KR102264691B1 - 리튬금속과 무기물 복합층을 이용한 전리튬화 - Google Patents

리튬금속과 무기물 복합층을 이용한 전리튬화 Download PDF

Info

Publication number
KR102264691B1
KR102264691B1 KR1020170102252A KR20170102252A KR102264691B1 KR 102264691 B1 KR102264691 B1 KR 102264691B1 KR 1020170102252 A KR1020170102252 A KR 1020170102252A KR 20170102252 A KR20170102252 A KR 20170102252A KR 102264691 B1 KR102264691 B1 KR 102264691B1
Authority
KR
South Korea
Prior art keywords
negative electrode
lithium metal
secondary battery
lithium
inorganic
Prior art date
Application number
KR1020170102252A
Other languages
English (en)
Other versions
KR20190017417A (ko
Inventor
우상욱
김은경
강윤아
송준혁
채오병
Original Assignee
(주)엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지에너지솔루션 filed Critical (주)엘지에너지솔루션
Priority to KR1020170102252A priority Critical patent/KR102264691B1/ko
Priority to CN201880010989.0A priority patent/CN110268557B/zh
Priority to JP2019543814A priority patent/JP7038947B2/ja
Priority to PL18844158T priority patent/PL3570349T3/pl
Priority to EP18844158.8A priority patent/EP3570349B1/en
Priority to PCT/KR2018/008347 priority patent/WO2019031732A1/ko
Publication of KR20190017417A publication Critical patent/KR20190017417A/ko
Priority to US16/541,737 priority patent/US11316156B2/en
Application granted granted Critical
Publication of KR102264691B1 publication Critical patent/KR102264691B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0495Chemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬금속 분말, 무기물 분말 및 바인더를 용매에 넣고 분산시켜 혼합 용액을 제조하는 단계; 및 음극에 상기 혼합 용액을 사용하여 리튬금속-무기물 복합층을 형성시키는 단계를 포함하는 이차전지용 음극의 전리튬화 방법이다.
본 발명은 단순한 공정에 의해 용량이 높은 음극을 전리튬화하는 방법을 제공하고, 본 발명에서 제공하는 전리튬화 방법을 통해 제조된 이차전지용 음극은 초기 비가역성이 개선된 특성을 가지며, 이러한 이차전지용 음극을 이용하여 제조한 이차전지는 우수한 충방전 효율을 가진다.

Description

리튬금속과 무기물 복합층을 이용한 전리튬화{Pre-lithiation Method using lithium metal and inorganic compound}
본 발명은 이차전지용 음극의 전리튬화 방법에 관한 것으로, 상세하게는 리튬 이차전지를 조립하기 전 단계에서, 음극에 리튬금속-무기물 복합층을 형성하여 전리튬화하는 방법에 관한 것이다.
화석연료의 고갈에 의한 에너지원의 가격이 상승하고, 환경오염에 대한 관심이 증폭되면서 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있고, 특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있다.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성의 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
일반적으로, 이차전지는 집전체의 표면에 활물질을 도포하여 양극과 음극을 구성하고 그 사이에 분리막을 개재하여 전극조립체를 만든 후, 원통형 또는 각형의 금속 캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착하고, 상기 전극조립체에 주로 액체 전해질을 주입 또는 함침시키거나 고체 전해질을 사용하여 제조된다.
리튬 이차전지의 음극 활물질로는 리튬의 삽입 및 탈리가 가능한 인조 흑연, 천연 흑연 및 하드 카본을 포함한 다양한 형태의 탄소계 재료가 적용되어 왔다. 상기 탄소계 재료 중 인조 흑연 또는 천연 흑연과 같은 흑연은 리튬 대비 방전 전압이 0.1V로 낮아, 흑연을 음극 활물질로 사용한 전지는 3.6V의 높은 방전 전압을 나타내어, 리튬 전지의 에너지 밀도 면에서 이점을 제공하며, 또한 뛰어나 가역성으로 리튬 이차 전지의 장수명을 보장하기 때문에 가장 널리 사용되고 있다.
그러나 흑연을 활물질로 극판을 제조할 경우, 극판 밀도가 낮아져 극판의 단위 부피당 에너지 밀도 측면에서 용량이 낮은 문제점이 있다. 또한 높은 방전 전압에서는 흑연과 유기 전해액과의 부반응이 일어나기 쉬워, 전지의 오동작 및 과충전 등에 의한 발화 혹은 폭발의 위험성이 있다.
이러한 문제를 해결하기 위하여, 산화물의 음극 활물질이 최근 개발되고 있다. 고용량을 나타내고 리튬 금속을 대체할 수 있는 물질로서 Si, Sn 등의 금속계 활물질이 제안되었다. 그 중 Si는 저렴한 가격 및 높은 용량(4200mAh/g)으로 인하여 주목받아 왔다.
그러나, 실리콘계 음극활물질을 이용하는 경우 초기 비가역 용량이 큰 문제가 발생한다. 리튬 이차전지의 충방전 반응에 있어서 충전시에는 양극으로부터 방출된 리튬이 음극에 삽입되고, 방전시에는 음극으로부터 탈리되어 다시 양극으로 돌아가는데, 실리콘계 음극활물질의 경우 부피변화와 표면 부반응이 심하여 초기 충전시 음극에 삽입된 리튬 중 많은 양이 다시 양극으로 돌아가지 못하고, 따라서 초기 비가역 용량이 커지는 문제가 발생한다. 초기 비가역 용량이 커지면 전지 용량과 사이클이 급격히 감소하는 문제가 발생한다.
상기와 같은 문제를 해결하기 위하여 실리콘계 음극 활물질을 포함하는 실리콘 산화물 음극을 전리튬화 하는 방법이 알려져 있다. 전리튬화 방법으로는 음극 활물질을 물리화학적 방법에 의해 리튬화 시킨 후 전극을 제조하는 방법 및 음극을 전기화학적으로 전리튬화 시키는 방법 등이 알려져 있다.
기존의 물리화학적 방법은 고온에서 실시해야 하는 환경적 요인으로 인하여 화재 및 폭발 등의 위험성을 내포하고 있었고, 기존의 전기화학적 방법은 균일하게 초기 비가역 용량을 제어할 수 없고 생산 비용이 증가하는 문제가 있었다.
미국공개특허 제2015-0357628호에는 높은 비용량을 가진 음극 활물질의 전극 효율을 향상시키기 위해서, 용융된 리튬에 세라믹 입자를 혼합한 리튬-세라믹 압출물로 음극을 코팅하는 기술이 개시되어 있으나, 리튬 금속의 높은 반응성으로 인해 상기 모든 공정을 비활성가스 분위기하에서 수행해야 하므로, 공정이 까다로운 단점이 있었다.
따라서, 높은 용량을 가진 음극에 대해 비교적 용이한 방법으로 전리튬화하여 초기 비가역성을 개선하고, 전지의 안전성을 향상시키는 방법에 대한 기술 개발이 필요하다.
한국등록특허 제1156608호 미국공개특허 제2015-0357628호 중국등록특허 102916165 중국등록특허 104332588
본 발명은 상기 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 높은 용략을 가지는 음극의 초기 비가역성을 개선하는 전리튬화에 있어서, 보다 작업 공정이 단순하면서도 리튬 금속의 취급이 용이한 방법을 제공하는 데에 그 목적이 있다.
또한 본 발명의 목적은, 이차전지의 안전성을 향상시키는 전리튬화 방법을 제공하는 데에도 있다.
본 발명은, 리튬금속 분말, 무기물 분말 및 바인더를 용매에 넣고 분산시켜 혼합 용액을 제조하는 단계; 및 음극에 상기 혼합 용액을 사용하여 리튬금속-무기물 복합층을 형성시키는 단계를 포함하는 이차전지용 음극의 전리튬화 방법이다.
본 발명의 적절한 실시예에 의하면, 상기 복합층의 두께는 0.5 내지 20㎛이다.
본 발명의 적절한 실시예에 의하면, 상기 무기물 분말은 알루미나(Al2O3), 이산화티탄(TiO2), 이산화지르코늄(ZrO2), 이산화규소(Si02), 산화주석(Sn02), 산화세륨(Ce02), 산화마그네슘(MgO), 산화칼슘(CaO) 및 이트리아(Y2O3) 중에서 선택된 1종 또는 2종 이상일 수 있다.
본 발명의 적절한 실시예에 의하면, 리튬금속 분말 20 내지 40중량부, 무기물 분말은 50 내지 80중량부, 바인더는 1 내지 10중량부를 용매에 넣는다.
본 발명의 적절한 실시예에 의하면, 상기 리튬금속-무기물 복합층을 형성하는 방법은, 도포, 스프레이, 라미네이션 중에서 선택된 1개의 방법인 것이다.
본 발명의 적절한 실시예에 의하면, 상기 리튬금속 분말의 입경은 5~50㎛이다.
본 발명의 적절한 실시예에 의하면, 상기 무기물 분말의 입경은 0.1 내지 10㎛이다.
본 발명의 적절한 실시예에 의하면, 상기 리튬금속-무기물 복합층은 초기 활성화 충전 이후에는 금속 형태의 리튬으로 남아 있지 않는다.
본 발명의 적절한 실시예에 의하면, 음극은 실리콘 산화물을 포함할 수 있다.
또한 본 발명은 상기 전리튬화 방법을 적용하여 제조된 이차전지용 음극, 상기 음극을 포함하는 이차전지를 제공한다.
본 발명은 단순한 공정에 의해 용량이 높은 음극을 전리튬화하는 방법을 제공하고, 본 발명에서 제공하는 전리튬화 방법을 통해 제조된 이차전지용 음극은 초기 비가역성이 개선된 특성을 가지며, 이러한 이차전지용 음극을 이용하여 제조한 이차전지는 우수한 충방전 효율을 가진다.
또한, 본 발명의 리튬금속-무기물 복합층이 도입된 음극은, 전리튬화에 의해 리튬이 음극 활물질 층으로 삽입됨에 따라 상기 복합층에 잔여물로 무기물이 남게되어 음극 표면을 보호하여 전지의 안전성을 향상시키는 효과가 있다.
도 1은 본 발명의 리튬금속-무기물 혼합 용액을 음극에 도포하는 태양을 나타내는 도면이다.
도 2는 음극 상에 형성된 리튬금속-무기물 복합층으로부터 리튬이 음극으로 흡장되어 전리튬화되는 태양을 나타내는 도면이다.
도 3은 본 발명의 전리튬화 방법에 의해 무기물층이 코팅된 음극을 나타내는 도면이다.
이하, 본 발명을 구체적으로 설명한다. 본 발명이 이하 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 해당 분야에서 통상의 지식을 가진 기술자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
본 발명에 따른 이차전지용 음극의 전리튬화는 리튬금속 분말, 무기물 분말 및 바인더를 용매에 넣고 분산시켜 혼합 용액을 제조하는 단계; 및 음극에 상기 혼합 용액을 사용하여 리튬금속-무기물 복합층을 형성시키는 단계로 이루어진다.
리튬 이온 전지의 음극재는 초기 비가역성이 큰 단점이 있다. 특히 Si계의 음극은 부피변화와 표면 부반응이 심하여 충전 시 사용된 리튬의 많은 양이 방전 시 다시 나오지 못하게 되는데, 이러한 초기 비가역성을 개선시키기 위해 전지 조립체의 제작 전에 전리튬화(pre-lithiation)을 실시해주게 되면 첫 번째 충전 시 발생되는 부반응을 미리 겪게 된다. 따라서 실세 전지 조립체를 만들어 충/방전을 실시하면 그 만큼 비가역이 감소된 상태에서 첫 번째 사이클이 진행되게 되어 초기 비가역이 감소하게 되는 것이다.
본 발명에서는 도 1에서와 보는 바와 같이, 리튬금속-무기물 복합층을 초기 비가역이 큰 SiO 또는 SiO를 포함하는 흑연 전극의 표면에 형성시키고, 리튬금속-무기물 복합층에서 리튬금속 부부은 초기 비가역 감소를 시키는 전리튬화 용도로 사용되고, 전리튬화 후 남게 되는 무기물은 음극의 안전성 향상에 도움을 주는 것을 특징으로 하는 것이다.
본 발명의 적절한 실시예에 의하면, 상기 리튬금속-무기물 복합층의 두께는 0.5 내지 20㎛이다. 보다 바람직하게는 1 내지 10㎛, 가장 바람직하기로는 3 내지 8㎛이다. 리튬금속-무기물 복합층의 두께가 0.5 내지 20㎛일 때 전리튬화와 전지의 안전성 향상에 효과가 발휘된다.
본 발명의 적절한 실시예에 의하면, 상기 무기물 분말은 알루미나(Al2O3), 이산화티탄(TiO2), 이산화지르코늄(ZrO2), 이산화규소(Si02), 산화주석(Sn02), 산화세륨(Ce02), 산화마그네슘(MgO), 산화칼슘(CaO) 및 이트리아(Y2O3) 중에서 선택된 1종 또는 2종 이상일 수 있다.
본 발명의 적절한 실시예에 의하면, 리튬금속 분말 20 내지 40중량부, 무기물 분말은 50 내지 80중량부, 바인더는 1 내지 10중량부를 용매에 넣는다. 리튬금속-무기물 혼합물의 조성이 상기 범위일 때, 전리튬화와 음극의 안전성 향상에 효과를 발휘한다.
상기 바인더로는 일반적으로 사용되는 결합제가 사용될 수 있으며 PVDF, SBR계 결합제가 대표적이다. 또한 PAA(Poly acrylic acid)계, CMC(Carboxymethyl cellulose)계, 폴리이미드(Polyimide)계 바인더도 사용될 수 있다. 상기 바인더의 함량이 1 중량부 미만이면, 본 발명의 리튬금속-무기물 복합층이 음극에서 쉽게 탈리될 염려가 있고, 10 중량부를 초과할 경우에는 전리튬화 측면에서 바람직하지 않다.
본 발명의 적절한 실시예에 의하면, 상기 리튬금속 분말의 입경은 5~50㎛이다.
본 발명의 적절한 실시예에 의하면, 상기 무기물 분말의 입경은 0.1 내지 10 ㎛, 더욱 바람직하게는 0.1 내지 5 ㎛, 가장 바람직하게는 0.5 내지 1㎛ 이다. 무기물 분말의 입경이 10㎛를 초과할 경우에는 용매 중에 잘 분산되지 않을 수 있으므로 바람직하지 않다.
상기 용매의 종류는 리튬금속과 무기물 분말이 용매 중에 잘 분산되는 것이면 특별히 한정되지 않으며, 구체적으로 헥센(Hexane), 벤젠(benzene), 톨루엔(toluene) 및 자일렌(xylene) 등을 예시할 수 있다. 본 발명의 실시예에서는 n-헥산 용액을 사용하였다.
리튬금속 및 무기물 분말의 고형분 농도는, 50 내지 70wt%이고, 고형분 대비 용매의 부피비는, 고형분 55 내지 65 vol%, 용매 35 내지 45vol%이다. 고형분 농도가 50wt%미만일 경우에는 리튬금속-무기물 분말 혼합 슬러리를 전극상에 도포 시 로딩량이 낮아져 최종 목표 두께가 낮아지는 문제점이 있을 수 있으며, 70wt% 를 초과할 경우에는 고형분 농도가 너무 높아 전극상 도포 시에 균일성이 떨어지는 문제점이 있다.
본 발명의 적절한 실시예에 의하면, 상기 리튬금속-무기물 복합층을 형성하는 방법은, 도포, 스프레이, 라미네이션 중에서 선택된 1개의 방법인 것이다. 리튬금속 분말, 무기물 분말 및 바인더를 용매에 넣고 분산시키 리튬금속-무기물 복합용액을 음극에 도포하거나, 스프레이하거나, 이형필름을 이용해 리튬금속-무기물 복합층을 형성시킬 수 있다. 이형필름을 이용해 리튬금속-무기물 복합층을 형성하는 방법은, 고분자 소재의 이형필름 상에 상기 리튬금속-무기물 복합용액을 코팅하고, 코팅된 이형필름을 음극에 적층한 후, 이형필름을 떼어내는 방법에 의할 수 있다.
본 발명의 적절한 실시예에 의하면, 상기 리튬금속-무기물 복합층은 초기 활성화 충전 이후에는 금속 형태의 리튬으로 남아 있지 않는다.
한편, 본 발명은 상기와 같은 방법으로 제조된 음극을 포함하는 이차전지를 제공하는 데에도 그 특징을 가진다.
본 발명에 따른 이차전지는 두 개의 서로 다른 극성의 전극이 분리막으로 분리된 상태로 적층되어 이루어지는 전극 조립체를 수납하여 이루어지며, 상기 전극 조립체는 양극활물질을 포함하는 양극과, 음극활물질을 포함하는 음극, 및 분리막으로 구성된 것이다.
구체적으로 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
본 발명에 따른 양극 활물질은 리튬 코발트 산화물(LiCoO2),리튬 니켈 산화물(LiNiO2)등의 층상 화합물이나 하나 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4(여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬망간 산화물(LiMnO2);리튬 동 산화물(Li2CuO2);LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2(여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3임)으로 표현되는 니켈 사이트형 리튬 니켈 산화물(lithiated nickel oxide); 화학식 LiMn2 - xMxO2(여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3MO8(여기서, M = Fe, Co, Ni, Cu 또는 Zn임)로 표현되는 리튬 망간 복합 산화물; 화학식의 리튬 일부가 알칼리토금속 이온으로 치환된 LiMn2O4;디설파이드 화합물; Fe2(MoO4)3 또는 이들의 조합에 의해 형성되는 복합 산화물 등과 같이 리튬 흡착 물질(lithiumintercalation material)을 주성분으로 하는 화합물과 혼합 사용할 수 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니하며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
또한, 음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명의 음극 활물질은, 규소(Si)나 주석 등과 같이 리튬 이온을 가역적으로 흡장/방출하는 재료를 이용할 수 있다. 이러한 재료이면, 단체, 합금, 화합물, 고용체 및 규소함유 재료나 주석 함유 재료를 포함하는 복합 음극 활물질 중 어느 것이라도 본 발명의 효과를 발휘시키는 것은 가능하다. 규소 함유 재료로서, Si, SiOx(0.5<x<2.0) 또는 이들 중 어느 하나에 B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, Sn으로 이루어진 군으로부터 선택되는 적어도 하나의 원소로 Si의 일부를 치환한 합금이나, 화합물 또는 고용체 등을 이용할 수 있다.
이들 재료는 단독으로 음극 활물질을 구성할 수도 있고, 또한 복수종의 재료에 의해 음극 활물질을 구성할 수도 있다. 상기 복수종의 재료에 의해 음극 활물질을 구성하는 예로서 Si와 산소와 질소를 포함하는 화합물이나, Si와 산소를 포함하고, Si와 산소의 구성 비율이 다른 복수의 화합물의 복합물 등을 들 수 있다. 이 중에서도 SiOx(0.5<x<2.0)는 방전 용량 밀도가 크고, 또한 충전시의 팽창율이 Si 단체보다 작기 때문에 바람직하다.
실리콘 산화물 음극은 기존의 흑연 등의 탄소재료를 사용한 음극의 용량 밀도를 높이기 위해 규소 및 이들의 산화물을 주재료로 사용한 음극이다. 탄소재료의 이론 용량밀도인 372mAh/g 보다 훨씬 높은 4200mAh/g의 이론 용량 밀도를 가지므로 이차전지용 음극으로서 적합하게 사용될 수 있다. 다만 실리콘 산화물 음극은 형태안정성이 떨어져 초기 비가역 용량이 크고, 전극 용량이 감소하거나 셀 밸런스가 붕괴될 위험이 있으므로 본 발명에서와 같은 전리튬화 과정을 필요로 한다.
상기 양극과 음극 사이에서 상기 전극들을 절연시키는 분리막으로는 통상 알려진 폴리올레핀계 분리막이나, 상기 올레핀계 기재에 유,무기 복합층이 형성된 복합 분리막 등을 모두 사용할 수 있으며, 특별히 한정되지 않는다.
이차전지에 주입되는 전해액은 리튬염 함유 비수계 전해질로서, 이는 비수 전해질과 리튬으로 이루어져 있다. 비수전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
이하 실시예를 통해 본 발명을 더욱 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시예 및 실험예에 의하여 한정되는 것은 아니다.
실시예 1
<음극의 제조>
음극 활물질로서 SiO 92중량%, 덴카 블랙(Denka Black, 도전제) 3중량% 및 SBR(결합제) 3.5중량%, 및 CMC(증점제) 1.5중량%를 물에 첨가하여 음극 혼합물 슬러리를 제조하였다.
구리 집전체의 일면에 상기 음극 혼합물 슬러리를 코팅하고, 이를 건조 및 압연한 후 일정 크기로 펀칭하여 음극을 제조하였다.
<음극 표면에 리튬금속-무기 복합층의 형성>
SiO 음극 표면에 리튬금속-Al2O3의 복합층을 형성하기 위해, 리튬금속 분말(입경:5~50㎛) 30중량%, Al2O3 분말(입경:0.5~1)㎛ 66중량% 및 바인더 4중량%를 n-헥산 용액에 넣고 분산시켜 슬러리를 제조하였다. 이때 용매와 고형분의 혼합비율은 용매 35vol%, 고형분 65vol%로 하였다. 위와 같이 제조된 슬러리를 SiO 전극 표면에 도포하고 건조하여 5㎛의 평균 두께를 갖는 리튬금속- Al2O3 복합층을 형성시켰다.
<리튬 이차전지의 제조>
상대(counter) 전극으로 리튬 금속 포일(150μm)을 사용하였고, 상기 음극과 상기 상대 전극 사이에 폴리올레핀 세퍼레이터를 개재시킨 후, 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(DEC)를 50:50의 부피비로 혼합한 용매에 1M 육불화인산리튬(LiPF6)이 용해된 전해액을 주입하여 코인형 반쪽전지를 제조하였다.
실시예 2
Al2O3 대신에 산화마그네슘(MgO)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.
실시예 3
Al2O3 대신에 이산화지르코늄(ZrO2)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.
실시예 4
리튬금속-무기물 복합층의 두께를 3㎛로 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.
실시예 5
리튬금속-무기물 복합층의 두께를 8㎛로 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.
실시예 6
리튬금속 분말 및 Al2O3 분말의 중량비를 20:76으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.
실시예 7
리튬금속 분말 및 Al2O3 분말의 중량비를 35:61으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.
비교예 1
음극으로 상기 실시예의 평균 두께 5㎛의 리튬금속-Al2O3 복합층이 형성된 SiO 전극 대신 아무런 처리하지 않은 SiO 전극을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.
비교예 2
용융된 리튬에 분말 형태의 MgO를 넣고 이를 압출하여 실시예 1의 SiO 음극 표면에 코팅한 점을 제외하고는 실시예 1과 동일하게 전지를 제조하였다. 이때 리튬 및 MgO의 중량비는 2:8이고 코팅 두께는 20㎛였다.
비교예 3
리튬금속-무기물 복합층의 두께를 30㎛로 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다.
실험예 1. 첫번째 사이클 충방전 가역성 실험
상기 실시예 및 비교예에서 제조한 코인형 반쪽 전지를 전기화학 충방전기를 이용하여 충방전 가역성 테스트를 하였다. 첫번째 사이클 충전시 0.005V(vs. Li/Li+)의 전압까지 0.1C-rate의 전류밀도로 전류를 가하여 충전해 주었고, 방전시 같은 전류밀도로 1.5V(vs. Li/Li+)의 전압까지 방전을 실시해주었다. 이때 충전용량과 방전용량을 측정하였고, 그 비율(방전용량/충전용량*100)을 계산하여 표 1에 나타내었다.
실험예 2. 열량 분석 시험
열량 분석 시험(differential scanning calorimetry)을 하기 위해 실시예 및 비교예의 코인형 반쪽 전지를 상기와 같이 1사이클 충방전 후, 2번째 사이클에서 0.005V까지 충전하여 활성화를 시켜준 음극을 긁어내었다. 이렇게 얻은 충전된 음극 파우더 13mg에 전해액 0.1ml를 첨가하여 DSC 장비(mettle Toledo)에 로딩하였다. 이렇게 로딩된 샘플을 10℃/min 의 승온 속도로 가열하며 열량을 측정하여 그 결과를 표 1에 나타내었다.
첫번째 충방전 효율(%) Onset(℃) Main peak(℃) 발열량(J/g)
실시예 1 88 115 292 1950
실시예 2 87 116 313 1856
실시예 3 89 118 350 1799
실시예 4 82 115 292 1598
실시예 5 97 115 292 2188
실시예 6 81 115 292 1573
실시예 7 88 114 290 1980
비교예 1 73 97 261 4150
비교예 2 108(리튬 석출) 97 242 8156
비교예 3 125(리튬 석출) 96 250 8423
실시예 1 내지 7의 첫번째 사이클 충방전 가역성은 비교예 1보다 15%나 개선되었다. 이렇게 실시예 1의 가역성이 개선된 이유는 SiO 전극 표면에 형성시킨 리튬금속-무기 복합체 층의 리튬금속이 SiO와 반응하여 미리 표면 부반응을 일으켰고, 충전시 발생하는 부피 변화를 미리 경함하게 함으로써 부피 팽창에 의한 Dead-리튬도 미리 만들어줬기 때문으로 판단된다. 이러한 부반응을 미리 겪에 함으로써 실제 첫번째 충전시 부반응에 소모되는 리튬을 줄일 수 있었고, 이에 따라 충전시 들어간 리튬메탈이 거의 대부분 가역적으로 나오게 되었을 것으로 생각된다.
또한 비교예보다 실시예 1 내지 7의 경우가 onset 온도, main peak 온도가 높게 나타났는데, 이는 보다 고온까지 셀이 안전하게 유지된다는 의미로 해석된다. 또한 발열량도 비교예보다 실시예 1 내지 7이 작다는 것은 고온 노출시 더욱 안전하다는 의미로 해석된다. 이렇게 실시예의 리튬금속-무기 복합층이 도입된 SiO 전극이 더 안전한 결과를 나타낸 이유는 리튬금속-무기 복합층에서 리튬금속이 전리튬화 후에 사라진 뒤, 잔여물로 남은 무기층이 SiO 전극 표면을 보호하는 보호층으로서의 역할을 했을 것으로 판단된다.
100: 음극
200: 리튬금속-무기물 혼합용액, 리튬금속-무기물 복합층
210: 무기물 분말
220: 리튬금속 분말
300: 전리튬화된 음극
400: 무기물 층

Claims (11)

  1. 리튬금속 분말, 무기물 분말 및 바인더를 용매에 넣고 분산시켜 혼합 용액을 제조하는 단계;
    음극에 상기 혼합 용액을 사용하여 리튬금속-무기물 복합층을 형성시키는 단계를 포함하고,
    상기 무기물 분말은 알루미나(Al2O3), 이산화티탄(TiO2), 이산화지르코늄(ZrO2), 이산화규소(Si02), 산화주석(Sn02), 산화세륨(Ce02), 산화마그네슘(MgO), 산화칼슘(CaO) 및 이트리아(Y2O3) 중에서 선택된 1종 또는 2종 이상인 이차전지용 음극의 전리튬화 방법.
  2. 제1항에 있어서,
    상기 리튬금속-무기물 복합층의 두께는 0.5 내지 20㎛인 것을 특징으로 하는 이차전지용 음극의 전리튬화 방법.
  3. 삭제
  4. 제1항에 있어서,
    리튬금속 분말 20 내지 40중량부, 무기물 분말은 50 내지 80중량부, 바인더는 1 내지 10중량부를 용매에 넣는 것을 특징으로 하는 이차전지용 음극의 전리튬화 방법.
  5. 제1항에 있어서,
    상기 리튬금속-무기물 복합층을 형성하는 방법은, 도포, 스프레이, 라미네이션 중에서 선택된 1개의 방법인 것을 특징으로 하는 이차전지용 음극의 전리튬화 방법.
  6. 제1항에 있어서,
    상기 리튬금속 분말의 입경은 5~50㎛인 것을 특징으로 하는 이차전지용 음극의 전리튬화 방법.
  7. 제1항에 있어서,
    상기 무기물 분말의 입경은 0.1 내지 10㎛인 것을 특징으로 하는 이차전지용 음극의 전리튬화 방법.
  8. 제1항에 있어서,
    상기 리튬금속-무기물 복합층은 초기 활성화 충전 이후에는 금속 형태의 리튬으로 남아 있지 않은 것을 특징으로 하는 이차전지용 음극의 전리튬화 방법.
  9. 제1항에 있어서,
    상기 음극은 실리콘 산화물을 포함하는 것을 특징으로 하는 이차전지용 음극의 전리튬화 방법.
  10. 삭제
  11. 삭제
KR1020170102252A 2017-08-11 2017-08-11 리튬금속과 무기물 복합층을 이용한 전리튬화 KR102264691B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020170102252A KR102264691B1 (ko) 2017-08-11 2017-08-11 리튬금속과 무기물 복합층을 이용한 전리튬화
CN201880010989.0A CN110268557B (zh) 2017-08-11 2018-07-24 使用锂金属和无机复合层的预锂化
JP2019543814A JP7038947B2 (ja) 2017-08-11 2018-07-24 リチウム金属と無機物複合層を用いた前リチウム化
PL18844158T PL3570349T3 (pl) 2017-08-11 2018-07-24 Wstępne litowanie z użyciem warstwy kompozytu litu metalicznego i materiał nieorganicznego
EP18844158.8A EP3570349B1 (en) 2017-08-11 2018-07-24 Pre-lithiation using lithium metal and inorganic material composite layer
PCT/KR2018/008347 WO2019031732A1 (ko) 2017-08-11 2018-07-24 리튬금속과 무기물 복합층을 이용한 전리튬화
US16/541,737 US11316156B2 (en) 2017-08-11 2019-08-15 Pre-lithiation using lithium metal and inorganic composite layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170102252A KR102264691B1 (ko) 2017-08-11 2017-08-11 리튬금속과 무기물 복합층을 이용한 전리튬화

Publications (2)

Publication Number Publication Date
KR20190017417A KR20190017417A (ko) 2019-02-20
KR102264691B1 true KR102264691B1 (ko) 2021-06-15

Family

ID=65271750

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170102252A KR102264691B1 (ko) 2017-08-11 2017-08-11 리튬금속과 무기물 복합층을 이용한 전리튬화

Country Status (7)

Country Link
US (1) US11316156B2 (ko)
EP (1) EP3570349B1 (ko)
JP (1) JP7038947B2 (ko)
KR (1) KR102264691B1 (ko)
CN (1) CN110268557B (ko)
PL (1) PL3570349T3 (ko)
WO (1) WO2019031732A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659111B (zh) * 2019-05-31 2023-01-06 宁德时代新能源科技股份有限公司 负极极片、电芯、锂离子电池、电子产品及电动车辆
CN111434609B (zh) * 2019-12-27 2022-09-20 蜂巢能源科技有限公司 预锂化负极活性材料及其制备方法、负极片和锂离子电池
CN111244427A (zh) * 2020-01-21 2020-06-05 浙江理工大学 应用于锂金属电池的无机GeO2-Li复合负极及其制备方法
CN111509211A (zh) * 2020-04-29 2020-08-07 广西师范大学 一种LM/Li复合材料的制备方法
KR20220023516A (ko) * 2020-08-21 2022-03-02 주식회사 엘지에너지솔루션 음극의 전리튬화 장치 및 음극의 전리튬화 방법
JP2022049787A (ja) 2020-09-17 2022-03-30 本田技研工業株式会社 リチウム二次電池用電解質媒体及びリチウム二次電池
JP7353325B2 (ja) 2021-06-15 2023-09-29 プライムプラネットエナジー&ソリューションズ株式会社 負極および該負極を備える非水電解質二次電池
CN113782744B (zh) * 2021-08-30 2022-12-27 上海纳米技术及应用国家工程研究中心有限公司 锂离子修饰粘结剂用于提高高比能氧化亚硅负极性能的方法
KR20230156664A (ko) * 2022-05-06 2023-11-14 주식회사 엘지에너지솔루션 전극 전리튬화 방법, 전리튬화된 리튬 이차 전지용 전극 및 전극 전리튬화 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016482A1 (ko) 2013-07-30 2015-02-05 주식회사 엘지화학 음극 전극의 전리튬화 방법
WO2016126046A1 (ko) 2015-02-02 2016-08-11 주식회사 엘지화학 고용량 음극을 포함하는 이차전지 및 그 제조 방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050130043A1 (en) * 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
KR100590096B1 (ko) 2004-04-29 2006-06-14 삼성에스디아이 주식회사 리튬 이차 전지
JP2010160985A (ja) 2009-01-08 2010-07-22 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP2010160984A (ja) 2009-01-08 2010-07-22 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP2010160982A (ja) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN102449811A (zh) 2009-05-26 2012-05-09 株式会社Lg化学 具有高能量密度的锂二次电池
JP2011249046A (ja) * 2010-05-24 2011-12-08 Nissan Motor Co Ltd リチウムイオン二次電池の製造方法
US9601228B2 (en) * 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
KR101527730B1 (ko) 2012-08-30 2015-06-12 에너테크인터내셔널 주식회사 리튬 이차전지용 전극의 세라믹 코팅방법
CN102916165B (zh) 2012-09-20 2016-05-18 东莞新能源科技有限公司 一种向锂离子电池负极片补锂的方法
US11430979B2 (en) * 2013-03-15 2022-08-30 Ppg Industries Ohio, Inc. Lithium ion battery anodes including graphenic carbon particles
US10381690B2 (en) * 2013-08-14 2019-08-13 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN105449165B (zh) * 2014-06-05 2018-01-02 宁德新能源科技有限公司 锂离子电池的富锂极片及其制备方法
CN105336914B (zh) * 2014-07-01 2018-07-13 宁德时代新能源科技股份有限公司 锂离子二次电池及其富锂负极片
CN104332657B (zh) * 2014-08-20 2016-06-22 东莞新能源科技有限公司 锂离子电池富锂工艺及使用该工艺制备的锂离子电池
CN104332588B (zh) 2014-08-21 2017-03-22 中航锂电(洛阳)有限公司 一种高安全性锂离子电池负极极片、制备方法和应用
KR101751601B1 (ko) * 2014-09-29 2017-06-30 주식회사 엘지화학 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법
DK178503B1 (en) 2014-12-02 2016-04-18 Juvenile Aps A soft baby carrier
US9607778B2 (en) * 2015-01-30 2017-03-28 Corning Incorporated Poly-vinylidene difluoride anode binder in a lithium ion capacitor
KR101704172B1 (ko) * 2015-03-09 2017-02-07 현대자동차주식회사 나노 고체 전해질을 포함하는 전고체 전지 및 이의 제조방법
CN104993098A (zh) * 2015-06-10 2015-10-21 中航锂电(洛阳)有限公司 补锂负极片及其制备方法、锂离子超级电容器、锂离子电池
PL3414787T3 (pl) * 2016-02-09 2023-04-11 Camx Power Llc Wstępnie litowane materiały elektrod i ogniwa wykorzystujące te materiały

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016482A1 (ko) 2013-07-30 2015-02-05 주식회사 엘지화학 음극 전극의 전리튬화 방법
WO2016126046A1 (ko) 2015-02-02 2016-08-11 주식회사 엘지화학 고용량 음극을 포함하는 이차전지 및 그 제조 방법

Also Published As

Publication number Publication date
CN110268557A (zh) 2019-09-20
WO2019031732A1 (ko) 2019-02-14
EP3570349B1 (en) 2021-01-13
EP3570349A4 (en) 2020-01-22
JP7038947B2 (ja) 2022-03-22
EP3570349A1 (en) 2019-11-20
US20190372118A1 (en) 2019-12-05
JP2020506522A (ja) 2020-02-27
PL3570349T3 (pl) 2021-05-17
US11316156B2 (en) 2022-04-26
CN110268557B (zh) 2022-09-13
KR20190017417A (ko) 2019-02-20

Similar Documents

Publication Publication Date Title
KR102264691B1 (ko) 리튬금속과 무기물 복합층을 이용한 전리튬화
KR102265214B1 (ko) 이차전지용 실리콘 산화물 음극의 전리튬화 방법
KR102327179B1 (ko) 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법
KR102261504B1 (ko) 이차전지용 음극의 전리튬화 방법
KR102283684B1 (ko) 이차전지용 음극의 제조방법 및 이차전지용 음극
EP2840632B1 (en) High voltage anode active material and lithium secondary battery including same
KR101463996B1 (ko) 안전성이 향상된 리튬 이차 전지
KR102120271B1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 리튬이 결핍인 쉘을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
CN116207230A (zh) 正极活性材料、其制备方法以及包含其的二次电池用正极和锂二次电池
KR102172848B1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
KR100858417B1 (ko) 흡열성 무기물로 표면 처리되어 안전성이 향상된 이차전지
KR101112446B1 (ko) 과충전 안전성이 향상된 이차전지
KR20140007744A (ko) 고전압용 양극 활물질 및 이의 제조방법
KR100861711B1 (ko) 과방전 방지를 위한 음극 첨가제를 포함하고 있는 이차전지
EP3522269B1 (en) Method for manufacturing electrode for secondary battery suitable for high loading
KR100881643B1 (ko) 안전성이 향상된 리튬 이차전지
KR100868258B1 (ko) 고온 특성이 향상된 이차전지
KR101906639B1 (ko) 리튬이차전지의 양극 형성용 조성물, 그리고 이를 이용하여 제조된 양극 및 리튬이차전지
KR20100051348A (ko) 양극 합제 및 이를 포함하는 리튬이차전지
KR20070081558A (ko) 향상된 물성의 리튬 이차전지
KR20090008078A (ko) 전극 효율을 개선하기 위한 음극 첨가제를 포함하고 있는음극 합제

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant