WO2014200176A1 - 실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법 - Google Patents

실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법 Download PDF

Info

Publication number
WO2014200176A1
WO2014200176A1 PCT/KR2014/003415 KR2014003415W WO2014200176A1 WO 2014200176 A1 WO2014200176 A1 WO 2014200176A1 KR 2014003415 W KR2014003415 W KR 2014003415W WO 2014200176 A1 WO2014200176 A1 WO 2014200176A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable material
battery cell
battery
battery case
wall
Prior art date
Application number
PCT/KR2014/003415
Other languages
English (en)
French (fr)
Inventor
홍은표
최종운
윤형구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/764,293 priority Critical patent/US10074832B2/en
Priority to CN201480014831.2A priority patent/CN105190933B/zh
Priority to EP14810240.3A priority patent/EP2955771B1/en
Publication of WO2014200176A1 publication Critical patent/WO2014200176A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a manufacturing method of a battery cell, and more particularly, after mounting the electrode assembly in the housing of the battery case forming a sealing portion on the outer peripheral surface by the heat sealing, the sealing portion is bent vertically Contacting the outer wall of the housing part, mounting and fixing the battery case processed in the step to a jig in which an indentation of a size corresponding thereto is formed, and an outer wall of the battery case housing part and an inner wall of the jig indentation part; It relates to a battery cell manufacturing method comprising the step of curing after injecting a curable material therebetween.
  • lithium secondary batteries such as lithium ion batteries, lithium ion polymer batteries, etc., which have advantages such as output stability.
  • secondary batteries are classified according to the structure of the electrode assembly having a cathode / separation membrane / cathode structure.
  • a jelly having a structure in which long sheet-shaped anodes and cathodes are wound with a separator interposed therebetween -Roll (electrode) electrode assembly, a stack (stacked type) electrode assembly in which a plurality of positive and negative electrodes cut in units of a predetermined size are sequentially stacked with a separator, and the positive and negative electrodes of a predetermined unit are interposed through a separator
  • a stack / foldable electrode assembly having a structure in which bi-cell or full cells stacked in a state are wound with a separation film.
  • a pouch-type battery having a structure in which a stack type or a stack / fold type electrode assembly is incorporated into a pouch type battery case of an aluminum laminate sheet has attracted much attention due to its low manufacturing cost, small weight, and easy shape deformation. Its usage is also gradually increasing.
  • FIG. 1 schematically illustrates a general structure of a conventional representative pouch type secondary battery as an exploded perspective view.
  • the pouch type secondary battery 10 may include an electrode assembly 30, electrode tabs 40 and 50 extending from the electrode assembly 30, and electrodes welded to the electrode tabs 40 and 50. And a battery case 20 accommodating the leads 60 and 70 and the electrode assembly 30.
  • the electrode assembly 30 is a power generator in which a positive electrode and a negative electrode are sequentially stacked in a state where a separator is interposed therebetween, and has a stack type or a stack / fold type structure.
  • the electrode tabs 40, 50 extend from each pole plate of the electrode assembly 30, and the electrode leads 60, 70 are welded, for example, with a plurality of electrode tabs 40, 50 extending from each pole plate. Each is electrically connected to each other, and part of the battery case 20 is exposed to the outside.
  • an insulating film 80 is attached to a portion of the upper and lower surfaces of the electrode leads 60 and 70 in order to increase the sealing degree with the battery case 20 and to secure an electrical insulating state.
  • the battery case 20 is made of an aluminum laminate sheet, provides a space for accommodating the electrode assembly 30, and has a pouch shape as a whole.
  • the plurality of positive electrode tabs 40 and the plurality of negative electrode tabs 50 may be coupled together to the electrode leads 60 and 70.
  • the inner top is spaced apart from the electrode assembly 30.
  • the electrode assembly is housed in a laminate sheet, and the electrolyte is injected and sealed by heat fusion, and the like, whereby the heat fusion site (sealing part) is contaminated during electrolyte injection and the innermost resin layer of the laminate sheet. Due to excessive melting phenomenon and / or protruding to the outside of the inner resin layer due to the pressurization, it is difficult to maintain a complete sealing state even after thermal fusion, so that there is a problem in that moisture is easily penetrated and there is a possibility of leakage of electrolyte solution.
  • an insulation breakdown phenomenon may occur due to exposure of a metal layer at an end portion of a laminate sheet, which is a battery case, and there is a possibility that moisture or the like is invaded through the heat-sealed portion of the end portion.
  • the prior art discloses a battery that attempts to insulate using a PET label and tape on the outer surface of the heat seal.
  • a PET label and tape on the outer surface of the heat seal.
  • peeling phenomenon of the label and the tape or defects such as bubbles or wrinkles.
  • Korean Patent Application Publication No. 2001-0078364 discloses a pouch-type battery having improved sealing property by applying and curing a UV curing agent as a sealing aid outside the heat-sealed portion.
  • a UV curing agent having a predetermined viscosity and fluidity to the outside of the heat-sealed portion on the thin vertical cross section, and after the application, the UV curing agent flows down to the bottom in the process of irradiating UV rays to seal the battery.
  • Korean Patent Application Publication No. 2001-0004352 discloses a method of manufacturing a sealed battery in which an ultraviolet curable resin is applied to a gasket sealing portion, a safety edge portion of a positive electrode cap, a welded portion of a positive electrode cap and a case, and a sealing portion of an electrolyte inlet. It is starting.
  • the above technique is applied to cylindrical or rectangular batteries, and, due to its structural characteristics, it is applied to a pouch-type battery which may cause problems such as the trouble of applying the cured material as described above, and dripping of the curable material at the sealing portion. Difficult to do
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • an object of the present invention is to be mounted on the jig in which the indentation corresponding to the size of the battery case is formed in the state in which the sealing portion is bent vertically to be in close contact with the side wall of the accommodating portion, so that the outer wall of the battery case accommodating portion and the inner wall of the indenting portion
  • a curable material therebetween to harden to form the exterior of the battery case, moisture penetrates into the sealing portion that may be caused by repeated expansion and contraction of the battery body during repeated charge and discharge of the battery, or electrolyte solution inside the battery case
  • Still another object of the present invention is to provide a method of manufacturing a battery cell that is easy to manufacture while solving problems such as process simplification and poor appearance compared to existing labeling work, and improving yield and high yield.
  • step (c) mounting and fixing the battery case processed in step (b) to a jig in which an indentation of a size corresponding thereto is formed;
  • the sealing parts are bent vertically to be in close contact with the side wall of the housing, and indented to the jig in which the indentation corresponding to the size of the battery case is formed is mounted on the outer wall and the battery case housing.
  • the electrode assembly is not particularly limited as long as it is a structure that connects a plurality of electrode tabs to form an anode and a cathode, and preferably includes a wound structure, a stacked structure, and a stack / folding structure. Details of the electrode assembly of the stack / foldable structure are disclosed in Korean Patent Application Publication Nos. 2001-0082058, 2001-0082059, and 2001-0082060, which are described in the context of the present invention. Incorporated by reference.
  • the secondary battery according to the present invention may be preferably applied to a pouch type secondary battery in which an electrode assembly is embedded in a laminate sheet including a metal layer and a resin layer, for example, a pouch type case of an aluminum laminate sheet.
  • the curable material of step (d) may be an ultraviolet curable material
  • the manufacturing method is in the range of 3 to 20 seconds after injecting the ultraviolet curable material between the outer wall of the battery cell and the inner wall of the jig indentation It is cured by irradiation with ultraviolet rays.
  • the inner wall of the jig indentation may be formed of, for example, a structure having a Teflon coating to prevent the battery cell and the jig from being adhered by the ultraviolet curable material.
  • the ultraviolet curable material is a material exhibiting high intermolecular bonding ability while crosslinking is made by a chemical reaction upon irradiation of ultraviolet light, for example, an unsaturated polyester-based material, polyester acrylate, epoxy acrylate, urethane acrylate Although polyacrylate type materials, such as these, etc. are mentioned, It is not limited only to these.
  • the UV curable material may be a material having a hydrophilic function group, and by using an UV curable material having a hydrophilic group, it traps moisture introduced into the battery, thereby improving sealing property. At the same time, the penetration of water can be suppressed.
  • the ultraviolet curable material may be one that is applied to the site in the form of an oligomer having a predetermined viscosity or a small molecular weight polymer and then cured with ultraviolet rays.
  • Common UV curing agents are low viscosity, liquid materials consisting of monomers and oligomers. However, since the material is applied to the site in the form of oligomer having a predetermined viscosity or a small molecular weight polymer, it is easy to apply and there is almost no flow after application, thereby obtaining an optimum sealing effect.
  • an ultraviolet curable material may be added to the site in the state where a predetermined thickener is added as a monomer.
  • UV curing agents consisting of monomers are low viscosity liquid materials. Therefore, by adding a thickener such as carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyvinyl acetate, etc., which can increase the viscosity of such materials, By apply
  • a thickener such as carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyvinyl acetate, etc.
  • the battery according to the present invention is preferably used for a lithium ion secondary battery in which a lithium-containing electrolyte is impregnated into an electrode assembly, and a so-called lithium ion battery such as a lithium ion polymer battery in which the lithium-containing electrolyte is impregnated into an electrode assembly in the form of a gel. Can be applied.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing non-aqueous electrolyte solution consists of a polar organic electrolyte solution and a lithium salt.
  • a non-aqueous liquid electrolyte an organic solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • N-methyl- 2-pyrrolidinone a propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma
  • Butyl lactone 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxorone , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, and the like.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the present invention also provides a battery cell, characterized in that produced by the above production method.
  • the secondary battery as described above may be used in a battery cell used as a power source of a small device, and may be preferably used as a unit battery in a battery pack including a plurality of battery cells used as a power source of the device.
  • Preferred examples of the device include, but are not limited to, notebooks, cellular phones, PDPs, PMPs, MP3 players, digital still cameras (DSCs), DVRs, smartphones, GPS systems, camcorders, and the like.
  • FIG. 1 is an exploded perspective view of a general structure of a conventional pouch type battery
  • FIG. 2 is a cross-sectional view of a structure in which the sealing portion of the case is in close contact with the side wall of the receiving portion in the battery cell according to one embodiment of the present invention
  • FIG. 3 is a schematic diagram illustrating a structure in which the battery cell of FIG. 2 is mounted and fixed to a jig;
  • FIG. 4 is an enlarged view of a portion A of FIG. 3;
  • FIG. 5 is a schematic view of a battery cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a structure in which the sealing portion of the case is in close contact with the side wall of the receiving portion in the battery cell according to an embodiment of the present invention.
  • the battery cell 100 includes an electrode assembly (not shown) having a positive electrode / separation membrane / cathode structure in the accommodating part 112 of the first sheet-shaped case 110, and then corresponds to a second cell corresponding thereto.
  • the sheet-shaped case 120 is heat-sealed to produce a predetermined process.
  • the first sheet case 110 and the second sheet case 120 may be one unit member or two independent unit units.
  • the sealing parts 130 and 140 are formed in the direction of the outer circumferential surface of the accommodating part 112.
  • both sealing parts 130 and 140 are bent at adjacent portions with the receiving part 112 to be in close contact with the receiving part side wall 112a.
  • FIG. 3 is a schematic view showing a structure in which the battery cell of FIG. 2 is mounted and fixed to a jig
  • FIG. 4 is an enlarged view of a portion A of FIG. 3.
  • the battery cell 100 of FIG. 2 is mounted and fixed to a jig 160 in which an indentation of a size corresponding thereto is formed, and the size of the indentation of the jig 160 is the battery cell 100. It is also possible to be configured in various ways.
  • the curable material 170 is injected between the outer wall 150 of the battery cell 100 and the inner wall 161 of the indentation of the jig 160, and then cured to cure the battery cell 100.
  • the inner wall 161 of the indentation of the jig 160 has a Teflon coating to prevent the battery cell 100 and the jig 160 from being adhered to each other by the curable material.
  • the curable material 170 is injected to be applied to the sealing end of the battery cell 100, and the introduction amount of the curable material 170 is controlled to be within a thickness of the battery cell 100 or less.
  • the battery cell 100 having such a structure is coated with a curable material on an end portion of the sealing part and coated with a curable material between the outer wall 150 of the battery cell 100 and the inner wall 161 of the jig 160 indentation. Since the outer wall 150 of the 100 is completely coated to be cured, the exterior part 180 of the battery cell 100 may be formed.
  • the coating is performed on the outer wall of the battery cell 200 that is bent and closely adhered to the side wall of the accommodating body, the work is easy, and the fluidity in the state where the battery cell 200 is mounted on the jig. Since the curable material does not flow down and stably is applied and then cured to form the exterior parts 181 and 182 of the battery cell 200, the production yield of the battery and the efficiency of the manufacturing process are improved.
  • the battery case is mounted on a jig in which the indentation portion corresponding to the size of the battery case is formed in a state in which the sealing portions are vertically bent to closely contact the side walls of the storage portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 전지셀의 제조방법에 관한 것으로, 더욱 상세하게는 양극과 분리막 및 음극을 포함하는 전극조립체를 전지케이스에 장착하고 열융착에 의해 밀봉된 구조의 전지셀을 제조하는 방법으로서, (a) 전지케이스의 수납부에 전극조립체를 장착한 후 열융착에 의해 수납부 외주면에 실링부를 형성하는 단계; (b) 상기 실링부를 각각 수직으로 절곡하여 수납부의 외측벽에 밀착시키는 단계; (c) 상기 단계(b)에서 가공된 전지케이스를 그것에 대응하는 크기의 만입부가 형성되어 있는 지그에 장착하여 고정시키는 단계; 및 (d) 상기 전지케이스 수납부의 외측벽과 지그 만입부의 내측벽 사이에 경화성 물질을 주입한 후 경화시키는 단계; 를 포함하는 것을 특징으로 하는 전지셀의 제조방법을 제공한다.

Description

실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법
본 발명은 전지셀의 제조방법에 관한 것으로, 더욱 상세하게는, 전지케이스의 수납부에 전극조립체를 장착한 후 열융착에 의해 수납부 외주면에 실링부를 형성하는 단계, 상기 실링부를 각각 수직으로 절곡하여 수납부의 외측벽에 밀착시키는 단계, 상기 단계에서 가공된 전지케이스를 그것에 대응하는 크기의 만입부가 형성되어 있는 지그에 장착하여 고정시키는 단계, 및 상기 전지케이스 수납부의 외측벽과 지그 만입부의 내측벽 사이에 경화성 물질을 주입한 후 경화시키는 단계를 포함하는 것을 특징으로 하는 전지셀의 제조방법에 관한 것이다.
최근 사용량이 증가하고 있는 이차전지는, 전지의 형상 면에서 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
또한, 이차전지는 양극/분리막/음극 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 바이셀(Bi-cell) 또는 풀셀(Full cell)들을 분리필름으로 권취한 구조의 스택/폴딩형 전극조립체 등을 들 수 있다.
최근에는, 스택형 또는 스택/폴딩형 전극조립체를 알루미늄 라미네이트 시트의 파우치형 전지케이스에 내장한 구조의 파우치형 전지가, 낮은 제조비, 작은 중량, 용이한 형태 변형 등을 이유로, 많은 관심을 모으고 있고 또한 그것의 사용량이 점차적으로 증가하고 있다.
도 1에는 종래의 대표적인 파우치형 이차전지의 일반적인 구조가 분해 사시도로서 모식적으로 도시되어 있다.
도 1을 참조하면, 파우치형 이차전지(10)는, 전극조립체(30), 전극조립체(30)로부터 연장되어 있는 전극 탭들(40, 50), 전극 탭들(40, 50)에 용접되어 있는 전극리드(60, 70), 및 전극조립체(30)를 수용하는 전지케이스(20)를 포함하는 것으로 구성되어 있다.
전극조립체(30)는 분리막이 개재된 상태에서 양극과 음극이 순차적으로 적층되어 있는 발전소자로서, 스택형 또는 스택/폴딩형 구조로 이루어져 있다. 전극 탭들(40, 50)은 전극조립체(30)의 각 극판으로부터 연장되어 있고, 전극리드(60, 70)는 각 극판으로부터 연장된 복수 개의 전극 탭들(40, 50)과, 예를 들어, 용접에 의해 각각 전기적으로 연결되어 있으며, 전지케이스(20)의 외부로 일부가 노출되어 있다. 또한, 전극리드(60, 70)의 상하면 일부에는 전지케이스(20)와의 밀봉도를 높이고 동시에 전기적 절연상태를 확보하기 위하여 절연필름(80)이 부착되어 있다.
전지케이스(20)는 알루미늄 라미네이트 시트로 이루어져 있고, 전극조립체(30)를 수용할 수 있는 공간을 제공하며, 전체적으로 파우치 형상을 가지고 있다. 도 1에서와 같은 적층형 전극조립체(30)의 경우, 다수의 양극 탭들(40)과 다수의 음극 탭들(50)이 전극리드(60, 70)에 함께 결합될 수 있도록, 전지케이스(20)의 내부 상단은 전극조립체(30)로부터 이격되어 있다.
이러한 파우치형 전지는 전극조립체를 라미네이트 시트에 수납하고 전해액을 주입하여 열융착 등으로 밀봉하는 단계에서, 열융착 부위(실링부)가 전해액 주입과정에서의 오염과 라미네이트 시트의 최내측 수지층에서의 과다한 용융 현상 및/또는 가압으로 인한 내측 수지층의 외부로의 돌출로 인하여, 열융착을 행한 이후에도 완전한 실링 상태를 유지하기 어려워 수분의 침투가 용이하고 전해액의 누액 가능성이 존재하는 문제점이 있다.
또한, 파우치형 전지는 전지케이스인 라미네이트 시트의 단부에서 금속층이 노출됨으로 인해 절연 파괴 현상이 초래될 수 있고, 상기 단부의 열융착 부위를 통해 수분 등이 침해하는 가능성이 존재한다.
이와 관련하여, 종래의 기술들은 열융착부 외각에 PET 라벨(label) 및 테이프를 이용하여 절연을 시도하는 전지를 개시하고 있다. 그러나, PET 라벨 및 테이프를 이용하여 열융착부 외각을 절연할 경우, 라벨 및 테이프의 벗겨짐 현상이 나타나거나 기포 또는 주름 등의 불량이 발생하는 문제점이 있다.
이에, 한국 특허출원공개 제2001-0078364호는 열융착부 외곽에 밀폐보조제로서 UV 경화제를 도포하여 경화시킴으로써, 밀봉성을 향상시킨 파우치형 전지를 개시하고 있다. 그러나, 얇은 수직 단면상의 열융착부 외곽에 소정의 점도와 유동성을 가진 UV 경화제를 도포하는 작업이 용이하지 않으며, 도포 후, 자외선을 조사하여 경화시키는 과정에서 UV 경화제가 하단으로 흘러내려 전지의 밀봉성 향상 효과를 감소시킬 수 있는 문제점이 있다. 결과적으로, 상기 기술은 실제 양산 공정에 적용하기에 적합하지 않다.
또한, 한국 특허출원공개 제2001-0004352호는 양극 캡의 가스켓 실링부, 안전변부, 양극 캡과 케이스의 용접 부위 및 전해액 주입구의 밀봉 부위에 자외선 경화성 수지를 도포하여 경화시키는 밀폐 전지의 제조방법을 개시하고 있다. 그러나, 상기 기술은 원통형이나 각형전지에 적용되는 기술로서, 구조적 특성상, 앞서 설명한 바와 같은 경화 물질의 도포의 번거로움, 밀봉부위에서 경화성 물질의 흘러내림 등의 문제가 발생할 수 있는 파우치형 전지에는 적용하기 어렵다.
따라서, 파우치형 전지에서 열융착부의 밀봉성을 향상시키고 절연 파괴 현상을 방지하기 위해 경화제를 사용하는 경우의 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
즉, 본 발명의 목적은 실링부를 각각 수직으로 절곡하여 수납부의 측벽에 밀착시킨 상태에서 전지케이스의 크기에 대응하는 만입부가 형성되어 있는 지그에 장착하여 전지케이스 수납부의 외측벽과 만입부의 내측벽 사이에 경화성 물질을 주입한 후 경화시켜 전지케이스의 외관을 형성함으로써, 전지의 반복적인 충방전 과정에서 전지 본체가 팽창 및 수축을 반복하여 발생할 수 있는 실링부에 수분이 침투하거나 전지케이스 내부의 전해액이 누출되는 문제점과 전지케이스의 금속층이 노출됨으로써 유발되는 절연 파괴 현상의 문제점을 해결하기 위한 전지셀의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 기존의 라벨 작업 대비 공정 단순화 및 외관 불량등의 문제점을 해결하고 수율 향상 및 높은 양품률을 확보하면서 제조공정이 용이한 전지셀의 제조방법을 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 전지셀의 제조방법은,
양극과 분리막 및 음극을 포함하는 전극조립체를 전지케이스에 장착하고 열융착에 의해 밀봉된 구조의 전지셀을 제조하는 방법으로서,
(a) 전지케이스의 수납부에 전극조립체를 장착한 후 열융착에 의해 수납부 외주면에 실링부를 형성하는 단계;
(b) 상기 실링부를 각각 수직으로 절곡하여 수납부의 외측벽에 밀착시키는 단계;
(c) 상기 단계(b)에서 가공된 전지케이스를 그것에 대응하는 크기의 만입부가 형성되어 있는 지그에 장착하여 고정시키는 단계; 및
(d) 상기 전지케이스 수납부의 외측벽과 지그 만입부의 내측벽 사이에 경화성 물질을 주입한 후 경화시키는 단계;
를 포함하는 것으로 구성되어 있다.
본 발명의 제조방법에 따르면, 실링부를 각각 수직으로 절곡하여 수납부의 측벽에 밀착시킨 상태에서 전지케이스의 크기에 대응하는 만입부가 형성되어 있는 지그에 장착한 상태에서 전지케이스 수납부의 외측벽과 만입부의 내측벽 사이에 경화성 물질을 주입한 후 경화시켜 전지케이스의 외관을 형성함으로써, 실링부의 단부에 경화성 물질이 안정적으로 도포된 전지셀을 용이하게 제조할 수 있다.
상기 전극조립체는 다수의 전극 탭들을 연결하여 양극과 음극을 구성하는 구조라면 특별히 제한되는 것은 아니며, 바람직하게는 권취형 구조, 스택형 구조와 스택/폴딩형 구조를 들 수 있다. 스택/폴딩형 구조의 전극조립체에 대한 자세한 내용은 본 출원인의 한국 특허출원공개 제2001-0082058호, 제2001-0082059호 및 제2001-0082060호에 개시되어 있으며, 상기 출원은 본 발명의 내용에 참조로서 합체된다.
본 발명에 따른 이차전지는 특히 금속층과 수지층을 포함하는 라미네이트 시트, 예를 들어, 알루미늄 라미네이트 시트의 파우치형 케이스의 수납부에 전극조립체가 내장되어 있는 파우치형 이차전지에 바람직하게 적용될 수 있다.
하나의 구체적인 예에서, 상기 단계(d)의 경화성 물질은 자외선 경화성 물질일 수 있으며, 상기 제조방법은 전지셀의 외측벽과 지그 만입부의 내측벽 사이에 자외선 경화성 물질을 주입한 후 3 내지 20초 범위로 자외선을 조사하여 경화시키는 과정을 거친다. 바람직하게는, 지그 만입부의 내측벽에는 자외선 경화성 물질에 의해 전지셀과 지그가 접착되는 것을 방지하도록, 예를 들어, 테프론 코팅이 되어 있는 구조로 이루어질 수 있다.
상기 자외선 경화성 물질은 자외선의 조사시 화학 반응에 의해 가교 결합이 이루어지면서 높은 분자간 결합력을 발휘하는 물질로서, 예를 들어, 불포화 폴리에스테르계 물질이나, 폴리에스테르 아크릴레이트, 에폭시 아크릴레이트, 우레탄 아크릴레이트 등의 폴리아크릴레이트계 물질 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
하나의 구체적인 예에서, 상기 자외선 경화성 물질은 친수성 기(hydrophilic function group)를 가진 물질일 수 있는 바, 친수성 기를 가진 자외선 경화성 물질을 사용함으로써, 전지 내부로 유입되는 수분을 포집하여, 밀봉성을 높임과 동시에 수분의 침투를 억제할 수 있다.
자외선 경화성 물질은 소정의 점도를 가진 올리고머, 또는 소분자량의 중합체의 형태로 해당 부위에 도포된 후 자외선으로 경화되는 것일 수 있다.
일반적인 자외선 경화제는 단량체(monomer)와 중간체(oligomer)로 이루어져 있는 점도가 낮은 액체 상태의 물질이다. 그러나, 상기 물질은 소정의 점도를 가진 올리고머, 또는 소분자량의 중합체 형태로 해당 부위에 도포되므로, 도포가 용이하고 도포 후에도 유동이 거의 없어 최적의 밀봉성 향상 효과를 얻을 수 있다.
경우에 따라서는, 자외선 경화성 물질이 단량체로서 소정의 증점제가 첨가된 상태에서 해당 부위에 부가될 수 있다.
앞서 언급한 바와 같이, 단량체(monomer)로 이루어진 자외선 경화제는 점도가 낮은 액체 상태의 물질이다. 따라서, 이러한 물질의 점도를 증가시켜 줄 수 있는 카복시메틸셀룰로오스(carboxymethyl cellulose), 하이드록시에틸셀룰로오스(Hydroxyethyl cellulose), 폴리비닐알콜(Polyvinyl Alcohol), 폴리비닐아세테이트(Polyvinylacrylate) 등과 같은 증점제를 첨가하여 해당 부위에 도포함으로써, 도포가 용이해지고, 밀봉성이 향상된 효과를 얻을 수 있다.
본 발명에 따른 전지는 리튬 함유 전해액이 전극조립체에 함침되어 있는 리튬이온 이차전지, 리튬 함유 전해액이 겔의 형태로 전극조립체에 함침되어 있는, 이른바, 리튬이온 폴리머 전지 등의 리튬 이차전지에 바람직하게 적용될 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
리튬염 함유 비수계 전해액은, 극성 유기 전해액과 리튬염으로 이루어져 있다. 전해액으로는 비수계 액상 전해액, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 액상 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
본 발명은 또한, 상기의 제조방법으로 제조된 것을 특징으로 하는 전지셀을 제공한다.
상기와 같은 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있으며, 디바이스의 전원으로 사용되는 다수의 전지셀들을 포함하는 전지팩에 단위전지로도 바람직하게 사용될 수 있다.
상기 디바이스의 바람직한 예로는 노트북, 휴대폰, PDP, PMP, MP3 플레이어, DSC(Digital Still Camera), DVR, 스마트 폰, GPS 시스템, 및 캠코더 등을 들 수 있으나, 이에 한정되는 것은 아니다.
도 1은 종래의 파우치형 전지의 일반적인 구조에 대한 분해 사시도이다;
도 2는 본 발명의 하나의 실시예에 따른 전지셀에서 케이스의 실링부가 수납부 측벽에 밀착되어 있는 구조의 단면도이다;
도 3은 도 2의 전지셀이 지그에 장착되어 고정되는 구조를 나타내는 모식도이다;
도 4는 도 3의 A 부위에 대한 확대도이다;
도 5는 본 발명의 하나의 실시예에 따른 전지셀의 모식도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 2는 본 발명의 하나의 실시예에 따른 전지셀에서 케이스의 실링부가 수납부 측벽에 밀착되어 있는 구조의 단면도가 모식적으로 도시되어 있다.
도 2를 참조하면, 전지셀(100)은 제 1 시트형 케이스(110)의 수납부(112)에 양극/분리막/음극 구조의 전극조립체(도시하지 않음)를 장착한 후, 그에 대응하는 제 2 시트형 케이스(120)를 열융착시켜 소정의 과정을 통해 제작된다. 제 1 시트형 케이스(110)와 제 2 시트형 케이스(120)는 1 단위의 부재일 수도 있고, 독립적인 2 단위의 부재일 수도 있다. 열융착 과정에서 수납부(112)의 외주면 방향으로 실링부(130, 140)가 형성된다.
그런 다음, 양측 실링부들(130, 140)을 수납부(112)와의 인접부에서 각각 절곡되어 수납부 측벽(112a)에 밀착시킨다.
도 3은 도 2의 전지셀이 지그에 장착되어 고정되는 구조를 나타내는 모식도가 도시되어 있고, 도 4는 도 3의 A 부위에 대한 확대도가 도시되어 있다.
먼저 도 3을 참조하면, 도 2의 전지셀(100)이 그것에 대응하는 크기의 만입부가 형성되어 있는 지그(160)에 장착되어 고정되며, 지그(160)의 만입부의 크기는 전지셀(100)에 따라 다양하게 구성되는 것도 가능하다.
다음으로, 도 4를 참조하면, 전지셀(100)의 외측벽(150)과 지그(160) 만입부의 내측벽(161) 사이에 경화성 물질(170)을 주입한 후 경화시켜 전지셀(100)을 완성한다.
지그(160) 만입부의 내측벽(161)에는 경화성 물질에 의해 전지셀(100)과 지그(160)가 접착되는 것을 방지하도록 테프론 코팅이 되어 있다.
경화성 물질(170)은 전지셀(100)의 실링부 단부에 도포되도록 주입되며, 경화성 물질(170)의 도입량은 전지셀(100)의 두께 이하의 범위로 조절된다.
이러한 구조의 전지셀(100)은 실링부의 단부 일부분에 경화성 물질이 도포되어 코팅되는 것과 동시에 전지셀(100)의 외측벽(150)과 지그(160) 만입부의 내측벽(161) 사이에서 전지셀(100)의 외측벽(150)을 완전히 감싸도록 도포된 후 경화되므로, 전지셀(100)의 외관부(180)를 형성할 수 있다.
따라서, 도 5에서와 같이, 절곡되어 수납부 측벽에 밀착되어 있는 전지셀(200)의 외측벽에 수평면 상으로 도포를 수행하므로 작업이 용이하고, 지그에 전지셀(200)이 장착된 상태에서 유동성이 있는 경화성 물질이 흘러내리지 않고 안정적으로 도포한 후 경화되어 전지셀(200)의 외관부들(181, 182)을 형성할 수 있으므로, 전지의 생산수율 및 제조공정의 효율성이 향상된다.
본 발명이 속한 분양에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지셀 제조방법은, 실링부를 각각 수직으로 절곡하여 수납부의 측벽에 밀착시킨 상태에서 전지케이스의 크기에 대응하는 만입부가 형성되어 있는 지그에 장착하여 전지케이스 수납부의 외측벽과 만입부의 내측벽 사이에 경화성 물질을 주입한 후 경화시켜 전지케이스의 외관을 형성함으로써, 전지케이스의 실링부의 단부에 경화성 물질을 안정적으로 도포한 전지셀을 제조할 수 있다.

Claims (17)

  1. 양극과 분리막 및 음극을 포함하는 전극조립체를 전지케이스에 장착하고 열융착에 의해 밀봉된 구조의 전지셀을 제조하는 방법으로서,
    (a) 전지케이스의 수납부에 전극조립체를 장착한 후 열융착에 의해 수납부 외주면에 실링부를 형성하는 단계;
    (b) 상기 실링부를 각각 수직으로 절곡하여 수납부의 외측벽에 밀착시키는 단계;
    (c) 상기 단계(b)에서 가공된 전지케이스를 그것에 대응하는 크기의 만입부가 형성되어 있는 지그에 장착하여 고정시키는 단계; 및
    (d) 상기 전지케이스 수납부의 외측벽과 지그 만입부의 내측벽 사이에 경화성 물질을 주입한 후 경화시키는 단계;
    를 포함하는 것을 특징으로 하는 전지셀의 제조방법.
  2. 제 1 항에 있어서, 상기 전극조립체는 폴딩형 구조, 스택형 구조, 또는 스택/폴딩형 구조인 것을 특징으로 하는 전지셀 제조방법.
  3. 제 1 항에 있어서, 상기 전지케이스는 수지층과 금속층을 포함하는 라미네이트 시트로 이루어진 것을 특징으로 하는 전지셀 제조방법.
  4. 제 3 항에 있어서, 상기 라미네이트 시트는 알루미늄 라미네이트 시트인 것을 특징으로 하는 전지셀 제조방법.
  5. 제 1 항에 있어서, 상기 지그의 만입부의 내면에는 테프론(Teflon)이 코팅되어 있는 것을 특징으로 하는 전지셀 제조방법.
  6. 제 1 항에 있어서, 상기 경화성 물질은 실링부의 단부를 도포하도록 주입되는 것을 특징으로 하는 전지셀 제조방법.
  7. 제 1 항에 있어서, 상기 경화성 물질은 전지케이스의 두께 이하의 높이로 주입되는 것을 특징으로 하는 전지셀 제조방법.
  8. 제 1 항에 있어서, 상기 단계(d)의 경화성 물질은 자외선 경화성 물질이며, 자외선(UV)을 조사하여 경화시키는 것을 특징으로 하는 전지셀 제조방법.
  9. 제 8 항에 있어서, 상기 자외선 경화성 물질은 친수성 기(hydrophilic function group)를 가진 물질인 것을 특징으로 하는 전지셀 제조방법.
  10. 제 8 항에 있어서, 상기 자외선 경화성 물질은 불포화 폴리에스테르계 물질 또는 폴리아크릴레이트계 물질인 것을 특징으로 하는 전지셀 제조방법.
  11. 제 8 항에 있어서, 상기 자외선 경화성 물질은 소정의 점도를 가진 올리고머, 또는 소분자량의 중합체의 형태로 주입된 후 UV로 경화되는 것을 특징으로 하는 전지셀 제조방법.
  12. 제 8 항에 있어서, 상기 자외선 경화성 물질은 단량체로서 증점제가 첨가된 상태에서 주입되는 것을 특징으로 하는 전지셀 제조방법.
  13. 제 8 항에 있어서, 상기 자외선 경화성 물질은 3 내지 20초 범위로 UV가 조사되어 경화되는 것을 특징으로 하는 전지셀 제조방법.
  14. 제 1 항 내지 제 13 항 중 하나에 따른 방법으로 제조된 것을 특징으로 하는 전지셀.
  15. 제 14 항에 따른 전지셀을 하나 이상 포함하는 것을 특징으로 하는 전지팩.
  16. 제 15 항에 따른 전지팩을 전원으로 사용하는 것을 특징으로 하는 디바이스.
  17. 제 16 항에 있어서, 상기 디바이스는 노트북, 휴대폰, PDP, PMP, MP3 플레이어, DSC(Digital Still Camera), DVR, 스마트 폰, GPS 시스템, 및 캠코더로 이루어진 군에서 선택되는 것을 특징으로 하는 디바이스.
PCT/KR2014/003415 2013-06-12 2014-04-18 실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법 WO2014200176A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/764,293 US10074832B2 (en) 2013-06-12 2014-04-18 Method of manufacturing pouch-shaped battery cell having sealed portion insulated with curable material
CN201480014831.2A CN105190933B (zh) 2013-06-12 2014-04-18 制造具有用可固化材料绝缘的密封部的袋状电池单元的方法
EP14810240.3A EP2955771B1 (en) 2013-06-12 2014-04-18 Method for manufacturing pouch-type battery cell of which sealing part is insulated by curable material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130066922A KR20140144843A (ko) 2013-06-12 2013-06-12 실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법
KR10-2013-0066922 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014200176A1 true WO2014200176A1 (ko) 2014-12-18

Family

ID=52022442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003415 WO2014200176A1 (ko) 2013-06-12 2014-04-18 실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법

Country Status (5)

Country Link
US (1) US10074832B2 (ko)
EP (1) EP2955771B1 (ko)
KR (1) KR20140144843A (ko)
CN (1) CN105190933B (ko)
WO (1) WO2014200176A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045494B1 (ko) * 2016-03-17 2019-11-15 주식회사 엘지화학 제조 공정성이 향상된 전지케이스의 제조 장치 및 이를 이용한 제조 방법
US11171375B2 (en) 2016-03-25 2021-11-09 Enevate Corporation Stepped electrochemical cells with folded sealed portion
KR102069211B1 (ko) * 2016-03-30 2020-01-22 주식회사 엘지화학 리튬이차전지 및 이의 제조방법
GB201608491D0 (en) 2016-05-13 2016-06-29 Dukosi Ltd Electric batteries
KR102132678B1 (ko) * 2016-05-31 2020-07-10 주식회사 엘지화학 상전이 물질을 포함하는 전지셀
JP7212470B2 (ja) * 2018-07-27 2023-01-25 マクセル株式会社 ラミネート電池及びラミネート電池の製造方法
KR20220021143A (ko) 2020-08-13 2022-02-22 에스케이온 주식회사 배터리 모듈

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004352A (ko) 1999-06-28 2001-01-15 장용균 밀폐전지의 밀봉방법
KR20010078364A (ko) 2000-02-07 2001-08-20 이시카와 타다시 가변용량형 압축기의 제어장치
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20090083874A (ko) * 2008-01-30 2009-08-04 소니 가부시끼 가이샤 전지팩 및 그의 제조 방법
KR20100094174A (ko) * 2009-02-18 2010-08-26 삼성에스디아이 주식회사 이차 전지의 제조 방법 및 이에 의해 제조된 이차 전지
JP2010205420A (ja) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd ラミネート電池
JP2010282795A (ja) * 2009-06-03 2010-12-16 Sony Corp 電池パック
KR20110044954A (ko) * 2011-03-18 2011-05-03 주식회사 엘지화학 실링부가 uv 경화성 물질로 코팅되어 있는 파우치형 전지의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2945549A1 (de) * 1979-11-10 1981-05-21 Röhm GmbH, 6100 Darmstadt Fluesiges, durch uv-strahlung haertbares ueberzugs- und bindemittel
JP2001055983A (ja) * 1999-08-16 2001-02-27 Riso Kagaku Corp 孔版印刷装置
KR100980104B1 (ko) * 2005-09-28 2010-09-07 주식회사 엘지화학 이차전지 제조장치
GB0612760D0 (en) * 2006-06-28 2006-08-09 Bac2 Ltd Conductive polymer
KR101036245B1 (ko) 2007-03-09 2011-05-20 주식회사 엘지화학 실링부가 uv 경화성 물질로 코팅되어 있는 파우치형전지의 제조방법
KR101571434B1 (ko) * 2007-09-07 2015-11-24 마티 테라퓨틱스 인코포레이티드 치료 약제의 서방성 약물 코어
JP2012119290A (ja) 2010-11-12 2012-06-21 Sony Corp 電池パック、電池パックの製造方法および電池パック製造用の金型
CN103875093B (zh) * 2011-10-11 2016-09-07 日产自动车株式会社 叠层型二次电池的制造方法
KR20130094638A (ko) * 2012-02-16 2013-08-26 삼성에스디아이 주식회사 파우치형 배터리

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004352A (ko) 1999-06-28 2001-01-15 장용균 밀폐전지의 밀봉방법
KR20010078364A (ko) 2000-02-07 2001-08-20 이시카와 타다시 가변용량형 압축기의 제어장치
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20090083874A (ko) * 2008-01-30 2009-08-04 소니 가부시끼 가이샤 전지팩 및 그의 제조 방법
KR20100094174A (ko) * 2009-02-18 2010-08-26 삼성에스디아이 주식회사 이차 전지의 제조 방법 및 이에 의해 제조된 이차 전지
JP2010205420A (ja) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd ラミネート電池
JP2010282795A (ja) * 2009-06-03 2010-12-16 Sony Corp 電池パック
KR20110044954A (ko) * 2011-03-18 2011-05-03 주식회사 엘지화학 실링부가 uv 경화성 물질로 코팅되어 있는 파우치형 전지의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2955771A4

Also Published As

Publication number Publication date
EP2955771B1 (en) 2018-01-17
EP2955771A1 (en) 2015-12-16
US20160087252A1 (en) 2016-03-24
EP2955771A4 (en) 2016-04-27
CN105190933B (zh) 2019-01-15
CN105190933A (zh) 2015-12-23
KR20140144843A (ko) 2014-12-22
US10074832B2 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2015030405A1 (ko) 방열 구조를 가지는 단위모듈 제조용 모듈 하우징 및 이를 포함하는 전지모듈
WO2016048002A1 (ko) 둘 이상의 케이스 부재들을 포함하는 각형 전지셀
WO2015046709A1 (ko) 가열 부재를 포함하는 전지셀 절곡 장치
WO2014200176A1 (ko) 실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법
KR101163392B1 (ko) 실링부가 uv 경화성 물질로 코팅되어 있는 파우치형 전지의 제조방법
WO2015034173A1 (ko) 금속 판재를 사용한 각형 전지셀의 제조방법
WO2016056875A2 (ko) 전극조립체 및 이의 제조방법
KR20160091732A (ko) 절연 코팅부를 포함하는 양극의 제조 방법 및 이를 사용하여 제조되는 양극
WO2017018810A1 (ko) 안전 부재가 포함되어 있는 파우치형 이차전지
WO2015102221A1 (ko) 계단 구조의 하이브리드 전극조립체
KR101036245B1 (ko) 실링부가 uv 경화성 물질로 코팅되어 있는 파우치형전지의 제조방법
WO2014126369A1 (ko) 비정형 구조의 전지셀
WO2017069453A1 (ko) 복수의 전극 탭들이 형성되어 있는 단위 전극을 포함하는 파우치형 전지셀
KR102088214B1 (ko) 원스톱 절곡 부재를 포함하는 전지셀 제조 장치
WO2017082530A1 (ko) 돌출 연장부와 탭 연결부를 구비한 전극 리드를 포함하고 있는 전지셀
WO2014126359A1 (ko) 경사 구조의 전극조립체 및 이를 포함하는 전지셀
WO2015034263A1 (ko) 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지
WO2017065417A1 (ko) 절곡 구조의 전극 리드를 포함하는 파우치형 전지셀
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
KR101650044B1 (ko) 전지케이스의 수납부 형상에 따라 절곡된 실링부 단부 상에 전기적 절연성 물질이 부가되어 있는 구조의 전지셀
KR101675966B1 (ko) 경화성 물질 부가 수단을 구비한 전지셀 제조장치
KR101675929B1 (ko) 수평방향으로 절곡된 실링부 단부 상에 전기적 절연성 물질이 부가되어 있는 구조의 전지셀
KR101750085B1 (ko) 전지셀 가공 장치 및 이를 이용한 전지셀의 제조방법
KR101995038B1 (ko) 부착 방식의 유닛셀을 포함하는 하이브리드 전극조립체
KR102080502B1 (ko) 둘 이상의 전극조립체를 포함하는 파우치형 전지셀

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480014831.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764293

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014810240

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE