) 2013-04-29 2016-04-26 Lg Chem, Ltd. Packaging for cable-type secondary battery and cable-type secondary battery comprising the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351897B1 (ko) 2011-01-20 2014-01-17 주식회사 엘지화학 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
KR101625707B1 (ko) 2012-12-21 2016-06-14 주식회사 엘지화학 전기화학소자용 고체 전해질 및 이를 구비한 전기화학소자
KR101548789B1 (ko) * 2012-12-21 2015-09-01 주식회사 엘지화학 케이블형 이차전지 및 이의 제조 방법
WO2016068641A1 (ko) * 2014-10-31 2016-05-06 주식회사 엘지화학 리튬 황 전지 및 이의 제조 방법
CN107078344B (zh) 2014-10-31 2020-02-14 株式会社Lg 化学 锂硫电池及其制造方法
KR101648465B1 (ko) * 2015-02-17 2016-08-16 주식회사 제낙스 겔 고분자 전해질, 이의 제조 방법 및 이를 포함하는 전기화학 소자
FR3040550B1 (fr) * 2015-08-25 2017-08-11 Commissariat Energie Atomique Batterie au lithium-ion gelifiee
KR102575109B1 (ko) 2017-08-24 2023-09-06 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 캠퍼 또는 2-아다만타논으로 구성된 이온 전도성 매트릭스 기반의 고체 상태 배터리
CN108199081A (zh) * 2018-01-10 2018-06-22 苏州氟特电池材料股份有限公司 应用于锂电池的固态电解质及其制备方法
CN109786820B (zh) * 2018-11-19 2022-05-06 上海紫剑化工科技有限公司 一种含硼的塑晶聚合物及其制备方法和应用
CN112259731A (zh) * 2019-07-22 2021-01-22 中国科学院苏州纳米技术与纳米仿生研究所 全固态电池界面修饰材料、其制备方法与应用
DE102020207388A1 (de) * 2020-06-15 2021-12-16 Schott Ag Verfahren zur Herstellung eines leitenden Verbundmaterials für eine Batterie sowie leitendes Verbundmaterial
WO2022261234A1 (en) * 2021-06-10 2022-12-15 Georgia Tech Research Corporation Elastomeric electrolyte for high-energy all-solid-state metal batteries
WO2023013598A1 (ja) * 2021-08-03 2023-02-09 日本ケミコン株式会社 固体電解質、蓄電デバイス及び固体電解質の製造方法
US20230246192A1 (en) * 2022-02-03 2023-08-03 Global Graphene Group, Inc. Elastomer-Protected Anode and Lithium Battery
CN116239855B (zh) * 2022-12-20 2024-05-03 浙江大学 一种透明聚合物网络骨架复合凝胶电解质薄膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080033421A (ko) 2005-07-29 2008-04-16 내셔날 리서치 카운실 오브 캐나다 리튬계 전기화학 장치 내의 플라스틱 결정 전해질
KR20100056062A (ko) 2008-11-19 2010-05-27 양희창 생선가시 자동 제거기
KR20110057343A (ko) 2009-11-24 2011-06-01 오은영 체위변경장치 및 상기 체위변경장치를 구성요소로 포함하는 욕조겸용매트리스와 체위변경장치를 구성요소로 포함하는 환자용침상

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792504A (en) * 1987-09-18 1988-12-20 Mhb Joint Venture Liquid containing polymer networks as solid electrolytes
DE69637433T2 (de) 1995-11-15 2009-02-19 Asahi Kasei Emd Corporation Hybrider polymerverbundelektrolyt und nichtwässrige elektrochemische zelle
JP2000011757A (ja) * 1998-06-24 2000-01-14 Toyobo Co Ltd イオン伝導性ゲルおよびその製造方法
JP3826619B2 (ja) * 1999-05-18 2006-09-27 三菱化学株式会社 高分子ゲル電解質を用いたリチウム二次電池
US7771870B2 (en) * 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US7387851B2 (en) * 2001-07-27 2008-06-17 A123 Systems, Inc. Self-organizing battery structure with electrode particles that exert a repelling force on the opposite electrode
JP4020296B2 (ja) * 2000-12-21 2007-12-12 キヤノン株式会社 イオン伝導構造体、二次電池及びそれらの製造方法
KR100449761B1 (ko) * 2002-05-18 2004-09-22 삼성에스디아이 주식회사 전해액의 분해반응이 억제된 리튬 2차 전지 및 그 제조방법
CA2435218A1 (en) * 2003-07-28 2005-01-28 Michel Armand Plastic crystal electrolytes based on a polar, neutral matrix
WO2007075867A2 (en) * 2005-12-19 2007-07-05 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
KR101120434B1 (ko) * 2006-10-16 2012-03-13 주식회사 엘지화학 폴리에스테르 아크릴레이트계 화합물의 공중합체를포함하는 이차전지용 바인더
JP5254671B2 (ja) * 2008-06-12 2013-08-07 クレハエラストマー株式会社 架橋高分子固体電解質およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080033421A (ko) 2005-07-29 2008-04-16 내셔날 리서치 카운실 오브 캐나다 리튬계 전기화학 장치 내의 플라스틱 결정 전해질
KR20100056062A (ko) 2008-11-19 2010-05-27 양희창 생선가시 자동 제거기
KR20110057343A (ko) 2009-11-24 2011-06-01 오은영 체위변경장치 및 상기 체위변경장치를 구성요소로 포함하는 욕조겸용매트리스와 체위변경장치를 구성요소로 포함하는 환자용침상

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2581979A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324978B2 (en) 2013-04-29 2016-04-26 Lg Chem, Ltd. Packaging for cable-type secondary battery and cable-type secondary battery comprising the same
US9130236B2 (en) 2013-05-07 2015-09-08 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9972861B2 (en) 2013-05-07 2018-05-15 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9130247B2 (en) 2013-05-07 2015-09-08 Lg Chem, Ltd. Cable-type secondary battery and preparation thereof
US9054386B2 (en) 2013-05-07 2015-06-09 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9065143B2 (en) 2013-05-07 2015-06-23 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9070952B2 (en) 2013-05-07 2015-06-30 Lg Chem, Ltd. Cable-type secondary battery
US9077048B2 (en) * 2013-05-07 2015-07-07 Lg Chem, Ltd. Cable-type secondary battery
US9083060B2 (en) 2013-05-07 2015-07-14 Lg Chem, Ltd. Cable-type secondary battery and preparation thereof
US9083061B2 (en) 2013-05-07 2015-07-14 Lg Chem, Ltd. Cable-type secondary battery
US9142865B2 (en) 2013-05-07 2015-09-22 Lg Chem, Ltd. Cable-type secondary battery
US9048501B2 (en) 2013-05-07 2015-06-02 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9040189B2 (en) 2013-05-07 2015-05-26 Lg Chem, Ltd. Cable-type secondary battery and preparation thereof
US9118084B2 (en) 2013-05-07 2015-08-25 Lg Chem. Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9203104B2 (en) 2013-05-07 2015-12-01 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9293783B2 (en) 2013-05-07 2016-03-22 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9299989B2 (en) 2013-05-07 2016-03-29 Lg Chem, Ltd. Cable-type secondary battery
US20140377618A1 (en) * 2013-05-07 2014-12-25 Lg Chem, Ltd. Cable-type secondary battery
US9397344B2 (en) * 2013-05-07 2016-07-19 Lg Chem, Ltd. Cable-type secondary battery
US9406939B2 (en) 2013-05-07 2016-08-02 Lg Chem, Ltd. Cable-type secondary battery
US9660289B2 (en) 2013-05-07 2017-05-23 Lg Chem, Ltd. Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same
US9755278B2 (en) 2013-05-07 2017-09-05 Lg Chem, Ltd. Cable-type secondary battery and preparation thereof
US9755267B2 (en) 2013-05-07 2017-09-05 Lg Chem, Ltd. Cable-type secondary battery
US20140377613A1 (en) * 2013-05-07 2014-12-25 Lg Chem, Ltd. Cable-type secondary battery

Also Published As

Publication number Publication date
US9318771B2 (en) 2016-04-19
US9142855B2 (en) 2015-09-22
CN102948000B (zh) 2016-05-18
JP2013528920A (ja) 2013-07-11
US20120115040A1 (en) 2012-05-10
WO2011159083A3 (ko) 2012-04-26
KR101322694B1 (ko) 2013-10-28
KR20110136740A (ko) 2011-12-21
EP2581979B1 (en) 2016-09-14
JP6005633B2 (ja) 2016-10-12
EP2581979A4 (en) 2014-09-24
CN102948000A (zh) 2013-02-27
US20150357676A1 (en) 2015-12-10
EP2581979A2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2011159051A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2012099321A1 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2012165758A1 (ko) 리튬 이차전지
WO2014010936A1 (ko) 전해액 첨가제를 포함하는 이차전지
WO2010016727A2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
WO2012177016A2 (ko) 신규 구조 전극조립체 및 이를 이용한 이차전지
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2014168327A1 (ko) 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2016060300A1 (ko) 저온 특성 개선용 첨가제를 포함하는 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2012118338A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
WO2020214009A1 (ko) 고체 전해질 복합체 및 이를 포함하는 전고체 전지용 전극
WO2013089498A1 (ko) 케이블형 이차전지
WO2018212446A1 (ko) 리튬 이차 전지
WO2012074299A2 (ko) 리튬 이차전지
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2020242095A1 (ko) 전고체전지용 음극의 제조방법
WO2012111935A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
WO2014116084A1 (ko) 고전압 리튬 이차 전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2011087205A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2016053041A1 (ko) 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2019221372A1 (ko) 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지
WO2019221449A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 리튬 이차 전지
WO2010098639A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029348.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795949

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013515262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011795949

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011795949

Country of ref document: EP