WO2017039149A1 - 자성 물질을 포함하는 이차전지용 바인더 - Google Patents

자성 물질을 포함하는 이차전지용 바인더 Download PDF

Info

Publication number
WO2017039149A1
WO2017039149A1 PCT/KR2016/007936 KR2016007936W WO2017039149A1 WO 2017039149 A1 WO2017039149 A1 WO 2017039149A1 KR 2016007936 W KR2016007936 W KR 2016007936W WO 2017039149 A1 WO2017039149 A1 WO 2017039149A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
electrode mixture
current collector
secondary battery
magnetic material
Prior art date
Application number
PCT/KR2016/007936
Other languages
English (en)
French (fr)
Inventor
송주용
안지희
이지은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/736,197 priority Critical patent/US10763508B2/en
Priority to CN201680035921.9A priority patent/CN108064423B/zh
Priority to EP16842115.4A priority patent/EP3285317B1/en
Priority to JP2017564633A priority patent/JP6607967B2/ja
Publication of WO2017039149A1 publication Critical patent/WO2017039149A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • C09J101/26Cellulose ethers
    • C09J101/28Alkyl ethers
    • C09J101/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • C09J101/26Cellulose ethers
    • C09J101/28Alkyl ethers
    • C09J101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J103/00Adhesives based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09J103/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09J127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J139/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Adhesives based on derivatives of such polymers
    • C09J139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09J139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery binder containing a magnetic material.
  • lithium secondary batteries such as lithium ion batteries and lithium ion polymer batteries is high.
  • secondary batteries are classified according to the structure of an electrode assembly having a structure in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are formed.
  • Jelly-roll type electrode assembly having a structure wound in a state where a separator is interposed, a stack type electrode assembly in which a plurality of anodes and cathodes cut in units of a predetermined size are sequentially stacked with a separator therebetween
  • an electrode assembly having an advanced structure which is a mixed form of the jelly-roll type and the stack type has a predetermined unit.
  • Stacked / foldable electrode having a structure in which positive and negative electrodes are sequentially wound in a state in which unit cells stacked on a separator film are stacked with a separator interposed therebetween Developed body lip.
  • the secondary battery is a cylindrical battery and a rectangular battery in which the electrode assembly is embedded in a cylindrical or rectangular metal can according to the shape of the battery case, and a pouch type battery in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet. Are classified.
  • a pouch-type battery having a stacked or stacked / folding electrode assembly in a pouch-type battery case of an aluminum laminate sheet has attracted much attention due to its low manufacturing cost, small weight, and easy shape deformation. And its usage is gradually increasing.
  • such a secondary battery is coated with an electrode mixture containing an electrode active material, a conductive agent, a binder, and the like on an electrode current collector, followed by drying to prepare an electrode, and stacking the prepared electrode together with a separator, followed by an electrolyte solution. It is completed by being built and sealed in a battery case together with it.
  • FIG. 1 is a schematic diagram schematically showing a manufacturing process of a conventional secondary battery positive electrode.
  • the cathode 100 is dried after the cathode mixture 110 including the cathode active material particles 111 and the binder 112 is applied to an upper surface of the cathode current collector 120 in a liquid state. 130) is manufactured through the process.
  • the solvent contained in the positive electrode mixture 110 is dried (130), the binder 112 is dissolved in the solvent in the positive electrode mixture 110 Since it is included, the binder 112 dissolved in the solvent in the process of drying the solvent is moved to the upper portion of the positive electrode mixture (110).
  • the binder component is relatively less positioned between the positive electrode mixture 110 and the positive electrode current collector 120, and as a result, the adhesive force between the positive electrode mixture 110 and the positive electrode current collector 120 is lowered and the positive electrode 100 is reduced. ) Also increases the resistance, there is a problem in reducing the structural stability and electrical performance of the secondary battery including the positive electrode (100).
  • this problem increases the defect rate in the electrode manufacturing process, lowers the reliability of the electrode manufacturing process, delays the overall process time, and acts as a factor to increase the manufacturing cost.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application have configured the secondary battery binder to include a magnetic material exhibiting magnetism with respect to a magnetic field applied from the outside, as described later.
  • the phenomenon that the binder containing the magnetic material is moved by drying of the solvent to be located in the upper direction of the electrode mixture through the magnetic field applying unit located on the other surface of the current collector opposite to this It is possible to prevent, thereby improving the adhesion of the electrode mixture to the current collector, to improve the structural stability of the electrode, by preventing the increase of the resistance of the electrode, it is possible to prevent the degradation of the electrical performance of the electrode, It is confirmed that the reliability of the process can be improved by lowering the defective rate of the product. Leading to the castle.
  • Binder molecules that exhibit adhesion to the current collector and the active material particles are Binder molecules that exhibit adhesion to the current collector and the active material particles.
  • Magnetic material exhibiting magnetism with respect to an externally applied magnetic field
  • a binder containing a magnetic material is moved by drying of the solvent through a magnetic field applying unit located on the other surface of the current collector opposite to the upper portion of the electrode mixture.
  • Direction can be prevented, thereby improving the adhesion of the electrode mixture to the current collector, thereby improving the structural stability of the electrode, and preventing the increase in resistance of the electrode, thereby reducing the electrical performance of the electrode It can prevent, and can reduce the defect rate of a product, and can improve the reliability about a process.
  • the magnetic material may be a metal, specifically, Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, Zn, Zr, Nb, Mo, Sr, Sb, W And Ti may be at least one selected from the group consisting of.
  • the kind of the magnetic material is not limited thereto, and the magnetic material is not particularly limited as long as the magnetic material exhibits magnetism against an externally applied magnetic field and does not affect the performance of the electrode.
  • the magnetic material may be included in the range of 0.1% to 20% based on the total weight of the binder.
  • the magnetic material may be contained in an amount less than 0.1% based on the total weight of the binder, the content of the magnetic material may be too small, and thus may not exhibit a desired effect.
  • the magnetic material may be a binder. When it is included in excess of 20% based on the total weight of, compared to the electrode mixture of the same weight, the content of the other active ingredients, including the electrode active material is too small, the electrical performance of the electrode may be reduced.
  • the magnetic material may be a structure that is chemically bonded to the binder molecule.
  • the magnetic material may have a structure in which the magnetic material is bound to the binder molecule in ionic form.
  • the magnetic material may have a structure in which the binder molecule is bonded by an ionic bond, a covalent bond, or a coordination bond.
  • the magnetic material is bound to the binder molecule with a strong bonding force, and the binder molecule bonded to the magnetic material having a predetermined magnetism is also fixed or moved in the direction of the current collector with respect to a magnetic field applied from the outside, thereby The fall of the adhesive force of a mixture can be prevented.
  • the binder molecule may include one or more anionic substituents
  • the magnetic material may be formed of a cationic metal
  • the binder molecule and the magnetic material may have a chelate structure.
  • the chelate bond is a bond of a compound having two or more hemiglobins in one molecule or ion and having a ring structure that is coordinated as if it surrounds a metal atom or ion, and generally, a metal constituting the magnetic material.
  • the binder molecule contains one or more anionic substituents.
  • the binder molecule may have a structure that chelates with metal ions constituting a magnetic material through an anion substituent, and thus, the binder molecule together with a metal exhibiting magnetism with respect to a magnetic field applied from the outside, By located in all directions, a desired effect can be exhibited.
  • the binder molecule may be chemically bonded to the magnetic material, and if it exhibits adhesion to the current collector and the active material particles, the type is not greatly limited, in detail, polyvinylidene fluoride, polyvinyl Alcohols, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM ), Sulfonated EPDM, styrene butyrene rubber, and fluorine rubber.
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • Sulfonated EPDM styrene butyrene rubber
  • fluorine rubber fluorine rubber
  • the present invention provides an electrode mixture for a secondary battery including the secondary battery binder, the electrode mixture may be a positive electrode mixture or a negative electrode mixture.
  • the binder for secondary batteries according to the present invention may be applied to both the positive electrode mixture and the negative electrode mixture regardless of the polarity of the electrode mixture.
  • the present invention also provides an electrode mixture coating device for coating the electrode mixture on the electrode current collector, the device,
  • Transfer unit for transferring the current collector in one direction
  • An electrode mixture application part for applying an electrode mixture to one surface of the current collector
  • a magnetic field applying unit applying an external magnetic field to the electrode mixture applied to one surface of the current collector
  • the magnetic field applying unit may be a structure located in the drying unit, or the transfer unit and the drying unit at the other surface portion opposite to one surface of the current collector, accordingly, the electrode mixture is a binder is applied to the magnetic field application unit on one surface of the current collector It may be located in an adjacent direction.
  • the electrode mixture may have a structure applied to one surface of the current collector.
  • the magnetic field applying unit may be located on the other surface of the current collector to face the other surface, thereby applying an external magnetic field to the electrode mixture, whereby the magnetic material of the binder included in the electrode mixture is magnetic with respect to the external magnetic field.
  • the magnetic field applying unit is located in a drying unit where the movement of the binder can occur relatively, or the drying is performed.
  • the intensity of the external magnetic field applied by the magnetic field applying unit may be 0.05 T (Tesla) to 100 T.
  • the strength of the external magnetic field applied by the magnetic field applying unit is too small out of the above range, the effect of improving the desired adhesive force may not be exhibited, and when too large, a uniform mixed state of the electrode mixture may be achieved. Or interfere with the electrical performance of other components included in the electrode mixture.
  • the present invention provides a battery cell manufactured using the electrode mixture coating device
  • the battery cell is not particularly limited in its kind, but as a specific example, high energy density, discharge voltage, output stability, etc. It may be a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery, and the like having an advantage.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the separator and the separator are interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 120 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • the separator and / or the separator may be an SRS (Safety-Reinforcing Separators) separator of organic / inorganic composite porous.
  • the SRS separator is manufactured using inorganic particles and a binder polymer as an active layer component on a polyolefin-based separator substrate, wherein the pore structure included in the separator substrate itself and the interstitial volume between the inorganic particles as the active layer component are used. It has a uniform pore structure formed.
  • the organic / inorganic composite porous separator may exhibit excellent adhesion characteristics by controlling the content of the inorganic particles and the binder polymer, which are the active layer components in the separator, and thus may have an easy battery assembly process.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range of the battery to be applied (for example, 0 to 5 V on the basis of Li / Li +).
  • the inorganic particles having the ion transfer ability since the ion conductivity in the electrochemical device can be improved to improve the performance, it is preferable that the ion conductivity is as high as possible.
  • the inorganic particles have a high density, it is not only difficult to disperse during coating, but also has a problem of weight increase during battery manufacturing, and therefore, it is preferable that the density is as small as possible.
  • an inorganic material having a high dielectric constant it is possible to contribute to an increase in the degree of dissociation of an electrolyte salt such as lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution.
  • the lithium salt-containing nonaqueous electrolyte solution consists of a polar organic electrolyte solution and a lithium salt.
  • a non-aqueous liquid electrolyte an organic solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • N-methyl- 2-pyrrolidinone a propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma
  • Butyl lactone 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and eth
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate triamide.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the present invention also provides a device comprising at least one battery cell, the device is a mobile phone, tablet computer, notebook computer, power tools, wearable electronics, electric vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle And, and may be any one selected from the group consisting of a power storage device.
  • FIG. 1 is a schematic view schematically showing a manufacturing process of a conventional secondary battery positive electrode
  • FIG. 2 is a schematic diagram schematically showing a configuration of a positive electrode mixture including a secondary battery binder according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram schematically illustrating a process of coating the positive electrode mixture of FIG. 2 on a current collector.
  • FIG. 2 is a schematic diagram schematically showing the configuration of a positive electrode mixture including a secondary battery binder according to an embodiment of the present invention.
  • the positive electrode mixture 210 includes positive electrode active material particles 211 and a binder 212.
  • the binder 212 includes a binder molecule 212a exhibiting adhesion to the current collector and the positive electrode active material particles 211 and a magnetic material 212b chemically bonded to the binder molecule 212a.
  • the magnetic material 212b shows magnetism with respect to a magnetic field applied from the outside, and the magnetic field applying unit applying the external magnetic field is located on the other surface opposite to one surface of the current collector to which the positive electrode mixture 210 is applied.
  • FIG. 3 is a schematic diagram schematically illustrating a process of coating the positive electrode mixture of FIG. 2 on a current collector.
  • the cathode 200 is dried after the cathode mixture 210 including the cathode active material 211 and the binder 212 is applied to the upper surface of the cathode current collector 220 in a liquid state. Manufactured through) process.
  • the magnetic field applying unit 240 for applying an external magnetic field is located on the other surface facing the one surface of the positive electrode current collector 220 to which the positive electrode mixture 210 is applied. have.
  • the magnetic material 212b exhibits magnetism with respect to an external magnetic field applied from the magnetic field applying unit 240, and applies magnetic fields together with the binder molecules 212a that are chemically bonded on one surface of the positive electrode current collector 220. Located in the direction adjacent to the portion 240.
  • the phenomenon that the binder molecules 212a chemically bound to the magnetic material 212b are moved by drying the solvent to prevent the binder molecules 212a from being positioned in the upper direction of the positive electrode mixture 210 can be prevented, and the positive electrode current collector 220 Adhesion of the positive electrode mixture 210 can be improved.
  • the secondary battery binder according to the present invention comprises a magnetic material exhibiting magnetic properties to the magnetic field applied from the outside together with the binder molecule, thereby drying the electrode mixture applied to one surface of the current collector
  • the magnetic field applying unit located on the other surface of the current collector opposite to this it is possible to prevent the phenomenon that the binder containing the magnetic material is moved by the drying of the solvent to be located in the upper direction of the electrode mixture, accordingly, the current collector
  • By improving the adhesion of the electrode mixture to the electrode it is possible to improve the structural stability of the electrode, and to prevent the increase of the resistance of the electrode, it is possible to prevent the degradation of the electrical performance of the electrode, and to reduce the defective rate of the product, There is an effect that can improve the reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전극 합제에 포함되는 이차전지용 바인더로서, 집전체 및 활물질 입자들에 대한 접착력을 발휘하는 바인더 분자; 및 외부에서 인가되는 자기장에 대해 자성을 나타내는 자성 물질;을 포함하는 것을 특징으로 하는 이차전지용 바인더를 제공한다.

Description

자성 물질을 포함하는 이차전지용 바인더
본 발명은 자성 물질을 포함하는 이차전지용 바인더에 관한 것이다.
본 출원은 2015.08.31 일자 한국 특허 출원 제10-2015-0122799호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
최근, 화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다. 이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력저장장치 또한 지대한 관심이 이어지고 있다.
특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
또한, 이차전지는 양극, 음극, 및 양극과 음극 사이에 개재되는 분리막이 적층된 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤형(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체 등을 들 수 있으며, 최근에는, 상기 젤리-롤형 전극조립체 및 스택형 전극조립체가 갖는 문제점을 해결하기 위해, 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀들을 분리필름 상에 위치시킨 상태에서 순차적으로 권취한 구조의 스택/폴딩형 전극조립체가 개발되었다.
또한, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
특히, 최근에는 스택형 또는 스택/폴딩형 전극조립체를 알루미늄 라미네이트 시트의 파우치형 전지케이스에 내장한 구조의 파우치형 전지가, 낮은 제조비, 작은 중량, 용이한 형태 변형 등을 이유로, 많은 관심을 모으고 있고 또한 그것의 사용량이 점차적으로 증가하고 있다.
일반적으로, 이러한 이차전지는 전극 집전체 상에 전극 활물질, 도전제, 바인더 등이 혼합된 전극 합제를 도포한 후 건조하여, 전극을 제조하고, 상기 제조된 전극을 분리막과 함께 적층한 후, 전해액과 함께 전지케이스에 내장 및 밀봉함으로써, 완성된다.
도 1에는 종래의 이차전지용 양극의 제조 과정을 개략적으로 나타낸 모식도가 도시되어 있다.
도 1을 참조하면, 양극(100)은 양극 활물질 입자(111)와 바인더(112)를 포함하고 있는 양극 합제(110)가 액상의 상태로 양극 집전체(120)의 상면에 도포된 후 건조(130)되는 과정을 거쳐 제조된다.
이때, 양극 합제(110)에 대한 건조(130) 과정에서는 양극 합제(110)에 포함된 용매가 건조(130)되는 바, 바인더(112)는 상기 용매에 용해된 상태로 양극 합제(110)에 포함되어 있으므로, 상기 용매가 건조되는 과정에서 용매에 용해되어 있는 바인더(112)는 양극 합제(110)의 상부로 이동하게 된다.
따라서, 양극 합제(110)와 양극 집전체(120) 사이에는 바인더 성분이 상대적으로 적게 위치하며, 이에 따라, 양극 합제(110)와 양극 집전체(120) 사이의 접착력이 저하되고, 양극(100)의 저항 역시 증가하게 되므로, 상기 양극(100)을 포함하는 이차전지의 구조적 안정성 및 전기적 성능을 저하시키는 문제점이 있다.
또한, 이러한 문제점은 전극 제조 공정에서의 불량률을 증가시켜, 상기 전극 제조 공정에 대한 신뢰성을 저하시키고, 전체적인 공정 시간을 지연시켜, 제조 비용을 증가시키는 요인으로 작용한다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 이차전지용 바인더가 바인더 분자와 함께, 외부에서 인가되는 자기장에 대해 자성을 나타내는 자성 물질을 포함하도록 구성함으로써, 집전체의 일면에 도포된 전극 합제의 건조 과정에서, 이에 대향하는 집전체의 타면에 위치한 자기장 인가부를 통해, 자성 물질을 포함하는 바인더가 용매의 건조에 의해 이동하여 전극 합제의 상부 방향으로 위치하는 현상을 방지할 수 있으며, 이에 따라, 집전체에 대한 전극 합제의 접착력을 향상시켜, 전극의 구조적 안정성을 향상시킬 수 있고, 전극의 저항 증가를 방지함으로써, 전극의 전기적 성능 저하를 방지할 수 있어, 제품의 불량률을 저하를 통해, 공정에 대한 신뢰성을 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 이차전지용 바인더는,
전극 합제에 포함되는 이차전지용 바인더로서,
집전체 및 활물질 입자들에 대한 접착력을 발휘하는 바인더 분자; 및
외부에서 인가되는 자기장에 대해 자성을 나타내는 자성 물질;
을 포함할 수 있다.
따라서, 상기 전극 집전체의 일면에 도포된 전극 합제의 건조 과정에서, 이에 대향하는 집전체의 타면에 위치한 자기장 인가부를 통해, 자성 물질을 포함하는 바인더가 용매의 건조에 의해 이동하여 전극 합제의 상부 방향으로 위치하는 현상을 방지할 수 있으며, 이에 따라, 집전체에 대한 전극 합제의 접착력을 향상시켜, 전극의 구조적 안정성을 향상시킬 수 있고, 전극의 저항 증가를 방지함으로써, 전극의 전기적 성능 저하를 방지할 수 있어, 제품의 불량률을 저하를 통해, 공정에 대한 신뢰성을 향상시킬 수 있다.
하나의 구체적인 예에서, 상기 자성 물질은 금속일 수 있으며, 상세하게는, Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, Zn, Zr, Nb, Mo, Sr, Sb, W 및 Ti로 이루어진 군에서 선택되는 하나 이상일 수 있다.
그러나, 상기 자성 물질의 종류가 이에 한정되는 것은 아니며, 상기 자성 물질은 외부에서 인가되는 자기장에 대해 자성을 나타내는 동시에, 전극의 성능에 영향을 미치지 않는 물질이라면, 그 종류가 크게 제한되는 것은 아니다.
또한, 상기 자성 물질은 바인더의 전체 중량을 기준으로 0.1% 내지 20%의 범위로 포함되어 있을 수 있다.
만일, 상기 자성 물질이 바인더의 전체 중량을 기준으로 0.1% 미만으로 포함되어 있을 경우에는, 상기 자성 물질의 함량이 지나치게 적어, 소망하는 효과를 발휘하지 못할 수 있으며, 이와 반대로, 상기 자성 물질이 바인더의 전체 중량을 기준으로 20%를 초과하여 포함되어 있을 경우에는, 동일한 중량의 전극 합제 대비, 전극 활물질을 비롯한 기타 구성 성분의 함량이 지나치게 적어져, 전극의 전기적 성능이 저하될 수 있다.
한편, 상기 자성 물질은 바인더 분자와 화학적으로 결합되어 있는 구조일 수 있다.
이러한 경우에, 상기 자성 물질은 이온 형태로서 바인더 분자에 결합되어 있는 구조일 수 있다.
또한, 상기 자성 물질은 바인더 분자와 이온 결합, 공유 결합 또는 배위 결합에 의해 결합되어 있는 구조일 수 있다.
따라서, 상기 자성 물질은 바인더 분자와 강한 결합력으로 결합되어 있으며, 외부에서 인가되는 자기장에 대해, 소정의 자성을 갖는 상기 자성 물질에 결합된 바인더 분자 역시, 집전체 방향으로 고정되거나 또는 이동함으로써, 전극 합제의 접착력 저하를 방지할 수 있다.
특히, 상기 바인더 분자는 하나 이상의 음이온 치환기를 포함하고 있고, 상기 자성 물질은 양이온 금속으로 이루어져 있으며, 바인더 분자와 자성 물질은 킬레이트(chelate) 결합을 이루고 있는 구조일 수 있다.
여기서, 상기 킬레이트 결합이란 1개의 분자 또는 이온에 2개 이상의 배위원자를 갖고, 그것이 금속 원자 또는 이온을 둘러 쌓듯이 배위한 고리구조가 있는 화합물의 결합으로서, 일반적으로, 상기 자성 물질을 구성하는 금속은 이온 형태로서 존재할 경우, 양이온을 이루며, 이에 대응하여, 상기 바인더 분자는 하나 이상의 음이온 치환기를 포함하고 있다.
따라서, 상기 바인더 분자는 음이온 치환기를 통해, 자성 물질을 이루는 금속 이온과 킬레이트 결합을 이루는 구조일 수 있으며, 이에 따라, 상기 바인더 분자는 외부에서 인가되는 자기장에 대해 자성을 나타내는 금속과 함께, 전극 집전체 방향에 위치함으로써, 소망하는 효과를 발휘할 수 있다.
한편, 상기 바인더 분자는 자성 물질과 화학적으로 결합할 수 있으며, 집전체 및 활물질 입자들에 대한 접착력을 발휘하는 것이라면, 그 종류가 크게 제한되는 것은 아니며, 상세하게는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 및 불소 고무로 이루어진 군으로부터 선택되는 어느 하나 이상 또는 이들의 공중합체의 분자일 수 있다.
또한, 본 발명은 상기 이차전지용 바인더를 포함하는 이차전지용 전극 합제를 제공하는 바, 상기 전극 합제는 양극 합제 또는 음극 합제일 수 있다.
즉, 본 발명에 따른 이차전지용 바인더는 전극 합제의 극성에 관계 없이, 양극 합제와 음극 합제에 모두 적용될 수 있다.
본 발명은 또한, 상기 전극 합제를 전극 집전체 상에 코팅하는 전극 합제 코팅 장치를 제공하는 바, 상기 장치는,
집전체를 일 방향으로 이송시키는 이송부;
상기 집전체의 일면에 전극 합제를 도포하는 전극 합제 도포부; 및
상기 집전체 상에 도포된 전극 합제를 건조하는 건조부; 및
상기 집전체의 일면에 도포된 전극 합제에 대해 외부 자기장을 인가하는 자기장 인가부;
를 포함하고 있는 구조일 수 있다.
이때, 상기 자기장 인가부는 집전체의 일면에 대향하는 타면 부위에서 건조부, 또는 이송부 및 건조부에 위치하는 구조일 수 있으며, 이에 따라, 상기 전극 합제는 집전체의 일면에서 바인더가 자기장 인가부에 인접한 방향으로 위치할 수 있다.
앞서 설명한 바와 마찬가지로, 상기 전극 합제는 집전체의 일면에 도포되는 구조일 수 있다.
따라서, 상기 자기장 인가부는 상기 집전체의 일면에 대향하는 타면에 위치함으로써, 전극 합제에 외부 자기장을 인가할 수 있으며, 이에 따라, 상기 전극 합제에 포함된 바인더의 자성 물질이 상기 외부 자기장에 대해 자성을 나타냄으로써, 상기 자성 물질을 포함하는 바인더가 건조되는 용매와 함께 상면 방향으로 이동하는 현상을 방지할 수 있으며, 상기 바인더가 자성에 의해 집전체의 일면에서 자기장 인가부에 인접한 방향으로 위치함으로써, 상기 전극 합제와 집전체 사이의 접착력을 향상시킬 수 있다.
또한, 상기 전극 합제는 집전체의 일면에 도포되는 경우, 바인더와 활물질이 균일하게 분포하고 있으며, 이에 따라, 상기 자기장 인가부는 상대적으로 바인더의 이동이 쉽게 발생할 수 있는 건조부에 위치하거나, 상기 건조부를 포함한 이송부에 위치함으로써, 본 발명의 효과를 극대화시킬 수도 있다.
하나의 구체적인 예에서, 상기 자기장 인가부에 의해 인가되는 외부 자기장의 세기는 0.05 T(Tesla) 내지 100 T 일 수 있다.
만일, 상기 자기장 인가부에 의해 인가되는 외부 자기장의 세기가 상기 범위를 벗어나 지나치게 작을 경우에는, 소망하는 접착력 향상의 효과를 발휘하지 못할 수 있으며, 지나치게 클 경우에는, 전극 합제의 균일한 혼합 상태를 방해하거나, 전극 합제에 포함되어 있는 기타 구성 성분의 전기적 성능에 영향을 미칠 수 있다.
한편, 본 발명은 상기 전극 합제 코팅 장치를 사용하여 제조된 전지셀을 제공하는 바, 상기 전지셀은 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지일 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막 및 분리필름은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 120 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
또한, 하나의 구체적인 예에서, 전지의 안전성의 향상을 위하여, 상기 분리막 및/또는 분리필름은 유/무기 복합 다공성의 SRS(Safety-Reinforcing Separators) 분리막일 수 있다.
상기 SRS 분리막은 폴리올레핀 계열 분리막 기재상에 무기물 입자와 바인더 고분자를 활성층 성분으로 사용하여 제조되며, 이때 분리막 기재 자체에 포함된 기공 구조와 더불어 활성층 성분인 무기물 입자들간의 빈 공간(interstitial volume)에 의해 형성된 균일한 기공 구조를 갖는다.
이러한 유/무기 복합 다공성 분리막을 사용하는 경우 통상적인 분리막을 사용한 경우에 비하여 화성 공정(Formation)시의 스웰링(swelling)에 따른 전지 두께의 증가를 억제할 수 있다는 장점이 있고, 바인더 고분자 성분으로 액체 전해액 함침시 겔화 가능한 고분자를 사용하는 경우 전해질로도 동시에 사용될 수 있다.
또한, 상기 유/무기 복합 다공성 분리막은 분리막 내 활성층 성분인 무기물 입자와 바인더 고분자의 함량 조절에 의해 우수한 접착력 특성을 나타낼 수 있으므로, 전지 조립 공정이 용이하게 이루어질 수 있다는 특징이 있다.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는경우, 전기 화학 소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있으므로, 가능한 이온 전도도가 높은 것이 바람직하다. 또한, 상기 무기물 입자가 높은 밀도를 갖는 경우, 코팅시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있으므로, 가능한 밀도가 작은 것이 바람직하다. 또한, 유전율이 높은 무기물인 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
리튬염 함유 비수 전해액은, 극성 유기 전해액과 리튬염으로 이루어져 있다. 전해액으로는 비수계 액상 전해액, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 액상 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
본 발명은 또한, 상기 전지셀을 하나 이상 포함하는 디바이스를 제공하는 바, 상기 디바이스는 휴대폰, 태블릿 컴퓨터, 노트북 컴퓨터, 파워 툴, 웨어러블 전자기기, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장 장치로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 디바이스들은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 구체적인 설명을 생략한다.
도 1은 종래의 이차전지용 양극의 제조 과정을 개략적으로 나타낸 모식도이다;
도 2는 본 발명의 하나의 실시예에 따른 이차전지용 바인더를 포함하는 양극 합제의 구성을 개략적으로 나타낸 모식도이다;
도 3은 도 2의 양극 합제를 집전체 상에 코팅하는 과정을 개략적으로 나타낸 모식도이다.
이하에서는, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 2에는 본 발명의 하나의 실시예에 따른 이차전지용 바인더를 포함하는 양극 합제의 구성을 개략적으로 나타낸 모식도가 도시되어 있다.
도 2를 참조하면, 양극 합제(210)는 양극 활물질 입자(211)와 바인더(212)를 포함하고 있다.
바인더(212)는 집전체 및 양극 활물질 입자(211)에 대한 접착력을 발휘하는 바인더 분자(212a)와 바인더 분자(212a)에 화학적으로 결합되어 있는 자성 물질(212b)을 포함하고 있다.
자성 물질(212b)은 외부에서 인가되는 자기장에 대해 자성을 나타내며, 상기 외부 자기장을 인가하는 자기장 인가부는 양극 합제(210)가 도포된 집전체의 일면에 대향하는 타면에 위치하므로, 자성 물질(212b)은 양극 합제(210)가 도포된 집전체의 일면에서, 자기장 인가부에 인접한 방향으로 위치하며, 이에 따라, 화학적으로 결합되어 있는 바인더 분자(212a)가 건조 과정에서 용매와 함께 양극 합제(210)의 상부 방향으로 이동하는 현상을 방지할 수 있다.
도 3에는 도 2의 양극 합제를 집전체 상에 코팅하는 과정을 개략적으로 나타낸 모식도가 도시되어 있다.
도 3을 참조하면, 양극(200)은 양극 활물질(211)과 바인더(212)를 포함하고 있는 양극 합제(210)가 액상의 상태로 양극 집전체(220)의 상면에 도포된 후 건조(230)되는 과정을 거쳐 제조된다.
이때, 상기 양극 합제(210)의 건조(230) 과정에서, 양극 합제(210)가 도포된 양극 집전체(220)의 일면에 대향하는 타면에는 외부 자기장을 인가하는 자기장 인가부(240)가 위치해 있다.
이에 따라, 자성 물질(212b)은 자기장 인가부(240)로부터 인가되는 외부 자기장에 대해 자성을 나타내며, 양극 집전체(220)의 일면에서, 화학적으로 결합되어 있는 바인더 분자(212a)와 함께 자기장 인가부(240)에 인접한 방향으로 위치한다.
따라서, 자성 물질(212b)에 화학적으로 결합되어 있는 바인더 분자(212a)가 용매의 건조에 의해 이동하여 양극 합제(210)의 상부 방향으로 위치하는 현상을 방지할 수 있는 동시에, 양극 집전체(220)에 대한 양극 합제(210)의 접착력을 향상시킬 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 이차전지용 바인더는, 바인더 분자와 함께, 외부에서 인가되는 자기장에 대해 자성을 나타내는 자성 물질을 포함하도록 구성함으로써, 집전체의 일면에 도포된 전극 합제의 건조 과정에서, 이에 대향하는 집전체의 타면에 위치한 자기장 인가부를 통해, 자성 물질을 포함하는 바인더가 용매의 건조에 의해 이동하여 전극 합제의 상부 방향으로 위치하는 현상을 방지할 수 있으며, 이에 따라, 집전체에 대한 전극 합제의 접착력을 향상시켜, 전극의 구조적 안정성을 향상시킬 수 있고, 전극의 저항 증가를 방지함으로써, 전극의 전기적 성능 저하를 방지할 수 있어, 제품의 불량률을 저하를 통해, 공정에 대한 신뢰성을 향상시킬 수 있는 효과가 있다.

Claims (19)

  1. 전극 합제에 포함되는 이차전지용 바인더로서,
    집전체 및 활물질 입자들에 대한 접착력을 발휘하는 바인더 분자; 및
    외부에서 인가되는 자기장에 대해 자성을 나타내는 자성 물질;
    을 포함하는 것을 특징으로 하는 이차전지용 바인더.
  2. 제 1 항에 있어서, 상기 자성 물질은 금속인 것을 특징으로 하는 이차전지용 바인더.
  3. 제 2 항에 있어서, 상기 금속은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, Zn, Zr, Nb, Mo, Sr, Sb, W 및 Ti로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이차전지용 바인더.
  4. 제 1 항에 있어서, 상기 자성 물질은 바인더의 전체 중량을 기준으로 0.1% 내지 20%의 범위로 포함되어 있는 것을 특징으로 하는 이차전지용 바인더.
  5. 제 1 항에 있어서, 상기 자성 물질은 바인더 분자와 화학적으로 결합되어 있는 것을 특징으로 하는 이차전지용 바인더.
  6. 제 5 항에 있어서, 상기 자성 물질은 이온 형태로서 바인더 분자에 결합되어 있는 것을 특징으로 하는 이차전지용 바인더.
  7. 제 5 항에 있어서, 상기 자성 물질은 바인더 분자와 이온 결합, 공유 결합 또는 배위 결합에 의해 결합되어 있는 것을 특징으로 하는 이차전지용 바인더.
  8. 제 6 항에 있어서, 상기 바인더 분자는 하나 이상의 음이온 치환기를 포함하고 있고, 상기 자성 물질은 양이온 금속으로 이루어져 있으며, 바인더 분자와 자성 물질은 킬레이트(chelate) 결합을 이루고 있는 것을 특징으로 하는 이차전지용 바인더.
  9. 제 1 항에 있어서, 상기 바인더 분자는 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 및 불소 고무로 이루어진 군으로부터 선택되는 어느 하나 이상 또는 이들의 공중합체의 분자인 것을 특징으로 하는 이차전지용 바인더.
  10. 제 1 항에 따른 이차전지용 바인더를 포함하는 것을 특징으로 하는 이차전지용 전극 합제.
  11. 제 10 항에 있어서, 상기 전극 합제는 양극 합제 또는 음극 합제인 것을 특징으로 하는 이차전지용 전극 합제.
  12. 제 10 항에 따른 전극 합제를 전극 집전체 상에 코팅하는 장치로서,
    집전체를 일 방향으로 이송시키는 이송부;
    상기 집전체의 일면에 전극 합제를 도포하는 전극 합제 도포부; 및
    상기 집전체 상에 도포된 전극 합제를 건조하는 건조부; 및
    상기 집전체의 일면에 도포된 전극 합제에 대해 외부 자기장을 인가하는 자기장 인가부;
    를 포함하고 있는 것을 특징으로 하는 전극 합제 코팅 장치.
  13. 제 12 항에 있어서, 상기 자기장 인가부는 집전체의 일면에 대향하는 타면 부위에서 건조부, 또는 이송부 및 건조부에 위치하는 것을 특징으로 하는 전극 합제 코팅 장치.
  14. 제 12 항에 있어서, 상기 전극 합제는 집전체의 일면에서 바인더가 자기장 인가부에 인접한 방향으로 위치하는 것을 특징으로 하는 전극 합제 코팅 장치.
  15. 제 12 항에 있어서, 상기 자기장 인가부에 의해 인가되는 외부 자기장의 세기는 0.05 T(Tesla) 내지 100 T 인 것을 특징으로 하는 전극 합제 코팅 장치.
  16. 제 12 항에 따른 전극 합제 코팅 장치를 사용하여 제조된 것을 특징으로 하는 전지셀.
  17. 제 16 항에 있어서, 상기 전지셀은 리튬 이차전지인 것을 특징으로 하는 전지셀.
  18. 제 17 항에 따른 전지셀을 하나 이상 포함하는 디바이스.
  19. 제 18 항에 있어서, 상기 디바이스는 휴대폰, 태블릿 컴퓨터, 노트북 컴퓨터, 파워 툴, 웨어러블 전자기기, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장 장치로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 디바이스.
PCT/KR2016/007936 2015-08-31 2016-07-21 자성 물질을 포함하는 이차전지용 바인더 WO2017039149A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/736,197 US10763508B2 (en) 2015-08-31 2016-07-21 Binder for secondary battery comprising a magnetic material
CN201680035921.9A CN108064423B (zh) 2015-08-31 2016-07-21 用于二次电池的包括磁性材料的粘合剂
EP16842115.4A EP3285317B1 (en) 2015-08-31 2016-07-21 Secondary battery binder including magnetic material
JP2017564633A JP6607967B2 (ja) 2015-08-31 2016-07-21 磁性物質を含む二次電池用バインダー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150122799A KR101944320B1 (ko) 2015-08-31 2015-08-31 자성 물질을 포함하는 이차전지용 바인더
KR10-2015-0122799 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017039149A1 true WO2017039149A1 (ko) 2017-03-09

Family

ID=58188018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007936 WO2017039149A1 (ko) 2015-08-31 2016-07-21 자성 물질을 포함하는 이차전지용 바인더

Country Status (6)

Country Link
US (1) US10763508B2 (ko)
EP (1) EP3285317B1 (ko)
JP (1) JP6607967B2 (ko)
KR (1) KR101944320B1 (ko)
CN (1) CN108064423B (ko)
WO (1) WO2017039149A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218544A (zh) * 2019-06-13 2019-09-10 慧迈材料科技(广东)有限公司 一种具有磁性的胶黏剂
KR20220048100A (ko) * 2020-10-12 2022-04-19 주식회사 엘지에너지솔루션 바인더 들뜸을 억제하는 전극 건조 방법 및 이를 이용한 전극 건조 시스템
CN114203956A (zh) * 2021-12-10 2022-03-18 湖南宸宇富基新能源科技有限公司 一种夹心结构负极片、前驱极片及其制备和应用
CN114335544B (zh) * 2022-01-05 2024-07-05 湖南大晶新材料有限公司 一种水系粘结剂、锂离子电池负极材料及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123761A (ja) * 2001-10-15 2003-04-25 Sumitomo Electric Ind Ltd 活物質複合体とそれを用いた電池
KR20090126356A (ko) * 2008-06-04 2009-12-09 주식회사 엘지화학 양극집전체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR20120033135A (ko) * 2010-09-29 2012-04-06 한국전력공사 전기 흡착 탈 이온화용 전극 및 이를 이용한 전기 흡착 탈 이온화 장치.
JP2014007037A (ja) * 2012-06-22 2014-01-16 Toyota Motor Corp 非水電解質二次電池の製造方法,および,その方法により製造された非水電解質二次電池
KR101423779B1 (ko) * 2008-07-08 2014-07-25 주식회사 엘지화학 접착력이 향상된 파우치, 이의 제조방법, 및 이를 포함하는이차전지

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003270626A1 (en) * 2002-09-16 2004-04-30 The University Of Iowa Research Foundation Magnetically modified electrodes as well as methods of making and using the same
JP2006252945A (ja) 2005-03-10 2006-09-21 Sony Corp 非水電解質二次電池用の電極及びその製造方法、並びに非水電解質二次電池
KR101442845B1 (ko) * 2008-12-19 2014-09-23 주식회사 엘지화학 이차전지의 제조방법
KR20100074945A (ko) 2008-12-24 2010-07-02 제일모직주식회사 자성 흑색안료를 포함하는 전극 형성용 페이스트 조성물, 이를 이용한 전극 형성 방법, 그 방법으로 제조된 플라즈마디스플레이 패널용 전극 및 그 전극을 포함하는 플라즈마 디스플레이 패널
JP5149920B2 (ja) * 2010-02-05 2013-02-20 トヨタ自動車株式会社 リチウム二次電池用電極の製造方法
US9312559B2 (en) * 2010-09-22 2016-04-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery provided with a wound electrode body
US20120088148A1 (en) * 2010-10-11 2012-04-12 The University Of Iowa Research Foundation Magnetized battery cathodes
JP2012174655A (ja) * 2011-02-24 2012-09-10 Toyota Motor Corp 空気電池用空気極及びその製造方法、並びに空気電池
CN102306750B (zh) * 2011-08-19 2015-11-25 东莞新能源科技有限公司 锂离子电池负极片的制备方法及涂膜干燥装置
EP2793300A1 (en) * 2013-04-16 2014-10-22 ETH Zurich Method for the production of electrodes and electrodes made using such a method
KR101710225B1 (ko) 2013-08-27 2017-02-24 주식회사 엘지화학 리튬 이차전지용 양극의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123761A (ja) * 2001-10-15 2003-04-25 Sumitomo Electric Ind Ltd 活物質複合体とそれを用いた電池
KR20090126356A (ko) * 2008-06-04 2009-12-09 주식회사 엘지화학 양극집전체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101423779B1 (ko) * 2008-07-08 2014-07-25 주식회사 엘지화학 접착력이 향상된 파우치, 이의 제조방법, 및 이를 포함하는이차전지
KR20120033135A (ko) * 2010-09-29 2012-04-06 한국전력공사 전기 흡착 탈 이온화용 전극 및 이를 이용한 전기 흡착 탈 이온화 장치.
JP2014007037A (ja) * 2012-06-22 2014-01-16 Toyota Motor Corp 非水電解質二次電池の製造方法,および,その方法により製造された非水電解質二次電池

Also Published As

Publication number Publication date
KR20170025812A (ko) 2017-03-08
KR101944320B1 (ko) 2019-02-01
US20180151883A1 (en) 2018-05-31
EP3285317A4 (en) 2018-10-17
JP6607967B2 (ja) 2019-11-20
EP3285317A1 (en) 2018-02-21
CN108064423B (zh) 2020-12-18
US10763508B2 (en) 2020-09-01
JP2018517267A (ja) 2018-06-28
CN108064423A (zh) 2018-05-22
EP3285317B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2015126074A1 (ko) 홀을 포함하고 있는 전지셀
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2016099038A1 (ko) Ptc 물질을 포함하는 이차전지용 전극을 제조하는 방법 및 이에 의해 제조되는 전극
WO2015046709A1 (ko) 가열 부재를 포함하는 전지셀 절곡 장치
WO2015016482A1 (ko) 음극 전극의 전리튬화 방법
WO2015016479A1 (ko) 전해액의 추가 공급이 가능한 이차전지
WO2015016548A1 (ko) 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제
WO2013157827A1 (ko) 서로 다른 형상의 양극과 음극을 포함하는 전극조립체 및 이차전지
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2017082530A1 (ko) 돌출 연장부와 탭 연결부를 구비한 전극 리드를 포함하고 있는 전지셀
WO2017069453A1 (ko) 복수의 전극 탭들이 형성되어 있는 단위 전극을 포함하는 파우치형 전지셀
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2014126369A1 (ko) 비정형 구조의 전지셀
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2014168398A1 (ko) 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
CN104798242B (zh) 倾斜结构的电极组件和采用其的电池单元
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015026121A1 (ko) 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2018097500A1 (ko) 가스켓 압축 리미터를 포함하고 있는 전지팩
WO2017039149A1 (ko) 자성 물질을 포함하는 이차전지용 바인더
WO2018088798A1 (ko) 콤팩트한 결합 구조를 가지는 탭과 리드를 포함하는 전지셀
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016842115

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017564633

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15736197

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE