WO2014204141A1 - 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법 - Google Patents

리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법 Download PDF

Info

Publication number
WO2014204141A1
WO2014204141A1 PCT/KR2014/005215 KR2014005215W WO2014204141A1 WO 2014204141 A1 WO2014204141 A1 WO 2014204141A1 KR 2014005215 W KR2014005215 W KR 2014005215W WO 2014204141 A1 WO2014204141 A1 WO 2014204141A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
cmc
active material
cnt
negative electrode
Prior art date
Application number
PCT/KR2014/005215
Other languages
English (en)
French (fr)
Inventor
정동섭
오병훈
김제영
이재욱
박수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2015535591A priority Critical patent/JP6068655B2/ja
Priority to US14/427,365 priority patent/US9276260B2/en
Priority to CN201480003402.5A priority patent/CN104885269B/zh
Priority to EP14813307.7A priority patent/EP2908367B1/en
Publication of WO2014204141A1 publication Critical patent/WO2014204141A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention is a negative electrode active material for a lithium secondary battery, more specifically, a lithium secondary battery negative electrode active material comprising a SiO x -carboxymethyl cellulose (CMC) -carbon nanotube (CNT) composite, a lithium secondary battery comprising the same It relates to a method for producing a negative electrode active material.
  • a lithium secondary battery negative electrode active material comprising a SiO x -carboxymethyl cellulose (CMC) -carbon nanotube (CNT) composite
  • CNT carbon nanotube
  • the electrochemical device is the field that attracts the most attention in this respect, and among them, the development of a secondary battery capable of charging and discharging has become a focus of attention. Recently, in developing such a battery, research and development on the design of a new electrode and a battery have been conducted to improve capacity density and specific energy.
  • lithium secondary batteries developed in the early 1990s have higher operating voltage and significantly higher energy density than conventional batteries such as N-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • a lithium secondary battery uses a material capable of intercalation / deintercalation or alloying / dealloying of lithium ions as a cathode and an anode, and charges an organic electrolyte or a polymer electrolyte between the cathode and the anode. To produce electrical energy by oxidation and reduction reactions when lithium ions are inserted and removed from the anode and cathode.
  • carbon-based materials are mainly used as electrode active materials constituting a negative electrode of a lithium secondary battery.
  • the theoretical capacity is about 372 mAh / g, and the actual capacity of commercially available graphite is realized up to about 350 to 360 mAh / g.
  • the capacity of the carbon-based material such as graphite does not meet the lithium secondary battery that requires a high capacity of the negative electrode active material.
  • an oxide or an alloy thereof with Si, Sn which is a metal that exhibits a higher charge / discharge capacity than a carbon-based material, and is an electrochemically alloyable lithium, as an anode active material.
  • the metal-based negative electrode active material is cracked and undifferentiated due to the large volume change accompanying the charging and discharging of lithium. Therefore, the capacity of the secondary battery using the metal-based negative electrode active material decreases rapidly as the charge and discharge cycle progresses, and the cycle There is a problem that the life is shortened. Therefore, it was intended to prevent the capacity degradation and cycle life degradation caused when using the metal-based negative electrode active material.
  • the technical problem to be solved by the present invention is to solve the above-described problems, in the anode active material for lithium secondary batteries, to improve the life characteristics of the battery by making the carbon nanotubes (CNT) more adhered to the SiO surface It is to provide a negative electrode active material, a lithium secondary battery comprising the same and a method for producing the negative electrode active material.
  • a carbon nanotube (carbon nanotube, CNT) is bonded to SiO x (0 ⁇ x ⁇ 1) through carboxymethyl cellulose (CMC)
  • CMC carboxymethyl cellulose
  • a negative active material for a lithium secondary battery including an x -CMC-CNT composite, and a carbon-based material.
  • the weight ratio of SiO x (0 ⁇ x ⁇ 1) to CMC to CNT of the SiO x -CMC-CNT composite is 98: 1: 1 to 94: 3: 3. .
  • the SiO x -CMC-CNT composite to the carbon-based material is characterized in that the weight ratio of 5:95 to 15:85.
  • the carbonaceous material is graphite, graphitizable carbon, non-grphitizable carbon, carbon black, graphene ) And one substance selected from the group consisting of graphene oxide or a mixture of two or more thereof.
  • the negative electrode active material in the negative electrode of a lithium secondary battery having a current collector, and a negative electrode active material layer formed on at least one surface of the current collector and including a negative electrode active material, is It provides a negative electrode for a lithium secondary battery according to the negative electrode active material for a lithium secondary battery.
  • the negative electrode in a lithium secondary battery comprising a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode, the negative electrode provides a lithium secondary battery which is the negative electrode according to the present invention.
  • the step of forming the SiO x -CMC-CNT composite (S1) step of mixing SiO x (0 ⁇ x ⁇ 1) in a solvent; (S2) adding and mixing CNT and CMC to the SiO x mixed solvent; And (S3) rotating the solvent in which the SiO x (0 ⁇ x ⁇ 1), CNT and CMC are mixed to remove the solvent to prepare a SiO x -CMC-CNT composite.
  • the weight ratio of SiO x (0 ⁇ x ⁇ 1) to CMC to CNT is 98: 1: 1 to 94: 3: 3.
  • the SiO x -CMC-CNT composite to the carbon-based material is characterized in that the weight ratio of 5:95 to 15:85.
  • the present invention it is possible to provide a negative electrode active material and a lithium secondary battery having improved battery life, as well as improved battery capacity, compared to using a negative electrode active material pretreated with only carbon nanotubes on a SiO surface.
  • 1 is a scanning electron micrograph of a SiO-CMC-CNT composite according to an embodiment of the present invention.
  • FIG. 2 is an enlarged photograph of the photo of FIG. 1.
  • CMC carboxymethyl cellulose
  • the negative electrode active material according to the present invention is a SiO x -CMC-CNT composite in which carbon nanotubes (CNTs) are bonded to SiO x (0 ⁇ x ⁇ 1) through carboxymethyl cellulose (CMC), and Carbon-based materials.
  • the SiO x -CMC-CNT composite according to the present invention can achieve the object of the present invention through a combination of various components, in particular SiO x -CMC-CNT.
  • CMC has proposed the above combination in consideration of the fact that there is no side reaction such as gas release during charging and discharging, which is effective in dispersing CNTs, and also has binding ability.
  • the binding ability is strong and there is no dispersion ability.
  • the SiOx-SBR-CNT composite is manufactured, CNTs are not dispersed on the SiO surface, and CNTs are agglomerated, making it difficult to disperse CNTs. That is, through the SiOx-CMC-CNT combination, it was conceived that, for the purpose of the present invention, the CNTs could be dispersed and bonded on the SiO surface with good dispersion and slight binding ability.
  • the carbon nanotubes are not particularly limited, and are largely divided into single walled carbon nanotubes (SWCNT) and multiwalled carbon nanotubes (MWCNT) according to their structure. .
  • the weight ratio of SiO x to CMC to CNT may be about 98: 1: 1 to about 94: 3: 3.
  • the CMC in the SiO x -CMC-CNT composite strengthens the bonding of SiO x and CNT, and the negative electrode active material including the composite has a lifespan characteristic. This is improved. More specifically, when the ratio of CNTs is lower than the ratio, the lifespan characteristics may deteriorate. When the ratio of CNTs is higher than the ratio, the initial efficiency may be lowered.
  • the ratio of CMC is lower than the ratio, the bonding strength with CNT is weak, the lifespan characteristics can be low, and if the ratio of CMC is higher than the ratio, the CMC itself acts as a resistance, the life characteristics can be lowered. That is, it is preferable to have the weight ratio of each component in the SiO x -CMC-CNT composite to achieve the object of the present invention, more preferably, the ratio of CNT and CMC in the SiO x -CMC-CNT composite is 1: 1 This is preferable.
  • the weight ratio of the SiO x -CMC-CNT composite to the carbon-based material may be about 5:95 to about 15:85.
  • the negative electrode active material includes the composite and the carbon-based material in the above-described weight ratio
  • the negative electrode active material significantly lowers its volume expansion characteristics and greatly improves cycle characteristics and life characteristics. More specifically, if the content ratio of the SiOx-CMC-CNT composite is lower than the ratio, the capacity is low. If the ratio is higher than the ratio, the capacity is high, but the lifespan may not be good. It is preferable to have a range in achieving the object of the present invention.
  • Carbon-based materials can also be used as, but are not limited to, graphite, graphitizable carbon, also called soft carbon, non-graphitizable carbon, and hard carbon.
  • the graphite may be natural graphite or artificial graphite, such as mesophase carbon microbead (MCMB), mesophase pitch-based carbon fiber (MPCF), or the like.
  • the carbon black is ketjen black, acetylene black, channel black, furnace black, thermal black, lamp black, ivory. Ivory black and Vine black.
  • the anode active material including the SiO-CMC-CNT composite according to the present invention can be confirmed that carbon nanotubes (CNT) are uniformly dispersed and well bonded to the SiO surface.
  • the negative electrode active material prepared according to the present invention may be prepared as a negative electrode according to a manufacturing method commonly used in the art.
  • the positive electrode according to the present invention may be manufactured by a conventional method in the art similar to the negative electrode. For example, a binder and a solvent, and a conductive material and a dispersant may be mixed and stirred in the negative electrode active material of the present invention to prepare a slurry, and then coated on a current collector and compressed to prepare an electrode.
  • the present invention also provides a negative electrode of a lithium secondary battery having a current collector and a negative electrode active material layer formed on at least one surface of the current collector and including a negative electrode active material, wherein the negative electrode active material is a negative electrode active material according to the present invention.
  • a negative electrode for a lithium secondary battery having a current collector and a negative electrode active material layer formed on at least one surface of the current collector and including a negative electrode active material, wherein the negative electrode active material is a negative electrode active material according to the present invention.
  • a negative electrode for a lithium secondary battery is provided.
  • the binder may be vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, or the like.
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • polyvinylidene fluoride polyacrylonitrile
  • polymethylmethacrylate polymethylmethacrylate
  • a lithium-containing transition metal oxide may be preferably used.
  • Li x CoO 2 (0.5 ⁇ x ⁇ 1.3), Li x NiO 2 (0.5 ⁇ x ⁇ 1.3), and Li x MnO 2 (0.5 ⁇ x ⁇ 1.3), Li x Mn 2 O 4 (0.5 ⁇ x ⁇ 1.3), Li x (Ni a Co b Mn c ) O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, a + b + c 1), Li x Ni 1-y Co y O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1), Li x Co 1-y Mn y O 2 ( 0.5 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1), Li x Ni 1-y Mn y O 2 (0.5 ⁇ x ⁇ 1.3, O ⁇ y ⁇ 1), Li x (Ni a Co b M
  • a lithium secondary battery having a separator and an electrolyte interposed between the positive electrode and the negative electrode which is commonly used in the art, may be manufactured using the electrode.
  • a lithium secondary battery including a positive electrode, the aforementioned negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the lithium salt that may be included as an electrolyte may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO
  • organic solvent included in the electrolyte solution those conventionally used in the electrolyte for lithium secondary batteries may be used without limitation, and typically propylene carbonate (PC), ethylene carbonate (ethylene carbonate, EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), methylpropyl carbonate, dipropyl carbonate, dimethylsulfuroxide, acetonitrile, dimethoxyethane, diethoxy Ethylene, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, tetrahydrofuran, any one selected from the group consisting of, or a mixture of two or more thereof may be representatively used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate dipropyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in electrolytes well.
  • a low viscosity, low dielectric constant linear carbonate, such as carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be prepared, and thus it can be more preferably used.
  • the electrolyte solution stored according to the present invention may further include additives such as an overcharge inhibitor included in a conventional electrolyte solution.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the battery case used in the present invention may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch type or coin using a can (coin) type and the like.
  • SiO x (0 ⁇ x ⁇ 1) -carboxymethyl cellulose (CNT) and carboxymethyl cellulose (CMC) are pretreated on a SiO x (0 ⁇ x ⁇ 1) surface.
  • Forming a CMC) -carbon nanotube (CNT) complex provides a method for producing a negative electrode active material for a lithium secondary battery comprising the step of mixing the formed SiO x -CMC-CNT composite with a carbon-based material.
  • the step of forming the SiO x -CMC-CNT composite (S1) step of mixing SiO x (0 ⁇ x ⁇ 1) in a solvent; (S2) adding and mixing CNT and CMC to the SiO x mixed solvent; And (S3) preparing a SiO x -CMC-CNT complex by rotating heating the solvent in which the SiO x (0 ⁇ x ⁇ 1), CNT, and CMC are mixed to remove the solvent.
  • the solvent water is used without limitation, because carboxymethyl cellulose (CMC) is water-soluble.
  • the weight ratio of SiO x (0 ⁇ x ⁇ 1) to CMC to CNT may be from 98: 1: 1 to 94: 3: 3 as previously described herein with respect to the negative electrode active material.
  • the weight ratio of the SiO x -CMC-CNT composite to the carbon-based material may also be 5:95 to 15:85 as previously described herein with respect to the negative electrode active material.
  • SiO-CMC-CNT composite was prepared by placing the mixed solution of SiO, CNT, and CMC in a 2 L round flask and removing the solvent from the solution using a rotary heater. The solvent-free SiO-CMC-CNT composite was dried in a vacuum oven at 130 ° C. for 10 hours and then ground in a mortar to produce 95 g of SiO-CMC-CNT composite.
  • the prepared SiO-CMC-CNT composite can be confirmed that the CNT is well bonded to the SiO surface through the scanning electron micrograph (see FIGS. 1 and 2).
  • a negative electrode active material comprising the SiO-CMC-CNT composite prepared in step 1, denca black (DB) as a conductive material, styrene butadiene rubber (SBR) as a binder, carboxymethyl cellulose (CMC) as a thickener 96.8: 1:
  • the slurry was prepared by mixing in a weight ratio of 1: 1.2 and adding water thereto.
  • the prepared slurry was applied to a copper foil as a cathode current collector, and then vacuum dried at about 130 ° C. for 10 hours to prepare a cathode of 1,4875 cm 2.
  • a metal lithium foil of 1.8 cm 2 was used as the positive electrode, and an electrode assembly was prepared through a polyethylene separator between the negative electrode and the positive electrode.
  • 1M LiPF 6 was added to a nonaqueous electrolyte solvent in which ethylene carbonate (EC) and diethylene carbonate (DEC) were mixed in a volume ratio of 1: 2 to prepare a nonaqueous electrolyte, and then injected into the electrode assembly to prepare the negative electrode.
  • EC ethylene carbonate
  • DEC diethylene carbonate
  • a coin type half secondary battery was used.
  • a SiO-CMC-CNT composite was prepared in the same manner as in Example 1, except that 2g of carbon nanotubes and 2g of CMC were added to 96g of SiO, and then the SiO-CMC-CNT composite was prepared in the same manner as in Example 1.
  • a coin type half secondary battery using a negative electrode active material was prepared.
  • a SiO-CMC-CNT composite was prepared in the same manner as in Example 1, except that 3g of carbon nanotubes and 3g of CMC were added to 94g of SiO.
  • a coin type half secondary battery using a negative electrode active material was prepared.
  • a secondary battery was manufactured in the same manner as in Example 1, except that CNT and CMC were not used as the anode active material.
  • a mixture of SiO and graphite in a weight ratio of 10:90 was used as a negative electrode active material, and CNT and denca black (DB) as a conductive material of the negative electrode active material, SBR as a binder, and CMC as a thickener negative electrode active material: CNT: DB: SBR: A secondary battery was manufactured in the same manner as in Example 1, except that CMC was mixed in a weight ratio of 96.6: 0.2: 1: 1: 1.2.
  • a SiO-CNT composite was prepared in the same manner as in Example 1, and then a coin type of using a SiO-CNT composite as a negative electrode active material in the same manner as in Example 1.
  • Half secondary battery was prepared.
  • a SiO-CMC composite was prepared in the same manner as in Example 1, except that 1 g of CMC was added to 99 g of SiO, and then the second half of the coin type using the SiO-CMC composite as a negative electrode active material in the same manner as in Example 1.
  • the battery was prepared.
  • a SiO-CMC composite was prepared in the same manner as in Example 1, and then a SiO-CMC-CNT composite in the same manner as in Example 1.
  • a coin-type half secondary battery using the anode active material was prepared.
  • a SiO-CMC composite was prepared in the same manner as in Example 1, and then a SiO-CMC-CNT composite was prepared in the same manner as in Example 1.
  • a coin type half secondary battery was used as the active material.
  • Example 3 After preparing a SiO-CMC-CNT composite in the same manner as in Example 3, the same method as in Example 1 except that the ratio of the SiO-CMC-CNT composite and graphite as a negative electrode active material in a 3:97 weight ratio A coin type half secondary battery was prepared.
  • Example 2 After preparing the SiO-CMC-CNT composite in the same manner as in Example 3, except that the ratio of the SiO-CMC-CNT composite and graphite as a cathode active material in a 20:80 weight ratio, the same method as in Example 1 A coin type half secondary battery was prepared.
  • Table 1 below shows the weight ratio of the negative electrode active material, the conductive material, the binder and the thickener used in Examples 1 to 3 and Comparative Examples 1 to 8 and the content of CNT in the prepared negative electrode.
  • Table 2 shows the capacity, initial efficiency, and capacity retention rate of the batteries prepared in Examples 1 to 3 and Comparative Examples 1 to 8.
  • the batteries of Examples 1 to 3 prepared according to the present invention have almost the same capacity and initial efficiency as those of Comparative Examples 1 to 4, but are remarkably superior in capacity retention. have.
  • Comparative Example 5 when the ratio of CNT in the SiOx-CMC-CNT composite is low, the life characteristics are poor compared to the Example, as in Comparative Example 6, CMC and CNT in the SiOx-CMC-CNT composite If the ratio of is high, the initial efficiency is also low and the life characteristics are not good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법에 관한 것이다. 본 발명의 일 실시양태에 따라, 탄소나노튜브(carbon nanotube, CNT)가 카복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)를 통해 SiOx(0<x≤1)에 결합되어 있는 SiOx-CMC-CNT 복합체, 및 탄소계 물질을 포함하는 리튬 이차전지용 음극활물질이 제공된다. 또한, 본 발명의 다른 실시양태에 따라, 탄소나노튜브(CNT) 및 카복시메틸 셀룰로오스(CMC)를 SiOx(0<x≤1) 표면 상에 선처리함으로써 SiOx(0<x≤1)-카복시메틸 셀룰로오스(CMC)-탄소나노튜브(CNT) 복합체를 형성하는 단계; 및 상기 형성된 SiOx-CMC-CNT 복합체를 탄소계 물질과 혼합하는 단계를 포함하는 리튬 이차전지용 음극활물질의 제조방법이 제공된다. 본 발명에 따르면, 전지 용량이 향상될 뿐만 아니라 SiO 표면에 탄소나노튜브 만이 선처리된 음극활물질을 사용할 때보다 수명 특성이 개선된 음극활물질 및 리튬 이차전지를 제공할 수 있다.

Description

리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
본 발명은 리튬 이차전지용 음극활물질, 보다 상세하게는 SiOx-카복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)-탄소나노튜브(CNT) 복합체를 포함하는 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법에 관한 것이다.
본 출원은 2013년 6월 19일에 출원된 한국출원 제10-2013-0070602호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2014년 6월 13일에 출원된 한국출원 제10-2014-0072057호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고, 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있다. 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구 개발이 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 N-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
일반적으로 리튬 이차전지는 리튬 이온의 삽입/탈리(intercalation/deintercalation) 또는 합금/탈합금화(alloying/dealloying)가 가능한 물질을 음극 및 양극으로 사용하고, 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 양극 및 음극에서 삽입 및 탈리될 때의 산화반응, 환원반응에 의하여 전기적 에너지를 생성한다.
현재 리튬 이차전지의 음극을 구성하는 전극활물질로는 탄소계 물질이 주로 사용되고 있다. 이 중 흑연의 경우, 이론 용량이 약 372 mAh/g 정도이며, 현재 상용화된 흑연의 실제 용량은 약 350 내지 360 mAh/g 정도까지 실현되고 있다. 그러나, 이러한 흑연과 같은 탄소계 물질의 용량으로는 고용량의 음극활물질을 요구하는 리튬 이차전지에 부합되지 못하고 있다.
이러한 요구를 충족하기 위하여 탄소계 물질보다 높은 충방전 용량을 나타내고, 리튬과 전기화학적으로 합금화 가능한 금속인 Si, Sn 등, 이들의 산화물 또는 이들과의 합금을 음극활물질로서 이용하는 예가 있다. 그러나, 이러한 금속계 음극활물질은 리튬의 충방전에 수반된 큰 부피 변화로 인하여 균열이 생기고 미분화되며, 따라서 이러한 금속계 음극활물질을 사용한 이차전지는 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되고, 사이클 수명이 짧게 되는 문제점이 있다. 따라서, 이와 같은 금속계 음극활물질의 사용시 발생되는 용량 저하 및 사이클 수명 저하를 방지하고자 하였다.
특히, 음극활물질로서 SiO를 사용하는 경우, 초기 효율, 전기전도도, 수명 특성 등이 낮기 때문에 통상적으로 흑연과 혼합하고 이 혼합물에 도전재를 분산시켜 사용하게 된다. 그러나, 이러한 도전재는 상기 혼합물 내에서의 분산성이 크게 떨어져 SiO 표면에 균일하게 분포되지 않으며, 이러한 SiO 표면에서의 불균일한 분포는 전지의 사이클 성능이 크게 저하시킬 수 있다. 이를 해결하기 위해, SiO 표면에 탄소나노튜브(carbon nanotube, CNT)를 미리 처리(선처리)하여 전지의 수명 특성을 개선하고자 하였다. 그러나, 이 경우에는 SiO 표면에 탄소나노튜브(CNT)가 잘 붙어있지 않는다는 단점이 여전히 존재하였다.
따라서, 본 발명이 해결하고자 하는 기술적 과제는, 상기 전술한 문제점을 해결하고, 리튬 이차전지용 음극활물질에 있어서, SiO 표면에 탄소나노튜브(CNT)가 보다 잘 붙어있게 함으로써 전지의 수명 특성을 개선시킬 수 있는 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 탄소나노튜브(carbon nanotube, CNT)가 카복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)를 통해 SiOx(0<x≤1)에 결합되어 있는 SiOx-CMC-CNT 복합체, 및 탄소계 물질을 포함하는 리튬 이차전지용 음극활물질을 제공한다.
본 발명의 일 실시예에 따르면, 상기 SiOx-CMC-CNT 복합체의 SiOx(0<x≤1) 대 CMC 대 CNT의 중량비가 98:1:1 내지 94:3:3인 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 상기 SiOx-CMC-CNT 복합체 대 탄소계 물질이 중량비가 5:95 내지 15:85인 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 상기 탄소계 물질이 흑연(graphite), 이흑연화성 탄소(grphitizable carbon), 난흑연화성 탄소(non-grphitizable carbon), 카본 블랙(carbon black), 그래핀(graphene) 및 그래핀 산화물로 이루어진 군으로부터 선택된 1종의 물질 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 한다.
본 발명의 또 다른 일 측면에 따르면 전류집전체, 및 상기 전류집전체의 적어도 일면에 형성되며 음극활물질을 포함하는 음극활물질층을 구비한 리튬 이차전지의 음극에 있어서, 상기 음극활물질이 본 발명에 따른 리튬 이차전지용 음극활물질인 리튬 이차전지용 음극을 제공한다.
또한, 본 발명의 또 다른 일 측면에 따르면, 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지에 있어서, 상기 음극이 본 발명에 따른 음극인 리튬 이차전지를 제공한다.
또한, 본 발명의 또 다른 일 측면에 따르면, 탄소나노튜브(CNT) 및 카복시메틸 셀룰로오스(CMC)를 SiOx(0<x≤1) 표면 상에 선처리함으로써 SiOx(0<x≤1)-카복시메틸 셀룰로오스(CMC)-탄소나노튜브(CNT) 복합체를 형성하는 단계; 및 상기 형성된 SiOx-CMC-CNT 복합체를 탄소계 물질과 혼합하는 단계를 포함하는 리튬 이차전지용 음극활물질의 제조방법을 제공한다.
바람직하게는, 본 발명의 일 실시예에 따르면, 상기 SiOx-CMC-CNT 복합체의 형성 단계가, (S1) SiOx(0<x≤1)를 용매에 넣고 혼합하는 단계; (S2) 상기 SiOx 혼합 용매에 CNT 및 CMC를 첨가하여 혼합하는 단계; 및 (S3) 상기 SiOx(0<x≤1), CNT 및 CMC가 혼합된 용매를 회전 가열하여 용매를 제거하여 SiOx-CMC-CNT 복합체를 제조하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 상기 SiOx(0<x≤1) 대 CMC 대 CNT의 중량비가 98:1:1 내지 94:3:3인 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 상기 SiOx-CMC-CNT 복합체 대 탄소계 물질이 중량비가 5:95 내지 15:85인 것을 특징으로 한다.
본 발명에 따르면, 전지 용량이 향상될 뿐만 아니라 SiO 표면에 탄소나노튜브 만이 선처리된 음극활물질을 사용할 때보다 수명 특성이 개선된 음극활물질 및 리튬 이차전지를 제공할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 일 실시예에 따른 SiO-CMC-CNT 복합체의 주사전자현미경 사진이다.
도 2는 도 1의 사진을 확대한 사진이다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 기재된 구성은 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
규소계 음극활물질을 사용하는 경우에 리튬의 충방전에 수반되는 큰 부피 변화로 인하여 균열이 생기고 미분화되며, 이러한 음극활물질을 사용하는 이차전지에서는 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되고, 사이클 수명이 짧게 되는 문제점이 있었다. 이 문제를 해결하기 위해, 흑연과 같은 탄소계 물질과 혼합하여 사용하였으며, 이 경우 도전재를 사용하였으나, 이러한 도전재는 불균일하게 분포하여서 SiO 표면에 균일하게 분포되지 않아 사이클 성능이 떨어지는 문제점이 있었으며, 이를 해결하기 위해 SiO 표면에 탄소나노튜브(carbon nanotube, CNT)를 선처리하여 수명 특성을 개선하고자 하였다.
이에 본 발명자들은, SiOx(0<x≤1) 표면에 탄소나노튜브(CNT)가 더욱 잘 결합시킴으로써 전지의 수명 특성을 보다 개선시킬 수 있는 방법으로서 SiO 표면에 카복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)를 통하여 탄소나노튜브가 보다 잘 붙어있게 되어 수명 특성을 개선시킬 수 있음을 확인하고 본 발명을 완성하였다.
본 발명에 따른 음극활물질은 탄소나노튜브(carbon nanotube, CNT)가 카복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)를 통해 SiOx(0<x≤1)에 결합되어 있는 SiOx-CMC-CNT 복합체, 및 탄소계 물질을 포함한다.
본 발명에 따른 SiOx-CMC-CNT 복합체는 다양한 성분 중 특히 SiOx-CMC-CNT의 조합을 통하여 본 발명의 목적을 달성할 수 있다. 이 때, CMC는 충방전시 가스 방출 등의 부반응이 없으며, CNT를 분산시키는데 효과적이며, 바인딩 능력도 있다는 점을 착안하여, 상기 조합을 제안하였다. 이에 반해 SBR의 경우에는 바인딩 능력이 강하고, 분산 능력이 없어, SiOx-SBR-CNT 복합체를 제조하게 되면, CNT가 SiO 표면에 분산되지 않고, CNT가 뭉쳐서 CNT의 분산이 어렵게 된다. 즉, SiOx-CMC-CNT 조합을 통하여야, 본 발명의 목적에 맞도록, 분산도 잘 되며 약간의 바인딩 능력으로, SiO 표면에 CNT가 분산되고 결합되게 할 수 있다는 점을 착안하였다.
상기 탄소나노튜브(carbon nanotube, CNT)는 특별히 제한되지 않으며, 그의 구조에 따라 크게 단층벽 탄소나노튜브(SWCNT, Single Walled carbon nanotube)와 다층벽 탄소나노튜브(MWCNT, Multi Walled carbon nanotube)로 나눠진다.
상기 SiOx-CMC-CNT 복합체에서, SiOx 대 CMC 대 CNT의 중량비는 약 98:1:1 내지 약 94:3:3일 수 있다. SiOx-CMC-CNT 복합체가 전술된 중량비로 형성되는 경우, 상기 SiOx-CMC-CNT 복합체에서 CMC가 SiOx와 CNT의 결합을 견고하게 해주며, 상기 복합체를 포함하는 음극활물질은 그의 수명 특성이 개선된다. 보다 구체적으로 CNT의 비율이 상기 비율보다 낮으면, 수명 특성이 나빠질 수 있으며, CNT의 비율이 상기 비율보다 높으면, 초기 효율이 낮아지게 된다. 또한, CMC의 비율이 상기 비율보다 낮으면, CNT와의 결합력이 약해서, 수명특성이 낮아질 수 있으며, CMC의 비율이 상기 비율보다 높으면, CMC 자체가 저항으로 작용하여, 수명 특성이 낮아질 수 있다. 즉, SiOx-CMC-CNT 복합체에서 상기 각 성분의 중량비를 가지는 것이 본 발명의 목적을 달성하는데에 있어서 바람직하며, 보다 바람직하게, SiOx-CMC-CNT 복합체에서 CNT와 CMC의 비율은 1:1이 바람직하다.
상기 SiOx-CMC-CNT 복합체 대 탄소계 물질의 중량비는 약 5:95 내지 약 15:85 일 수 있다. 음극활물질이 상기 복합체 및 탄소계 물질을 전술된 중량비로 포함하는 경우, 상기 음극활물질은 그의 부피 팽창 특성을 현저히 저하시키고, 사이클 특성 및 수명 특성이 크게 개선된다. 보다 구체적으로 SiOx-CMC-CNT 복합체의 함량 비가 상기 비율보다 낮으면 용량이 낮아지며, 상기 비율보다 높으면 용량은 높으나 수명 특성이 좋지 않을 수가 있는 바, SiOx-CMC-CNT 복합체 대 탄소계의 중량비는 상기 범위를 가지는 것이 본 발명의 목적을 달성하는데에 있어서 바람직하다.
탄소계 물질은 비제한적으로 흑연(graphite), 이흑연화성 탄소(graphitizable carbon, 소프트 카본(soft carbon)으로도 지칭됨), 난흑연화성 탄소(non-graphitizable carbon, 하드 카본(hard carbon)으로도 지칭됨), 카본 블랙(carbon black), 그래핀(graphene) 및 그래핀 산화물로 이루어진 군으로부터 선택된 1종의 물질 또는 이들 중 2종 이상의 혼합물일 수 있다. 구체적으로, 상기 흑연은 천연 흑연, 또는 인조 흑연, 예컨대 MCMB(mesophase carbon microbead), MPCF(mesophase pitch-based carbon fiber) 등일 수 있다. 또한, 상기 카본 블랙으로는 케첸 블랙(ketjen black), 아세틸렌 블랙(acetylene black), 채널 블랙(channel black), 퍼니스 블랙(furnace black), 써머 블랙(thermal black), 램프 블랙(Lamp black), 아이보리 블랙(Ivory black), 바인 블랙(Vine black) 등이 있다.
도 1 및 도 2를 참고하면, 본 발명에 따른 SiO-CMC-CNT 복합체를 포함하는 음극활물질은 SiO 표면에 탄소나노튜브(CNT)가 균일하게 분산되어 잘 결합되어 있는 것을 확인할 수 있다.
본 발명에 따라 제조된 음극활물질은 당 분야에서 통상적으로 사용되는 제조방법에 따라 음극으로 제조될 수 있다. 또한, 본 발명에 따른 양극도 상기 음극과 마찬가지로 당 분야의 통상적인 방법으로 제조될 수 있다. 예를 들면, 본 발명의 음극활물질에 바인더와 용매, 필요에 따라 도전재와 분산제를 혼합 및 교반하여 슬러리를 제조한 후, 이를 전류집전체에 도포하고 압축하여 전극을 제조할 수 있다.
따라서, 본 발명은 또한 전류집전체, 및 상기 전류집전체의 적어도 일면에 형성되며 음극활물질을 포함하는 음극활물질층을 구비한 리튬 이차전지의 음극에 있어서, 상기 음극활물질이 본 발명에 따른 음극활물질인 리튬 이차전지용 음극을 제공한다.
상기 바인더로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등의 다양한 종류의 고분자가 사용될 수 있다.
양극 활물질로는 리튬함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 상기 리튬함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬함유 전이금속 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
전극이 제조되면, 이를 사용하여 당 분야에 통상적으로 사용되는, 양극과 음극 사이에 개재된 분리막 및 전해물질을 구비하는 리튬 이차전지가 제조될 수 있다.
따라서, 본 발명에서는, 양극, 전술된 음극 및 상기 양극과 상기 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지를 제공할 수 있다.
본 발명에서 사용되는 전해액에 있어서, 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해액에 있어서, 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있다. 특히, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
선택적으로, 본 발명에 따라 저장되는 전해액은 통상의 전해액에 포함되는 과충전 방지제 등과 같은 첨가제를 더 포함할 수 있다.
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전지 케이스는 당 분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명의 다른 측면에 따라, 탄소나노튜브(CNT) 및 카복시메틸 셀룰로오스(CMC)를 SiOx(0<x≤1) 표면 상에 선처리함으로써 SiOx(0<x≤1)-카복시메틸 셀룰로오스(CMC)-탄소나노튜브(CNT) 복합체를 형성하는 단계; 및 상기 형성된 SiOx-CMC-CNT 복합체를 탄소계 물질과 혼합하는 단계를 포함하는 리튬 이차전지용 음극활물질의 제조방법이 제공된다.
또한, 상기 SiOx-CMC-CNT 복합체의 형성 단계가, (S1) SiOx(0<x≤1)를 용매에 넣고 혼합하는 단계; (S2) 상기 SiOx 혼합 용매에 CNT 및 CMC를 첨가하여 혼합하는 단계; 및 (S3) 상기 SiOx(0<x≤1), CNT 및 CMC가 혼합된 용매를 회전 가열하여 용매를 제거하여 SiOx-CMC-CNT 복합체를 제조하는 단계를 포함할 수 있다. 여기서, 상기 용매로는 비제한적으로 물이 사용되며, 이는 카복시메틸셀룰로오스(CMC)가 수용성이기 때문이다.
상기 SiOx(0<x≤1) 대 CMC 대 CNT의 중량비는 앞서 본원에서 음극활물질에 관하여 기재한 바와 같이 98:1:1 내지 94:3:3일 수 있다. 또한, 상기 SiOx-CMC-CNT 복합체 대 탄소계 물질이 중량비도 또한 앞서 본원에서 음극활물질에 관하여 기재한 바와 같이 5:95 내지 15:85일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예 1>
(단계 1) 음극활물질 제조
SiO 98g을 용매로서 물 400g에 넣고 30분 동안 충분히 섞어준 후, 이에 탄소나노튜브(CNT) 1g과 카복시메틸 셀룰로오스(CMC) 1g을 첨가하여 1시간 동안 충분히 혼합하였다. 상기 제조된 SiO와 CNT 및 CMC가 혼합된 용액을 2L의 둥근 플라스크에 담고, 회전 가열기를 사용하여 상기 용액으로부터 용매를 제거함으로써 용매-제거된 SiO-CMC-CNT 복합체를 제조하였다. 상기 용매-제거된 SiO-CMC-CNT 복합체를 130℃에서 10 시간 동안 진공 오븐에서 건조시킨 후, 유발에서 분쇄하여 95g의 SiO-CMC-CNT 복합체를 제조하였다.
상기 제조된 SiO-CMC-CNT 복합체는 그의 주사전자현미경 사진을 통하여 SiO 표면에 CNT가 잘 결합되어 있는 것을 확인할 수 있다(도 1 및 도 2 참조).
(단계 2) 음극 제조
상기 단계 1에서 제조된 SiO-CMC-CNT 복합체를 포함하는 음극활물질, 도전재로서 덴카블랙(DB), 바인더로서 스티렌 부타디엔 고무(SBR), 증점제로서 카르복시메틸셀룰로오스(CMC)를 각각 96.8:1:1:1.2의 중량비로 혼합하고, 이에 물을 첨가하여 슬러리를 제조하였다. 상기 제조된 슬러리를 음극전류집전체로서 구리 포일(foil)에 도포하고, 이를 약 130 ℃에서 10시간 동안 진공 건조함으로써 1,4875 ㎠의 음극을 제조하였다.
(단계 3) 이차전지의 제조
양극으로는 1.8㎠의 금속 리튬 포일을 사용하였으며, 상기 음극과 양극 사이에 폴리에틸렌 분리막을 개재하여 전극조립체를 제조하였다. 에틸렌 카보네이트(EC)와 디에틸렌 카보네이트(DEC)가 1:2의 부피비로 혼합된 비수 전해액 용매에 1M의 LiPF6을 첨가하여 비수 전해액을 제조한 후, 상기 전극 조립체에 주입하여 상기 제조된 음극을 이용한 코인 타입의 반쪽 이차전지를 제조하였다.
<실시예 2>
SiO 96g에 탄소나노튜브 2g, CMC 2g을 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 SiO-CMC-CNT 복합체를 제조한 후 상기 실시예 1과 동일한 방법으로 SiO-CMC-CNT 복합체를 음극활물질로 이용한 코인 타입의 반쪽 이차전지를 제조하였다.
<실시예 3>
SiO 94g에 탄소나노튜브 3g, CMC 3g을 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 SiO-CMC-CNT 복합체를 제조한 후 상기 실시예 1과 동일한 방법으로 SiO-CMC-CNT 복합체를 음극활물질로 이용한 코인 타입의 반쪽 이차전지를 제조하였다.
<비교예 1>
음극활물질로 CNT 및 CMC가 결합되지 않은 SiO를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 이차전지를 제조하였다.
<비교예 2>
SiO와 흑연을 10:90의 중량비로 혼합한 것을 음극활물질로 사용하고 상기 음극활물질의 도전재로서 CNT와 덴카블랙(DB), 바인더로서 SBR, 증점제로서 CMC를 음극활물질:CNT:DB:SBR:CMC를 96.6:0.2:1:1:1.2의 중량비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 이차전지를 제조하였다.
<비교예 3>
SiO 99g에 탄소나노튜브 1g을 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 SiO-CNT 복합체를 제조한 후 상기 실시예 1과 동일한 방법으로 SiO-CNT 복합체를 음극활물질로 이용한 코인 타입의 반쪽 이차전지를 제조하였다.
<비교예 4>
SiO 99g에 CMC 1g을 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 SiO-CMC 복합체를 제조한 후 상기 실시예 1과 동일한 방법으로 SiO-CMC 복합체를 음극활물질로 이용한 코인 타입의 반쪽 이차전지를 제조하였다.
<비교예 5>
SiO 99g에 탄소나노튜브 0.5g, CMC 0.5g을 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SiO-CMC 복합체를 제조한 후 상기 실시예 1과 동일한 방법으로 SiO-CMC-CNT 복합체를 음극활물질로 이용한 코인 타입의 반쪽 이차전지를 제조하였다.
<비교예 6>
SiO 92g에 탄소나노튜브 4g, CMC 4g을 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SiO-CMC 복합체를 제조한 후 상기 실시예 1과 동일한 방법으로 SiO-CMC-CNT 복합체를 음극활물질로 이용한 코인 타입의 반쪽 이차전지를 제조하였다.
<비교예 7>
상기 실시예 3과 동일한 방법으로 SiO-CMC-CNT 복합체를 제조한 후, 음극활물질로 SiO-CMC-CNT 복합체와 흑연의 비율을 3:97 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인 타입 반쪽 이차전지를 제조하였다.
<비교예 8>
상기 실시예 3과 동일한 방법으로 SiO-CMC-CNT 복합체를 제조한 후, 음극활물질로 SiO-CMC-CNT 복합체와 흑연의 비율을 20:80 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인 타입 반쪽 이차전지를 제조하였다.
하기 표 1에는 상기 실시예 1 내지 3 및 비교예 1 내지 8에서 사용된 음극활물질, 도전재, 바인더 및 증점제의 중량비 및 제조된 음극 내 CNT의 함유량을 나타내었다.
표 1
음극활물질 도전재(중량비) 바인더(중량비) 증점제(중량비) 음극 내 CNT 함량(중량%)
종류 함량(중량비)
실시예 1 (SiO-CNT-CMC)+흑연 SiO:CNT:CMC=98:1:1(SiO+CNT+CMC):흑연=10:90음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0.097
실시예 2 (SiO-CNT-CMC)+흑연 SiO:CNT:CMC=96:2:2(SiO+CNT+CMC):흑연=10:90음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0.194
실시예 3 (SiO-CNT-CMC)+흑연 SiO:CNT:CMC=94:3:3(SiO+CNT+CMC):흑연=10:90음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0.29
비교예 1 SiO+흑연 SiO:흑연=10:90음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0
비교예 2 SiO+흑연 SiO:흑연=10:90음극활물질=96.6 CNT:DB=0.2:1 SBR=1 CMC=1.2 0.2
비교예 3 (SiO-CNT)+흑연 SiO:CNT=99:1(SiO+CNT+CMC):흑연=10:90음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0.097
비교예 4 (SiO-CMC)+흑연 SiO:CMC=99:1(SiO+CMC):흑연=10:90음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0
비교예 5 (SiO-CNT-CMC)+흑연 SiO:CNT:CMC=99:0.5:0.5(SiO+CNT+CMC):흑연=10:90음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0.048
비교예 6 (SiO-CNT-CMC)+흑연 SiO:CNT:CMC=92:4:4(SiO+CNT+CMC):흑연=10:90음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0.39
비교예 7 (SiO-CNT-CMC)+흑연 SiO:CNT:CMC=94:3:3(SiO+CNT+CMC):흑연=3:97음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0.29
비교예 8 (SiO-CNT-CMC)+흑연 SiO:CNT:CMC=94:3:3(SiO+CNT+CMC):흑연=20:80음극활물질=96.8 DB=1 SBR=1 CMC=1.2 0.29
하기 표 2에는 상기 실시예 1 내지 3 및 비교예 1 내지 8에서 제조된 전지의 용량, 초기 효율 및 용량 유지율을 나타내었다.
표 2
첫번째 방전 용량(mAh/g) 초기 효율(%) 용량 유지율(%)
실시예 1 475 88.2 97
실시예 2 474 88.1 97
실시예 3 472 88.0 98
비교예 1 473 88.3 80
비교예 2 473 88.2 81
비교예 3 474 88.2 94
비교예 4 474 83.4 82
비교예 5 475 88.3 84
비교예 6 469 87.5 78
비교예 7 390 90.0 97
비교예 8 590 81.0 65
초기 효율 = (첫번째 방전 용량)/(첫번째 충전 용량) x 100용량 유지율 = (50번째 방전 용량)/(첫번째 방전 용량) x 100
상기 표 2에서 보듯이, 본 발명에 따라 제조된 실시예 1 내지 3의 전지는 비교예 1 내지 4에서 제조된 전지와 용량 및 초기 효율은 거의 유사하지만, 용량 유지율에 있어서는 현격하게 우수한 것을 알 수 있다. 또한, 비교예 5의 경우처럼, SiOx-CMC-CNT 복합체에서 CNT의 비율이 낮을 경우, 실시예에 비해 수명 특성이 좋지 않으며, 비교예 6의 경우처럼, SiOx-CMC-CNT 복합체에서 CMC와 CNT의 비율이 높을 경우, 초기 효율도 낮으며 수명특성이 좋지 않다. 비교예 7의 경우처럼, 음극활물질에서 SiOx-CMC-CNT 복합체의 비율이 낮을 경우, 용량이 낮으며, 비교예 8의 경우처럼, SiOx-CMC-CNT 복합체의 비율이 높은 경우, 용량은 높으나 용량 유지율이 현저히 낮음을 알 수 있다.

