WO2017119675A1 - 확장된 전극 리드를 포함하는 전지셀 - Google Patents

확장된 전극 리드를 포함하는 전지셀 Download PDF

Info

Publication number
WO2017119675A1
WO2017119675A1 PCT/KR2016/015542 KR2016015542W WO2017119675A1 WO 2017119675 A1 WO2017119675 A1 WO 2017119675A1 KR 2016015542 W KR2016015542 W KR 2016015542W WO 2017119675 A1 WO2017119675 A1 WO 2017119675A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lead
battery cell
electrode assembly
battery
Prior art date
Application number
PCT/KR2016/015542
Other languages
English (en)
French (fr)
Inventor
김용준
김석구
배지희
정승현
최종환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2017119675A1 publication Critical patent/WO2017119675A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery cell comprising an extended electrode lead.
  • Lithium secondary batteries occupy an important position on the basis of development into such a ubiquitous society.
  • the rechargeable lithium battery is widely used as an energy source for wireless mobile devices, and has been proposed as a solution for air pollution of conventional gasoline and diesel vehicles using fossil fuels. It is also used as an energy source for electric vehicles and hybrid electric vehicles.
  • the lithium secondary battery is diversified to provide output and capacity suitable for the device to which the lithium secondary battery is applied.
  • the lithium secondary battery may be classified into a cylindrical battery cell, a square battery cell, a pouch-type battery cell, and the like according to its shape.
  • a pouch-type battery cell that can be stacked with high integration, has a high energy density per weight, and is easy to deform, has attracted much attention.
  • FIG. 1 schematically illustrates a general structure of a representative secondary battery including a stacked electrode assembly.
  • the secondary battery 10 includes an electrode assembly 30 formed of a positive electrode, a negative electrode, and a separator disposed therebetween in a pouch-type battery case 20, and a positive electrode and a negative electrode thereof.
  • the tabs 31 and 32 are welded to the two electrode leads 40 and 41, respectively, and are sealed (sealed) to be exposed to the outside of the battery case 20.
  • the battery case 20 is made of a soft packaging material such as an aluminum laminate sheet, and includes a case main body 21 and a main body 21 including a recess 23 having a concave shape in which the electrode assembly 30 can be seated. One side is made of a cover 22 is connected.
  • the electrode assembly 30 used in the secondary battery 10 may have a jelly roll structure or a stack / folding structure in addition to the stacked structure as shown in FIG. 1.
  • a plurality of positive electrode tabs 31 and a plurality of negative electrode tabs 32 are welded to the electrode leads 40 and 41, respectively.
  • the pouch type secondary battery As charging and discharging are repeated during use, heat is concentrated in the electrode lead according to the flow of current, so that the battery case part contacting the electrode lead may melt due to overheating, thereby damaging the sealing part of the battery case.
  • the electrolyte inside the case may be exposed to the outside, which may cause a problem of impairing the safety of the battery.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • An object of the present invention is to provide a battery cell capable of ensuring safety and preventing damage to a battery case that may occur due to overheating of an electrode lead by dispersing heat concentrated in an electrode lead during charging and discharging of the battery cell. will be.
  • An electrode assembly having a positive electrode, a negative electrode, and a separator structure interposed between the positive electrode and the negative electrode;
  • Electrode tabs protruding from both ends of the electrode assembly to the positive electrode and the negative electrode;
  • Electrode leads coupled to the electrode tabs for electrical connection and branched in at least one of a first side direction and a second side direction of the electrode assembly and extending in length or area;
  • the electrode leads are branched in at least one of the first side direction and the second side direction of the electrode assembly, the length or area of the battery leads is extended, thereby expanding the heat concentrated on the electrode leads. Since it can be dispersed by length or area, it is possible to prevent damage to the battery case due to overheating of the electrode lead and to ensure safety.
  • the first side direction may mean a direction toward a first side that is one surface of a relatively large area among the surfaces adjacent to the surface where the electrode tabs are formed, and the second side direction is opposite to the first side. It may mean a direction toward the second side that is located toward.
  • the electrode assembly may have a folding structure, or a stacked structure, or a stack / folding structure, or a lamination / stack structure.
  • the unit cell of the folding type structure may be manufactured by coating a mixture containing an electrode active material on each metal current collector and then placing and winding a separator sheet between the cathode and the cathode in the form of a dried and pressed sheet. .
  • the unit cell of the stack-type structure is a separator obtained by coating an electrode mixture on each metal current collector, drying and pressing them, and then cutting a predetermined size corresponding to the positive and negative plates between the positive and negative plates cut to a predetermined size. It can manufacture by laminating
  • the unit cell of the stack / foldable structure has a structure in which an anode and a cathode face each other, and includes two or more unit cells in which two or more pole plates are stacked, and the unit cells are wound with one or more separation films in a non-overlapping form
  • the separation film may be manufactured to be interposed between the unit cells by bending the separation film to the size of the unit cell.
  • the anode and the cathode face each other, and one or more single electrode plates may be further included between arbitrary unit cells and / or on the outer surface of the outermost uncell.
  • the unit cell may be an S-type unit cell in which both outermost pole plates have the same electrode and a D-type unit cell in which both outermost pole plates have opposite electrodes.
  • the S-type unit cell may be an SC-type unit cell in which both outermost pole plates are positive electrodes, and an SA-type unit cell in which both outermost pole plates are negative electrodes.
  • the unit cell of the lamination / stack structure is coated with an electrode mixture on each metal current collector, dried and pressed, cut into a predetermined size, and then sequentially from the bottom to the cathode, the separator on the cathode, and the anode, and It can be prepared by laminating a separator on top.
  • the battery case may be made of a pouch type case having a laminate structure including a metal layer and a resin layer.
  • the battery case is composed of a laminate sheet including a resin outer layer of excellent durability, a barrier metal layer, and a heat-melting resin sealant layer, wherein the resin sealant layers are mutually heat-sealed. Can be.
  • the resin outer layer should have excellent resistance from the external environment, it is necessary to have a predetermined tensile strength and weather resistance.
  • PET polyethylene terephthalate
  • a stretched nylon film may be preferably used as the polymer resin of the outer resin layer.
  • the barrier metal layer is preferably aluminum may be used to exhibit a function of improving the strength of the battery case in addition to the function of preventing the inflow or leakage of foreign substances such as gas, moisture.
  • the resin sealant layer has a heat sealability (heat adhesiveness), a low hygroscopicity to suppress the penetration of the electrolyte solution, a polyolefin resin that is not expanded or eroded by the electrolyte solution may be preferably used.
  • heat sealability heat adhesiveness
  • a polyolefin resin that is not expanded or eroded by the electrolyte solution may be preferably used.
  • unstretched polypropylene (CPP) can be used.
  • the electrode lead In one specific embodiment of the electrode lead, the electrode lead,
  • a tab coupler coupled to the electrode tabs
  • the first tab of the electrode assembly is protruded in a first direction from the portion corresponding to the end of the electrode tab in the tab coupling portion and is bent in the first side direction of the electrode assembly, the length or area of the structure is extended on the first side 1 lead extension;
  • a second lead extension having a structure
  • the first direction may mean a direction perpendicular to the direction in which the electrode tabs protrude
  • the second direction may mean a direction perpendicular to the direction in which the electrode tabs protrude and face the first direction. Can be.
  • the electrode leads may be composed of a first electrode lead and a second electrode lead.
  • the first electrode lead may be an anode lead
  • the second electrode lead may be a cathode lead.
  • the first electrode lead may be a negative electrode lead
  • the second electrode lead may be a positive electrode lead.
  • first lead extension and the second lead extension of the first electrode lead may have a structure facing the first side and the second side of the electrode assembly, respectively, the second electrode
  • the first lead extension part and the second lead extension part of the lead may have a structure facing the outer surfaces of the first lead extension part and the second lead extension part of the first electrode lead, respectively.
  • the first lead extension part and the second lead extension part of the first electrode lead are positioned on the outer surfaces of the first side surface and the second side surface of the electrode assembly,
  • the first lead extension part and the second lead extension part may have a structure located on outer surfaces of the first lead extension part and the second lead extension part of the first electrode lead.
  • An insulating material is applied between the lead extensions of the first electrode lead and the lead extensions of the second electrode lead to prevent a short circuit caused by contact between the first electrode lead and the second electrode lead. Or an insulating member may be interposed.
  • the lead extensions of the first electrode lead may extend to one end of the first side and the second side of the electrode assembly, respectively, the lead extensions of the second electrode lead It may extend to the other end of the first side and the second side, respectively.
  • the length or area of the electrode leads may be expanded in size according to the amount of heat generated during the charge / discharge process of the battery cell.
  • the tab coupling and lead extensions are formed to the same thickness.
  • the tab coupling portion and the lead extension portion may be formed with a different thickness from each other.
  • each of the lead extensions may have a size of 50% to 90% of the thickness of the tab coupling portion.
  • the thickness of the lead extension may be less than 50% of the thickness of the tab coupling, it may not be possible to dissipate heat concentrated in the electrode lead, and when the thickness of the lead extension is more than 90% of the thickness of the tab coupling, By causing an increase in the thickness of the battery cell can reduce the capacity relative to the volume of the battery cell. Therefore, the thickness of each of the lead extensions may preferably be formed in the range of 10 micrometers to 900 micrometers.
  • the electrode lead in order to effectively dissipate heat generated during the charge and discharge of the battery cell, may be made of a porous structure, specifically, the porous structure is the electrode lead and the The first lead extension part and the second lead extension part of the electrode assembly may be formed to face each other.
  • the gas adsorption material may be coated on the inner surface of the pores of the electrode lead to remove the gas generated during the charge and discharge of the battery cell.
  • the gas adsorption material is BaTiO 3 , PB (Mg 3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), hafnia (HfO 2 ) SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO , ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ) and may be one or more selected from the group consisting of potassium hydroxide (KOH). .
  • KOH potassium hydroxide
  • the battery cell may be a lithium secondary battery, and specifically, may be a lithium ion battery or a lithium ion polymer battery.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing non-aqueous electrolyte solution consists of a polar organic electrolyte solution and a lithium salt.
  • a non-aqueous liquid electrolyte an organic solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • N-methyl- 2-pyrrolidinone a propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma
  • Butyl lactone 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and eth
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate triamide.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the present invention also provides a battery pack including one or more of the battery cells.
  • the present invention also provides a device including the battery pack as a power source.
  • the device may be selected from mobile phones, wearable electronics, portable computers, smart pads, netbooks, light electronic vehicles (LEVs), electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage devices.
  • LEVs light electronic vehicles
  • FIG. 1 is an exploded view of a conventional lithium secondary battery
  • FIG. 2 is a side view of a battery cell according to one embodiment of the present invention.
  • FIG. 3 is a top view of the electrode lead of FIG. 2.
  • FIG. 2 is a side view schematically showing a battery cell according to an embodiment of the present invention.
  • the battery cell 100 protrudes from the both ends of the electrode assembly 110 and the electrode assembly 110 having a separator structure interposed between the positive electrode, the negative electrode and the positive electrode and the negative electrode to the positive electrode and the negative electrode.
  • a battery case in which the electrode tabs 111 and 112, the electrode leads 120 and 130 coupled to the electrode tabs 111 and 112, and an accommodating part in which the electrode assembly 110 is built are formed. (Not shown).
  • the electrode leads 120 and 130 are composed of the positive lead 120 and the negative lead 130.
  • the positive lead 120 is branched in the direction of the upper surface which is the first side of the electrode assembly 110 and the lower surface which is the second side of the electrode assembly 110, and has a structure having an extended length and an area.
  • the first side of the 110 and the second side is branched in the direction of the lower surface is made of a structure having an extension in length and area.
  • the positive lead 120 includes a tab coupling part 121, a first lead extension part 122, and a second lead extension part 123 coupled to the positive electrode tabs 111.
  • the first lead extension portion 122 of the positive lead 120 protrudes upward from the portion corresponding to the end of the positive electrode tab 111 in the tab coupling portion 121 in the vertical direction, and then toward the upper surface of the electrode assembly 110.
  • the length and area of the electrode assembly 110 are extended to the right end of the electrode assembly 110 on the upper surface of the electrode assembly 110.
  • the second lead extension part 123 of the anode lead 120 protrudes downward from the portion where the anode tab 111 is in contact with the tab coupling part 121 in the vertical direction, and then is bent toward the bottom surface of the electrode assembly 110.
  • the length and area of the electrode assembly 110 extend to the right end of the electrode assembly 110.
  • the negative lead 130 includes a tab coupling part 131, a first lead extension part 132, and a second lead extension part 133 coupled to the negative electrode tabs 112.
  • the first lead extension 132 of the negative electrode lead 130 protrudes upward from the portion corresponding to the end of the negative electrode tab 112 in the tab coupling portion 131 in the vertical direction and then toward the upper surface of the electrode assembly 110.
  • the length and area of the electrode assembly 110 are extended to the left end of the electrode assembly 110 on the upper surface of the electrode assembly 110.
  • the second lead extension part 133 of the negative electrode lead 130 protrudes downward from the portion where the negative electrode tab 111 is in contact with the tab coupling part 131 in the vertical direction, and then is bent toward the lower surface of the electrode assembly 110.
  • the length and area of the electrode assembly 110 extend to the left end of the electrode assembly 110.
  • the first lead extension part 122 and the second lead extension part 123 of the positive electrode lead 120 are positioned to face the top and bottom surfaces of the electrode assembly 110, respectively, and the first lead extension of the negative electrode lead 130 is extended.
  • the portion 132 and the second lead extension 133 are positioned to face outer surfaces of the first lead extension 122 and the second lead extension 123 of the anode lead 120, respectively.
  • the insulating member 140 is interposed between the lead extensions 122 and 123 of the anode lead 120 and the lead extensions 132 and 133 of the cathode lead 130 to prevent a short circuit between the anode lead 120 and the cathode lead 130.
  • the thickness T2 of the lead extensions 122 and 123 of the anode lead 120 is 50% of the thickness T1 of the tab coupling portion 121.
  • the negative lead 130 has the same thickness structure as the positive lead 120.
  • the electrode leads 120 and 130 have a porous structure, and gas adsorption is performed on the inner surfaces of the pores of the electrode leads 120 and 130 to remove the gas generated during the charge / discharge process of the battery cell 100.
  • the material is coated.
  • the battery cell according to the present invention has a separation induction part which can separate the electrode fractures to be separated from each other in the accommodating part of the battery case, even if the electrode assembly is broken by external shock or vibration. By preventing the short circuit between the broken electrode breaks, it is possible to suppress the ignition and explosion of the battery and to ensure structural safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 양극, 음극 및 양극과 음극 사이에 개재된 분리막 구조의 전극조립체; 전극조립체의 양단으로부터 양극과 음극으로 돌출되어 있는 전극 탭들; 전기적 연결을 위해 전극 탭들에 결합되어 있고, 전극조립체의 제 1 측면 방향 및 제 2 측면 방향 중의 적어도 한 방향으로 분지되어 길이 또는 면적이 확장되어 있는 구조의 전극 리드들; 및 상기 전극조립체가 내장되는 수납부가 형성되어 있는 전지케이스;를 포함하는 것을 특징으로 하는 전지셀을 제공한다.

Description

확장된 전극 리드를 포함하는 전지셀
본 발명은 확장된 전극 리드를 포함하는 전지셀에 관한 것이다.
본 출원은 2016.01.06 일자 한국 특허 출원 제10-2016-0001404호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
IT(Information Technology) 기술이 눈부시게 발달함에 따라 다양한 휴대형 정보통신 기기의 확산이 이뤄짐으로써, 21세기는 시간과 장소에 구애 받지 않고 고품질의 정보서비스가 가능한 '유비쿼터스 사회'로 발전되고 있다.
이러한 유비쿼터스 사회로의 발전 기반에는, 리튬 이차전지가 중요한 위치를 차지하고 있다. 구체적으로, 충방전이 가능한 리튬 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있을 뿐만 아니라, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차, 하이브리드 전기자동차 등의 에너지원으로서도 사용되고 있다.
상기와 같이, 리튬 이차전지가 적용되는 디바이스들이 다양화됨에 따라, 리튬 이차전지는, 적용되는 디바이스에 알맞은 출력과 용량을 제공할 수 있도록 다양화되고 있다. 더불어, 소형 경박화가 강력히 요구되고 있다.
상기한 리튬 이차전지는, 그것의 형상에 따라 원통형 전지셀, 각형 전지셀, 파우치형 전지셀 등으로 구분할 수 있다. 그 중에서도 높은 집적도로 적층될 수 있고 중량당 에너지 밀도가 높으며 저렴하고 변형이 용이한 파우치형 전지셀이 많은 관심을 모으고 있다.
도 1에는 스택형 전극조립체를 포함하고 있는 대표적인 이차전지의 일반적인 구조가 모식적으로 도시되어 있다.
도 1을 참조하면, 이차전지(10)는, 파우치형의 전지케이스(20) 내부에 양극, 음극 및 이들 사이에 배치되는 분리막으로 이루어진 전극조립체(30)가 내장되어 있고, 그것의 양극 및 음극 탭들(31, 32)이 두 개의 전극 리드(40, 41)에 각각 용접되어 전지케이스(20)의 외부로 노출되도록 실링(밀봉)되어 있는 구조로 이루어져 있다.
전지케이스(20)는 알루미늄 라미네이트 시트와 같은 연포장재로 되어 있으며, 전극조립체(30)가 안착될 수 있는 오목한 형상의 수납부(23)를 포함하는 케이스 본체(21)와 그러한 본체(21)에 일측이 연결되어 있는 덮개(22)로 이루어져 있다.
이차전지(10)에 사용되는 전극조립체(30)는, 도 1에서와 같은 스택형 구조 이외에 젤리롤형 구조 또는 스택/폴딩형 구조도 가능하다. 스택형 전극조립체(30)는 다수의 양극 탭들(31)과 다수의 음극 탭들(32)이 전극 리드(40, 41)에 각각 용접되어 있다.
이러한 파우치형 이차전지는 사용시 충방전이 반복되면서 전류의 흐름에 따라 전극 리드에 열이 집중되어 과열로 인해 전극 리드와 접하는 전지케이스 부위가 녹아내려 전지케이스의 밀봉부가 손상될 수 있으며, 그에 따라 전지케이스 내부의 전해액이 외부로 노출되어 전지의 안전성을 저해하는 문제가 발생할 수 있다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명의 목적은, 전지셀의 충방전 과정에서 전극 리드에 집중되는 열을 분산시킴으로써, 전극 리드의 과열에 따라 발생할 수 있는 전지케이스의 손상을 방지하고 안전성을 담보할 수 있는 전지셀을 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 전지셀은,
양극, 음극 및 양극과 음극 사이에 개재된 분리막 구조의 전극조립체;
전극조립체의 양단으로부터 양극과 음극으로 돌출되어 있는 전극 탭들;
전기적 연결을 위해 전극 탭들에 결합되어 있고, 전극조립체의 제 1 측면 방향 및 제 2 측면 방향 중의 적어도 한 방향으로 분지되어 길이 또는 면적이 확장되어 있는 구조의 전극 리드들; 및
상기 전극조립체가 내장되는 수납부가 형성되어 있는 전지케이스;
를 포함하는 구조일 수 있다.
따라서, 본 발명에 따른 전지셀은, 전극 리드들이 전극조립체의 제 1 측면 방향 및 제 2 측면 방향 중의 적어도 한 방향으로 분지되어 길이 또는 면적이 확장되어 있음으로써, 전극 리드에 집중되는 열을 확장된 길이 또는 면적에 의해 분산 시킬 수 있으므로 전극 리드의 과열에 따른 전지케이스의 손상을 방지하고 안전성을 담보할 수 있다.
상기 제 1 측면 방향은 상기 전극 탭들이 형성되어 있는 면에 인접하는 면들 중 상대적으로 넓은 면적의 일면인 제 1 측면으로 향하는 방향을 의미할 수 있고, 상기 제 2 측면 방향은 상기 제 1 측면에 대향하여 위치하는 제 2 측면으로 향하는 방향을 의미할 수 있다.
상기 전극조립체는 폴딩형 구조, 또는 스택형 구조, 또는 스택/폴딩형 구조, 또는 라미네이션/스택형 구조로 이루어져 있을 수 있다.
상기 폴딩형, 스택형, 스택/폴딩형, 및 라미네이션/스택형의 전극 구조에 대해 상술하면 다음과 같다.
우선, 폴딩형 구조의 단위셀은, 각각의 금속 집전체에 전극활물질을 포함하는 합제를 코팅한 후 건조 및 프레싱한 시트 형태의 양극과 음극 사이에 분리막 시트를 위치시키고, 권취함으로써 제조할 수 있다.
스택형 구조의 단위셀은, 각각의 금속 집전체에 전극 합제를 코팅한 뒤 건조 및 프레싱한 후 소정의 크기로 절취한 양극판과 음극판 사이에 상기 양극판과 음극판에 대응하는 소정의 크기로 절취한 분리막을 개재시킨 후 적층함으로써 제조할 수 있다.
스택/폴딩형 구조의 단위셀은, 양극과 음극이 대면하는 구조로, 둘 이상의 극판들이 적층되어 있는 유닛셀들을 둘 이상 포함하고, 중첩되지 않은 형태로 하나 이상의 분리필름으로 유닛셀들을 권취하거나, 또는 유닛셀의 크기로 분리필름을 절곡하여 유닛셀들 사이에 개재함으로써 제조될 수 있다.
경우에 따라서는, 양극과 음극이 대면하는 구조로, 임의의 유닛셀들 사이 및/또는 최외측 유니셀의 외면에 하나 이상의 단일 극판이 추가로 포함될 수도 있다.
상기 유닛셀은 양측 최외곽의 극판들이 동일한 전극을 가진 S형 유닛셀과, 양측 최외곽의 극판들이 반대 전극을 가진 D형 유닛셀일 수 있다.
상기 S형 유닛셀은, 양측 최외곽의 극판들이 양극인 SC형 유닛셀과, 양측 최외곽의 극판들이 음극인 SA형 유닛셀일 수 있다.
라미네이션/스택형 구조의 단위셀은, 각각의 금속 집전체에 전극 합제를 코팅한 뒤 건조 및 프레싱하고 소정의 크기로 절취한 후, 하부로부터 순차적으로 음극, 음극의 상부에 분리막, 그리고 양극, 그리고 그 상부에 분리막을 적층하여 제조할 수 있다.
상기 전지케이스는 금속층과 수지층을 포함하는 라미네이트 구조의 파우치형 케이스로 이루어져 있을 수 있다.
상기 전지케이스의 하나의 구체적인 예로서, 상기 전지케이스는 우수한 내구성의 수지 외층, 차단성의 금속층, 및 열용융성의 수지 실란트층을 포함하는 라미네이트 시트로 이루어져 있고, 상기 수지 실란트층이 상호 열융착되는 것일 수 있다.
상기 수지 외층은 외부 환경으로부터 우수한 내성을 가져야 하므로, 소정 이상의 인장강도와 내후성을 가지는 것이 필요하다. 그러한 측면에서 외측 수지층의 고분자 수지로는 폴리에틸렌 테레프탈레이트(PET)와 연신 나일론 필름이 바람직하게 사용될 수 있다.
상기 차단성 금속층은 가스, 습기 등 이물질의 유입 내지 누출을 방지하는 기능 이외에 전지케이스의 강도를 향상시키는 기능을 발휘할 수 있도록, 바람직하게는 알루미늄이 사용될 수 있다.
상기 수지 실란트층은 열융착성(열접착성)을 가지고, 전해액의 침입을 억제하기 위해 흡습성이 낮으며, 전해액에 의해 팽창하거나 침식되지 않는 폴리올레핀(polyolefin)계 수지가 바람직하게 사용될 수 있으며, 더욱 바람직하게는 무연신 폴리프로필렌(CPP)이 사용될 수 있다.
상기 전극 리드의 하나의 구체적인 실시예로서, 상기 전극 리드는,
상기 전극 탭들에 결합되는 탭 결합부;
상기 탭 결합부에서 전극 탭의 단부에 대응하는 부위로부터 제 1 방향으로 돌출된 후 전극조립체의 제 1 측면 방향으로 절곡되어 있고, 전극조립체의 제 1 측면 상에서 길이 또는 면적이 확장되어 있는 구조의 제 1 리드 확장부; 및
상기 탭 결합부에서 전극 탭이 접촉된 부위로부터 상기 제 1 방향에 대향하는 제 2 방향으로 돌출된 후 전극조립체의 제 2 측면 방향으로 절곡되어 있고, 전극조립체의 제 2 측면 상에서 길이 또는 면적이 확장되어 있는 구조의 제 2 리드 확장부;
를 포함하는 구조로 이루어져 있을 수 있다.
상기 제 1 방향은 상기 전극 탭들이 돌출되어 있는 방향에 수직하는 방향을 의미할 수 있고, 상기 제 2 방향은 상기 전극 탭들이 돌출되어 잇는 방향에 수직하며 상기 제 1 방향에 대향하는 방향을 의미할 수 있다.
본 발명의 하나의 실시예에서, 상기 전극 리드들은 제 1 전극 리드 및 제 2 전극 리드로 이루어져 있을 수 있다. 구체적으로, 상기 제 1 전극 리드는 양극 리드일 수 있고, 상기 제 2 전극 리드는 음극 리드일 수 있다. 반대로, 상기 제 1 전극 리드는 음극 리드일 수 있고, 상기 제 2 전극 리드는 양극 리드일 수 있다.
하나의 구체적인 실시예에서, 상기 제 1 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부는 상기 전극조립체의 제 1 측면 및 제 2 측면에 각각 대면하는 구조로 이루어져 있을 수 있고, 상기 제 2 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부는 제 1 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부의 외면들에 각각 대면하는 구조로 이루어져 있을 수 있다.
즉, 상기 전극조립체를 기준으로, 상기 제 1 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부는 상기 전극조립체의 제 1 측면 및 제 2 측면의 외면 상에 위치하고, 상기 제 2 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부는 상기 제 1 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부의 외면 상에 위치하는 구조일 수 있다.
상기 제 1 전극 리드 및 제 2 전극 리드 간의 접촉에 의해 단락이 발생하는 것을 방지할 수 있도록, 상기 제 1 전극 리드의 리드 확장부들과 제 2 전극 리드의 리드 확장부들 사이에는, 절연성 소재가 도포되어 있거나, 또는 절연성 부재가 개재되어 있을 수 있다.
본 발명의 하나의 실시예에서, 상기 제 1 전극 리드의 리드 확장부들은 전극조립체의 제 1 측면 및 제 2 측면의 일측 단부까지 각각 확장되어 있을 수 있고, 상기 제 2 전극 리드의 리드 확장부들은 제 1 측면 및 제 2 측면의 타측 단부까지 각각 확장되어 있을 수 있다. 상기 전극 리드들의 길이 또는 면적은 상기 전지셀의 충방전 과정에서 발생하는 열의 양에 따라 확장되는 크기가 조정될 수 있다.
본 발명의 하나의 실시예에서, 상기 탭 결합부와 리드 확장부들은 동일한 두께로 형성되어 있다.
본 발명의 또 하나의 실시예에서, 상기 탭 결합부와 상기 리드 확장부들은 상호 상이한 두께로 형성되어 있을 수 있다.
구체적으로, 상기 리드 확장부들 각각의 두께는 탭 결합부의 두께의 50% 내지 90% 의 크기로 이루어져 있을 수 있다. 상기 리드 확장부의 두께가 탭 결합부의 두께의 50% 미만일 경우에는, 전극 리드에 집중되는 열을 충분히 분산시키지 못할 수 있고, 상기 리드 확장부의 두께가 탭 결합부의 두께의 90% 를 초과하는 경우에는, 상기 전지셀의 두께 증가를 야기하여 전지셀의 부피 대비 용량을 저하시킬 수 있다. 따라서, 상기 리드 확장부들 각각의 두께는 바람직하게는 10 마이크로 미터 내지 900 마이크로 미터의 범위 내에서 형성될 수 있다.
본 발명의 하나의 실시예에서, 상기 전지셀의 충방전 과정에서 발생하는 열을 효과적을 방열하기 위하여, 상기 전극 리드는 다공질 구조로 이루어져 있을 수 있고, 구체적으로 상기 다공질 구조는 상기 전극 리드와 상기 전극조립체의 제 1 측면 및 제 2 측면이 대면하는 상기 제 1 리드 확장부 및 제 2 리드 확장부에 형성되어 있을 수 있다.
본 발명의 하나의 실시예에서, 상기 전지셀의 충방전 과정에서 발생하는 가스를 제거할 수 있도록, 상기 전극 리드의 기공의 내면에는 가스 흡착 물질이 코팅되어 있을 수 있다.
구체적으로, 상기 가스 흡착 물질은 BaTiO3, PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT), hafnia (HfO2)SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2 , 수산화나트륨(NaOH), 수산화칼슘(Ca(OH)2) 및 수산화칼륨(KOH)으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 전지셀은 리튬 이차전지일 수 있고, 구체적으로 리튬 이온 전지 또는 리튬 이온 폴리머 전지일 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
리튬염 함유 비수계 전해액은, 극성 유기 전해액과 리튬염으로 이루어져 있다. 전해액으로는 비수계 액상 전해액, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 액상 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
본 발명은 또한 상기 전지셀을 하나 이상 포함하고 있는 전지팩을 제공한다.
본 발명은 또한 상기 전지팩을 전원으로 포함하고 있는 디바이스를 제공한다.
상기 디바이스는 휴대폰, 웨어러블 전자기기, 휴대용 컴퓨터, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치로부터 선택되는 것일 수 있다.
이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.
도 1은 종래의 리튬 이차전지의 분해도이다;
도 2는 본 발명의 하나의 실시예에 따른 전지셀의 측면도이다;
도 3은 도 2의 전극 리드의 상면도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 2에는 본 발명의 하나의 실시예에 따른 전지셀의 측면도가 모식적으로 도시되어 있다.
도 2 및 도 3을 참조하면, 전지셀(100)은 양극, 음극 및 양극과 음극 사이에 개재된 분리막 구조의 전극조립체(110)와, 전극조립체(110)의 양단으로부터 양극과 음극으로 돌출되어 있는 전극 탭들(111, 112)과, 전극 탭들(111, 112)에 전기적 연결을 위해 결합되어 있는 전극 리드들(120, 130)과, 전극조립체(110)가 내장되는 수납부가 형성되어 있는 전지케이스(도시하지 않음)로 이루어져 있다.
전극 리드들(120, 130)은 양극 리드(120) 및 음극 리드(130)로 이루어져 있다.
양극 리드(120)는 전극조립체(110)의 제 1 측면인 상면과 제 2 측면인 하면 방향으로 분지되어 길이 및 면적이 확장이 있는 구조로 이루어져 있고, 마찬가지로, 음극 리드(130)는 전극조립체(110)의 제 1 측면인 상면과 제 2 측면인 하면 방향으로 분지되어 길이 및 면적이 확장이 있는 구조로 이루어져 있다.
양극 리드(120)는 양극 탭(111)들에 결합되어 있는 탭 결합부(121), 제 1 리드 확장부(122) 및 제 2 리드 확장부(123)로 이루어져 있다.
양극 리드(120)의 제 1 리드 확장부(122)는 탭 결합부(121)에서 양극 탭(111)의 단부에 대응하는 부위로부터 수직 방향으로 상향 돌출된 후 전극조립체(110)의 상면 방향으로 절곡되어 있고, 전극조립체(110)의 상면 상에서 전극조립체(110)의 우측 단부까지 길이 및 면적이 확장되어 있다.
양극 리드(120)의 제 2 리드 확장부(123)는 탭 결합부(121)에서 양극 탭(111)이 접촉된 부위로부터 수직 방향으로 하향 돌출된 후 전극조립체(110)의 하면 방향으로 절곡되어 있고, 전극조립체(110)의 하면 상에서 전극조립체(110)의 우측 단부까지 길이 및 면적이 확장되어 있다.
음극 리드(130)는 음극 탭(112)들에 결합되어 있는 탭 결합부(131), 제 1 리드 확장부(132) 및 제 2 리드 확장부(133)로 이루어져 있다.
음극 리드(130)의 제 1 리드 확장부(132)는 탭 결합부(131)에서 음극 탭(112)의 단부에 대응하는 부위로부터 수직 방향으로 상향 돌출된 후 전극조립체(110)의 상면 방향으로 절곡되어 있고, 전극조립체(110)의 상면 상에서 전극조립체(110)의 좌측 단부까지 길이 및 면적이 확장되어 있다.
음극 리드(130)의 제 2 리드 확장부(133)는 탭 결합부(131)에서 음극 탭(111)이 접촉된 부위로부터 수직 방향으로 하향 돌출된 후 전극조립체(110)의 하면 방향으로 절곡되어 있고, 전극조립체(110)의 하면 상에서 전극조립체(110)의 좌측 단부까지 길이 및 면적이 확장되어 있다.
양극 리드(120)의 제 1 리드 확장부(122) 및 제 2 리드 확장부(123)는 전극조립체(110)의 상면 및 하면에 각각 대면하여 위치하고, 상기 음극 리드(130)의 제 1 리드 확장부(132) 및 제 2 리드 확장부(133)는 양극 리드(120)의 제 1 리드 확장부(122) 및 제 2 리드 확장부(123)의 외면들에 각각 대면하여 위치하고 있다.
양극 리드(120) 및 음극 리드(130) 간의 단락을 방지할 수 있도록, 양극 리드(120)의 리드 확장부들(122, 123)과 음극 리드(130)의 리드 확장부들(132, 133) 사이에는 절연성 부재(140)가 개재되어 있다.
양극 리드(120)의 리드 확장부들(122, 123)의 두께(T2)는 탭 결합부(121)의 두께(T1)의 50%의 크기로 이루어져 있다. 음극 리드(130)는 양극 리드(120)와 동일한 두께 구조로 이루어져 있다.
전극 리드들(120, 130)은 다공질 구조로 이루어져 있고, 전극 리드들(120, 130)의 기공의 내면에는, 전지셀(100)의 충방전 과정에서 발생하는 가스를 제거할 수 있도록, 가스 흡착 물질이 코팅되어 있다.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지셀은, 전지케이스의 수납부에 전극 파단물들을 상호 이격시켜 분리할 수 있는 분리 유도부가 형성되어 있음으로써, 외부 충격 또는 진동에 의해 전극조립체가 파단되더라도, 파단된 전극 파단물들 간의 단락을 방지하여 전지의 발화 및 폭발을 억제하고 구조적 안전성을 담보할 수 있다.

Claims (19)

  1. 양극, 음극 및 양극과 음극 사이에 개재된 분리막 구조의 전극조립체;
    전극조립체의 양단으로부터 양극과 음극으로 돌출되어 있는 전극 탭들;
    전기적 연결을 위해 전극 탭들에 결합되어 있고, 전극조립체의 제 1 측면 방향 및 제 2 측면 방향 중의 적어도 한 방향으로 분지되어 길이 또는 면적이 확장되어 있는 구조의 전극 리드들; 및
    상기 전극조립체가 내장되는 수납부가 형성되어 있는 전지케이스;
    를 포함하는 것을 특징으로 하는 전지셀.
  2. 제 1 항에 있어서, 상기 전극조립체는 폴딩형 구조, 또는 스택형 구조, 또는 스택/폴딩형 구조, 또는 라미네이션/스택형 구조인 것을 특징으로 하는 전지셀.
  3. 제 1 항에 있어서, 상기 전지케이스는, 수지 외층, 차단성의 금속층, 및 열용융성의 수지 실란트층을 포함하는 라미네이트 시트로 이루어져 있는 것을 특징으로 하는 전지셀.
  4. 제 1 항에 있어서, 상기 전극 리드는,
    상기 전극 탭들에 결합되는 탭 결합부;
    상기 탭 결합부에서 전극 탭의 단부에 대응하는 부위로부터 제 1 방향으로 돌출된 후 전극조립체의 제 1 측면 방향으로 절곡되어 있고, 전극조립체의 제 1 측면 상에서 길이 또는 면적이 확장되어 있는 구조의 제 1 리드 확장부; 및
    상기 탭 결합부에서 전극 탭이 접촉된 부위로부터 상기 제 1 방향에 대향하는 제 2 방향으로 돌출된 후 전극조립체의 제 2 측면 방향으로 절곡되어 있고, 전극조립체의 제 2 측면 상에서 길이 또는 면적이 확장되어 있는 구조의 제 2 리드 확장부;
    를 포함하는 것을 특징으로 하는 전지셀.
  5. 제 4 항에 있어서, 상기 전극 리드들은 제 1 전극 리드 및 제 2 전극 리드로 이루어져 있는 것을 특징으로 하는 전지셀.
  6. 제 5 항에 있어서, 상기 제 1 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부는 상기 전극조립체의 제 1 측면 및 제 2 측면에 각각 대면하는 구조로 이루어져 있고, 상기 제 2 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부는 제 1 전극 리드의 제 1 리드 확장부 및 제 2 리드 확장부의 외면들에 각각 대면하는 구조로 이루어져 있는 것을 특징으로 하는 전지셀.
  7. 제 6 항에 있어서, 상기 제 1 전극 리드의 리드 확장부들과 제 2 전극 리드의 리드 확장부들 사이에는, 절연성 소재가 도포되어 있거나, 또는 절연성 부재가 개재되어 있는 것을 특징으로 하는 전지셀.
  8. 제 5 항에 있어서, 상기 제 1 전극 리드의 리드 확장부들은 전극조립체의 제 1 측면 및 제 2 측면의 일측 단부까지 각각 확장되어 있고, 상기 제 2 전극 리드의 리드 확장부들은 제 1 측면 및 제 2 측면의 타측 단부까지 각각 확장되어 있는 것을 특징으로 하는 전지셀.
  9. 제 4 항에 있어서, 상기 탭 결합부와 상기 리드 확장부들은 동일한 두께로 형성되어 있는 것을 특징으로 하는 전지셀.
  10. 제 4 항에 있어서, 상기 탭 결합부와 상기 리드 확장부들은 상호 상이한 두께로 형성되어 있는 것을 특징으로 하는 전지셀.
  11. 제 10 항에 있어서, 상기 리드 확장부들 각각의 두께는 탭 결합부의 두께의 50% 내지 90% 인 것을 특징으로 하는 전지셀.
  12. 제 10 항에 있어서, 상기 리드 확장부들 각각의 두께는 10 마이크로 미터 내지 900 마이크로 미터인 것을 특징으로 하는 전지셀.
  13. 제 1 항에 있어서, 상기 전극 리드는 다공질 구조로 이루어져 있는 것을 특징으로 하는 전지셀.
  14. 제 13 항에 있어서, 상기 전극 리드의 기공의 내면에는 가스 흡착 물질이 코팅되어 있는 것을 특징으로 하는 전지셀.
  15. 제 14 항에 있어서, 상기 가스 흡착 물질은 BaTiO3, PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT), hafnia (HfO2)SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, 수산화나트륨(NaOH), 수산화칼슘(Ca(OH)2) 및 수산화칼륨(KOH)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 전지셀.
  16. 제 1 항에 있어서, 상기 전지셀은 리튬 이차전지인 것을 특징으로 하는 전지셀.
  17. 제 1 항에 따른 전지셀을 하나 이상 포함하고 있는 전지팩.
  18. 제 17 항에 따른 전지팩을 전원으로 포함하고 있는 것을 특징으로 하는 디바이스.
  19. 제 18 항에 있어서, 상기 디바이스는 휴대폰, 웨어러블 전자기기, 휴대용 컴퓨터, 스마트 패드, 넷북, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치로부터 선택되는 것을 특징으로 하는 디바이스.
PCT/KR2016/015542 2016-01-06 2016-12-30 확장된 전극 리드를 포함하는 전지셀 WO2017119675A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160001404A KR20170082239A (ko) 2016-01-06 2016-01-06 확장된 전극 리드를 포함하는 전지셀
KR10-2016-0001404 2016-01-06

Publications (1)

Publication Number Publication Date
WO2017119675A1 true WO2017119675A1 (ko) 2017-07-13

Family

ID=59274366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015542 WO2017119675A1 (ko) 2016-01-06 2016-12-30 확장된 전극 리드를 포함하는 전지셀

Country Status (2)

Country Link
KR (1) KR20170082239A (ko)
WO (1) WO2017119675A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490216B1 (ko) 2018-05-23 2023-01-19 주식회사 엘지에너지솔루션 보형부재를 포함하는 전지셀
KR20220007511A (ko) 2020-07-10 2022-01-18 주식회사 엘지에너지솔루션 가스 배출을 위한 가스 배출부를 포함하는 이차전지 및 이차전지 제조방법
JP2023521312A (ja) 2020-07-10 2023-05-24 エルジー エナジー ソリューション リミテッド ガス排出のためのガス排出部を含む二次電池及び二次電池の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129442A (ja) * 2003-10-27 2005-05-19 Sony Corp 二次電池および電池パック
KR20130038142A (ko) * 2011-10-07 2013-04-17 삼성에스디아이 주식회사 이차 전지
KR20130043734A (ko) * 2011-10-21 2013-05-02 주식회사 엘지화학 안전성이 향상된 이차전지
JP2013164977A (ja) * 2012-02-10 2013-08-22 Nec Corp 電池
JP2014038817A (ja) * 2012-08-21 2014-02-27 Toc Capacita Co Ltd 蓄電器の電極タブとタブリードの接続構造及び接続方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129442A (ja) * 2003-10-27 2005-05-19 Sony Corp 二次電池および電池パック
KR20130038142A (ko) * 2011-10-07 2013-04-17 삼성에스디아이 주식회사 이차 전지
KR20130043734A (ko) * 2011-10-21 2013-05-02 주식회사 엘지화학 안전성이 향상된 이차전지
JP2013164977A (ja) * 2012-02-10 2013-08-22 Nec Corp 電池
JP2014038817A (ja) * 2012-08-21 2014-02-27 Toc Capacita Co Ltd 蓄電器の電極タブとタブリードの接続構造及び接続方法

Also Published As

Publication number Publication date
KR20170082239A (ko) 2017-07-14

Similar Documents

Publication Publication Date Title
WO2015030405A1 (ko) 방열 구조를 가지는 단위모듈 제조용 모듈 하우징 및 이를 포함하는 전지모듈
KR102103877B1 (ko) 전극 리드 감지용 센서를 포함하는 전지셀 이송 장치
WO2010101384A2 (ko) 파우치 및 이를 포함하는 이차전지
WO2016167457A1 (ko) 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
WO2015046709A1 (ko) 가열 부재를 포함하는 전지셀 절곡 장치
WO2016060521A1 (ko) 전기절연층이 코팅되어 있는 전극탭 및 이를 포함하는 이차전지
WO2017095002A1 (ko) 셀 케이스의 밀봉 신뢰성이 향상된 비정형 구조의 전지셀
WO2010071387A2 (ko) 고출력 리튬 이차 전지
WO2015126074A1 (ko) 홀을 포함하고 있는 전지셀
WO2017069453A1 (ko) 복수의 전극 탭들이 형성되어 있는 단위 전극을 포함하는 파우치형 전지셀
WO2016056875A2 (ko) 전극조립체 및 이의 제조방법
WO2013157823A1 (ko) 양극과 음극의 용접 부위 형상이 다른 전극조립체 및 이를 포함하는 이차전지
WO2017188605A1 (ko) 규격화된 구조에 기반하여 제조 공정성이 우수하면서도 전극리드의 절연 성능이 향상된 전지셀 및 이를 포함하는 전지팩
WO2013157827A1 (ko) 서로 다른 형상의 양극과 음극을 포함하는 전극조립체 및 이차전지
WO2017213344A1 (ko) 다공성 구조의 냉각 겸용 완충 부재를 포함하는 전지모듈
WO2015046751A1 (ko) 곡면 구조의 전지팩
WO2015105369A1 (ko) 안전 분리막을 가진 전극조립체 및 이를 포함하는 이차전지
WO2014126369A1 (ko) 비정형 구조의 전지셀
WO2015102221A1 (ko) 계단 구조의 하이브리드 전극조립체
WO2015034173A1 (ko) 금속 판재를 사용한 각형 전지셀의 제조방법
WO2014126359A1 (ko) 경사 구조의 전극조립체 및 이를 포함하는 전지셀
WO2019009576A1 (ko) 비대칭 노치가 형성된 전극리드를 포함하는 파우치형 이차전지
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
WO2017082530A1 (ko) 돌출 연장부와 탭 연결부를 구비한 전극 리드를 포함하고 있는 전지셀
WO2021054595A1 (ko) 2개 이상의 금속 호일 사이에 저항층을 포함하는 전극 집전체, 이를 포함하는 전극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884058

Country of ref document: EP

Kind code of ref document: A1