WO2015034263A1 - 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지 - Google Patents

이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지 Download PDF

Info

Publication number
WO2015034263A1
WO2015034263A1 PCT/KR2014/008273 KR2014008273W WO2015034263A1 WO 2015034263 A1 WO2015034263 A1 WO 2015034263A1 KR 2014008273 W KR2014008273 W KR 2014008273W WO 2015034263 A1 WO2015034263 A1 WO 2015034263A1
Authority
WO
WIPO (PCT)
Prior art keywords
pouch
resin layer
packaging material
layer
secondary battery
Prior art date
Application number
PCT/KR2014/008273
Other languages
English (en)
French (fr)
Inventor
이신화
이우용
김정환
김민수
이향목
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14815211.9A priority Critical patent/EP2869358B1/en
Priority to JP2015535596A priority patent/JP6037296B2/ja
Priority to CN201480001905.9A priority patent/CN104603971B/zh
Priority to US14/413,339 priority patent/US9882180B2/en
Publication of WO2015034263A1 publication Critical patent/WO2015034263A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a pouch exterior material for a secondary battery and a pouch type secondary battery including the same. Specifically, in order to prevent moisture from penetrating by corrosion of the pouch exterior material during charging and discharging, the performance of the battery is reduced.
  • the present invention relates to a multilayer pouch packaging material including an intermediate resin layer / external resin layer and a pouch type secondary battery including the same.
  • a lithium secondary battery is a battery that exhibits two times higher discharge voltage and higher energy density using an organic electrolyte solution than a battery using an alkaline aqueous solution.
  • the lithium secondary battery is manufactured by using a material capable of inserting and detaching lithium ions as a negative electrode and a positive electrode, and filling an electrolyte solution between the positive electrode and the negative electrode.
  • the lithium secondary battery generates electrical energy by oxidation and reduction reactions when lithium ions are inserted and removed from the positive and negative electrodes.
  • the lithium secondary battery may be classified into a lithium ion battery using a liquid electrolyte and a lithium ion polymer battery using a polymer solid electrolyte depending on the type of electrolyte.
  • the lithium ion polymer battery may be divided into a lithium ion polymer battery using an all solid lithium ion polymer battery containing no electrolyte solution and a gel polymer electrolyte containing an electrolyte solution, depending on the type of the polymer solid electrolyte solution.
  • a cylindrical or rectangular metal can container is welded and used.
  • the electrode assembly is advantageous for protecting the electrode assembly from external shocks, and the pouring process is easy, while the fixed shape is difficult to reduce the volume. Therefore, there is a disadvantage that the design is limited in the case of an electrical product using this as a power source.
  • the disadvantage is that it is short.
  • a pouch type secondary battery manufactured by injecting an electrode assembly in which a cathode, a cathode, and a separator are laminated in a pouch type packaging material made of a film, sealing, and then injecting an electrolyte solution has been developed.
  • the pouch-type exterior material has a thermal adhesiveness sequentially, as shown in FIG. 1, an inner layer (a) serving as a sealing material, a metal layer (b) serving as a moisture and oxygen barrier layer while maintaining mechanical strength, and a substrate protective layer. It consists of an outer layer (c) acting as.
  • the inner layer (a) is a multilayered film structure in which an unstretched polypropylene (CPP) 11 and a PPa layer 13, which are commonly used as a polyolefin resin layer, are stacked.
  • the metal layer (b) is made of an aluminum layer (AL / Aluminum Layer) (15)
  • the outer layer (c) is a multi-layered film structure of a polyethylene terephthalate (PET) 17 and a nylon layer laminated consist of.
  • the pouch type secondary battery has no advantages in shape and size, is easy to assemble through heat fusion, and has an advantage of high safety due to an easy effect of exporting gas or liquid when abnormal behavior occurs. This makes it particularly suitable for the manufacture of thin cells.
  • the pouch type secondary battery exterior material uses a soft pouch as a container unlike the square type, it has disadvantages of weak physical and mechanical strength and low sealing reliability.
  • the electrolyte solution used in the pouch-type secondary battery includes lithium hexafluorophosphate (LiPF 6 ), which is decomposed into Li and PF 6 during charge and discharge, thereby discharging lithium ions into the electrolyte. It is utilized to increase the diffusion rate of lithium ions by providing a.
  • the lithium hexafluorophosphate has very good hydrophilicity, the lithium hexafluorophosphate reacts with water (H 2 O) having a relative humidity of several percent contained in air, and reacts with one F atom of PF 6 and H + together with lithium hydroxide, LiOH.
  • HF fluoric acid
  • the HF hydrofluoric acid gas causes an increase in the thickness of the pouch and further causes explosion.
  • the internal resin layer (a) is damaged by internal stress during molding of the packaging material, and the metal layer (b) is exposed to react with lithium ions dissolved in the electrolyte (23), while forming a lithium-aluminum alloy (25) on the surface of the metal layer (b). ) Is formed.
  • the lithium-aluminum alloy 25 thus formed reacts with the moisture 27 that penetrates to further weaken the pouch case while forming HF gas and fine pores.
  • moisture infiltration becomes easier inside the weakened pouch, while the HF gas increases to form Li-Al under a strong acid atmosphere.
  • the pore size gradually increases (29). This, in turn, causes corrosion of the pouch sheath and generates electrolyte leakage (see FIG. 2).
  • the present invention provides a multi-layer pouch packaging material and a pouch type secondary battery including the same, which can prevent corrosion of the pouch packaging material during charging and discharging in order to improve electrical performance of the lithium secondary battery.
  • the packaging material provides a pouch packaging material in which an inner resin layer, an intermediate resin layer, and an outer resin layer are stacked.
  • the pouch packaging material includes an acrylate-urethane-based resin or an epoxy-based resin as an intermediate resin layer.
  • Electrode assembly And it provides a pouch-type secondary battery comprising the pouch case for housing the electrode assembly.
  • a pouch packaging material consisting of an inner resin layer, an intermediate resin layer and an outer resin layer, not only can prevent the pouch corrosion phenomenon, but also inhibits moisture ingress, thereby producing a pouch type secondary battery excellent in stability. can do.
  • FIG. 1 is a cross-sectional view of a pouch case having a multilayer structure of a conventional inner layer / metal layer / outer layer.
  • FIG. 2 is a reaction diagram showing a corrosion phenomenon of the conventional pouch packaging material.
  • FIG 3 is a cross-sectional view of a pouch packaging material having a multilayer structure of an inner resin layer / intermediate resin layer / outer resin layer according to an embodiment of the present invention.
  • the packaging material provides a pouch packaging material formed by laminating an inner resin layer, an intermediate resin layer, and an outer resin layer.
  • the present invention provides a pouch-type secondary battery comprising the pouch case for housing the electrode assembly.
  • the pouch packaging material of the battery according to the exemplary embodiment of the present invention has an inner layer (A) serving as a sealing material having heat adhesiveness, while maintaining mechanical strength, preventing side penetration and charge transfer, thereby causing side reactions. It consists of an intermediate resin layer acting as a non-conductive layer (B) to prevent the outer layer (C) acting as a substrate and a protective layer.
  • the said resin layer is a resin composite layer which consists of at least one layer.
  • the inner resin layer is made of CPP, polypropylene-butylene-ethylene terpolymer, polypropylene, polyethylene, ethylene propylene copolymer, polyethylene and acrylic acid copolymer, polypropylene and acrylic acid It may include one single layer or two or more composite layers selected from the group consisting of copolymers.
  • the thickness of the inner substrate may be 10 ⁇ m to 100 ⁇ m.
  • the intermediate resin layer may include an acrylate-urethane resin or an epoxy resin.
  • the acrylate-urepan-based resin may further include an acrylonitrile-based resin.
  • the thickness of the intermediate resin layer may be 60 ⁇ m to 100 ⁇ m.
  • the intermediate resin layer may be formed by melting or dissolving the resin in a solvent to form a film, and then coating or laminating it on the inner resin layer.
  • the solvent is not particularly limited as long as the solvent can dissolve the resin.
  • the outer resin layer is one selected from polyethylene, polypropylene, polyethylene terephthalate, nylon, low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE). It may include a single layer or two or more composite layers of.
  • the thickness of the external resin layer may be 10 to 100 ⁇ m.
  • the present invention provides a pouch-type secondary battery comprising a pouch packaging material of the present invention containing the electrode assembly.
  • the assembly is configured by winding the cathode including the cathode active material and the anode including the cathode active material is insulated and wound between the separator.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive agent, and a binder onto a positive electrode current collector, followed by drying, and optionally, a filler may be further added to the mixture.
  • the positive electrode current collector is generally made of a thickness of 3 ⁇ m to 500 ⁇ m.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or the surface of aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver or the like can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive agent is typically added in an amount of 1% by weight to 50% by weight based on the total weight of the mixture including the positive electrode active material.
  • a conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive agent to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode material on the negative electrode current collector, and if necessary, the components as described above may be further included.
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode material includes amorphous carbon or crystalline carbon, and specifically, carbon such as hardly graphitized carbon and graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me'yO z (Me: Mn, Fe, Pb, Ge; Me ': Metal composite oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Or oxides such
  • a conventionally known polyolefin separator or a composite separator in which an organic and inorganic composite layer is formed on an olefin substrate may be used, and is not particularly limited.
  • An electrode current collector having the above structure is accommodated in a pouch packaging material, and then an electrolyte is injected to manufacture a battery.
  • the electrolyte according to the present invention is a lithium salt-containing non-aqueous electrolyte, which consists of a non-aqueous electrolyte and lithium.
  • a nonaqueous electrolyte a nonaqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyagitation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 has a nitride, halides, sulfates, such as Li, such as S-SiS 2 can be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl lithium borate, and imide Can be.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, etc.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the pouch type secondary battery as described above is preferably a lithium secondary battery, but is not limited thereto.
  • a power source of a medium and large device may be used as a unit cell of a battery module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 전지의 파우치 외장재 및 이를 포함하는 이차전지에 관한 것으로, 구체적으로 전지의 파우치 외장재에 있어서, 상기 외장재는 내부 수지층, 중간 수지층, 외부 수지층이 적층되어 이루어진 것을 특징으로 하는 전지의 파우치 외장재 및 이를 포함하는 파우치형 이차전지에 관한 것이다.

Description

이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지
본 발명은 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지에 관한 것으로, 구체적으로 충,방전 과정에서 파우치 외장재의 부식으로 수분이 침투하여, 전지의 성능이 저하되는 것을 방지하기 위하여 내부 수지층/중간 수지층/외부 수지층으로 이루어진 다층 파우치 외장재 및 이를 포함하는 파우치형 이차전지에 관한 것이다.
최근 전자 장비의 소형화 및 경량화가 실현되면서 휴대용 소형 전자기기가 상용화됨에 따라, 이들의 전력원으로 리튬 이차전지에 대한 수요가 급격히 증가하고 있다. 리튬 이차전지는 유기 전해액을 사용하여 기존의 알칼리 수용액을 사용하는 전지보다 2배 이상의 높은 방전 전압과 높은 에너지 밀도를 나타내는 전지이다.
리튬 이차전지는 리튬 이온의 삽입 및 탈리가 가능한 물질을 음극 및 양극으로 사용하고, 상기 양극과 음극 사이에 전해액을 충전시켜 제조한다. 또한, 리튬 이차전지는 리튬 이온이 상기 양극 및 음극에서 삽입 및 탈리될 때의 산화, 환원 반응에 의해 전기적 에너지를 생성한다.
리튬 이차전지는 전해액 종류에 따라 액체 전해액을 사용하는 리튬 이온전지와 고분자 고체 전해액을 사용하는 리튬 이온 폴리머 전지로 구분할 수 있다. 그리고 리튬 이온 폴리머 전지는 고분자 고체 전해액의 종류에 따라 전해액이 전혀 함유되지 않은 완전 고체형 리튬 이온 폴리머 전지와 전해액을 함유하는 겔형 고분자 전해액을 사용하는 리튬 이온 폴리머 전지로 나눌 수 있다.
상기 액체 전해액을 사용하는 리튬 이온전지의 경우 대개 원통이나 각형의 금속 캔 용기를 용접 밀봉시켜 사용한다. 각형 리튬 이차전지의 경우 전극조립체를 외부 충격으로부터 보호하는데 유리하며 주액 공정이 쉬운 반면에, 형태가 고정되어 부피를 줄이는데 어려움이 있다. 따라서, 이를 전원으로 사용하는 전기 제품의 경우 디자인이 한정된다는 단점이 있다. 또한, 안전성 측면에서 기체 또는 액체를 내보내는 효과 (vent)가 원활하지 못해 인해 내부 열 및 가스가 축적되어 폭발의 위험성이 크며, 내부의 열을 효과적으로 방출하지 못하여 과열로 인한 셀 퇴화를 유발하는 시간이 짧다는 단점이 있다.
이러한 단점을 개선하기 위하여 최근 양극, 음극 및 세퍼레이터가 적층 권취되어 있는 전극조립체를 필름으로 만든 파우치형 외장재에 넣고, 밀봉한 후, 전해액을 주입하여 제조한 파우치형 이차전지가 개발되었다.
상기 파우치형 외장재는 도 1에 도시한 바와 같이 순차적으로 열접착성을 가져 실링재 역할을 하는 내부층(a), 기계적 강도를 유지하면서 수분과 산소 배리어층 역할을 하는 금속층(b) 및 기재 보호층으로 작용하는 외부층(c)으로 이루어져 있다. 이때, 상기 내부층(a)은 폴리올레핀계 수지층으로 흔히 사용되는 무연신 폴리프로필렌층 (Casted Polypropylene; CPP)(11) 및 PPa층 (영문을 기재하여 주시기 바랍니다)(13)이 적층된 다층막 구조로 이루어지고, 상기 금속층(b)은 알미늄층(AL/Aluminum Layer)(15)으로 이루어지며, 상기 외부층(c)은 폴리에틸렌 테레프탈레이트(PET)(17) 및 나일론층이 적층된 다층막 구조로 이루어져 있다.
파우치형 이차전지의 경우, 형태 및 크기에 제약이 없고, 열융착을 통한 조립이 쉬우며, 이상거동 발생 시 기체나 액체를 내보내는 효과가 용이하여 안전성이 높다는 장점이 있다. 이에, 얇은 두께의 셀 제작에 특히 적합하다.
하지만, 파우치형 이차전지의 외장재는 각형과 달리 연질의 파우치를 용기로 사용하기 때문에, 물리적, 기계적 강도가 약하고 밀봉의 신뢰성이 낮다는 단점이 있다.
예컨대, 상기 파우치형 이차전지에 사용되는 전해액에는 육불화인산리튬염 (LiPF6)이 포함되어 있는데, 이 육불화인산리튬염은 충방전 과정에서 Li와 PF6로 분해되어, 리튬 이온을 전해질 내에서 제공함으로써 리튬 이온의 확산속도를 증가시키는데 활용된다. 하지만, 상기 육불화인산리튬염은 친수성이 매우 좋기 때문에, 공기 중에 포함된 상대습도 수%의 수분(H2O)과 반응하며, LiOH라는 수산화 리튬과 함께 PF6중 1개의 F 원자와 H+의 반응에 의한 HF(불산) 가스를 만들어낸다. 상기 HF 불산 가스는 파우치의 두께 증가 및 나아가 폭발의 원인이 된다.
더욱이, 포장재 성형 시 내부 스트레스에 의해 내부 수지층(a)이 손상되면서 금속층(b)이 노출되어 전해액 내에 용해되어 있던 리튬 이온과 반응(23)하면서 금속층(b) 표면에 리튬-알루미늄 합금(25)이 형성된다. 이렇게 형성된 리튬-알루미늄 합금(25)은 침투한 수분(27)과 반응하여 HF 가스 및 미세 공극을 형성하면서 파우치 외장재를 더욱 약화시킨다. 그 결과, 약화된 파우치 내부로 수분 침투가 용이해 지면서, HF가스가 증가하여 강산 분위기 하에 Li-Al 합금의 용출이 더욱 심화되므로, 공극 크기가 점차 증가(29)한다. 이는 결국, 파우치 외장재의 부식을 유발하여 전해액 누액을 발생시킨다 (도 2 참조).
본 발명에서는 리튬 이차전지의 전기 성능을 향상시키기 위해, 충,방전 과정에서 파우치 외장재의 부식을 방지할 수 있는 새로운 구성의 다층 파우치 외장재 및 이를 포함하는 파우치형 이차전지를 제공한다.
구체적으로, 본 발명의 일 구현예에서는
리튬 이차전지의 파우치 외장재에 있어서,
상기 외장재는 내부 수지층, 중간 수지층, 외부 수지층이 적층되어 이루어진 파우치 외장재를 제공한다.
이때, 상기 파우치 외장재는 중간 수지층으로 아크릴레이트-우레탄계 수지 또는 에폭시계 수지를 포함한다.
또한, 본 발명의 또 다른 구현예에서는
전극조립체; 및 상기 전극조립체를 수용하는 상기 파우치 외장재를 포함하는 파우치형 이차전지를 제공한다.
본 발명에서는 내부 수지층, 중간 수지층 및 외부 수지층으로 이루어진 파우치 외장재를 제공함으로써, 파우치 부식 현상을 방지할 수 있을 뿐만 아니라, 이로 인한 수분 침투를 억제하여, 안정성이 우수한 파우치형 이차전지를 제조할 수 있다.
도 1은 종래 내부층/금속층/외부층의 다층 구조로 이루어진 파우치 외장재의 단면도이다.
도 2는 종래 파우치 외장재의 부식 현상을 나타낸 반응 도면이다.
도 3은 본 발명의 일 실시예에 따른 내부 수지층/중간 수지층/외부 수지층의 다층 구조로 이루어진 파우치 외장재의 단면도이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서는 전지의 파우치 외장재에 있어서, 상기 외장재는 내부 수지층, 중간 수지층, 외부 수지층이 적층되어 이루어진 파우치 외장재를 제공한다.
또한, 본 발명에서는 전극조립체; 및 상기 전극조립체를 수용하는 상기 파우치 외장재를 포함하는 파우치형 이차전지를 제공한다.
이하에서 본 발명을 첨부된 도면을 참조하여 더욱 상세하게 설명하면 다음과 같다.
본 발명의 일 실시예에 따른 전지의 파우치 외장재는 하기 도 3에 나타낸 바와 같이, 열접착성을 가져 실링재 역할을 하는 내부층(A), 기계적 강도를 유지하면서, 수분 침투 및 전하 이동을 막아 부반응을 방지하는 부도체층(B) 역할하는 중간 수지층 및 기재 및 보호층으로 작용하는 외부층(C)으로 이루어져 있다.
이때, 상기 수지층은 적어도 한층 이상으로 이루어진 수지 복합층인 것이 바람직하다.
구체적으로, 본 발명의 파우치 외장재에 있어서, 상기 내부 수지층은 CPP, 폴리프로필렌-부틸렌-에틸렌 삼원공중합체, 폴리프로필렌, 폴리에틸렌, 에틸렌프로필렌 공중합체, 폴리에틸렌과 아크릴산 공중합체 및 폴리프로필렌과 아크릴산의 공중합체로 이루어진 군에서 선택된 1종의 단일층 또는 2종 이상의 복합층을 포함할 수 있다.
이때, 상기 내부 소지층의 두께는 10㎛ 내지 100㎛일 수 있다.
또한, 본 발명의 파우치 외장재에 있어서, 상기 중간 수지층은 아크릴레이트-우레탄계 수지 또는 에폭시계 수지를 포함할 수 있다.
구체적으로 상기 아크릴레이트-우레판계 수지는 아크릴로니트릴계 수지를 추가로 포함할 수 있다.
이때, 상기 중간 수지층의 두께는 60㎛ 내지 100㎛일 수 있다.
본 발명의 파우치 외장재에 있어서, 상기 중간 수지층은 수지를 용융 또는 용매에 용해시켜 필름화한 다음, 이를 내부 수지층에 도포 또는 라미네이팅하여 형성할 수 있다.
이때, 상기 용매는 수지를 용해시킬 수 있는 용매라면 특별히 한정하지 않는다.
또한, 본 발명의 파우치 외장재에 있어서, 상기 외부 수지층은 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 나일론, 저밀도 폴리에틸렌(LDPE), 고밀도 폴리에틸렌(HDPE), 및 직쇄상 저밀도 폴리에틸렌(LLDPE) 중에서 선택된 1종의 단일층 또는 2종 이상의 복합층을 포함할 수 있다.
이때, 상기 외부 수지층의 두께는 10 내지 100㎛ 일 수 있다.
또한, 본 발명에서는 전극조립체; 및 상기 전극조립체를 수용하는 본 발명의 파우치 외장재를 포함하는 파우치형 이차전지를 제공한다.
이때, 상기 조립체는 분리막을 사이에 두고 음극활물질을 포함하는 음극과 양극활물질을 포함하는 양극이 절연되어 권취되어 구성된 것이다.
구체적으로 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전제 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
본 발명에 따른 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 하나 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 내지 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물(LiMnO2); 리튬 구리 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x는 0.01 내지 0.3임)으로 표현되는 리튬 니켈 산화물(lithiated nickel oxide); 화학식 LiMn2-xMxO2 (여기서, M는 =Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x는 0.01 내지 0.1임) 또는 Li2Mn3MO8 (여기서, M는 Fe, Co, Ni, Cu 또는 Zn 임)로 표현되는 리튬 망간 복합 산화물; 화학식의 리튬 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 또는 이들의 조합에 의해 형성되는 복합 산화물 등과 같이 리튬 흡착 물질(lithium intercalation material)을 주성분으로 하는 화합물과 혼합 사용할 수 있다.
상기 양극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전제는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 중량% 내지 50 중량%로 첨가된다. 이러한 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
또한, 음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 재료는 비정질 카본 또는 정질 카본을 포함하며, 구체적으로는 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 또는 Bi2O5 등의 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni계 재료 등을 사용할 수 있다.
상기 양극과 음극 사이에서 상기 전극들을 절연시키는 분리막으로는 통상 알려진 폴리올레핀계 분리막이나, 또는 올레핀계 기재에 유,무기 복합층이 형성된 복합 분리막 등을 모두 사용할 수 있으며, 특별히 한정되지 않는다.
상기와 같은 구조로 이루어진 전극집전체를 파우치 외장재에 수납한 다음, 전해액을 주입하여 전지를 제조한다.
본 발명에 따른 전해액은 리튬염 함유 비수계 전해질로서, 이는 비수 전해질과 리튬으로 이루어져 있다. 비수전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
한편, 상기와 같은 파우치형 이차전지는 리튬이차전지인 것이 바람직하나, 이에 한정되지 않는다.
본 발명의 파우치형 이차전지는 중대형 디바이스의 전원이 전지 모듈의 단위전지로 사용될 수 있다.
부호의 설명
11, 31: CPP층
13, 33: PPa층
15: 알루미늄 호일
17: PET층
19, 39: 나일론층
23: 전해액 내에 함유된 리튬염
25: 리튬-알루미늄 합금
27: 수분 침투
29: 증가된 공극 크기
a, A: 내부 수지층
b: 금속층
B : 부도체 층
c, C: 외부 수지층

Claims (12)

  1. 이차전지의 파우치 외장재에 있어서,
    상기 외장재는 내부 수지층, 중간 수지층, 외부 수지층이 적층되어 이루어진 것을 특징으로 하는 파우치 외장재.
  2. 청구항 1에 있어서,
    상기 내부 수지층 및 외부 수지층은 각각 적어도 한층 이상으로 이루어진 수지 복합층인 것을 특징으로 하는 파우치 외장재.
  3. 청구항 1에 있어서,
    상기 내부 수지층은 CPP, 폴리프로필렌-부틸렌-에틸렌 삼원공중합체, 폴리프로필렌, 폴리에틸렌, 에틸렌프로필렌 공중합체, 폴리에틸렌과 아크릴산 공중합체 및 폴리프로필렌과 아크릴산의 공중합체로 이루어진 군에서 선택된 1종의 단일층 또는 2종 이상의 복합층을 포함하는 것을 특징으로 하는 파우치 외장재.
  4. 청구항 1에 있어서,
    상기 내부 소지층의 두께는 10㎛ 내지 100㎛인 것을 특징으로 하는 파우치 외장재.
  5. 청구항 1에 있어서,
    상기 중간 수지층은 아크릴레이트-우레탄계 수지 또는 에폭시계 수지를 포함하는 것을 특징으로 하는 파우치 외장재.
  6. 청구항 5에 있어서,
    상기 아크릴레이트-우레판계 수지는 아크릴로니트릴계 수지를 추가로 포함하는 것을 특징으로 하는 파우치 외장재.
  7. 청구항 1에 있어서,
    상기 중간 수지층의 두께는 60㎛ 내지 100㎛인 것을 특징으로 하는 파우치 외장재.
  8. 청구항 1에 있어서,
    상기 중간 수지층은 수지를 용융 또는 용매에 용해시켜 필름화한 다음, 상기 내부 수지층에 도포 또는 라미네이팅하여 형성하는 것을 특징으로 하는 파우치 외장재.
  9. 청구항 1에 있어서,
    상기 외부 수지층은 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 나일론, 저밀도 폴리에틸렌(LDPE), 고밀도 폴리에틸렌(HDPE), 및 직쇄상 저밀도 폴리에틸렌(LLDPE) 중에서 선택된 1종의 단일층 또는 2종 이상의 복합층을 포함하는 것을 특징으로 하는 파우치 외장재.
  10. 청구항 1에 있어서,
    상기 외부 수지층의 두께는 10㎛ 내지 100㎛인 것을 특징으로 하는 파우치 외장재.
  11. 전극조립체; 및
    상기 전극조립체를 수용하는 청구항 1에 따른 파우치 외장재를 포함하는 파우치형 이차전지.
  12. 청구항 11에 있어서,
    상기 파우치형 이차전지는 중대형 디바이스의 전원이 전지 모듈의 단위전지로 사용되는 것을 특징으로 하는 파우치형 이차전지.
PCT/KR2014/008273 2013-09-03 2014-09-03 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지 WO2015034263A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14815211.9A EP2869358B1 (en) 2013-09-03 2014-09-03 Pouch exterior for secondary battery and pouch-type secondary battery including same
JP2015535596A JP6037296B2 (ja) 2013-09-03 2014-09-03 二次電池用パウチ外装材及びこれを含むパウチ型二次電池
CN201480001905.9A CN104603971B (zh) 2013-09-03 2014-09-03 二次电池用袋外饰材料及包含它的袋形二次电池
US14/413,339 US9882180B2 (en) 2013-09-03 2014-09-03 Pouch case including internal, intermediate and external resin layers and secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0105415 2013-09-03
KR1020130105415A KR101651141B1 (ko) 2013-09-03 2013-09-03 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지

Publications (1)

Publication Number Publication Date
WO2015034263A1 true WO2015034263A1 (ko) 2015-03-12

Family

ID=52596272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008273 WO2015034263A1 (ko) 2013-09-03 2014-09-03 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지

Country Status (7)

Country Link
US (1) US9882180B2 (ko)
EP (1) EP2869358B1 (ko)
JP (1) JP6037296B2 (ko)
KR (1) KR101651141B1 (ko)
CN (1) CN104603971B (ko)
TW (1) TWI566928B (ko)
WO (1) WO2015034263A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821013B1 (ko) * 2015-03-31 2018-01-22 주식회사 엘지화학 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지
KR102562335B1 (ko) * 2015-11-23 2023-07-31 삼성에스디아이 주식회사 이차 전지용 외장재 및 이를 포함하는 이차 전지
JP2019193910A (ja) * 2018-04-30 2019-11-07 セイコーエプソン株式会社 精密機器及びこれに用いる吸湿剤、並びに吸湿剤の製造方法及び精密機器の製造方法
JP7110808B2 (ja) 2018-08-02 2022-08-02 王子ホールディングス株式会社 容器用原紙および該容器用原紙を用いた紙容器
US20220093996A1 (en) * 2019-02-08 2022-03-24 Maxell Holdings, Ltd. Negative electrode for aqueous electrolyte cell and sheet-type cell
WO2022137112A1 (en) * 2020-12-21 2022-06-30 Phase Motion Control S.P.A. Battery pack comprising flat cells
CN113193275B (zh) * 2021-05-27 2022-10-14 浙江华正能源材料有限公司 一种铝塑膜用外层保护层、铝塑膜及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191400A (ja) * 1997-09-30 1999-07-13 Toyo Seikan Kaisha Ltd 非水電解液電池用容器
KR20090105496A (ko) * 2008-04-02 2009-10-07 주식회사 엘지화학 전지케이스용 라미네이트 시트 및 이를 포함하고 있는 리튬이차전지
JP2009241521A (ja) * 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd 透明基板
KR20100071634A (ko) * 2008-12-19 2010-06-29 주식회사 엘지화학 전지케이스용 라미네이트 시트 및 이를 포함하고 있는 리튬이차전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240564A (ja) 1985-04-18 1986-10-25 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JPH01142501A (ja) * 1987-11-28 1989-06-05 Koito Mfg Co Ltd レンズ
JPH02123661A (ja) 1988-10-31 1990-05-11 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
KR100242363B1 (ko) * 1994-05-12 2000-02-01 나카히로 마오미 다공성 다층 필름
JP3555298B2 (ja) 1996-01-19 2004-08-18 日本電池株式会社 密閉型二次電池
JPH09259840A (ja) 1996-03-19 1997-10-03 Asahi Chem Ind Co Ltd 密閉形二次電池用電槽
EP0972311A4 (en) 1997-04-01 2006-12-13 Lithium Technology Corp BATTERY PACK CONSTRUCTION USING FLEXIBLE PLASTIC BARRIER STRUCTURES
KR100574819B1 (ko) * 2004-04-14 2006-04-28 율촌화학 주식회사 리튬 2차 전지 및 휴대용 축전지 셀 포장용 봉지재
JP4604025B2 (ja) 2004-05-18 2010-12-22 グンゼ株式会社 多層熱収縮性フィルムおよび包装電池
JP4906289B2 (ja) * 2005-08-26 2012-03-28 日本合成化学工業株式会社 樹脂成形体、及びその用途
KR100846296B1 (ko) 2006-12-22 2008-07-14 율촌화학 주식회사 셀 포장용 봉지재 및 그 제조 방법
KR20090092108A (ko) * 2008-02-26 2009-08-31 도레이새한 주식회사 이차전지 패키지용 라미네이트 시트 및 이를 포함하는이차전지
JP5850830B2 (ja) 2010-02-10 2016-02-03 エルジー ケム. エルティーディ. パウチ型リチウム二次電池
JP5962346B2 (ja) 2012-08-31 2016-08-03 大日本印刷株式会社 電池用包装材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191400A (ja) * 1997-09-30 1999-07-13 Toyo Seikan Kaisha Ltd 非水電解液電池用容器
JP2009241521A (ja) * 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd 透明基板
KR20090105496A (ko) * 2008-04-02 2009-10-07 주식회사 엘지화학 전지케이스용 라미네이트 시트 및 이를 포함하고 있는 리튬이차전지
KR20100071634A (ko) * 2008-12-19 2010-06-29 주식회사 엘지화학 전지케이스용 라미네이트 시트 및 이를 포함하고 있는 리튬이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869358A4 *

Also Published As

Publication number Publication date
EP2869358A1 (en) 2015-05-06
TWI566928B (zh) 2017-01-21
EP2869358B1 (en) 2016-12-07
JP6037296B2 (ja) 2016-12-07
US9882180B2 (en) 2018-01-30
US20160133882A1 (en) 2016-05-12
CN104603971A (zh) 2015-05-06
TW201527094A (zh) 2015-07-16
KR20150026489A (ko) 2015-03-11
EP2869358A4 (en) 2015-05-27
JP2015537332A (ja) 2015-12-24
KR101651141B1 (ko) 2016-08-25
CN104603971B (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2010101384A2 (ko) 파우치 및 이를 포함하는 이차전지
WO2015030405A1 (ko) 방열 구조를 가지는 단위모듈 제조용 모듈 하우징 및 이를 포함하는 전지모듈
WO2015034263A1 (ko) 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지
WO2016060521A1 (ko) 전기절연층이 코팅되어 있는 전극탭 및 이를 포함하는 이차전지
KR101484318B1 (ko) 이차전지용 파우치 외장재 및 파우치형 이차전지
WO2015126074A1 (ko) 홀을 포함하고 있는 전지셀
WO2016056875A2 (ko) 전극조립체 및 이의 제조방법
WO2017018810A1 (ko) 안전 부재가 포함되어 있는 파우치형 이차전지
WO2013115549A1 (ko) 지그재그 형상의 실링부를 포함하는 이차전지
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
WO2015034173A1 (ko) 금속 판재를 사용한 각형 전지셀의 제조방법
KR101068618B1 (ko) 안전성이 향상된 파우치형 이차전지
WO2014126369A1 (ko) 비정형 구조의 전지셀
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2013048037A2 (ko) 우수한 제조 공정성과 안전성의 이차전지
WO2014200176A1 (ko) 실링부가 경화성 물질로 절연되어 있는 파우치형 전지셀의 제조방법
KR20140048602A (ko) 열 안전성이 향상된 파우치형 이차전지
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2013157862A1 (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
WO2017065417A1 (ko) 절곡 구조의 전극 리드를 포함하는 파우치형 전지셀
WO2018088798A1 (ko) 콤팩트한 결합 구조를 가지는 탭과 리드를 포함하는 전지셀
WO2019017617A1 (ko) 집전체가 없는 전극 및 이를 포함하는 이차전지
WO2017119675A1 (ko) 확장된 전극 리드를 포함하는 전지셀
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
KR101852662B1 (ko) 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014815211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14413339

Country of ref document: US

Ref document number: 2014815211

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015535596

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14815211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE