WO2015016479A1 - 전해액의 추가 공급이 가능한 이차전지 - Google Patents

전해액의 추가 공급이 가능한 이차전지 Download PDF

Info

Publication number
WO2015016479A1
WO2015016479A1 PCT/KR2014/004915 KR2014004915W WO2015016479A1 WO 2015016479 A1 WO2015016479 A1 WO 2015016479A1 KR 2014004915 W KR2014004915 W KR 2014004915W WO 2015016479 A1 WO2015016479 A1 WO 2015016479A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
rubber
electrode assembly
elastic body
battery
Prior art date
Application number
PCT/KR2014/004915
Other languages
English (en)
French (fr)
Inventor
엄인성
권지윤
유정우
김제영
하회진
김경호
김일홍
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/890,034 priority Critical patent/US10205137B2/en
Priority to CN201480026445.5A priority patent/CN105229823A/zh
Priority to JP2016512850A priority patent/JP6656624B2/ja
Publication of WO2015016479A1 publication Critical patent/WO2015016479A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • H01M6/38Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells by mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery capable of further supply of an electrolyte.
  • lithium secondary batteries with high energy density and voltage, long cycle life, and low self discharge rate It is commercially used and widely used.
  • a lithium secondary battery uses a metal oxide such as LiCoO2 as a positive electrode active material and a carbon material as a negative electrode active material, interposes a polyolefin-based porous separator between the negative electrode and the positive electrode, and impregnates a non-aqueous electrolyte having a lithium salt such as LiPF6.
  • a metal oxide such as LiCoO2
  • a carbon material such as a negative electrode active material
  • lithium ions of the positive electrode active material are released and inserted into the carbon layer of the negative electrode, and during discharging, lithium ions of the carbon layer are released and inserted into the positive electrode active material, and the non-aqueous electrolyte moves lithium ions between the negative electrode and the positive electrode. Acts as a medium.
  • the electrolyte is continuously consumed by side reactions at the negative electrode and oxidation at the positive electrode during operation of the secondary battery. Therefore, when the content of the electrolyte is too small, the desired electrochemical performance may not be achieved. In addition, there is a problem in that the life of the secondary battery is drastically reduced.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the secondary battery according to the present invention is characterized in that an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and a porous elastic body that may contain an electrolyte is embedded in the battery case. do.
  • the porous elastomer may contain an electrolyte solution and is pressurized when the electrode assembly is expanded in volume to supply the electrolyte solution to the electrode assembly.
  • the porous elastomer may be pressurized when the electrode assembly is expanded by more than 10% in volume to supply an electrolyte solution to the electrode assembly.
  • the pore size of the porous elastomer may be greater than or equal to 0.01 micrometers and less than or equal to 5000 micrometers.
  • the porosity of the porous elastomer may be 20% or more and 95% or less.
  • the porous elastomer may be a foam rubber or a foam synthetic resin.
  • the foam rubber may be made of natural rubber or synthetic rubber.
  • the synthetic rubber is a group consisting of styrene butadiene rubber, polychloroprene rubber, nitrile rubber, butyl rubber, butadiene rubber, isoprene rubber, ethylene prepropylene rubber, polysulfide rubber, silicone rubber, fluoro rubber, urethane rubber, and acrylic rubber It may be one or more selected from.
  • the foamable synthetic resin is polyolefin, polyester, polyamide, polyacetal, polycarbonate, polyimide, polyether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, polytetrafluoroethylene, polyfluoro It may consist of one or more materials selected from the group consisting of vinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polyacrylonitrile, nylon, polyparaphenylenebenzobisoxazole, polyarylate, and polyurethane.
  • the porous elastic body may have a structure attached to the electrode assembly.
  • the porous elastic body may have a structure attached to a place where the positive electrode tabs and the negative electrode tabs of the electrode assembly do not interfere.
  • the porous elastic body may be a tank attached to the stacking direction of the large volume expansion of the electrode assembly.
  • the porous elastic body may be a structure attached to the top and / or bottom of the electrode assembly based on the stacking direction of the electrode assembly.
  • the porous elastic body may be a structure inserted into the middle portion of the electrode assembly.
  • the porous elastic body may be a structure attached to the battery case.
  • the porous elastic body may have a structure that is attached to the bottom surface of the accommodating part of the battery case in which the electrode assembly is accommodated and / or the cover surface of the battery case opposite thereto.
  • the porous elastic body may have a structure thinner than the thickness of the electrode assembly.
  • the size of the porous elastomer may be 80% or more and 120% or less with respect to the area of the electrode assembly.
  • the positive electrode may include a lithium transition metal oxide represented by Chemical Formula 1 or 2 as a positive electrode active material.
  • M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and Bi Is;
  • A is -1 or -divalent one or more anions
  • M is Mn a M b ;
  • M is at least one selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and bicycle transition metals;
  • A is at least one selected from the group consisting of anions of PO 4 , BO 3 , CO 3 , F and NO 3 ;
  • the negative electrode may include a carbon-based material and / or Si as a negative electrode active material.
  • the secondary battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
  • the present invention provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device may be an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a system for power storage.
  • FIG. 1 is a schematic diagram schematically showing the structure of a secondary battery according to an embodiment of the present invention.
  • the secondary battery according to the present invention includes an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and a porous elastic body which may contain an electrolyte is embedded in the battery case. It is characterized by.
  • the porous elastic body may contain an electrolyte solution and is pressurized during volume expansion of the electrode assembly to supply the electrolyte solution to the electrode assembly.
  • the inventors of the present application confirmed that the electrolyte solution contained in the porous elastic body is supplied by the volume expansion of the electrode assembly between operations of the battery without additional artificial manipulation, thereby making it possible to more simply improve the life characteristics of the secondary battery. .
  • the volume of the electrode assembly expands due to volume expansion of 260% or more, and life deterioration occurs due to exhaustion of the electrolyte, and the porous elastomer has 10% of the electrode assembly.
  • the volume expansion is abnormal it is pressurized to supply the electrolyte solution to the electrode assembly.
  • the pore size of the porous elastic body is 0.01 micrometer or more to 5000 micrometers or less, porosity may be 20% or more to 95% or less.
  • the porous elastomer contains an electrolyte solution and is pressurized during volume expansion of the electrode assembly to supply the electrolyte solution to the electrode assembly
  • the porous elastomer is not particularly limited, and specifically, may be a foam rubber or a foamed synthetic resin.
  • the foam rubber may be made of natural rubber or synthetic rubber, but is not limited thereto.
  • the synthetic rubber is styrene butadiene rubber, polychloroprene rubber, nitrile rubber, butyl rubber, butadiene rubber, isoprene rubber, ethylene prepropylene rubber, polysulfide-based rubber, silicone rubber, fluoro rubber, urethane rubber And may be one or more selected from the group consisting of acrylic rubber, but is not limited thereto.
  • the expandable synthetic resin is polyolefin, polyester, polyamide, polyacetal, polycarbonate, polyimide, polyether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, polytetrafluoroethylene, It may consist of one or more materials selected from the group consisting of polyvinylidene fluoride, polyethylene terephthalate, polyvinyl chloride, polyacrylonitrile, nylon, polyparaphenylenebenzobisoxazole, polyarylate, and polyurethane.
  • the present invention is not limited thereto.
  • the porous elastic body may be a structure attached to the electrode assembly, in this case, the porous elastic body may be a structure attached to a place where the positive electrode tabs and the negative electrode tabs of the electrode assembly do not interfere.
  • the porous elastic body may be a structure attached to the electrode assembly in the stacking direction of the large volume expansion of the electrode assembly, the porous elastic body on the top and / or bottom of the electrode assembly based on the stacking direction of the electrode assembly.
  • the structure may be attached or may be a structure inserted into an intermediate portion of the electrode assembly.
  • the porous elastic body may be a structure attached to the battery case.
  • the porous elastic body may have a structure attached to the bottom surface of the battery cell housing that accommodates the electrode assembly and / or the cover surface of the battery case opposite thereto.
  • the thickness of the porous elastic body may have a structure thinner than the thickness of the electrode assembly, the size may be 80% or more to 120% or less of the area of the electrode assembly.
  • the thickness refers to the distance between the porous elastic body and the top surface and the bottom surface of the electrode assembly based on the stacking direction of the electrode assembly, the size means the product of the length of the remaining two sides excluding the thickness.
  • the positive electrode may include a lithium transition metal oxide represented by Chemical Formula 1 or 2 as a positive electrode active material.
  • M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and Bi Is;
  • A is -1 or -divalent one or more anions
  • M is Mn a M b ;
  • M is at least one selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and bicycle transition metals;
  • A is at least one selected from the group consisting of anions of PO 4 , BO 3 , CO 3 , F and NO 3 ;
  • the positive electrode is prepared by applying an electrode mixture, which is a mixture of a positive electrode active material, a conductive material, and a binder, onto a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • an electrode mixture which is a mixture of a positive electrode active material, a conductive material, and a binder, onto a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the elastic graphite-based material may be used as the conductive material, or may be used together with the materials.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the secondary batteries including the lithium transition metal oxide are generally composed of a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a lithium salt-containing nonaqueous electrolyte, and other components of the lithium secondary battery will be described below. .
  • the negative electrode is manufactured by coating, drying, and pressing a negative electrode active material on a negative electrode current collector, and optionally, the conductive material, binder, filler, etc. may be further included as necessary.
  • the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me y O z (Me: Mn, Fe, Pb, Ge; Me: Al Metal complex oxides such as B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; Conductive
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing nonaqueous electrolyte is composed of a nonaqueous electrolyte and lithium.
  • a nonaqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte and the like are used as the nonaqueous electrolyte, but are not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolytes include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 2 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • the lithium salt-containing non-aqueous electrolyte includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexa for the purpose of improving charge and discharge characteristics and flame retardancy.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
  • Lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
  • the secondary battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery, but is not limited thereto.
  • the present invention provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • a specific example of the device may be an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a system for power storage, but is not limited thereto.
  • FIG. 1 is a schematic diagram schematically showing the structure of a secondary battery according to an embodiment of the present invention.
  • a secondary battery 100 includes an electrode assembly including a positive electrode 121, a negative electrode 122, and a separator 123 interposed between the positive electrode 121 and the negative electrode 122. 160, and a porous elastic body 140, which may contain an electrolyte solution, has a structure in which the battery case 110 is embedded.
  • the porous elastic body 140 includes pores 150 having a size of 0.01 micrometers or more and 5000 micrometers or less, and the pores 150 contain an electrolyte solution.
  • the electrode assembly 160 may expand in volume due to expansion of the negative electrode 122 or generation of gas between operations of the secondary battery.
  • the volume of the electrode assembly 160 expands, the porous elastic body 140 is expanded.
  • the electrolyte solution contained in the porous elastic body 140 is supplied to the electrode assembly 160.
  • the porous elastic body 140 is attached to the electrode assembly 160 and does not interfere with the positive electrode tabs 131 and the negative electrode tabs 132 on the top of the electrode assembly 160 in the stacking direction of the electrode assembly 160. Although not attached thereto, the porous elastic body 140 may be attached to the lower end of the electrode assembly 160 or inserted into an intermediate portion of the electrode assembly 160.
  • porous elastic body 140 may be attached to the battery case 110, in this case, the porous elastic body 140 is the bottom surface of the receiving portion of the battery case 110, the electrode assembly 160 is accommodated. And / or a structure attached to the cover surface of the battery case 110 opposite thereto.
  • the secondary battery according to the present invention has a porous elastic body that may contain an electrolyte solution inside the battery case, and the porous elastic body additionally supplies the electrolyte solution to the electrode assembly, thereby simplifying the secondary battery. There is an effect that can improve the life characteristics of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 전해액의 추가 공급이 가능한 이차전지에 관한 것으로서, 상세하게는, 양극, 음극, 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하는 전극조립체, 및 전해액을 함유할 수 있는 다공성 탄성체가 전지케이스의 내부에 내장되어 있는 것을 특징으로 하는 이차전지를 제공한다.

Description

전해액의 추가 공급이 가능한 이차전지
본 발명은 전해액의 추가 공급이 가능한 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
일반적으로 리튬 이차전지는 양극 활물질로 LiCoO2 등의 금속 산화물과 음극 활물질로 탄소 재료를 사용하며, 음극과 양극 사이에 폴리올레핀계 다공성 분리막을 개재하고, LiPF6 등의 리튬염을 가진 비수성 전해액을 함침시켜 제조된다.
충전 시에는 양극 활물질의 리튬 이온이 방출되어 음극의 탄소 층으로 삽입되고, 방전 시에는 탄소 층의 리튬 이온이 방출되어 양극 활물질로 삽입되며, 비수성 전해액은 음극과 양극 사이에서 리튬 이온을 이동시키는 매질 역할을 한다.
그러나, 상기 전해액은 이차전지의 작동 간 음극에서의 부반응 및 양극에서의 산화 현상에 의해 지속적으로 소모되며, 이에 따라, 상기 전해액의 함량이 너무 적어지면, 소망하는 전기화학적 성능을 발휘할 수 없을 뿐만 아니라, 이차전지의 수명이 급격하게 저하되는 문제점이 있다.
더욱이 상기 문제점을 해결하기 위해, 이차전지의 제조시에 과량의 전해액을 투입할 경우, 전극조립체 사이의 계면이 벌어져 저항이 증가하고, 이에 따른 수명 특성 저하를 초래하기도 한다.
따라서, 이러한 문제점을 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 전해액을 추가로 공급할 수 있는 이차전지를 완성하기에 이르렀다.
따라서, 본 발명에 따른 이차전지는 양극, 음극, 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하는 전극조립체, 및 전해액을 함유할 수 있는 다공성 탄성체가 전지케이스의 내부에 내장되어 있는 것을 특징으로 한다.
상기 다공성 탄성체는 전해액을 함유하고 있다가 전극조립체의 부피 팽창시 가압되어 전해액을 전극조립체에 공급할 수 있다.
상기 다공성 탄성체는 전극조립체가 10% 이상 부피 팽창시 가압되어 전극조립체에 전해액을 공급할 수 있다.
상기 다공성 탄성체의 기공의 크기는 0.01마이크로미터 이상 내지 5000마이크로미터 이하일 수 있다.
상기 다공성 탄성체의 기공율은 20% 이상 내지 95% 이하일 수 있다.
상기 다공성 탄성체는 발포성 고무 또는 발포성 합성수지일 수 있다.
상기 발포성 고무는 천연고무 또는 합성고무로 이루어질 수 있다.
상기 합성고무는 스티렌부타디엔고무, 폴리클로로프렌고무, 니트릴고무, 부틸고무, 부타디엔고무, 이소프렌고무, 에틸렌프리필렌고무, 다황화물계 고무, 실리콘고무, 플루오로고무, 우레탄고무, 및 아크릴고무로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
상기 발포성 합성수지는 폴리올레핀, 폴리에스테르, 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리테트라 플루오로에틸렌, 폴리플루오린화비닐리덴, 폴리에틸렌 테레프타레이트, 폴리염화비닐, 폴리아크릴로나이트릴, 나일론, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레트, 및 폴리우레탄으로 이루어진 군으로부터 선택되는 하나 이상의 물질로 이루어질 수 있다.
상기 다공성 탄성체는 전극조립체에 부착되어 있는 구조일 수 있다.
상기 다공성 탄성체는 전극조립체의 양극 탭들과 음극 탭들을 간섭하지 않는 곳에 부착되어 있는 구조일 수 있다.
상기 다공성 탄성체는 전극조립체의 부피 팽창이 큰 적층 방향에 부착되어 있는 수조일 수 있다.
상기 다공성 탄성체는 전극조립체의 적층 방향을 기준으로 전극조립체의 상단 및/또는 하단에 부착되어 있는 구조일 수 있다.
상기 다공성 탄성체는 전극조립체의 중간 부분에 삽입되어 있는 구조일 수 있다.
상기 다공성 탄성체는 전지케이스에 부착되어 있는 구조일 수 있다.
상기 다공성 탄성체는 전극조립체가 수용되는 전지케이스의 수납부 바닥면 및/또는 이에 대향되는 전지케이스의 덮개면에 부착되어 있는 구조일 수 있다.
상기 다공성 탄성체의 두께는 전극조립체의 두께보다 얇은 구조일 수 있다.
상기 다공성 탄성체의 크기는 전극조립체의 면적 대비 80% 이상 내지 120% 이하일 수 있다.
상기 양극은 양극 활물질로서, 하기 화학식 1 또는 2로 표현되는 리튬 전이금속 산화물을 포함할 수 있다.
LixMyMn2-yO4-zAz (1)
상기 식에서,
M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
A는 -1 또는 -2가의 하나 이상의 음이온이고;
0.9≤x≤1.2, 0<y<2, 0≤z<0.2이다.
(1-x)LiM'O2-yAy-xLi2MnO3-y'Ay' (2)
상기 식에서,
M은 MnaMb이고;
M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;
A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고;
0<x<1, 0<y≤0.02, 0<y'≤0.02, 0.5≤a≤1.0, 0≤b≤0.5, a + b = 1이다.
상기 음극은 음극 활물질로서, 탄소계 물질, 및/또는 Si을 포함할 수 있다.
상기 이차전지는 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 리튬 폴리머 전지일 수 있다.
본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이러한 경우에, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템일 수 있다.
도 1은 본 발명의 하나의 실시예에 따른 이차전지의 구조를 개략적으로 나타내는 모식도이다.
앞서 설명한 바와 같이, 본 발명에 따른 이차전지는 양극, 음극, 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하는 전극조립체, 및 전해액을 함유할 수 있는 다공성 탄성체가 전지케이스의 내부에 내장되어 있는 것을 특징으로 한다.
하나의 구체적인 예에서, 상기 다공성 탄성체는 전해액을 함유하고 있다가 전극조립체의 부피 팽창시 가압되어 전해액을 전극조립체에 공급할 수 있다.
본 출원의 발명자들은, 다공성 탄성체에 함유되어 있던 전해액이, 별도의 인위적 조작 없이 전지의 운용간 전극조립체의 부피팽창에 의해 공급됨으로써, 보다 간단하게 이차전지의 수명 특성을 개선시킬 수 있음을 확인하였다.
하나의 구체적인 예에서, Si계 음극 활물질을 사용할 경우, 260% 이상의 부피 팽창으로 인해 전극조립체의 부피가 팽창하고, 전해액의 고갈로 인해 수명 열화가 발생하는 바, 상기 다공성 탄성체는 전극조립체가 10% 이상 부피 팽창시 가압되어 전극조립체에 전해액을 공급할 수 있다.
한편, 상기 다공성 탄성체의 기공의 크기는 0.01마이크로미터 이상 내지 5000마이크로미터 이하이고, 기공율은 20% 이상 내지 95% 이하일 수 있다.
하나의 구체적인 예에서, 상기 다공성 탄성체는 전해액을 함유하고 있다가 전극조립체의 부피 팽창시 가압되어 전해액을 전극조립체에 공급할 수 있는 것이라면, 특별히 제한되는 것은 아니며, 구체적으로, 발포성 고무 또는 발포성 합성수지일 수 있으며, 이러한 경우에, 상기 발포성 고무는 천연고무 또는 합성고무로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
하나의 구체적인 예에서, 상기 상기 합성고무는 스티렌부타디엔고무, 폴리클로로프렌고무, 니트릴고무, 부틸고무, 부타디엔고무, 이소프렌고무, 에틸렌프리필렌고무, 다황화물계 고무, 실리콘고무, 플루오로고무, 우레탄고무, 및 아크릴고무로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 발포성 합성수지는 폴리올레핀, 폴리에스테르, 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리테트라 플루오로에틸렌, 폴리플루오린화비닐리덴, 폴리에틸렌 테레프타레이트, 폴리염화비닐, 폴리아크릴로나이트릴, 나일론, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레트, 및 폴리우레탄으로 이루어진 군으로부터 선택되는 하나 이상의 물질로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
하나의 구체적인 예에서, 상기 다공성 탄성체는 전극조립체에 부착되어 있는 구조일 수 있으며, 이러한 경우에, 상기 다공성 탄성체는 전극조립체의 양극 탭들과 음극 탭들을 간섭하지 않는 곳에 부착되어 있는 구조일 수 있다.
따라서, 상기 다공성 탄성체가 양극 탭 또는 음극 탭과 접촉됨에 따라 발생할 수 있는 단전 및 저항 증가에 따른 열화와 같은 문제점을 예방할 수 있다.
또한, 상기 다공성 탄성체는 전극조립체의 부피 팽창이 큰 적층 방향에서 상기 전극조립체에 부착되어 있는 구조일 수 있는 바, 상기 다공성 탄성체는 전극조립체의 적층 방향을 기준으로 전극조립체의 상단 및/또는 하단에 부착되어 있는 구조이거나, 전극조립체의 중간 부분에 삽입되어 있는 구조일 수 있다.
또 다른 구체적인 예에서, 상기 다공성 탄성체는 전지케이스에 부착되어 있는 구조일 수 있다.
이러한 경우에, 상기 다공성 탄성체는 전극조립체가 수용되는 전지케이스의 수납부 바닥면 및/또는 이에 대향되는 전지케이스의 덮개면에 부착되어 있는 구조일 수 있다.
하나의 구체적인 예에서, 상기 다공성 탄성체의 두께는 전극조립체의 두께보다 얇은 구조일 수 있으며, 크기는 전극조립체의 면적 대비 80% 이상 내지 120% 이하일 수 있다.
상기 두께는 전극조립체의 적층 방향을 기준으로 다공성 탄성체 및 전극조립체의 상단면과 하단면 사이의 거리를 의미하며, 상기 크기는 두께를 제외한 나머지 두 변의 길이의 곱을 의미한다.
하나의 구체적인 예에서, 상기 양극은 양극 활물질로서, 하기 화학식 1 또는 2로 표현되는 리튬 전이금속 산화물을 포함할 수 있다.
LixMyMn2-yO4-zAz (1)
상기 식에서,
M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
A는 -1 또는 -2가의 하나 이상의 음이온이고;
0.9≤x≤1.2, 0<y<2, 0≤z<0.2이다.
(1-x)LiM'O2-yAy-xLi2MnO3-y'Ay' (2)
상기 식에서,
M은 MnaMb이고;
M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;
A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고;
0<x<1, 0<y≤0.02, 0<y'≤0.02, 0.5≤a≤1.0, 0≤b≤0.5, a + b = 1이다.
일반적으로, 상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물인 전극 합제를 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은, 상기 화학식 1 또는 2로 표현되는 리튬 전이금속 산화물 외에, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
한편, 상기 탄성을 갖는 흑연계 물질이 도전재로 사용될 수 있고, 상기 물질들과 함께 사용될 수도 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 리튬 전이금속 산화물을 포함하는 이차전지들은 일반적으로 양극, 음극, 및 상기 양극과 음극에 개재되는 분리막 및 리튬염 함유 비수 전해질로 구성되어 있으며, 리튬 이차전지의 기타 성분들에 대해 이하에서 설명한다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMeyOz (Me: Mn, Fe, Pb, Ge; Me: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있고, 상세하게는 탄소계 물질 및/또는 Si을 포함할 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수 전해질은, 비수 전해질과 리튬으로 이루어져 있고, 비수 전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li2SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 상기 리튬염 함유 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
한편, 상기 이차전지는 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 리튬 폴리머 전지일 수 있으나, 이에 한정되는 것은 아니다.
본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이 때, 상기 디바이스의 구체적인 예로는, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템일 수 있으나, 이에 한정되는 것은 아니다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명의 하나의 실시예에 따른 이차전지의 구조를 개략적으로 나타내는 모식도가 도시되어 있다.
도 1을 참조하면, 본 발명에 따른 이차전지(100)는 양극(121), 음극(122), 및 상기 양극(121)과 음극(122) 사이에 개재되는 분리막(123)을 포함하는 전극조립체(160), 및 전해액을 함유할 수 있는 다공성 탄성체(140)가 전지케이스(110)의 내부에 내장되어 있는 구조로 이루어져 있다.
상기 다공성 탄성체(140)는 0.01마이크로미터 이상 내지 5000마이크로미터 이하의 크기를 갖는 기공(150)을 포함하고 있으며, 상기 기공(150)에는 전해액이 함유되어 있다.
상기 전극조립체(160)는 이차전지의 작동 간 음극(122)의 팽창, 또는 가스의 발생 등으로 부피가 팽창할 수 있는 바, 상기 전극조립체(160)의 부피가 팽창할 경우, 다공성 탄성체(140)를 가압함으로써, 다공성 탄성체(140)에 함유되어 있는 전해액이 전극조립체(160)에 공급된다.
상기 다공성 탄성체(140)는 전극조립체(160)에 부착되어 있으며, 전극조립체(160)의 적층 방향으로 전극조립체(160)의 상단에 양극 탭(131)들과 음극 탭(132)들을 간섭하지 않는 상태로 부착되어 있으나, 이에 한정되는 것은 아니며, 상기 다공성 탄성체(140)는 전극조립체(160)의 하단에 부착되거나 전극조립체(160)의 중간 부분에 삽입되어 있는 구조일 수도 있다.
또한, 상기 다공성 탄성체(140)는 전지케이스(110)에 부착될 수도 있는 바, 이러한 경우에, 상기 다공성 탄성체(140)는 전극조립체(160)가 수용되는 전지케이스(110)의 수납부 바닥면 및/또는 이에 대향되는 전지케이스(110)의 덮개면에 부착되어 있는 구조일 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
상기에서 설명한 바와 같이, 본 발명에 따른 이차전지는, 전지케이스의 내부에 전해액을 함유할 수 있는 다공성 탄성체가 내장되어 있어, 상기 다공성 탄성체가 전해액을 전극조립체에 추가로 공급함으로써, 보다 간단하게 이차전지의 수명 특성을 개선시킬 수 있는 효과가 있다.

Claims (25)

  1. 양극, 음극, 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하는 전극조립체, 및 전해액을 함유할 수 있는 다공성 탄성체가 전지케이스의 내부에 내장되어 있는 것을 특징으로 하는 이차전지.
  2. 제 1 항에 있어서, 상기 다공성 탄성체는 전해액을 함유하고 있다가 전극조립체의 부피 팽창시 가압되어 전해액을 전극조립체에 공급하는 것을 특징으로 하는 이차전지.
  3. 제 2 항에 있어서, 상기 다공성 탄성체는 전극조립체가 10% 이상 부피 팽창시 가압되어 전극조립체에 전해액을 공급하는 것을 특징으로 하는 이차전지.
  4. 제 1 항에 있어서, 상기 다공성 탄성체의 기공의 크기는 0.01마이크로미터 이상 내지 5000마이크로미터 이하인 것을 특징으로 하는 이차전지.
  5. 제 1 항에 있어서, 상기 다공성 탄성체의 기공율은 20% 이상 내지 95% 이하인 것을 특징으로 하는 이차전지.
  6. 제 1 항에 있어서, 상기 다공성 탄성체는 발포성 고무 또는 발포성 합성수지인 것을 특징으로 하는 이차전지.
  7. 제 6 항에 있어서, 상기 발포성 고무는 천연고무 또는 합성고무로 이루어진 것을 특징으로 하는 이차전지.
  8. 제 7 항에 있어서, 상기 합성고무는 스티렌부타디엔고무, 폴리클로로프렌고무, 니트릴고무, 부틸고무, 부타디엔고무, 이소프렌고무, 에틸렌프리필렌고무, 다황화물계 고무, 실리콘고무, 플루오로고무, 우레탄고무, 및 아크릴고무로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 이차전지.
  9. 제 6 항에 있어서, 상기 발포성 합성수지는 폴리올레핀, 폴리에스테르, 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리테트라 플루오로에틸렌, 폴리플루오린화비닐리덴, 폴리에틸렌 테레프타레이트, 폴리염화비닐, 폴리아크릴로나이트릴, 나일론, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레트, 및 폴리우레탄으로 이루어진 군으로부터 선택되는 하나 이상의 물질로 이루어진 것을 특징으로 하는 이차전지.
  10. 제 1 항에 있어서, 상기 다공성 탄성체는 전극조립체에 부착되어 있는 것을 특징으로 하는 이차전지.
  11. 제 10 항에 있어서, 상기 다공성 탄성체는 전극조립체의 양극 탭들과 음극 탭들을 간섭하지 않는 곳에 부착되어 있는 것을 특징으로 하는 이차전지.
  12. 제 10 항에 있어서, 상기 다공성 탄성체는 전극조립체의 부피 팽창이 큰 적층 방향에 부착되어 있는 것을 특징으로 하는 이차전지.
  13. 제 12 항에 있어서, 상기 다공성 탄성체는 전극조립체의 적층 방향을 기준으로 전극조립체의 상단 및/또는 하단에 부착되어 있는 것을 특징으로 하는 이차전지.
  14. 제 12 항에 있어서, 상기 다공성 탄성체는 전극조립체의 중간 부분에 삽입되어 있는 것을 특징으로 하는 이차전지.
  15. 제 1 항에 있어서, 상기 다공성 탄성체는 전지케이스에 부착되어 있는 것을 특징으로 하는 이차전지.
  16. 제 15 항에 있어서, 상기 다공성 탄성체는 전극조립체가 수용되는 전지케이스의 수납부 바닥면 및/또는 이에 대향되는 전지케이스의 덮개면에 부착되어 있는 것을 특징으로 하는 이차전지.
  17. 제 1 항에 있어서, 상기 다공성 탄성체의 두께는 전극조립체의 두께보다 얇은 것을 특징으로 하는 이차전지.
  18. 제 1 항에 있어서, 상기 다공성 탄성체의 크기는 전극조립체의 면적 대비 80% 이상 내지 120% 이하인 것을 특징으로 하는 이차전지.
  19. 제 1 항에 있어서, 상기 양극은 양극 활물질로서, 하기 화학식 1 또는 2로 표현되는 리튬 전이금속 산화물을 포함하는 것을 특징으로 하는 이차전지:
    LixMyMn2-yO4-zAz (1)
    상기 식에서,
    M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
    A는 -1 또는 -2가의 하나 이상의 음이온이고;
    0.9≤x≤1.2, 0<y<2, 0≤z<0.2이다.
    (1-x)LiM'O2-yAy-xLi2MnO3-y'Ay' (2)
    상기 식에서,
    M은 MnaMb이고;
    M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;
    A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고;
    0<x<1, 0<y≤0.02, 0<y'≤0.02, 0.5≤a≤1.0, 0≤b≤0.5, a + b = 1이다.
  20. 제 1 항에 있어서, 상기 음극은 음극 활물질로서, 탄소계 물질, 및/또는 Si을 포함하는 것을 특징으로 하는 이차전지.
  21. 제 1 항에 있어서, 상기 이차전지는 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 리튬 폴리머 전지인 것을 특징으로 하는 이차전지.
  22. 제 1 항 내지 제 21 항 중 어느 한 항에 따른 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  23. 제 22 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  24. 제 23 항에 따른 전지팩을 전원으로 포함하는 것을 특징으로 하는 디바이스.
  25. 제 24 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
PCT/KR2014/004915 2013-07-30 2014-06-03 전해액의 추가 공급이 가능한 이차전지 WO2015016479A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/890,034 US10205137B2 (en) 2013-07-30 2014-06-03 Secondary battery to which electrolyte can be additionally supplied
CN201480026445.5A CN105229823A (zh) 2013-07-30 2014-06-03 能够额外供给电解质的二次电池
JP2016512850A JP6656624B2 (ja) 2013-07-30 2014-06-03 電解液の追加供給が可能な二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130090044A KR20150014637A (ko) 2013-07-30 2013-07-30 전해액의 추가 공급이 가능한 이차전지
KR10-2013-0090044 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015016479A1 true WO2015016479A1 (ko) 2015-02-05

Family

ID=52431971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004915 WO2015016479A1 (ko) 2013-07-30 2014-06-03 전해액의 추가 공급이 가능한 이차전지

Country Status (5)

Country Link
US (1) US10205137B2 (ko)
JP (1) JP6656624B2 (ko)
KR (1) KR20150014637A (ko)
CN (1) CN105229823A (ko)
WO (1) WO2015016479A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076476A (ja) * 2015-10-13 2017-04-20 株式会社豊田自動織機 蓄電装置
US10305136B2 (en) 2015-06-18 2019-05-28 Samsung Sdi Co., Ltd. Electrode assembly and lithium battery including the same
CN113300058A (zh) * 2021-04-28 2021-08-24 湖南立方新能源科技有限责任公司 一种锂电池的注液方法、锂电池的制作方法及锂电池

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498959B1 (ko) 2015-10-06 2023-02-10 에스케이온 주식회사 이차전지
JP7129150B2 (ja) * 2017-07-11 2022-09-01 日産自動車株式会社 電池
JP6836719B2 (ja) * 2017-08-09 2021-03-03 トヨタ自動車株式会社 非水電解液二次電池
US12021247B2 (en) 2018-10-29 2024-06-25 Sanyo Electric Co., Ltd. Rectangular electricity storage device
US20230019975A1 (en) * 2019-12-16 2023-01-19 Dyson Technology Limited Battery cell with internal swelling relief and external cooling features
GB2590392B (en) * 2019-12-16 2023-01-04 Dyson Technology Ltd A battery cell with internal swelling relief and external cooling features
KR20210079084A (ko) * 2019-12-19 2021-06-29 주식회사 엘지에너지솔루션 이차전지 및 그의 제조방법
KR20210092093A (ko) * 2020-01-15 2021-07-23 주식회사 엘지에너지솔루션 이차전지
CN111628133B (zh) * 2020-05-25 2022-10-04 大连中比能源科技有限公司 一种锂离子电池复合隔膜及其制备方法
CN111725442A (zh) * 2020-06-24 2020-09-29 珠海冠宇电池股份有限公司 一种电池组和电池组的制备方法
CN112448104A (zh) * 2020-11-16 2021-03-05 荣盛盟固利新能源科技有限公司 一种配置有弹性多孔结构的电芯、电池模组及电池
CN113394490B (zh) * 2021-05-28 2022-10-11 江苏正力新能电池技术有限公司 一种二次电池
EP4145619A4 (en) * 2021-07-13 2023-11-01 Contemporary Amperex Technology Co., Limited BATTERY CELL, BATTERY AND ELECTRONIC DEVICE
CN216084979U (zh) * 2021-10-13 2022-03-18 宁德时代新能源科技股份有限公司 一种电池单体、电池以及用电装置
KR20230053455A (ko) * 2021-10-14 2023-04-21 주식회사 엘지에너지솔루션 버튼형 이차전지
KR20230090674A (ko) * 2021-12-15 2023-06-22 에스케이온 주식회사 배터리 모듈
CN116960540A (zh) * 2022-04-15 2023-10-27 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
WO2024024728A1 (ja) * 2022-07-27 2024-02-01 マクセル株式会社 電気化学素子、その製造方法および電気化学素子のモジュール
CN115312890A (zh) * 2022-09-02 2022-11-08 宁夏宝丰昱能科技有限公司 电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143671A (ja) * 1999-11-16 2001-05-25 Sony Corp ガスケットおよびそれを用いた扁平型電池
US20010004504A1 (en) * 1999-12-15 2001-06-21 Shiori Nakamizo Nonaqueous secondary battery and method of manufacturing thereof
US20090123833A1 (en) * 2006-04-17 2009-05-14 Yongzhi Mao Lithium ion battery
KR20130038655A (ko) * 2011-10-10 2013-04-18 주식회사 엘지화학 전해액 자동 보충이 가능한 이차전지
JP2013134878A (ja) * 2011-12-26 2013-07-08 Nissan Motor Co Ltd 電気デバイス用モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172874A (ja) * 1982-04-02 1983-10-11 Yuasa Battery Co Ltd 鉛蓄電池
KR101211327B1 (ko) 2007-12-18 2012-12-11 주식회사 엘지화학 이차 전지용 음극활물질 및 그 제조방법
WO2011031546A2 (en) 2009-08-27 2011-03-17 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
JP5541957B2 (ja) * 2010-04-13 2014-07-09 シャープ株式会社 積層型二次電池
KR101337365B1 (ko) 2010-09-20 2013-12-05 주식회사 엘지화학 도전성이 개선된 고용량 양극 활물질 및 이를 포함하는 비수 전해질 이차전지
CN102664255B (zh) * 2012-05-28 2015-09-23 奇瑞汽车股份有限公司 锂镍锰氧材料及其制备方法、含该材料的锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143671A (ja) * 1999-11-16 2001-05-25 Sony Corp ガスケットおよびそれを用いた扁平型電池
US20010004504A1 (en) * 1999-12-15 2001-06-21 Shiori Nakamizo Nonaqueous secondary battery and method of manufacturing thereof
US20090123833A1 (en) * 2006-04-17 2009-05-14 Yongzhi Mao Lithium ion battery
KR20130038655A (ko) * 2011-10-10 2013-04-18 주식회사 엘지화학 전해액 자동 보충이 가능한 이차전지
JP2013134878A (ja) * 2011-12-26 2013-07-08 Nissan Motor Co Ltd 電気デバイス用モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305136B2 (en) 2015-06-18 2019-05-28 Samsung Sdi Co., Ltd. Electrode assembly and lithium battery including the same
JP2017076476A (ja) * 2015-10-13 2017-04-20 株式会社豊田自動織機 蓄電装置
CN113300058A (zh) * 2021-04-28 2021-08-24 湖南立方新能源科技有限责任公司 一种锂电池的注液方法、锂电池的制作方法及锂电池

Also Published As

Publication number Publication date
US10205137B2 (en) 2019-02-12
JP2016522546A (ja) 2016-07-28
CN105229823A (zh) 2016-01-06
KR20150014637A (ko) 2015-02-09
JP6656624B2 (ja) 2020-03-04
US20160141565A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
WO2015016479A1 (ko) 전해액의 추가 공급이 가능한 이차전지
WO2015016482A1 (ko) 음극 전극의 전리튬화 방법
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2015016548A1 (ko) 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제
WO2015126074A1 (ko) 홀을 포함하고 있는 전지셀
WO2016089099A1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2013002497A2 (ko) 우수한 제조 공정성과 안전성의 이차전지
WO2013157806A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2013157827A1 (ko) 서로 다른 형상의 양극과 음극을 포함하는 전극조립체 및 이차전지
WO2015053478A1 (ko) 규소계 화합물을 포함하는 이차전지
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2015046751A1 (ko) 곡면 구조의 전지팩
WO2014126369A1 (ko) 비정형 구조의 전지셀
WO2014010854A1 (ko) 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018097500A1 (ko) 가스켓 압축 리미터를 포함하고 있는 전지팩
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2014168398A1 (ko) 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
WO2013157867A1 (ko) 레이트 특성이 향상된 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480026445.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512850

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14890034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831572

Country of ref document: EP

Kind code of ref document: A1