Claims (10)

  1. 탄소나노튜브(carbon nanotube, CNT)가 카복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)를 통해 SiOx(0<x≤1)에 결합되어 있는 SiOx-CMC-CNT 복합체, 및 탄소계 물질을 포함하는 리튬 이차전지용 음극활물질.
  2. 제1항에 있어서,
    상기 SiOx-CMC-CNT 복합체의 SiOx(0<x≤1) 대 CMC 대 CNT의 중량비가 98:1:1 내지 94:3:3인 것을 특징으로 하는 리튬 이차전지용 음극활물질.
  3. 제1항에 있어서,
    상기 SiOx-CMC-CNT 복합체 대 탄소계 물질이 중량비가 5:95 내지 15:85인 것을 특징으로 하는 리튬 이차전지용 음극활물질.
  4. 제1항에 있어서,
    상기 탄소계 물질이 흑연(graphite), 이흑연화성 탄소(graphitizable carbon), 난흑연화성 탄소(non-graphitizable carbon), 카본 블랙(carbon black), 그래핀(graphene) 및 그래핀 산화물로 이루어진 군으로부터 선택된 1종의 물질 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 음극활물질.
  5. 전류집전체, 및 상기 전류집전체의 적어도 일면에 형성되며 음극활물질을 포함하는 음극활물질층을 구비한 리튬 이차전지의 음극에 있어서,
    상기 음극활물질이 제1항 내지 제4항 중 어느 한 항에 따른 리튬 이차전지용 음극활물질인 것을 특징으로 하는 리튬 이차전지용 음극.
  6. 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지에 있어서,
    상기 음극이 제5항에 따른 음극인 것을 특징으로 하는 리튬 이차전지.
  7. 탄소나노튜브(CNT) 및 카복시메틸 셀룰로오스(CMC)를 SiOx(0<x≤1) 표면 상에 선처리함으로써 SiOx(0<x≤1)-카복시메틸 셀룰로오스(CMC)-탄소나노튜브(CNT) 복합체를 형성하는 단계; 및
    상기 형성된 SiOx-CMC-CNT 복합체를 탄소계 물질과 혼합하는 단계;
    를 포함하는 리튬 이차전지용 음극활물질의 제조방법.
  8. 제7항에 있어서,
    상기 SiOx-CMC-CNT 복합체의 형성 단계가, (S1) SiOx(0<x≤1)를 용매에 넣고 혼합하는 단계; (S2) 상기 SiOx 혼합 용매에 CNT 및 CMC를 첨가하여 혼합하는 단계; 및 (S3) 상기 SiOx(0<x≤1), CNT 및 CMC가 혼합된 용매를 회전 가열하여 용매를 제거하여 SiOx-CMC-CNT 복합체를 제조하는 단계를 포함하는 것을 특징으로 하는 리튬 이차전지용 음극활물질의 제조방법.
  9. 제8항에 있어서,
    상기 SiOx(0<x≤1) 대 CMC 대 CNT의 중량비가 98:1:1 내지 94:3:3인 것을 특징으로 하는 리튬 이차전지용 음극활물질의 제조방법.
  10. 제7항에 있어서,
    상기 SiOx-CMC-CNT 복합체 대 탄소계 물질이 중량비가 5:95 내지 15:85인 것을 특징으로 하는 리튬 이차전지용 음극활물질의 제조방법.
PCT/KR2014/005215 2013-06-19 2014-06-13 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법 WO2014204141A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015535591A JP6068655B2 (ja) 2013-06-19 2014-06-13 リチウム二次電池用負極活物質、それを含むリチウム二次電池及び負極活物質の製造方法
US14/427,365 US9276260B2 (en) 2013-06-19 2014-06-13 Anode active material for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the same
CN201480003402.5A CN104885269B (zh) 2013-06-19 2014-06-13 锂二次电池用负极活性材料、包含其的锂二次电池、及其制备方法
EP14813307.7A EP2908367B1 (en) 2013-06-19 2014-06-13 Anode active material for lithium secondary battery, lithium secondary battery including same, and method for manufacturing anode active material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0070602 2013-06-19
KR20130070602 2013-06-19
KR1020140072057A KR101586015B1 (ko) 2013-06-19 2014-06-13 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
KR10-2014-0072057 2014-06-13

Publications (1)

Publication Number Publication Date
WO2014204141A1 true WO2014204141A1 (ko) 2014-12-24

Family

ID=52676399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005215 WO2014204141A1 (ko) 2013-06-19 2014-06-13 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법

Country Status (7)

Country Link
US (1) US9276260B2 (ko)
EP (1) EP2908367B1 (ko)
JP (1) JP6068655B2 (ko)
KR (1) KR101586015B1 (ko)
CN (1) CN104885269B (ko)
TW (1) TWI549338B (ko)
WO (1) WO2014204141A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078690A3 (ko) * 2017-10-19 2019-06-06 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057769A1 (ja) * 2015-10-01 2017-04-06 昭和電工株式会社 リチウムイオン二次電池の負電極製造用粒状複合材
JP6871167B2 (ja) * 2015-10-05 2021-05-12 積水化学工業株式会社 負極材、負極及びリチウムイオン二次電池
EP3312909A1 (en) 2016-10-24 2018-04-25 Basf Se Electroactive composites comprising silicon particles, metal nanoparticles and carbon nanostructures
PL4009400T3 (pl) 2019-09-30 2024-04-22 Lg Energy Solution, Ltd. Kompozytowy materiał aktywny anody, sposób jego wytwarzania oraz zawierająca go anoda
WO2021092869A1 (zh) * 2019-11-14 2021-05-20 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
WO2021128196A1 (zh) * 2019-12-26 2021-07-01 宁德新能源科技有限公司 负极及包含其的电化学装置和电子装置
CN111146434A (zh) * 2019-12-26 2020-05-12 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
WO2021128197A1 (zh) * 2019-12-26 2021-07-01 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
CN112289990A (zh) * 2020-04-20 2021-01-29 董荣芳 一种复合纳米材料作为电池负极材料的应用
KR20210130558A (ko) * 2020-04-22 2021-11-01 주식회사 엘지에너지솔루션 실리콘-탄소 복합 음극 활물질, 상기 실리콘-탄소 복합 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
KR102166645B1 (ko) 2020-08-19 2020-10-16 유성운 음극 활물질, 상기 음극 활물질의 제조방법 및 상기 음극 활물질을 포함하는 이차전지.
JP2024517537A (ja) * 2022-03-28 2024-04-23 寧徳時代新能源科技股▲分▼有限公司 珪素含有負極活物質及びそれを含む負極シート、二次電池及び電力消費装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070764A (ko) * 2001-03-02 2002-09-11 삼성에스디아이 주식회사 탄소질 재료, 이를 포함하는 리튬 이차 전지 및 탄소질재료의 제조 방법
KR20050090218A (ko) * 2004-03-08 2005-09-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
KR20060087003A (ko) * 2005-01-27 2006-08-02 삼성에스디아이 주식회사 리튬 이차 전지용 음극활물질 및 그의 제조 방법
KR20070027438A (ko) * 2005-09-06 2007-03-09 주식회사 엘지화학 탄소 나노튜브 함유 복합체 바인더 및 이를 포함하는 리튬이차전지
KR20120093764A (ko) * 2011-02-15 2012-08-23 주식회사 엘지화학 음극 활물질의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733922B2 (en) 2001-03-02 2004-05-11 Samsung Sdi Co., Ltd. Carbonaceous material and lithium secondary batteries comprising same
CN100547830C (zh) * 2004-03-08 2009-10-07 三星Sdi株式会社 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池
KR101451801B1 (ko) * 2007-02-14 2014-10-17 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
JP5503217B2 (ja) * 2008-10-15 2014-05-28 古河電気工業株式会社 リチウム二次電池用負極材料、リチウム二次電池用負極、それを用いたリチウム二次電池、リチウム二次電池用負極材料の製造方法、およびリチウム二次電池用負極の製造方法。
JP5961922B2 (ja) 2010-05-31 2016-08-03 日産自動車株式会社 二次電池用負極およびその製造方法
JP5489353B2 (ja) * 2010-07-02 2014-05-14 日立マクセル株式会社 非水電解液二次電池
KR20130119447A (ko) 2011-02-28 2013-10-31 후루카와 덴키 고교 가부시키가이샤 리튬이온 이차전지용 부극 활물질 재료, 리튬이온 이차전지용 부극 및 리튬이온 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070764A (ko) * 2001-03-02 2002-09-11 삼성에스디아이 주식회사 탄소질 재료, 이를 포함하는 리튬 이차 전지 및 탄소질재료의 제조 방법
KR20050090218A (ko) * 2004-03-08 2005-09-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
KR20060087003A (ko) * 2005-01-27 2006-08-02 삼성에스디아이 주식회사 리튬 이차 전지용 음극활물질 및 그의 제조 방법
KR20070027438A (ko) * 2005-09-06 2007-03-09 주식회사 엘지화학 탄소 나노튜브 함유 복합체 바인더 및 이를 포함하는 리튬이차전지
KR20120093764A (ko) * 2011-02-15 2012-08-23 주식회사 엘지화학 음극 활물질의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078690A3 (ko) * 2017-10-19 2019-06-06 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Also Published As

Publication number Publication date
KR101586015B1 (ko) 2016-01-18
US9276260B2 (en) 2016-03-01
CN104885269B (zh) 2017-04-19
TW201519494A (zh) 2015-05-16
TWI549338B (zh) 2016-09-11
EP2908367A4 (en) 2016-04-13
JP2015534240A (ja) 2015-11-26
KR20140147699A (ko) 2014-12-30
CN104885269A (zh) 2015-09-02
EP2908367A1 (en) 2015-08-19
EP2908367B1 (en) 2017-02-22
US20150236340A1 (en) 2015-08-20
JP6068655B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2019108039A2 (ko) 음극 및 이를 포함하는 이차전지
WO2014189329A1 (ko) 다층의 활물질층을 포함하는 리튬 이차전지
WO2014119960A1 (ko) 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019112390A1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
WO2012165758A1 (ko) 리튬 이차전지
WO2012044133A2 (ko) 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2014168327A1 (ko) 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2015060697A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2012015241A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 함유한 리튬 이차전지
WO2014098419A1 (ko) 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2019083330A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2016060300A1 (ko) 저온 특성 개선용 첨가제를 포함하는 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2015199384A1 (ko) 리튬 이차전지
KR20130134241A (ko) SiOx―탄소나노튜브 복합체를 포함하는 음극 활물질 및 이의 제조방법
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
WO2018097575A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2014116084A1 (ko) 고전압 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14427365

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015535591

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014813307

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014813307

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE