WO2015016482A1 - 음극 전극의 전리튬화 방법 - Google Patents
음극 전극의 전리튬화 방법 Download PDFInfo
- Publication number
- WO2015016482A1 WO2015016482A1 PCT/KR2014/005108 KR2014005108W WO2015016482A1 WO 2015016482 A1 WO2015016482 A1 WO 2015016482A1 KR 2014005108 W KR2014005108 W KR 2014005108W WO 2015016482 A1 WO2015016482 A1 WO 2015016482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- negative electrode
- electrode
- electrolyte solution
- battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a method for prelithiation of a cathode electrode.
- lithium secondary batteries with high energy density and voltage, long cycle life, and low self discharge rate It is commercially used and widely used.
- a conventional lithium secondary battery uses a compound containing lithium, such as LiCoO 2 and LiMn 2 O 4 , as a positive electrode
- a battery is manufactured in a state in which lithium is not inserted into a carbon electrode used as a negative electrode.
- a passivation film is formed on the surface of the carbon electrode during initial charging, which prevents the organic solvent from intercalating between the carbon lattice layers and suppresses decomposition reaction of the organic solvent, thereby stabilizing the carbon structure and reversibility of the carbon electrode. It can be used as a negative electrode for a lithium secondary battery.
- the film forming reaction is an irreversible reaction, there is also an adverse effect of reducing the capacity of the battery by the consumption of lithium ions.
- the charge and discharge efficiency of the carbon electrode and the positive electrode is not 100% completely, as the number of cycles progresses, consumption of lithium ions occurs, which leads to a decrease in electrode capacity, resulting in a decrease in cycle life.
- the film forming reaction during initial charging is performed in advance, so that a high capacity lithium secondary battery can be manufactured without a decrease in capacity, and as the number of cycles increases, The cycle life can be greatly improved because it compensates for the consumption.
- the physicochemical method is a method of incorporating the lithium into the negative electrode by rolling the lithium foil and the negative electrode between the upper and lower rolls, and includes a risk of fire and explosion due to environmental factors to be performed at high temperature. .
- the conventional all-lithiation methods have a drawback that the process speed is remarkably slow, and as the lithium foil is rolled together with the cathode, removal of the lithium is difficult and recycling is difficult.
- the conventional prelithiation methods are difficult to control the reaction amount because the lithium is incorporated into the negative electrode only when the lithium foil and the negative electrode pass between the upper and lower rolls, and there is a high possibility that the lithium cannot be charged.
- the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
- a surface of the negative electrode is immersed in an electrolyte solution by immersing the negative electrode and a roll of copper foil rolled on both surfaces with metallic lithium (Li) in an electrolyte solution. It is characterized by lithiating.
- the lithiation may be subjected to the stabilization process to form a stable film on the surface of the negative electrode.
- the density of the coating can be controlled by the time of soaking the roll in the electrolyte solution, the temperature, and the ion conductivity of the electrolyte solution.
- the immersion time of the roll in the electrolyte solution may be 1 hour or more to 240 hours or less.
- the temperature may be -10 degrees Celsius or more and 70 degrees or less.
- the ion conductivity of the electrolyte solution may be 10 ⁇ 4 S / cm or more to 10 ⁇ 1 S / cm or less.
- the stabilization process may be performed for a time of 0.1 hours to 72 hours or more at a temperature of -10 degrees Celsius or more and 70 degrees or less.
- the negative electrode may include a carbon-based material and / or Si as a negative electrode active material.
- the carbonaceous material is one selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, ketjen black, super P, graphene, and fibrous carbon. It may be abnormal.
- the carbonaceous material may be crystalline artificial graphite, and / or crystalline natural graphite.
- the electrolyte solution may include a lithium salt and a non-aqueous solvent.
- the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF At least one selected from the group consisting of 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carbonate, and lithium 4 phenyl borate.
- the non-aqueous solvent may be a carbonate solvent and / or an ester solvent.
- the electrolyte solution may further include an additive.
- the additive is selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, fluoroethyl carbonate, salicylic acid, LiBF 4 , LITFSL, LiBOB, and LiODFB. There may be more than one.
- the present invention provides a lithiated negative electrode, which is prepared by the method of prelithiation of the negative electrode.
- the present invention provides a secondary battery characterized in that an electrolyte solution is impregnated into an electrode assembly including the lithium electrode, the anode and the separator interposed between the lithium electrode and the cathode.
- the positive electrode may include a lithium transition metal oxide represented by Chemical Formula 1 or 2 as a positive electrode active material.
- M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and Bi Is;
- A is -1 or -divalent one or more anions
- M is at least one selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and bicycle transition metals;
- A is at least one selected from the group consisting of anions of PO 4 , BO 3 , CO 3 , F and NO 3 ;
- the secondary battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
- the present invention provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
- the device may be an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a system for power storage.
- 1 to 3 is a schematic diagram showing a method of pre-lithiation of a negative electrode according to an embodiment of the present invention.
- a negative electrode is immersed in an electrolyte solution by immersing a negative electrode and a roll wound with copper foil rolled on both sides of metal lithium (Li) in an electrolyte solution. It is characterized by lithiating the surface of the electrode.
- the inventors of the present application by diluting the surface of the cathode electrode by immersing the cathode electrode and a roll of copper foil (Cu foil) rolled on both sides of the metal lithium (Li) in an electrolyte solution to lithiate the surface of the cathode electrode, Lithium foil can be completely separated from the negative electrode and recycled without process, shortening the process time, improving efficiency, easy to control the reaction amount of lithium, shortening the process time, improving efficiency
- the process can contribute to the improvement of the battery life by improving the irreversibility of the negative electrode, improving the cell capacity, and improving the charge / discharge efficiency of the battery.
- the density of the film formed through the stabilization process is the time of immersion of the roll in the electrolyte solution, temperature, and It can be adjusted by the ionic conductivity of the electrolyte solution.
- the immersion time of the roll in the electrolyte solution is 1 hour or more and 240 hours or less
- the temperature is -10 degrees Celsius or more and 70 degrees or less
- the ion conductivity of the electrolyte solution is 10 -4 S / cm or more It may be 10 ⁇ 1 S / cm or less.
- the stabilization process may be performed for a time of 0.1 hours to 72 hours or more at a temperature of -10 degrees Celsius or more and 70 degrees or less.
- the negative electrode may include a carbonaceous material and / or Si as a negative electrode active material.
- the carbonaceous material is a group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, ketjen black, super P, graphene, and fibrous carbon. It may be one or more selected from, preferably crystalline artificial graphite, and / or crystalline natural graphite.
- the negative electrode is prepared by applying an electrode mixture, which is a mixture of a negative electrode active material, a conductive material, and a binder, onto a negative electrode current collector, followed by drying. If necessary, a filler may be further added to the mixture.
- an electrode mixture which is a mixture of a negative electrode active material, a conductive material, and a binder.
- the negative electrode active material may be, for example, LixFe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z ( Me: Mn, Fe, Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z Metal composite oxides such as?
- Lithium metal Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ;
- Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide and the like may be used, and in detail, may include a carbon-based material and / or Si.
- the negative electrode current collector is generally made of a thickness of 3 ⁇ 500 ⁇ m.
- a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
- fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material.
- a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- the elastic graphite-based material may be used as the conductive material, or may be used together with the materials.
- the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
- binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
- the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
- the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
- the electrolyte solution may include a lithium salt and a non-aqueous solvent.
- the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO
- the electrolyte solution may further include an additive, wherein the additive is vinylene carbonate, vinyl ethylene carbonate, fluoroethyl carbonate, salicylic acid, LiBF 4 , LITFSL, LiBOB, LiODFB can be one or more selected from the group consisting of.
- the additive is vinylene carbonate, vinyl ethylene carbonate, fluoroethyl carbonate, salicylic acid, LiBF 4 , LITFSL, LiBOB, LiODFB can be one or more selected from the group consisting of.
- the present invention provides a lithiated negative electrode, which is prepared by the method of prelithiation of the negative electrode.
- the present invention also provides a secondary battery, characterized in that the electrolyte is impregnated with an electrode assembly including the lithium ion, the positive electrode and a separator interposed between the lithium ion and the positive electrode, the secondary battery
- the battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
- the lithium secondary batteries are generally composed of a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and a lithium salt-containing nonaqueous electrolyte, and other components of the lithium secondary battery will be described below.
- the positive electrode is manufactured by coating, drying, and pressing a positive electrode active material on a positive electrode current collector, and optionally, the conductive material, binder, filler, and the like as described above may be further included.
- the positive electrode may include a lithium transition metal oxide represented by Chemical Formula 1 or 2 as a positive electrode active material.
- M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and Bi Is;
- A is -1 or -divalent one or more anions
- M is at least one selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and bicycle transition metals;
- A is at least one selected from the group consisting of anions of PO 4 , BO 3 , CO 3 , F and NO 3 ;
- the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
- the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
- the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
- a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
- a solid electrolyte such as a polymer
- the solid electrolyte may also serve as a separator.
- the lithium salt-containing nonaqueous electrolyte is composed of a nonaqueous electrolyte and lithium.
- a nonaqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte and the like are used as the nonaqueous electrolyte, but are not limited thereto.
- non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
- organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
- Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 has a nitride, halides, sulfates, such as Li, such as S-SiS 2 can be used.
- the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
- the lithium salt-containing non-aqueous electrolyte includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexa for the purpose of improving charge and discharge characteristics and flame retardancy.
- a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
- lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
- Lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
- the present invention provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
- specific examples of the device may include, but are not limited to, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage system.
- FIGS. 1 to 3 are schematic diagrams showing a method of prelithiation of a negative electrode according to an embodiment of the present invention.
- FIG. 1 there is shown a schematic diagram illustrating a method of rolling metal lithium 110 on both sides of a copper foil 120 prior to prelithiation of a cathode electrode according to an embodiment of the present invention.
- the copper foil 120 is interposed between the upper and lower metal lithium 110 prior to prelithiation of the cathode electrode, and passes between the two rolls 130 to form a copper foil 140 on which metal lithium is rolled on both sides.
- the metal lithium prepared by FIG. 1 is rotated together with the cathode 220 by rotating the copper foil 140 along the cathode electrode 210 in one direction using a roll 220.
- the rolled copper foil 140 and the cathode electrode 210 are rolled together on both sides to produce a roll.
- the surface of the cathode electrode roll 330 is immersed in the electrolyte solution 320 immersed in the cathode 310 and the cathode electrode roll 330 wound together with the copper foil. Make it angry.
- a predetermined temperature control device is electrically connected to the water tank, thereby adjusting the temperature of the electrolyte solution contained in the water bath, thereby controlling the density of the film formed on the surface of the cathode electrode.
- the density of the film formed on the surface of the cathode electrode can be adjusted by adjusting conditions such as the time for immersion of the roll in the electrolyte solution, the ion conductivity of the electrolyte solution, and the like.
- the method of prelithiation of the negative electrode according to the present invention includes a cathode electrode and a roll of copper foil rolled together with metallic lithium (Li) rolled on both surfaces in an electrolyte solution.
- the lithium foil can be completely separated and recycled from the cathode without a separate process, thereby shortening the process time, improving efficiency, and easily controlling the reaction amount of lithium.
- the negative electrode irreversibility is improved, the cell capacity is improved, and the charging and discharging efficiency of the battery is improved, thereby improving the life of the battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Claims (23)
- 음극 전극과, 금속 리튬(Li)이 양면에 압연된 구리 호일(Cu foil)을 함께 감은 롤(roll)을 전해액 용액에 담가 음극 전극의 표면을 리튬화시키는 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 1 항에 있어서, 상기 리튬화 후에 음극 전극 표면 상에 안정한 피막이 형성되도록 안정화 과정을 거치는 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 2 항에 있어서, 상기 피막의 치밀도는 롤의 전해액 용액에의 담금 시간, 온도, 및 전해액 용액의 이온전도도에 의해 조절되는 것을 특징으로 하는 전극의 전리튬화 방법.
- 제 3 항에 있어서, 상기 롤의 전해액 용액에의 담금 시간은 1시간 이상 내지 240시간 이하인 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 3 항에 있어서, 상기 온도는 섭씨 -10도 이상 내지 70도 이하인 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 3 항에 있어서, 상기 전해액 용액의 이온 전도도는 10-4 S/cm 이상 내지 10-1 S/cm 이하인 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 2 항에 있어서, 상기 안정화 과정은 섭씨 -10도 이상 내지 70도 이하의 온도에서 0.1시간 이상 내지 72시간 이하의 시간 동안 이루어지는 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 1 항에 있어서, 상기 음극은 음극 활물질로서, 탄소계 물질, 및/또는 Si을 포함하는 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 8 항에 있어서, 상기 탄소계 물질은 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼 P, 그래핀 (graphene), 및 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 9 항에 있어서, 상기 탄소계 물질은 결정질 인조 흑연, 및/또는 결정질 천연 흑연인 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 1 항에 있어서, 상기 전해액 용액은 리튬염 및 비수계 용매를 포함하는 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 11 항에 있어서, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 및 4 페닐 붕산 리튬으로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 11 항에 있어서, 상기 비수계 용매는 카보네이트계 용매 및/또는 에스테르계 용매인 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 11 항에 있어서, 상기 전해액 용액은 첨가제를 더 포함하는 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 14 항에 있어서, 상기 첨가제는 비닐렌 카보네이트(vinylene carbonate), 비닐 에틸렌 카보네이트(vinylethylene carbonate), 플로로에틸 카보네이트(fluoroethyl carbonate), 살리실릭산(salicylic acid), LiBF4, LITFSL, LiBOB, LiODFB로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 음극 전극의 전리튬화 방법.
- 제 1 항 내지 제 15 항 중 어느 한 항에 따른 음극 전극의 전리튬화 방법으로 제조된 것을 특징으로 하는 리튬화된 음극.
- 제 16 항에 따른 리튬화된 음극, 양극 및 상기 리튬화된 음극과 양극 사이에 개재되는 분리막을 포함하는 전극조립체에 전해액이 함침되어 있는 것을 특징으로 하는 이차전지.
- 제 17 항에 있어서, 상기 양극은 양극 활물질로서, 하기 화학식 1 또는 2로 표현되는 리튬 전이금속 산화물을 포함하는 것을 특징으로 하는 이차전지:LixMyMn2-yO4-zAz (1)상기 식에서,M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;A는 -1 또는 -2가의 하나 이상의 음이온이고;0.9≤x≤1.2, 0<y<2, 0≤z<0.2이다.(1-x)LiM'O2-yAy -xLi2MnO3-y'Ay' (2)상기 식에서,M'은 MnaMb이고;M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고;0<x<1, 0<y≤0.02, 0<y'≤0.02, 0.5≤a≤1.0, 0≤b≤0.5, a + b = 1이다.
- 제 17 항에 있어서, 상기 이차전지는 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 리튬 폴리머 전지인 것을 특징으로 하는 이차전지.
- 제 17항에 따른 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
- 제 20 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
- 제 21 항에 따른 전지팩을 전원으로 포함하는 것을 특징으로 하는 디바이스.
- 제 22 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016512851A JP6284626B2 (ja) | 2013-07-30 | 2014-06-11 | 負極電極の前リチウム化方法 |
CN201480026582.9A CN105190958B (zh) | 2013-07-30 | 2014-06-11 | 预锂化负极的方法 |
US14/890,222 US20160141596A1 (en) | 2013-07-30 | 2014-06-11 | Method of pre-lithiating negative electrode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0090181 | 2013-07-30 | ||
KR1020130090181A KR101820463B1 (ko) | 2013-07-30 | 2013-07-30 | 음극 전극의 전리튬화 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016482A1 true WO2015016482A1 (ko) | 2015-02-05 |
Family
ID=52431974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/005108 WO2015016482A1 (ko) | 2013-07-30 | 2014-06-11 | 음극 전극의 전리튬화 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160141596A1 (ko) |
JP (1) | JP6284626B2 (ko) |
KR (1) | KR101820463B1 (ko) |
CN (1) | CN105190958B (ko) |
WO (1) | WO2015016482A1 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180112659A (ko) * | 2017-04-03 | 2018-10-12 | 주식회사 엘지화학 | 전리튬화 장치, 이를 이용한 음극부의 제조 방법 및 음극부 |
KR20190017417A (ko) * | 2017-08-11 | 2019-02-20 | 주식회사 엘지화학 | 리튬금속과 무기물 복합층을 이용한 전리튬화 |
WO2019164319A1 (ko) * | 2018-02-23 | 2019-08-29 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지 |
WO2020009494A1 (ko) * | 2018-07-06 | 2020-01-09 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이의 전리튬화 방법 및 이를 포함하는 리튬 이차전지 |
KR20200046944A (ko) * | 2018-10-26 | 2020-05-07 | 주식회사 엘지화학 | 리튬 이차전지용 음극의 제조방법 |
CN113812018A (zh) * | 2018-12-04 | 2021-12-17 | 株式会社Lg新能源 | 用于制造锂二次电池用的负极的方法 |
CN115360437A (zh) * | 2022-08-23 | 2022-11-18 | 楚能新能源股份有限公司 | 预锂化方法、制造锂二次电池的方法及锂二次电池 |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106058168A (zh) * | 2016-02-03 | 2016-10-26 | 万向A二三系统有限公司 | 一种预锂化锂离子二次电池正极材料 |
EP3414787B1 (en) * | 2016-02-09 | 2023-01-18 | CAMX Power LLC | Pre-lithiated electrode materials and cells employing the same |
US10755867B2 (en) * | 2016-04-18 | 2020-08-25 | Florida State University Research Foundation, Inc | Method of negative electrode pre-lithiation for lithium-ion capacitors |
CN105932224A (zh) * | 2016-05-23 | 2016-09-07 | 深圳大学 | 改性硅基负极材料及其制备方法与应用 |
WO2018169830A1 (en) * | 2017-03-13 | 2018-09-20 | The Regents Of The Universtiy Of California | A method of producing pre-lithiated graphite from recycled li-ion batteries |
WO2018186561A1 (ko) | 2017-04-03 | 2018-10-11 | 주식회사 엘지화학 | 전리튬화 장치, 이를 이용한 음극부의 제조 방법 및 음극부 |
KR102265214B1 (ko) * | 2017-05-19 | 2021-06-16 | (주)엘지에너지솔루션 | 이차전지용 실리콘 산화물 음극의 전리튬화 방법 |
US11302487B2 (en) * | 2017-06-26 | 2022-04-12 | Spel Technologies Private Limited | Lithium-ion capacitor |
KR102283684B1 (ko) | 2017-07-31 | 2021-08-02 | 주식회사 엘지에너지솔루션 | 이차전지용 음극의 제조방법 및 이차전지용 음극 |
KR102261504B1 (ko) * | 2017-08-10 | 2021-06-07 | 주식회사 엘지에너지솔루션 | 이차전지용 음극의 전리튬화 방법 |
CN107464919A (zh) * | 2017-09-12 | 2017-12-12 | 合肥国轩高科动力能源有限公司 | 一种预锂化锂离子电池负极极片的方法 |
KR102402110B1 (ko) * | 2017-09-14 | 2022-05-26 | 주식회사 엘지에너지솔루션 | 이차전지용 음극의 전리튬화 방법 |
KR102358448B1 (ko) | 2017-11-21 | 2022-02-04 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극 및 이의 제조 방법 |
CN107910499A (zh) * | 2017-12-05 | 2018-04-13 | 中航锂电技术研究院有限公司 | 锂电池负极预锂方法以及预锂装置 |
KR102258758B1 (ko) | 2017-12-14 | 2021-06-07 | 주식회사 엘지에너지솔루션 | 리튬 금속 전극의 표면에 부동태막을 형성하는 리튬 이차전지의 연속 제조 방법 및 이의 제조 방법으로 제조된 리튬 이차전지 |
KR102362887B1 (ko) | 2018-01-03 | 2022-02-14 | 주식회사 엘지에너지솔루션 | 리튬이차전지용 음극의 전리튬화 방법 및 이에 사용되는 리튬 메탈 적층체 |
WO2019135525A1 (ko) * | 2018-01-03 | 2019-07-11 | 주식회사 엘지화학 | 리튬이차전지용 음극의 전리튬화 방법 및 이에 사용되는 리튬 메탈 적층체 |
HUE065786T2 (hu) * | 2018-01-25 | 2024-06-28 | Lg Energy Solution Ltd | Eljárás negatív elektróda elõállítására lítium szekunder akkumulátorhoz |
CN108417774B (zh) * | 2018-02-23 | 2020-05-22 | 江西安驰新能源科技有限公司 | 一种具有预锂化效应的负极浆料合浆工艺及锂电池 |
CN110212193B (zh) * | 2018-02-28 | 2020-10-13 | 宁德时代新能源科技股份有限公司 | 锂离子二次电池及其制备方法 |
WO2019172661A1 (ko) * | 2018-03-07 | 2019-09-12 | 주식회사 엘지화학 | 음극의 제조 방법 |
KR102509113B1 (ko) * | 2018-03-20 | 2023-03-09 | 주식회사 엘지에너지솔루션 | 음극의 제조방법 및 이로부터 제조된 음극 |
KR102587972B1 (ko) * | 2018-03-20 | 2023-10-10 | 주식회사 엘지에너지솔루션 | 음극의 제조방법 및 이로부터 제조된 음극 |
US11239469B2 (en) * | 2018-06-01 | 2022-02-01 | GM Global Technology Operations LLC | Pre-lithiation of anodes for high performance capacitor assisted battery |
KR102554229B1 (ko) * | 2018-06-15 | 2023-07-12 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극의 제조방법 |
PL3793005T3 (pl) * | 2018-09-12 | 2023-03-20 | Lg Energy Solution, Ltd. | Sposób wytwarzania elektrody ujemnej dla akumulatora litowego i akumulator litowy |
KR102516891B1 (ko) * | 2018-09-27 | 2023-03-31 | 주식회사 엘지에너지솔루션 | 전고체 전지용 음극 및 이의 제조방법 |
KR102598178B1 (ko) | 2018-10-10 | 2023-11-03 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극의 제조방법 |
KR20200044231A (ko) * | 2018-10-18 | 2020-04-29 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 그의 제조방법 |
KR20200053300A (ko) * | 2018-11-08 | 2020-05-18 | 주식회사 포스코 | 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 이용한 리튬 이차 전지 |
CN111313112A (zh) * | 2018-12-12 | 2020-06-19 | 中能中科(天津)新能源科技有限公司 | 锂电池化成方法和锂电池 |
KR102343176B1 (ko) * | 2019-01-21 | 2021-12-27 | 주식회사 엘지에너지솔루션 | 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법 |
KR102530157B1 (ko) | 2019-01-31 | 2023-05-10 | 주식회사 엘지에너지솔루션 | 이차전지용 음극의 전리튬화 방법 |
KR102542291B1 (ko) | 2019-02-01 | 2023-06-14 | 주식회사 엘지에너지솔루션 | 이차전지용 음극의 제조방법 |
CN109980180B (zh) * | 2019-03-26 | 2022-02-25 | 天津市捷威动力工业有限公司 | 负极极片及其制备方法、软包锂离子电池及其制备方法 |
KR20200129383A (ko) | 2019-05-08 | 2020-11-18 | 주식회사 엘지화학 | 전고체 이차전지용 음극의 전리튬화 방법 및 이를 이용한 이차전지 |
KR20200129907A (ko) | 2019-05-10 | 2020-11-18 | 주식회사 엘지화학 | 음극의 제조방법 |
KR20200129908A (ko) * | 2019-05-10 | 2020-11-18 | 주식회사 엘지화학 | 음극의 제조방법 |
KR20200132432A (ko) * | 2019-05-17 | 2020-11-25 | 주식회사 엘지화학 | 음극 제조장치 및 음극의 제조방법 |
US20220263145A1 (en) | 2019-05-21 | 2022-08-18 | Wacker Chemie Ag | Lithium ion batteries |
KR20210006103A (ko) * | 2019-07-08 | 2021-01-18 | 주식회사 엘지화학 | 음극의 제조방법 |
KR20210029556A (ko) * | 2019-09-06 | 2021-03-16 | 주식회사 엘지화학 | 음극 전극의 전리튬-전소듐화 방법, 전리튬-전소듐화 음극, 및 이를 포함하는 리튬 이차전지 |
KR20210029478A (ko) | 2019-09-06 | 2021-03-16 | 주식회사 엘지화학 | 전리튬화 반응챔버 장치 |
KR20210029477A (ko) * | 2019-09-06 | 2021-03-16 | 주식회사 엘지화학 | 전극의 전리튬화 방법 및 장치 |
KR20210030010A (ko) | 2019-09-09 | 2021-03-17 | 주식회사 엘지화학 | 이차전지용 음극의 전리튬화 방법 |
US20210104740A1 (en) * | 2019-10-02 | 2021-04-08 | Enevate Corporation | Methods of prelithiating silicon-containing electrodes |
CN110518189B (zh) * | 2019-10-23 | 2020-02-14 | 湖南省正源储能材料与器件研究所 | 一种同时实现对正极材料预脱氧化、对负极材料预锂化的装置及方法 |
US11329264B2 (en) | 2019-10-24 | 2022-05-10 | Licap Technologies, Inc. | Method of lithiation electrodes for energy storage devices |
NO346289B1 (en) * | 2019-12-05 | 2022-05-23 | Beyonder As | Method for pre-lithiating an anode |
US11342545B2 (en) * | 2019-12-06 | 2022-05-24 | GM Global Technology Operations LLC | Methods of lithiating electroactive materials |
CN111276669B (zh) * | 2020-02-12 | 2022-07-05 | 中国科学院宁波材料技术与工程研究所 | 一种负极极片的预锂化工艺 |
KR20210120686A (ko) * | 2020-03-27 | 2021-10-07 | 주식회사 엘지에너지솔루션 | 음극의 제조방법 |
KR102536131B1 (ko) * | 2020-09-28 | 2023-05-26 | 한국과학기술연구원 | 흑연 또는 흑연 복합체 음극의 사전리튬화 용액 및 이를 이용한 사전리튬화 방법 |
WO2022262981A1 (de) | 2021-06-17 | 2022-12-22 | Wacker Chemie Ag | Verfahren zur prälithiierung einer siliciumhaltigen anode in einer lithium-ionen-batterie |
US20240014371A1 (en) * | 2022-07-11 | 2024-01-11 | Applied Materials, Inc. | Methods and systems for producing lithium intercalated anodes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100291067B1 (ko) * | 1998-05-27 | 2001-06-01 | 박호군 | 카본전극의전리튬화방법과이를이용한리튬이차전지제조방법 |
KR20060056969A (ko) * | 2003-07-29 | 2006-05-25 | 에프엠씨 코포레이션 | 전극에서의 리튬 금속 분산 |
JP2008004424A (ja) * | 2006-06-23 | 2008-01-10 | Toyota Motor Corp | リチウムイオン二次電池とその製造方法 |
KR20120092529A (ko) * | 2011-02-11 | 2012-08-21 | 한양대학교 산학협력단 | 리튬화된 금속 탄소 복합체 전극의 제조 방법, 이에 의하여 제조된 리튬화된 금속 탄소 복합체 전극 및 이를 포함하는 전기화학소자 |
KR20130007320A (ko) * | 2011-06-30 | 2013-01-18 | 삼성전기주식회사 | 리튬판, 전극의 리튬화 방법 및 에너지 저장장치 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10308212A (ja) * | 1997-05-06 | 1998-11-17 | Ricoh Co Ltd | 2次電池用電極板処理装置 |
JP4842633B2 (ja) * | 2005-12-22 | 2011-12-21 | 富士重工業株式会社 | 電池又はキャパシタ用リチウム金属箔の製造方法 |
US20090098456A1 (en) * | 2007-10-15 | 2009-04-16 | Myung Kook Park | Non-aqueous electrolyte solution and lithium secondary battery including the same |
US8241793B2 (en) * | 2009-01-02 | 2012-08-14 | Nanotek Instruments, Inc. | Secondary lithium ion battery containing a prelithiated anode |
JP2010205769A (ja) * | 2009-02-27 | 2010-09-16 | Fuji Heavy Ind Ltd | 捲回型の蓄電デバイス |
JP4957931B2 (ja) * | 2010-10-19 | 2012-06-20 | 大日本印刷株式会社 | 非水電解液二次電池用電極板、非水電解液二次電池、及び電池パック |
CN103283083A (zh) * | 2011-03-16 | 2013-09-04 | 松下电器产业株式会社 | 锂二次电池的充放电方法和充放电系统 |
-
2013
- 2013-07-30 KR KR1020130090181A patent/KR101820463B1/ko active IP Right Grant
-
2014
- 2014-06-11 CN CN201480026582.9A patent/CN105190958B/zh active Active
- 2014-06-11 WO PCT/KR2014/005108 patent/WO2015016482A1/ko active Application Filing
- 2014-06-11 US US14/890,222 patent/US20160141596A1/en not_active Abandoned
- 2014-06-11 JP JP2016512851A patent/JP6284626B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100291067B1 (ko) * | 1998-05-27 | 2001-06-01 | 박호군 | 카본전극의전리튬화방법과이를이용한리튬이차전지제조방법 |
KR20060056969A (ko) * | 2003-07-29 | 2006-05-25 | 에프엠씨 코포레이션 | 전극에서의 리튬 금속 분산 |
JP2008004424A (ja) * | 2006-06-23 | 2008-01-10 | Toyota Motor Corp | リチウムイオン二次電池とその製造方法 |
KR20120092529A (ko) * | 2011-02-11 | 2012-08-21 | 한양대학교 산학협력단 | 리튬화된 금속 탄소 복합체 전극의 제조 방법, 이에 의하여 제조된 리튬화된 금속 탄소 복합체 전극 및 이를 포함하는 전기화학소자 |
KR20130007320A (ko) * | 2011-06-30 | 2013-01-18 | 삼성전기주식회사 | 리튬판, 전극의 리튬화 방법 및 에너지 저장장치 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180112659A (ko) * | 2017-04-03 | 2018-10-12 | 주식회사 엘지화학 | 전리튬화 장치, 이를 이용한 음극부의 제조 방법 및 음극부 |
KR102253785B1 (ko) | 2017-04-03 | 2021-05-21 | 주식회사 엘지화학 | 전리튬화 장치, 이를 이용한 음극부의 제조 방법 및 음극부 |
KR20190017417A (ko) * | 2017-08-11 | 2019-02-20 | 주식회사 엘지화학 | 리튬금속과 무기물 복합층을 이용한 전리튬화 |
KR102264691B1 (ko) | 2017-08-11 | 2021-06-15 | (주)엘지에너지솔루션 | 리튬금속과 무기물 복합층을 이용한 전리튬화 |
WO2019164319A1 (ko) * | 2018-02-23 | 2019-08-29 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지 |
WO2020009494A1 (ko) * | 2018-07-06 | 2020-01-09 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이의 전리튬화 방법 및 이를 포함하는 리튬 이차전지 |
US12113203B2 (en) | 2018-07-06 | 2024-10-08 | Lg Energy Solution, Ltd. | Negative electrode for lithium secondary battery, method for pre-lithiation thereof, and lithium secondary battery including same |
KR20200046944A (ko) * | 2018-10-26 | 2020-05-07 | 주식회사 엘지화학 | 리튬 이차전지용 음극의 제조방법 |
KR102598189B1 (ko) | 2018-10-26 | 2023-11-03 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극의 제조방법 |
CN113812018A (zh) * | 2018-12-04 | 2021-12-17 | 株式会社Lg新能源 | 用于制造锂二次电池用的负极的方法 |
US12057572B2 (en) | 2018-12-04 | 2024-08-06 | Lg Energy Solution, Ltd. | Method for manufacturing negative electrode for lithium secondary battery |
CN115360437A (zh) * | 2022-08-23 | 2022-11-18 | 楚能新能源股份有限公司 | 预锂化方法、制造锂二次电池的方法及锂二次电池 |
Also Published As
Publication number | Publication date |
---|---|
JP2016522547A (ja) | 2016-07-28 |
KR101820463B1 (ko) | 2018-01-19 |
US20160141596A1 (en) | 2016-05-19 |
CN105190958B (zh) | 2019-03-26 |
JP6284626B2 (ja) | 2018-02-28 |
KR20150014676A (ko) | 2015-02-09 |
CN105190958A (zh) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015016482A1 (ko) | 음극 전극의 전리튬화 방법 | |
CN105229825B (zh) | 包含用于防止与电解液反应的涂层的电极 | |
WO2015016479A1 (ko) | 전해액의 추가 공급이 가능한 이차전지 | |
WO2016148383A1 (ko) | 다층 구조 전극 및 이를 포함하는 리튬 이차전지 | |
WO2016089099A1 (ko) | 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2015016548A1 (ko) | 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제 | |
WO2015026080A1 (ko) | 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법 | |
WO2013157806A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
KR20150014877A (ko) | 음극 전극의 전리튬화 방법 | |
WO2013157827A1 (ko) | 서로 다른 형상의 양극과 음극을 포함하는 전극조립체 및 이차전지 | |
WO2014073833A1 (ko) | 이차전지용 양극 활물질 및 이를 포함하는 이차전지 | |
WO2013109038A1 (ko) | 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법 | |
WO2013157863A1 (ko) | 전극 및 이를 포함하는 이차전지 | |
WO2015016506A1 (ko) | 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2013157832A1 (ko) | 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 | |
WO2014010854A1 (ko) | 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2013157856A1 (ko) | 다층구조 전극 및 그 제조방법 | |
WO2015012640A1 (ko) | 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지 | |
WO2015026121A1 (ko) | 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질 | |
WO2013157854A1 (ko) | 성능이 우수한 리튬 이차전지 | |
WO2016209014A1 (ko) | 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지 | |
WO2015016531A1 (ko) | 수명 특성이 향상된 이차전지용 음극 활물질 | |
WO2015016568A1 (ko) | 안전성이 강화된 리튬 이차전지 | |
WO2015012473A1 (ko) | 리튬 망간계 산화물 및 이를 포함하는 양극 활물질 | |
WO2014168398A1 (ko) | 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480026582.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14831939 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016512851 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14890222 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14831939 Country of ref document: EP Kind code of ref document: A1 |