WO2018097575A1 - 비수성 전해액 및 이를 포함하는 리튬 이차 전지 - Google Patents
비수성 전해액 및 이를 포함하는 리튬 이차 전지 Download PDFInfo
- Publication number
- WO2018097575A1 WO2018097575A1 PCT/KR2017/013282 KR2017013282W WO2018097575A1 WO 2018097575 A1 WO2018097575 A1 WO 2018097575A1 KR 2017013282 W KR2017013282 W KR 2017013282W WO 2018097575 A1 WO2018097575 A1 WO 2018097575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aqueous electrolyte
- lithium
- secondary battery
- carbonate
- negative electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a non-aqueous electrolyte and a lithium secondary battery containing the non-aqueous electrolyte.
- a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery, and the like having advantages of high energy density, discharge voltage, and output stability.
- charging and discharging proceed while repeating a process in which lithium ions are intercalated and deintercalated from a lithium metal oxide of a positive electrode to a graphite electrode of a negative electrode.
- Patent Document 1 discloses a non-aqueous electrolyte containing 0.01 M to 2 M LiFSI and a mixed additive.
- the non-aqueous electrolyte solution disclosed in Patent Document 1 has a limit on ion conductivity because the amount of ions present in the electrolyte is less by using an electrolyte salt of 0.01 M to 2 M, and thus there is a limit on the performance of secondary batteries.
- Patent Document 1 Korean Patent Publication No. 10-2016-0036810
- the first technical problem of the present invention is to provide a non-aqueous electrolyte solution for a lithium secondary battery that can improve the low-temperature output characteristics by using a high concentration non-aqueous electrolyte solution of 3.5 M or more.
- the second technical problem of the present invention is to provide a non-aqueous electrolyte solution for a lithium secondary battery that can improve cycle performance by using an additional additive.
- a third technical problem of the present invention is to provide a secondary battery including the non-aqueous electrolyte.
- an embodiment of the present invention provides a lithium secondary battery including a positive electrode and a negative electrode, a separator interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte solution of the present invention.
- the non-aqueous electrolyte solution containing the high concentration lithium salt of 3.5 M or more which concerns on this invention can achieve an output effect by using the high concentration electrolyte solution which has a high yield.
- 1 is a comparative graph showing the output characteristics of the lithium secondary battery according to the embodiment and the comparative example of the present invention.
- FIG. 2 is a comparison graph showing the cycle characteristics of the lithium secondary battery according to the embodiment and the comparative example of the present invention.
- the non-aqueous electrolyte according to one embodiment of the present invention the lithium salt and 3.5M or more of the organic solvent.
- the lithium salt contained in the non-aqueous electrolyte of the present invention may be used without particular limitation as long as it is a lithium salt commonly used in a secondary battery electrolyte, and preferably, lithium bis fluoro sulfonyl imide [lithium bis (fluoro sulfonyl) ) imide, LiFSI], lithium bis trifluoro methane sulfonyl imide, LiTFSI, and lithium hexafluoro phosphate (LiPF 6 ). It may include one.
- the said lithium salt can also be used 1 type or in mixture of 2 or more types as needed.
- the concentration of the lithium salt is at least 3.5 M, preferably 3.5 M to 6 M.
- the non-aqueous electrolyte containing the concentration can achieve a high yield (transference number), reducing the diffusion resistance of lithium ions Effects can also be achieved.
- the organic solvent included in the non-aqueous electrolyte solution according to the present invention may be a nitrile solvent.
- the nitrile organic solvent may be, for example, acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, 4-fluorophenylacetonitrile, or a combination thereof, but is not limited thereto. It is not.
- the non-aqueous electrolyte solution of the present invention may further include an organic solvent selected from the group consisting of a carbonate solvent, an ether solvent, an ester solvent, and combinations thereof in addition to the nitrile organic solvent.
- an organic solvent selected from the group consisting of a carbonate solvent, an ether solvent, an ester solvent, and combinations thereof in addition to the nitrile organic solvent.
- the carbonate compound may be classified into a cyclic carbonate compound and a linear carbonate compound.
- the cyclic carbonate compound is ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3 -Pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC), any one selected from the group consisting of or mixtures of two or more thereof.
- the linear carbonate compound is selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate Any one or mixtures of two or more thereof.
- the cyclic carbonate compounds ethylene carbonate and propylene carbonate are highly viscous organic solvents, and may be preferably used because they have high dielectric constants to dissociate lithium salts in the electrolyte, and dimethyl carbonate or diethyl carbonate may be used for such cyclic carbonate compounds.
- dimethyl carbonate or diethyl carbonate may be used for such cyclic carbonate compounds.
- a low viscosity, low dielectric constant linear carbonate compound, such as a mixture is used in an appropriate ratio to make an electrolyte having a high electrical conductivity can be used more preferably.
- the ether compound may be any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether, and ethyl propyl ether, or a mixture of two or more thereof. It is not limited.
- ester compound may be a linear ester such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate;
- cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone, or mixtures of two or more thereof. It may be, but is not limited thereto.
- the non-aqueous electrolyte according to the present invention in addition to the lithium salt and the organic solvent, may further include an additive as necessary.
- the additives are vinylene carbonate (VC), oxalyldifluoroborate (ODFB), vinylethylene carbonate (VEC), succinic anhydride (SA), succinonitrile (SN), 1,3-propanesultone ( PS), or combinations thereof.
- the additive preferably comprises vinylene carbonate (VC), most preferably vinylene carbonate (VC) and oxalyldifluoroborate (ODFB).
- the additive may improve the output characteristics by forming a stable SEI film on the negative electrode together with the lithium salt, thereby suppressing decomposition of the positive electrode surface and oxidizing the electrolyte. The reaction can be prevented. Thereby, the output characteristic of a secondary battery can be improved effectively.
- the additive may suppress Al corrosion and Cu damage of the secondary battery, thereby improving life characteristics according to a cycle.
- the additive may be included in 0.1 wt% to 10 wt%, preferably 0.5 wt% to 3 wt% with respect to the total weight of the non-aqueous electrolyte.
- the additive When the additive is included in less than 0.1% by weight, the effect of improving the low temperature output and high temperature stability characteristics of the secondary battery may be insignificant, and when the content of the additive exceeds 10% by weight, the non-aqueous during charging and discharging of the secondary battery Side reactions in the electrolyte may occur excessively.
- the additive when the additive is excessively added in the non-aqueous electrolyte, it may not be sufficiently decomposed at high temperatures and thus may exist as an unreacted material at room temperature, thereby decreasing the lifespan or resistance characteristics of the secondary battery.
- the lithium secondary battery according to the present invention forms a stable SEI film on the surface of the negative electrode while improving the output characteristics by producing a lithium secondary battery by appropriately combining the additives in the nonaqueous electrolyte solution as necessary. Effectively suppression, the cycle characteristics can also be improved, and finally stability can be improved.
- the lithium secondary battery according to an embodiment of the present invention the positive electrode and the negative electrode, the separator interposed between the positive electrode and the negative electrode and the non-aqueous electrolyte according to the present invention.
- nonaqueous electrolyte Since the nonaqueous electrolyte is the same as described above, a detailed description thereof will be omitted, and only the remaining configurations will be described below.
- the lithium secondary battery of the present invention may be prepared by injecting the non-aqueous electrolyte solution of the present invention into an electrode structure consisting of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
- the positive electrode, the negative electrode, and the separator constituting the electrode structure may be used all those conventionally used in the manufacture of a lithium secondary battery.
- the positive electrode may be prepared by coating a positive electrode mixture including a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode current collector.
- the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
- the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
- the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( here, 0 ⁇ Z ⁇ 2) and the like), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1) and the like), lithium-manganese-cobal
- LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides may be improved in capacity and stability of the battery.
- the cathode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of each cathode mixture.
- the binder is a component that assists in bonding the active material and the conductive material and bonding to the current collector, and is generally added in an amount of 1 wt% to 30 wt% based on the total weight of the positive electrode mixture.
- binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene- Propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
- the conductive material is typically added in an amount of 1% to 30% by weight based on the total weight of the positive electrode mixture.
- Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- Specific examples of commercially available conductive materials include Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, and EC, which are acetylene black series. (Armak Company), Vulcan XC-72 (manufactured by Cabot Company), and Super P (manufactured by Timcal).
- the solvent used in the preparation of the positive electrode mixture may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and the amount that becomes a desirable viscosity when the positive electrode active material, and optionally including a binder and a conductive material Can be used as
- the concentration of the positive electrode active material and, optionally, the solid content including the binder and the conductive material may be included in an amount of 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
- the negative electrode may include, for example, a metal material such as lithium metal or a lithium alloy, a carbon material such as low crystalline carbon or high crystalline carbon, or a negative electrode active material, a binder, a conductive material, a solvent, or the like on a negative electrode current collector. It can be prepared by coating a negative electrode mixture comprising a.
- the negative electrode current collector generally has a thickness of 3 ⁇ m to 500 ⁇ m.
- a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
- copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
- fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the negative electrode active material natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me); And one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
- Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe
- Oxides of the metals (Me) Oxides of the metals (Me)
- one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
- the negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the negative electrode mixture.
- the binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 wt% to 30 wt% based on the total weight of the negative electrode mixture.
- binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, poly Propylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
- PVDF polyvinylidene fluoride
- CMC carboxymethyl cellulose
- EPDM ethylene-propylene-diene polymer
- sulfonated-EPDM styrene-butadiene rubber
- the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 wt% to 20 wt% based on the total weight of the negative electrode mixture.
- a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- the solvent used in the preparation of the negative electrode mixture may include an organic solvent such as water or NMP (N-methyl-2-pyrrolidone), and the preferred viscosity when the negative electrode active material, and optionally include a binder and a conductive material Can be used in amounts that are.
- concentration of the negative electrode active material and, optionally, the solid content including the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
- porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
- the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
- the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
- LiFSI was dissolved in an acetonitrile organic solvent to a concentration of 3.5 M to prepare a non-aqueous electrolyte solution.
- NMP N-methyl-2-pyrrolidone
- LiCO 2 lithium cobalt composite oxide
- carbon black carbon black
- PVDF polyvinylidene fluoride
- the positive electrode mixture was prepared by adding 40 parts by weight of the positive electrode mixture mixed at a ratio of 5: 5 (wt%).
- the positive electrode mixture was applied to a positive electrode current collector (Al thin film) having a thickness of 100 ⁇ m, dried, and roll pressed to prepare a positive electrode.
- NMP N-methyl-2-pyrrolidone
- natural graphite as a negative electrode active material
- PVDF as a binder
- carbon black as a conductive material at a ratio of 95: 2: 3 (wt%) 80 Part by weight was added to prepare a negative electrode mixture.
- the negative electrode mixture was applied to a negative electrode current collector (Cu thin film) having a thickness of 90 ⁇ m, dried, and roll pressed to prepare a negative electrode.
- the positive electrode and the negative electrode prepared by the above-described method together with a polyethylene porous film to produce a coin-type battery in a conventional manner, and then the non-aqueous electrolyte was prepared by pouring a lithium secondary battery.
- an electrolyte solution and a secondary battery including the same were prepared in the same manner as in Example 1, except that the LiFSI was dissolved to a concentration of 4.5 M.
- an electrolyte solution and a secondary battery including the same were prepared in the same manner as in Example 1, except that 1 wt% of vinylethylene carbonate (VEC) was added as an additive.
- VEC vinylethylene carbonate
- an electrolyte solution and a secondary battery including the same were prepared in the same manner as in Example 1, except that 1% by weight of succinic anhydride (SA) was added as an additive.
- SA succinic anhydride
- an electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that 1% by weight of succinonitrile (SN) was added as an additive.
- SN succinonitrile
- an electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that 1,3-propanesultone (PS) was added as an additive.
- PS 1,3-propanesultone
- an electrolyte solution and a secondary battery including the same were prepared in the same manner as in Example 1, except that 1 wt% of vinylene carbonate (VC) was added as an additive.
- VC vinylene carbonate
- an electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that 1 wt% of oxalyldifluoroborate (ODFB) was added as an additive.
- ODFB oxalyldifluoroborate
- an electrolyte solution and a secondary battery including the same were prepared in the same manner as in Example 1, except that 2 wt% of VC and 1 wt% of ODFB were added as additives.
- Ethylene carbonate (EC), propylene carbonate (PC), and ethylene carbonate (EMC) were mixed at a ratio of 10:20:70 (vol%) to prepare an organic solvent mixture solution. