WO2017061807A1 - 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀 - Google Patents

전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀 Download PDF

Info

Publication number
WO2017061807A1
WO2017061807A1 PCT/KR2016/011219 KR2016011219W WO2017061807A1 WO 2017061807 A1 WO2017061807 A1 WO 2017061807A1 KR 2016011219 W KR2016011219 W KR 2016011219W WO 2017061807 A1 WO2017061807 A1 WO 2017061807A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
electrolyte
separator
pores
liquid
Prior art date
Application number
PCT/KR2016/011219
Other languages
English (en)
French (fr)
Inventor
이지은
정희석
오세운
이은주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018503234A priority Critical patent/JP6815381B2/ja
Priority to PL16853923T priority patent/PL3316380T3/pl
Priority to US15/744,488 priority patent/US10490849B2/en
Priority to CN201680046500.6A priority patent/CN107851845B/zh
Priority to EP20156874.8A priority patent/EP3675266B1/en
Priority to EP16853923.7A priority patent/EP3316380B1/en
Publication of WO2017061807A1 publication Critical patent/WO2017061807A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery cell containing a gelling electrolyte component in the pores of the separator constituting the electrode assembly.
  • lithium secondary batteries such as lithium ion batteries and lithium ion polymer batteries is high.
  • secondary batteries are classified according to the structure of an electrode assembly having a structure in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are formed.
  • Jelly-roll type electrode assembly having a structure wound in a state where a separator is interposed, a stack type electrode assembly in which a plurality of anodes and cathodes cut in units of a predetermined size are sequentially stacked with a separator therebetween
  • an electrode assembly having an advanced structure which is a mixed form of the jelly-roll type and the stack type has a predetermined unit.
  • Stacked / foldable electrode having a structure in which positive and negative electrodes are sequentially wound in a state in which unit cells stacked on a separator film are stacked with a separator interposed therebetween Developed body lip.
  • the secondary battery is a cylindrical battery and a rectangular battery in which the electrode assembly is embedded in a cylindrical or rectangular metal can according to the shape of the battery case, and a pouch type battery in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet. Are classified.
  • a pouch-type battery having a stacked or stacked / folding electrode assembly in a pouch-type battery case of an aluminum laminate sheet has attracted much attention due to its low manufacturing cost, small weight, and easy shape deformation. And its usage is gradually increasing.
  • such a secondary battery is coated with an electrode mixture containing an electrode active material, a conductive agent, a binder, and the like on an electrode current collector, followed by drying to prepare an electrode, and stacking the prepared electrode together with a separator, followed by an electrolyte solution. It is completed by being built and sealed in a battery case together with it.
  • the separator is an insulating thin film having high ion permeability and mechanical strength, and has a structure including pores having a predetermined diameter, and in detail, an olefin polymer such as polypropylene having chemical resistance and hydrophobicity ; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • an olefin polymer such as polypropylene having chemical resistance and hydrophobicity
  • Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • the solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • Such a separator may be advantageous for the movement of lithium ions when the pore size or the porosity is high, but the insulation performance exerted between the positive electrode and the negative electrode may be deteriorated, thereby degrading the safety of the battery. Can be.
  • the solid electrolyte also serves as a separator, there is an advantage in that gas generation in the battery is reduced or safety is improved.
  • impregnation and ion conductivity are low, and thus battery performance is deteriorated.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application configure the gelated electrolyte component to be included in the plurality of pores formed in the separator, so that the pores having a large diameter can be obtained.
  • the separator by improving the insulation between the positive electrode and the negative electrode, it is possible to ensure the safety of the battery cell, to prevent the deterioration of ionic conductivity due to the closing of the pores, and to maintain a high electrolyte solution impregnation, Completion of the present invention confirms that it is possible to prevent the performance degradation of the cell, and to improve the stability by preventing the heat shrinkage of the separator according to the temperature change of the battery cell, compared to the structure containing only the liquid electrolyte solution, Reached.
  • It includes an electrode assembly having a structure interposed between the anode and the cathode, the separator is formed with a plurality of pores, the pores may be a structure containing a gelated electrolyte component in the pores have.
  • the pores formed in the separator may have an average diameter of 0.01 ⁇ m to 100 ⁇ m, more specifically, may be 1 ⁇ m to 10 ⁇ m.
  • the separator may have a porosity of 40% to 90%.
  • the average diameter and porosity of the pores is too small out of the above range, the effect of preventing ion conductivity deterioration may not be exhibited, or the gelled electrolyte component may not be sufficiently contained, and electrolyte solution impregnation may be deteriorated.
  • the electrolyte component may be a structure that is polymerized or cured after the liquid mixture is impregnated into the pores of the membrane by impregnating the separator in a liquid mixture including a liquid monomer and / or oligomer electrolyte component and a polymerization initiator.
  • the electrolyte component contained in the pores of the separation membrane is not a structure that is inserted into the pores after gelation, and a mixed solution containing a monomer and / or oligomer electrolyte composition of the liquid phase and a polymerization initiator After being inserted into the pores of the separator, polymerization or curing can be performed to form a stably gelled structure in the pores of the separator.
  • the pores of the separator may be a structure connected to each other in a three-dimensional network structure, whereby a mixed solution containing a liquid monomer and / or oligomer electrolyte component and a polymerization initiator into the pores of the separator more easily. Can be inserted.
  • the polymerized or cured electrolyte components may be connected to each other in a three-dimensional network structure, thereby improving structural stability.
  • the pores of the separator may be a structure formed independently of course.
  • the electrolyte and component of the monomer and / or oligomer state of the liquid phase is a polyethylene derivative, polyethylene oxide derivative, polypropylene oxide derivative, phosphate ester polymer, poly etchation lysine, polyester sulfide, At least one selected from the group consisting of polyvinyl alcohol, polyvinylidene fluoride, or a polymer containing an ionic dissociation group.
  • the electrolyte component is not limited thereto, and in detail, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 It may contain one or more selected from the group consisting of a halide, sulfate of Li, such as S-SiS 2 . .
  • the electrolyte solution component may include the same component as the organic solid electrolyte or the inorganic solid electrolyte.
  • the polymerization initiator may gel the electrolyte solution component in the monomer and / or oligomer state of the liquid phase by heat or light applied from the outside.
  • the polymerization initiator serves to polymerize or cure an electrolyte component in a monomer and / or oligomer state in a liquid phase by a stimulus applied from the outside, and specifically, gel the electrolyte component by heat or light.
  • the polymerization initiator may gel the electrolyte component by heat.
  • the liquid electrolyte component inserted into the pores of the separator may be a structure that is polymerized or cured for 1 to 20 hours in the temperature range of 40 °C to 90 °C.
  • the separator may not be impregnated with the mixed solution containing the electrolyte component in a liquid state.
  • the cost and time for polymerizing or curing the electrolyte component may increase.
  • the polymerization initiator may be polymerized or cured under the conditions of the temperature and time, so as to maintain a stable gelled state in the pores of the separator, while not impairing the electrochemical performance of the battery cell.
  • benzoyl peroxide BPO
  • acetyl peroxide Dilauryl peroxide, Di-tertbutylperoxide, cumyl Cumulative hydroperoxide, Hydrogen peroxide, 2,2-Azobis (2-cyanobutane), 2,2-Azobis (Methylbutyronitrile), AIBN (Azobis (iso-butyronitrile), and AMVN (Azobisdimethyl -Valeronitrile)
  • AIBN Azobis (iso-butyronitrile)
  • AMVN Azobisdimethyl -Valeronitrile
  • the content of the polymerization initiator may be 0.01 wt% to 5 wt% with respect to the electrolyte solution component in the monomer and / or oligomer state made of a liquid phase.
  • the content of the polymerization initiator is less than 0.01% by weight based on the monomer and / or oligomer electrolyte components in the liquid phase, the monomer and / or oligomer electrolyte components in the liquid phase may be sufficiently polymerized or cured. If the content is greater than 5% by weight, and the content is excessively large, the content of the electrolyte solution component is relatively low, so that the desired effect may not be exhibited.
  • the battery cell may have a structure further comprising a liquid electrolyte.
  • the liquid electrolyte may be a structure sealed in the battery case in the state of impregnating the electrode assembly.
  • the battery cell includes an electrode assembly having a structure in which a separator including a gelled electrolyte component in a plurality of pores is interposed between an anode and a cathode, and a separate liquid electrolyte impregnates the electrode assembly.
  • a separator including a gelled electrolyte component in a plurality of pores is interposed between an anode and a cathode, and a separate liquid electrolyte impregnates the electrode assembly.
  • the gelled electrolyte component may be a structure further comprising a liquid electrolyte.
  • the battery cell can improve the impregnation of the electrode assembly with respect to the electrolyte, and can supplement the additional electrolyte in addition to the gelled electrolyte component, it is possible to improve the electrical performance of the battery cell.
  • the liquid electrolyte may be a different component from the gelled electrolyte component located in the pores of the separator, and in particular, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate , Butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide , 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxolon derivatives, sulfolane, methyl Any one selected from the group consisting of sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, te
  • the battery cell is not particularly limited in its kind, but as a specific example, a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery, etc. having advantages such as high energy density, discharge voltage, and output stability, etc. It may be a battery.
  • a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery, etc. having advantages such as high energy density, discharge voltage, and output stability, etc. It may be a battery.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the separator and the separation film may be an SRS (Safety-Reinforcing Separators) separator of organic / inorganic composite porous to improve battery safety.
  • SRS Safety-Reinforcing Separators
  • the SRS separator is manufactured using inorganic particles and a binder polymer as an active layer component on a polyolefin-based separator substrate, wherein the pore structure included in the separator substrate itself and the interstitial volume between the inorganic particles as the active layer component are used. It has a uniform pore structure formed.
  • the organic / inorganic composite porous separator may exhibit excellent adhesion characteristics by controlling the content of the inorganic particles and the binder polymer, which are the active layer components in the separator, and thus may have an easy battery assembly process.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range of the battery to be applied (for example, 0 to 5 V on the basis of Li / Li +).
  • the inorganic particles having the ion transfer ability since the ion conductivity in the electrochemical device can be improved to improve the performance, it is preferable that the ion conductivity is as high as possible.
  • the inorganic particles have a high density, it is not only difficult to disperse during coating, but also has a problem of weight increase during battery manufacturing, and therefore, it is preferable that the density is as small as possible.
  • an inorganic material having a high dielectric constant it is possible to contribute to an increase in the degree of dissociation of an electrolyte salt such as lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate triamide.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the present invention provides a method for manufacturing the battery cell, the method for manufacturing the battery cell,
  • step b) impregnating the electrode assembly prepared in step a) into a mixed solution comprising a liquid monomer and / or oligomer electrolyte component and a polymerization initiator;
  • the battery cell is immersed in the electrode assembly prepared by interposing the separator between the positive electrode and the negative electrode in a mixed solution containing a monomer and / or oligomer electrolyte composition and a polymerization initiator in a liquid phase, the electrode assembly is again liquid After impregnation with the electrolyte solution in the battery case, it is prepared by sealing, by aging the battery cell, it can be prepared by polymerizing or curing the electrolyte component inserted into the pores of the separator.
  • the separator is impregnated separately in the mixed solution including the monomer and / or oligomer electrolyte solution and the polymerization initiator, and then polymerized or cured, due to the electrolyte component included in the separator, between the positive electrode and the negative electrode, The assembly process of the electrode assembly via the separator may not be easy.
  • the battery cell manufacturing method according to the present invention it is possible to assemble the electrode assembly more easily, can save the cost and time required for the process, it is possible to improve the structural stability of the electrode assembly more.
  • the electrolyte component of the monomer and / or oligomer state inserted into the pores of the separator in step d) is sufficiently gelled, so that it can be stably included in the pores of the separator, in a temperature range of 40 °C to 90 °C, 1 May be polymerized or cured for hours to 20 hours.
  • the polymerization or curing process is carried out for a short time at a temperature that is too low out of the range of temperature and time, the monomer and / or oligomer electrolyte components inserted into the pores of the separator cannot be sufficiently gelled.
  • the battery cell may act as a factor of deteriorating the electrical performance of the battery cell.
  • the battery cell manufacturing method may further include a degas process to discharge the gas generated in the battery cell in the aging process for the polymerization or curing of the electrolyte component.
  • the present invention also provides a battery pack including the battery cell and a device including the battery pack as a power source, the device is a mobile phone, tablet computer, notebook computer, power tools, wearable electronics, electric vehicles, hybrids It may be any one selected from the group consisting of an electric vehicle, a plug-in hybrid electric vehicle, and a power storage device.
  • FIG. 1 is a schematic diagram schematically showing the structure of a battery cell according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram schematically showing a process of manufacturing the battery cell of FIG.
  • FIG. 1 is a schematic diagram schematically showing the structure of a battery cell according to an embodiment of the present invention.
  • the battery cell 100 includes an electrode assembly 110, and the electrode assembly 110 is sealed in the battery case 120 in a state of being impregnated with a liquid electrolyte 130.
  • the electrode assembly 110 has a structure in which the anode 111 and the cathode 112 are alternately stacked, and a separator 113 is interposed between the anode 111 and the cathode 112.
  • a plurality of pores 114 are formed in the separator 113, and the gelated electrolyte component 115 is included in the pores 114.
  • the gelled electrolyte component 115 contained in the pores 114 can stably support the separator 113, and thus the anode 111 Insulation between the anode and the cathode 112 can be ensured, and structural stability can be improved.
  • the pores 114 have different sizes from each other in consideration of ease of manufacture, but are not limited thereto, and the pores 114 may be formed of the same size.
  • the pores 114 are each formed individually, but are not limited thereto. As the three-dimensional network structure, the pores 114 are connected to each other and are more stable by the gelled electrolyte component 115 included in the pores 114. Of course, the separation membrane 113 may be supported.
  • FIG. 2 is a schematic diagram schematically showing a process of manufacturing the battery cell of FIG.
  • the electrode assembly 110 is impregnated with a mixed solution including an electrolyte solution component 211 and a polymerization initiator 212 in a monomer and / or oligomer state made of a liquid phase.
  • the mixed solution 210 may be sufficiently inserted into the plurality of pores 114 formed in the separator 113 of the electrode assembly 110.
  • the electrode assembly 110 in which the mixed solution 210 is inserted into the pores 114 of the separator 113 is impregnated in the battery case 120 together with the liquid electrolyte 130, and the battery case 120 is By sealing, the battery cell 100 is manufactured.
  • the battery cell 100 In order to polymerize or cure the electrolyte component 211 in the monomer and / or oligomer state inserted into the pores of the separator 113, the battery cell 100 is in a temperature range of 40 ° C. to 90 ° C. for 1 hour to 20 hours. During the aging process, the gelled electrolyte component 211 may be stably included in the pores 114 of the separator 113.
  • the battery cell according to the present invention is configured to include a gelled electrolyte component in a plurality of pores formed in the separator, thereby using a separator having a large diameter pores,
  • the insulation between the anode and the cathode can be improved to ensure the safety of the battery cell.
  • the ion conductivity can be prevented from being deteriorated due to the closing of the pores, and the electrolyte can be prevented from being degraded by maintaining high electrolyte impregnation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 양극과 음극 사이에 분리막이 개재되어 있는 구조의 전극조립체를 포함하고 있고, 상기 분리막에는 복수의 기공들이 형성되어 있으며, 상기 기공들 내에는 겔(gel)화 된 전해액 성분이 포함되어 있는 것을 특징으로 하는 전지셀을 제공한다.

Description

전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
본 발명은 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀에 관한 것이다.
본 출원은 2015.10.07 일자 한국 특허 출원 제10-2015-0140927호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
최근, 화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다. 이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력저장장치 또한 지대한 관심이 이어지고 있다.
특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
또한, 이차전지는 양극, 음극, 및 양극과 음극 사이에 개재되는 분리막이 적층된 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤형(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체 등을 들 수 있으며, 최근에는, 상기 젤리-롤형 전극조립체 및 스택형 전극조립체가 갖는 문제점을 해결하기 위해, 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀들을 분리필름 상에 위치시킨 상태에서 순차적으로 권취한 구조의 스택/폴딩형 전극조립체가 개발되었다.
또한, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
특히, 최근에는 스택형 또는 스택/폴딩형 전극조립체를 알루미늄 라미네이트 시트의 파우치형 전지케이스에 내장한 구조의 파우치형 전지가, 낮은 제조비, 작은 중량, 용이한 형태 변형 등을 이유로, 많은 관심을 모으고 있고 또한 그것의 사용량이 점차적으로 증가하고 있다.
일반적으로, 이러한 이차전지는 전극 집전체 상에 전극 활물질, 도전제, 바인더 등이 혼합된 전극 합제를 도포한 후 건조하여, 전극을 제조하고, 상기 제조된 전극을 분리막과 함께 적층한 후, 전해액과 함께 전지케이스에 내장 및 밀봉함으로써, 완성된다.
이때, 상기 분리막은 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막으로써, 소정의 직경을 갖는 기공을 포함하고 있는 구조로 이루어져 있으며, 상세하게는, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
그러나, 이러한 분리막은 기공의 크기가 크거나, 공극률이 높을 경우, 리튬 이온의 이동에 유리할 수 있으나, 양극과 음극 사이에서 발휘되는 절연 성능이 저하될 수 있으며, 이에 따라, 전지의 안전성이 저하될 수 있다.
반면에, 상기 분리막은 기공의 크기가 지나치게 작거나, 공극률이 낮을 경우, 전지의 충방전 사이클이 진행됨에 따라, 전해액의 분해 등으로 인해 발생한 부산물이 상기 분리막의 기공을 폐쇄함으로써, 전지의 전기적 성능을 저하시킬 수 있다.
또한, 고체 전해질이 분리막을 겸하는 경우, 전지 내의 가스 발생이 감소하거나, 안전성이 향상되는 장점이 있으나, 액상의 전해액에 비해, 함침성 및 이온 전도성이 낮아, 전지의 성능이 저하되는 문제점이 있다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 분리막에 형성된 복수의 기공들 내에 겔(gel)화 된 전해액 성분이 포함되도록 구성함으로써, 큰 직경의 기공을 갖는 분리막을 사용함에도 불구하고, 양극과 음극 사이의 절연성을 향상시켜, 전지셀의 안전성을 확보할 수 있으며, 상기 기공의 폐쇄에 따른 이온 전도성 저하를 예방할 수 있고, 높은 전해액 함침성을 유지함으로써, 전지셀의 성능 저하를 방지할 수 있으며, 액상의 전해액만을 포함하는 구조에 비해, 전지셀의 온도 변화에 따른 분리막의 열 수축을 방지해, 안정성을 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 전지셀은,
양극과 음극 사이에 분리막이 개재되어 있는 구조의 전극조립체를 포함하고 있고, 상기 분리막에는 복수의 기공들이 형성되어 있으며, 상기 기공들 내에는 겔(gel)화 된 전해액 성분이 포함되어 있는 구조일 수 있다.
따라서, 큰 직경의 기공을 갖는 분리막을 사용함에도 불구하고, 양극과 음극 사이의 절연성을 유지함으로써, 전지셀의 안전성을 확보할 수 있으며, 상기 기공의 폐쇄에 따른 이온 전도성 저하를 예방할 수 있고, 높은 전해액 함침성을 유지함으로써, 전지셀의 성능 저하를 방지할 수 있으며, 액상의 전해액만을 포함하는 구조에 비해, 전지셀의 온도 변화에 따른 분리막의 열 수축을 방지해, 안정성을 향상시킬 수 있다.
하나의 구체적인 예에서, 상기 분리막에 형성된 기공들은 평균 직경이 0.01 ㎛ 내지 100 ㎛일 수 있으며, 보다 상세하게는, 1 ㎛ 내지 10 ㎛일 수 있다.
또한, 상기 분리막은 공극률이 40% 내지 90%일 수 있다.
만일, 상기 기공들의 평균 직경 및 공극률이, 상기 범위를 벗어나 지나치게 작을 경우에는, 이온 전도성 저하 예방의 효과를 발휘할 수 없거나, 겔화 된 전해액 성분이 충분히 포함될 수 없어, 전해액 함침성이 저하될 수 있다.
이와 반대로, 상기 기공들의 평균 직경 및 공극률이, 상기 범위를 벗어나 지나치게 클 경우에는, 상기 기공들에 겔화 된 전해액 성분이 포함됨에도 불구하고, 전기적 절연성이 저하됨으로써, 전지셀의 안전성이 저하될 수 있는 문제점이 있다.
한편, 상기 전해액 성분은 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분과 중합 개시제를 포함하는 혼합액에 분리막을 함침하여 분리막의 기공들 내로 혼합액이 삽입된 후, 중합 또는 경화 되는 구조일 수 있다.
더욱 구체적으로, 상기 분리막의 기공들 내에 포함되어 있는 전해액 성분은 겔화 된 이후에, 상기 기공들 내로 삽입되는 구조가 아니며, 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분과 중합 개시제를 포함하는 혼합액이 분리막의 기공들 내로 삽입된 후, 중합 또는 경화됨으로써, 분리막의 기공들 내에서 안정적으로 겔화 된 구조를 형성할 수 있다.
이때, 상기 분리막의 기공들은 3차원 네트워크 구조로 서로 연결된 구조일 수 있으며, 이에 따라, 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분과 중합 개시제를 포함하는 혼합액이 보다 용이하게 분리막의 기공들 내로 삽입될 수 있다.
상기 구조에 따라, 분리막의 기공들 내로 삽입된 후, 중합 또는 경화된 전해액 성분들은 3차원 네트워크 구조로 서로 연결되어, 구조적 안정성을 향상시킬 수 있다.
여기서, 상기 분리막의 기공들은 각각 독립적으로 형성된 구조일 수도 있음은 물론이다.
하나의 구체적인 예에서, 상기 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분은 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 또는 이온성 해리기를 포함하는 중합체로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
그러나, 상기 전해액 성분이 이에 한정되는 것은 아니며, 상세하게는, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하고 있을 수 있다.
즉, 상기 전해액 성분은 유기 고체 전해질 또는 무기 고체 전해질과 동일한 성분을 포함할 수 있다.
또한, 상기 중합 개시제는 외부에서 인가되는 열 또는 빛에 의해 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분을 겔화시킬 수 있다.
다시 말해, 상기 중합 개시제는 외부에서 인가되는 자극에 의해, 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분을 중합 또는 경화시키는 역할을 하며, 상세하게는, 열 또는 빛에 의해 상기 전해액 성분을 겔화시킬 수 있고, 상기 분리막은 양극과 음극 사이에 개재된다는 점을 고려하였을 때, 더욱 상세하게는, 상기 중합 개시제는 열에 의해 상기 전해액 성분을 겔화시킬 수 있다.
여기서, 상기 분리막의 기공 내로 삽입된 액상의 전해액 성분은 40℃ 내지 90℃의 온도 범위에서, 1시간 내지 20시간 동안 중합 또는 경화되는 구조일 수 있다.
만일, 상기 전해액 성분이 상기 범위를 벗어나, 지나치게 낮은 온도 범위에서, 빠른 시간에 중합 또는 경화되는 경우, 상기 전해액 성분을 포함하는 혼합액을 액상으로 유지한 상태에서, 분리막을 함침시키지 못할 수 있으며, 이와 반대로, 지나치게 높은 온도 범위에서, 긴 시간에 중합 또는 경화되는 경우, 상기 전해액 성분을 중합 또는 경화시키는데 소요되는 비용 및 시간이 증가할 수 있다.
또한, 상기 중합 개시제는 상기 온도 및 시간의 조건에서, 중합 또는 경화됨으로써, 분리막의 기공들 내에서 안정적으로 겔화 된 상태를 유지할 수 있는 동시에, 전지셀의 전기화학적 성능을 저해하지 않는 것이라면, 그 성분이 크게 제한되는 것은 아니며, 상세하게는, 벤조일 퍼옥사이드(Benzoyl peroxide; BPO), 아세틸 퍼옥사이드(Acetyl peroxide), 디라우릴 퍼옥사이드(Dilauryl peroxide), 디터트부틸퍼옥사이드(Di-tertbutylperoxide), 쿠밀 하이드로퍼옥사이드(Cumyl hydroperoxide), 하이드로겐 퍼옥사이드(Hydrogen peroxide), 2,2-Azobis(2-cyanobutane), 2,2-Azobis(Methylbutyronitrile), AIBN(Azobis(iso-butyronitrile), 및 AMVN(Azobisdimethyl-Valeronitrile)로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
한편, 상기 중합 개시제의 함량은 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분에 대해, 0.01 중량% 내지 5 중량%일 수 있다.
만일, 상기 중합 개시제의 함량이 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분에 대해, 0.01 중량% 미만일 경우에는, 상기 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분을 충분히 중합 또는 경화시킬 수 없고, 5 중량%를 초과하여, 지나치게 많이 포함될 경우에는, 상대적으로, 전해액 성분의 함량이 적어짐으로써, 소망하는 효과를 발휘하지 못할 수 있다.
하나의 구체적인 예에서, 상기 전지셀은 액상의 전해액을 더 포함하는 구조일 수 있다.
이때, 상기 액상의 전해액은 전극조립체를 함침시킨 상태에서, 전지케이스 내에 밀봉되는 구조일 수 있다.
더욱 구체적으로, 상기 전지셀은 복수의 기공들 내에 겔화 된 전해액 성분이 포함된 분리막이 양극과 음극 사이에 개재되어 있는 구조의 전극조립체를 포함하고 있으며, 별도의 액상 전해액이 전극조립체를 함침시킨 상태에서, 전지케이스 내에 밀봉되는 구조로서, 상기 겔화 된 전해액 성분 이외에 액상의 전해액을 더 포함하는 구조일 수 있다.
따라서, 상기 전지셀은 전해액에 대한 전극조립체의 함침성이 향상되고, 겔화 된 전해액 성분 이외에 추가의 전해액을 보충할 수 있어, 전지셀의 전기적 성능을 향상시킬 수 있다.
이러한 경우에, 상기 액상의 전해액은 분리막의 기공들 내에 위치하는 겔화 된 전해액 성분과 상이한 성분일 수 있으며, 상세하게는, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 및 프로피온산 에틸로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
하나의 구체적인 예에서, 상기 전지셀은 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지일 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막 및 분리필름은 전지의 안전성의 향상을 위하여, 상기 분리막 및/또는 분리필름은 유/무기 복합 다공성의 SRS(Safety-Reinforcing Separators) 분리막일 수 있다.
상기 SRS 분리막은 폴리올레핀 계열 분리막 기재상에 무기물 입자와 바인더 고분자를 활성층 성분으로 사용하여 제조되며, 이때 분리막 기재 자체에 포함된 기공 구조와 더불어 활성층 성분인 무기물 입자들간의 빈 공간(interstitial volume)에 의해 형성된 균일한 기공 구조를 갖는다.
이러한 유/무기 복합 다공성 분리막을 사용하는 경우 통상적인 분리막을 사용한 경우에 비하여 화성 공정(Formation)시의 스웰링(swelling)에 따른 전지 두께의 증가를 억제할 수 있다는 장점이 있고, 바인더 고분자 성분으로 액체 전해액 함침시 겔화 가능한 고분자를 사용하는 경우 전해질로도 동시에 사용될 수 있다.
또한, 상기 유/무기 복합 다공성 분리막은 분리막 내 활성층 성분인 무기물 입자와 바인더 고분자의 함량 조절에 의해 우수한 접착력 특성을 나타낼 수 있으므로, 전지 조립 공정이 용이하게 이루어질 수 있다는 특징이 있다.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는경우, 전기 화학 소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있으므로, 가능한 이온 전도도가 높은 것이 바람직하다. 또한, 상기 무기물 입자가 높은 밀도를 갖는 경우, 코팅시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있으므로, 가능한 밀도가 작은 것이 바람직하다. 또한, 유전율이 높은 무기물인 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
한편, 본 발명은 상기 전지셀을 제조하는 방법을 제공하는 바, 상기 전지셀을 제조하는 방법은,
a) 분리막을 양극과 음극 사이에 개재하여 전극조립체를 제조하는 단계;
b) 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분과 중합 개시제를 포함하는 혼합액에 상기 a) 단계에서 제조된 전극조립체를 함침시키는 단계;
c) 상기 전극조립체를 액상의 전해액과 함께 전지케이스 내에 함침시킨 후, 상기 전지케이스를 밀봉하는 단계;
d) 상기 분리막의 기공 내에 삽입된 모노머 및/또는 올리고머 상태의 전해액 성분을 중합 또는 경화시키는 단계;
를 포함할 수 있다.
즉, 상기 전지셀은 분리막을 양극과 음극 사이에 개재하여 제조된 전극조립체를 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분과 중합 개시제를 포함하는 혼합액에 함침시키고, 상기 전극조립체를 다시 액상의 전해액과 함께 전지케이스 내에 함침시킨 후, 밀봉시켜 제조되며, 상기 전지셀을 숙성(aging)시킴으로써, 분리막의 기공 내에 삽입된 전해액 성분을 중합 또는 경화시켜 제조될 수 있다.
만일, 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분과 중합 개시제를 포함하는 혼합액에 분리막을 별도로 함침시킨 후, 중합 또는 경화시키는 경우, 상기 분리막에 포함된 전해액 성분으로 인해, 양극과 음극 사이에 분리막을 개재시키는 전극조립체의 조립 과정이 용이하지 않을 수 있다.
반면에, 본 발명에 따른 전지셀 제조 방법은, 보다 용이하게 전극조립체를 조립할 수 있어, 상기 과정에 소요되는 비용 및 시간을 절약할 수 있으며, 상기 전극조립체의 구조적 안정성을 보다 향상시킬 수 있다.
이때, 상기 d) 단계에서 분리막의 기공 내에 삽입된 모노머 및/또는 올리고머 상태의 전해액 성분은 충분히 겔화 됨으로써, 안정적으로, 분리막의 기공들 내에 포함될 수 있도록, 40℃ 내지 90℃의 온도 범위에서, 1시간 내지 20시간 동안 중합 또는 경화될 수 있다.
만일, 상기 중합 또는 경화 과정이 상기 범위의 온도 및 시간을 벗어나 지나치게 낮은 온도에서, 짧은 시간 동안 수행될 경우에는, 분리막의 기공 내에 삽입된 모노머 및/또는 올리고머 상태의 전해액 성분이 충분히 겔화 될 수 없으며, 이와 반대로, 지나치게 높은 온도에서, 긴 시간동안 수행될 경우에는, 오히려 전지셀의 전기적 성능을 저하시키는 요인으로 작용할 수 있다.
한편, 상기 전지셀 제조 방법은 전해액 성분의 중합 또는 경화를 위한 숙성 공정에서 전지셀 내부에 발생한 가스를 배출하기 위해, 탈기(degas) 공정을 더 포함할 수 있다.
본 발명은 또한, 상기 전지셀을 포함하는 전지팩 및 상기 전지팩을 전원으로서 포함하는 디바이스를 제공하는 바, 상기 디바이스는 휴대폰, 태블릿 컴퓨터, 노트북 컴퓨터, 파워 툴, 웨어러블 전자기기, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장 장치로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 전지팩 및 디바이스들은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 구체적인 설명을 생략한다.
도 1은 본 발명의 하나의 실시예에 따른 전지셀의 구조를 개략적으로 나타낸 모식도이다;
도 2는 도 1의 전지셀을 제조하는 과정을 개략적으로 나타낸 모식도이다.
이하에서는, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명의 하나의 실시예에 따른 전지셀의 구조를 개략적으로 나타낸 모식도가 도시되어 있다.
도 1을 참조하면, 전지셀(100)은 전극조립체(110)를 포함하고 있으며, 전극조립체(110)는 액상의 전해액(130)에 함침된 상태에서, 전지케이스(120) 내에 밀봉되어 있다.
전극조립체(110)는 양극(111)과 음극(112)이 교대로 적층된 구조로 이루어져 있으며, 양극(111)과 음극(112) 사이에는 분리막(113)이 개재되어 있다.
분리막(113)에는 복수의 기공들(114)이 형성되어 있으며, 기공들(114) 내에는 겔화 된 전해액 성분(115)이 포함되어 있다.
따라서, 큰 직경의 기공(114)을 갖는 분리막(113)을 사용하더라도, 기공(114) 내에 포함된 겔화 된 전해액 성분(115)이 분리막(113)을 안정적으로 지지할 수 있어, 양극(111)과 음극(112) 사이의 절연성을 확보하는 동시에, 구조적 안정성을 향상시킬 수 있다.
기공들(114)은 제작의 용이성을 고려하였을 때, 서로 상이한 크기로 이루어져 있으나, 이에 한정되는 것은 아니며, 기공들(114)은 모두 동일한 크기로 이루어질 수도 있음은 물론이다.
기공들(114)은 각각 개별적으로 형성되어 있으나, 이에 한정되는 것은 아니며, 3차원 네트워크 구조로서, 서로 연결되어, 기공들(114) 내에 포함되어 있는 겔화 된 전해액 성분(115)에 의해, 보다 안정적으로 분리막(113)을 지지할 수도 있음은 물론이다.
도 2에는 도 1의 전지셀을 제조하는 과정을 개략적으로 나타낸 모식도가 도시되어 있다.
도 2를 참조하면, 우선, 전극조립체(110)는 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분(211)과 중합 개시제(212)를 포함하는 혼합액에 함침된다.
이에 따라, 전극조립체(110)의 분리막(113)에 형성되어 있는 복수의 기공들(114)에는 혼합액(210)이 충분히 삽입될 수 있다.
이후에, 분리막(113)의 기공들(114) 내에 혼합액(210)이 삽입된 전극조립체(110)는 액상의 전해액(130)과 함께 전지케이스(120) 내에 함침되며, 전지케이스(120)가 밀봉됨으로써, 전지셀(100)이 제조된다.
분리막(113)의 기공 내에 삽입된 모노머 및/또는 올리고머 상태의 전해액 성분(211)이 중합 또는 경화될 수 있도록, 전지셀(100)은 40℃ 내지 90℃의 온도 범위에서, 1시간 내지 20시간 동안 숙성되며, 이에 따라, 분리막(113)의 기공들(114) 내에는 겔화 된 전해액 성분(211)이 안정적으로 포함될 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지셀은, 분리막에 형성된 복수의 기공들 내에 겔(gel)화 된 전해액 성분이 포함되도록 구성됨으로써, 큰 직경의 기공을 갖는 분리막을 사용함에도 불구하고, 양극과 음극 사이의 절연성을 향상시켜, 전지셀의 안전성을 확보할 수 있으며, 상기 기공의 폐쇄에 따른 이온 전도성 저하를 예방할 수 있고, 높은 전해액 함침성을 유지함으로써, 전지셀의 성능 저하를 방지할 수 있으며, 액상의 전해액만을 포함하는 구조에 비해, 전지셀의 온도 변화에 따른 분리막의 열 수축을 방지해, 안정성을 향상시킬 수 있는 효과가 있다.

Claims (19)

  1. 양극과 음극 사이에 분리막이 개재되어 있는 구조의 전극조립체를 포함하고 있고, 상기 분리막에는 복수의 기공들이 형성되어 있으며, 상기 기공들 내에는 겔(gel)화 된 전해액 성분이 포함되어 있는 것을 특징으로 하는 전지셀.
  2. 제 1 항에 있어서, 상기 분리막에 형성된 기공들은 평균 직경이 0.01 ㎛ 내지 100 ㎛인 것을 특징으로 하는 전지셀.
  3. 제 1 항에 있어서, 상기 분리막은 공극률이 40% 내지 90%인 것을 특징으로 하는 전지셀.
  4. 제 1 항에 있어서, 상기 전해액 성분은 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분과 중합 개시제를 포함하는 혼합액에 분리막을 함침하여 분리막의 기공들 내로 혼합액이 삽입된 후, 중합 또는 경화 되는 것을 특징으로 하는 전지셀.
  5. 제 4 항에 있어서, 상기 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분은 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 또는 이온성 해리기를 포함하는 중합체로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 전지셀.
  6. 제 4 항에 있어서, 상기 전해액 성분은 Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하고 있는 것을 특징으로 하는 전지셀.
  7. 제 4 항에 있어서, 상기 중합 개시제는 외부에서 인가되는 열 또는 빛에 의해 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분을 겔화시키는 것을 특징으로 하는 전지셀.
  8. 제 4 항에 있어서, 상기 분리막의 기공 내로 삽입된 액상의 전해액 성분은 40℃ 내지 90℃의 온도 범위에서, 1시간 내지 20시간 동안 중합 또는 경화되는 것을 특징으로 하는 전지셀.
  9. 제 4 항에 있어서, 상기 중합 개시제는 벤조일 퍼옥사이드(Benzoyl peroxide; BPO), 아세틸 퍼옥사이드(Acetyl peroxide), 디라우릴 퍼옥사이드(Dilauryl peroxide), 디터트부틸퍼옥사이드(Di-tertbutylperoxide), 쿠밀 하이드로퍼옥사이드(Cumyl hydroperoxide), 하이드로겐 퍼옥사이드(Hydrogen peroxide), 2,2-Azobis(2-cyanobutane), 2,2-Azobis(Methylbutyronitrile), AIBN(Azobis(iso-butyronitrile), 및 AMVN(Azobisdimethyl-Valeronitrile)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 전지셀.
  10. 제 4 항에 있어서, 상기 중합 개시제의 함량은 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분에 대해, 0.01 중량% 내지 5 중량%인 것을 특징으로 하는 전지셀.
  11. 제 1 항에 있어서, 상기 전지셀은 액상의 전해액을 더 포함하는 것을 특징으로 하는 전지셀.
  12. 제 11 항에 있어서, 상기 액상의 전해액은 전극조립체를 함침시킨 상태에서, 전지케이스 내에 밀봉되는 것을 특징으로 하는 전지셀.
  13. 제 11 항에 있어서, 상기 액상의 전해액은 N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 및 프로피온산 에틸로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 특징으로 하는 전지셀.
  14. 제 1 항에 있어서, 상기 전지셀은 리튬 이차전지인 것을 특징으로 하는 전지셀.
  15. 제 1 항에 따른 전지셀을 제조하는 방법으로서,
    a) 분리막을 양극과 음극 사이에 개재하여 전극조립체를 제조하는 단계;
    b) 액상으로 이루어진 모노머 및/또는 올리고머 상태의 전해액 성분과 중합 개시제를 포함하는 혼합액에 상기 a) 단계에서 제조된 전극조립체를 함침시키는 단계;
    c) 상기 전극조립체를 액상의 전해액과 함께 전지케이스 내에 함침시킨 후, 상기 전지케이스를 밀봉하는 단계;
    d) 상기 분리막의 기공 내에 삽입된 모노머 및/또는 올리고머 상태의 전해액 성분을 중합 또는 경화시키는 단계;
    를 포함하는 것을 특징으로 하는 전지셀 제조 방법.
  16. 제 15 항에 있어서, 상기 d) 단계에서 분리막의 기공 내에 삽입된 모노머 및/또는 올리고머 상태의 전해액 성분은 40℃ 내지 90℃의 온도 범위에서, 1시간 내지 20시간 동안 중합 또는 경화되는 것을 특징으로 하는 전지셀 제조 방법.
  17. 제 1 항에 따른 전지셀을 포함하는 것을 특징으로 하는 전지팩.
  18. 제 17 항에 따른 전지팩을 전원으로서 포함하는 디바이스.
  19. 제 18 항에 있어서, 상기 디바이스는 휴대폰, 태블릿 컴퓨터, 노트북 컴퓨터, 파워 툴, 웨어러블 전자기기, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장 장치로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 디바이스.
PCT/KR2016/011219 2015-10-07 2016-10-07 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀 WO2017061807A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018503234A JP6815381B2 (ja) 2015-10-07 2016-10-07 電極アセンブリを構成する分離膜の気孔内にゲル化電解質成分を含む電池セル
PL16853923T PL3316380T3 (pl) 2015-10-07 2016-10-07 Ogniwo baterii, w którym składnik roztworu elektrolitu żelującego jest zawarty w porach separatora konfigurującego zespół elektrody
US15/744,488 US10490849B2 (en) 2015-10-07 2016-10-07 Battery cell in which gelation electrolyte solution component is included in pore of separator configuring electrode assembly
CN201680046500.6A CN107851845B (zh) 2015-10-07 2016-10-07 将凝胶电解液组分包括在构成电极组件的隔板的孔中的电池单元
EP20156874.8A EP3675266B1 (en) 2015-10-07 2016-10-07 Battery cell in which gelled electrolyte component is included in pore of separator configuring electrode assembly
EP16853923.7A EP3316380B1 (en) 2015-10-07 2016-10-07 Battery cell in which gelation electrolyte solution component is included in pore of separator configuring electrode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0140927 2015-10-07
KR1020150140927A KR20170041470A (ko) 2015-10-07 2015-10-07 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀

Publications (1)

Publication Number Publication Date
WO2017061807A1 true WO2017061807A1 (ko) 2017-04-13

Family

ID=58488107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011219 WO2017061807A1 (ko) 2015-10-07 2016-10-07 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀

Country Status (9)

Country Link
US (1) US10490849B2 (ko)
EP (2) EP3316380B1 (ko)
JP (1) JP6815381B2 (ko)
KR (1) KR20170041470A (ko)
CN (1) CN107851845B (ko)
ES (1) ES2961256T3 (ko)
HU (1) HUE064536T2 (ko)
PL (2) PL3316380T3 (ko)
WO (1) WO2017061807A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210028496A1 (en) * 2018-04-09 2021-01-28 Nissan Motor Co., Ltd. Battery manufacturing method
CN114284554A (zh) * 2021-12-06 2022-04-05 合肥国轩高科动力能源有限公司 一种凝胶锂离子电池制备方法及制得的凝胶锂离子电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435758A (zh) * 2019-12-25 2020-07-21 蜂巢能源科技有限公司 固态电解质膜及其制作方法、固态电池和电动汽车
CN111092193B (zh) * 2019-12-31 2023-04-07 深圳市豪鹏科技股份有限公司 一种镍电池的注液方式和镍电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090012726A (ko) * 2007-07-31 2009-02-04 주식회사 에이엠오 공기투과도가 높은 전기화학소자용 분리막 및 그의제조방법
KR20100016919A (ko) * 2008-08-05 2010-02-16 주식회사 엘지화학 겔 폴리머 전해질 이차전지 제조방법 및 그에 의해 제조된겔 폴리머 전해질 이차전지
KR20110137567A (ko) * 2010-06-17 2011-12-23 호남석유화학 주식회사 리튬 이차전지용 고분자 전해질 및 이를 포함하는 리튬 이차 전지
KR20150007907A (ko) * 2013-07-12 2015-01-21 주식회사 아모그린텍 복합 다공성 분리막 및 그 제조방법과 이를 이용한 이차전지
KR20150016897A (ko) * 2013-08-05 2015-02-13 주식회사 아모그린텍 플렉시블 집전체 및 그 제조방법과 이를 이용한 이차전지

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69404602T2 (de) * 1993-10-07 1998-01-29 Matsushita Electric Ind Co Ltd Herstellungsverfahren eines Separators für eine Lithium-Sekundärbatterie und eine Lithium-Sekundärbatterie mit organischem Elektrolyt, die einen solchen Separator verwendet
JP3262708B2 (ja) * 1996-03-26 2002-03-04 日本電信電話株式会社 複合高分子電解質膜
JP4074418B2 (ja) * 1999-01-11 2008-04-09 三菱化学株式会社 薄膜型リチウム二次電池
CN1258830C (zh) * 1999-11-11 2006-06-07 皇家菲利浦电子有限公司 含凝胶电解质的锂电池
KR100334240B1 (ko) 2000-01-31 2002-05-02 김선욱 전기 에너지 저장 장치 및 그 제조방법
KR100440930B1 (ko) * 2001-11-24 2004-07-21 삼성에스디아이 주식회사 세퍼레이터의 제조방법 및 이를 채용한 리튬2차 전지의제조방법
JP3904935B2 (ja) 2002-01-29 2007-04-11 三菱化学株式会社 リチウムポリマー二次電池の製造方法
JP4157056B2 (ja) 2004-02-23 2008-09-24 三星エスディアイ株式会社 ゲルポリマー電解質およびリチウム二次電池
KR20050116338A (ko) 2004-06-07 2005-12-12 박권필 분자 전해질 막 제조방법
KR100739337B1 (ko) 2004-09-02 2007-07-12 주식회사 엘지화학 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
US8883354B2 (en) * 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
JP5187720B2 (ja) 2007-05-15 2013-04-24 Necエナジーデバイス株式会社 リチウムイオンポリマー電池
US20110143184A1 (en) * 2008-02-14 2011-06-16 Firefly International Energy Group, Inc. Battery with electrolyte diffusing separator
JP5553170B2 (ja) * 2011-01-12 2014-07-16 トヨタ自動車株式会社 リチウムイオン二次電池
JP2013051081A (ja) * 2011-08-30 2013-03-14 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN102368562B (zh) * 2011-09-13 2015-11-25 东莞新能源科技有限公司 一种锂离子电池
KR101639020B1 (ko) 2013-01-15 2016-07-12 주식회사 아모그린텍 폴리머 전해질, 이를 이용한 리튬 이차 전지 및 그의 제조방법
WO2014112776A1 (ko) * 2013-01-15 2014-07-24 주식회사 아모그린텍 폴리머 전해질, 이를 이용한 리튬 이차 전지 및 그의 제조방법
CN104919639B (zh) * 2013-01-15 2019-02-01 阿莫绿色技术有限公司 聚合物电解质、利用其的锂二次电池及其制备方法
CN104098785B (zh) * 2013-04-07 2017-02-08 中国科学院长春应用化学研究所 Pvdf凝胶聚合物电解质及其制备方法
KR102220502B1 (ko) 2014-06-09 2021-02-25 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 차량 부품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090012726A (ko) * 2007-07-31 2009-02-04 주식회사 에이엠오 공기투과도가 높은 전기화학소자용 분리막 및 그의제조방법
KR20100016919A (ko) * 2008-08-05 2010-02-16 주식회사 엘지화학 겔 폴리머 전해질 이차전지 제조방법 및 그에 의해 제조된겔 폴리머 전해질 이차전지
KR20110137567A (ko) * 2010-06-17 2011-12-23 호남석유화학 주식회사 리튬 이차전지용 고분자 전해질 및 이를 포함하는 리튬 이차 전지
KR20150007907A (ko) * 2013-07-12 2015-01-21 주식회사 아모그린텍 복합 다공성 분리막 및 그 제조방법과 이를 이용한 이차전지
KR20150016897A (ko) * 2013-08-05 2015-02-13 주식회사 아모그린텍 플렉시블 집전체 및 그 제조방법과 이를 이용한 이차전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210028496A1 (en) * 2018-04-09 2021-01-28 Nissan Motor Co., Ltd. Battery manufacturing method
US11652241B2 (en) * 2018-04-09 2023-05-16 Nissan Motor Co., Ltd. Battery manufacturing method
CN114284554A (zh) * 2021-12-06 2022-04-05 合肥国轩高科动力能源有限公司 一种凝胶锂离子电池制备方法及制得的凝胶锂离子电池

Also Published As

Publication number Publication date
KR20170041470A (ko) 2017-04-17
PL3675266T3 (pl) 2024-01-29
HUE064536T2 (hu) 2024-03-28
EP3316380B1 (en) 2020-04-15
JP6815381B2 (ja) 2021-01-20
CN107851845A (zh) 2018-03-27
PL3316380T3 (pl) 2020-07-27
ES2961256T3 (es) 2024-03-11
EP3316380A1 (en) 2018-05-02
EP3316380A4 (en) 2018-06-27
EP3675266B1 (en) 2023-09-20
US10490849B2 (en) 2019-11-26
JP2018521483A (ja) 2018-08-02
CN107851845B (zh) 2022-02-18
US20180212273A1 (en) 2018-07-26
EP3675266A1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2016099038A1 (ko) Ptc 물질을 포함하는 이차전지용 전극을 제조하는 방법 및 이에 의해 제조되는 전극
WO2015046709A1 (ko) 가열 부재를 포함하는 전지셀 절곡 장치
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2015126074A1 (ko) 홀을 포함하고 있는 전지셀
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2014126369A1 (ko) 비정형 구조의 전지셀
WO2015046751A1 (ko) 곡면 구조의 전지팩
WO2017213344A1 (ko) 다공성 구조의 냉각 겸용 완충 부재를 포함하는 전지모듈
WO2014168398A1 (ko) 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2014196777A1 (ko) 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
WO2013157855A1 (ko) 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2018097500A1 (ko) 가스켓 압축 리미터를 포함하고 있는 전지팩
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2014200176A1 (ko) 실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
KR102170100B1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2014126359A1 (ko) 경사 구조의 전극조립체 및 이를 포함하는 전지셀
WO2017039149A1 (ko) 자성 물질을 포함하는 이차전지용 바인더

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15744488

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018503234

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016853923

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE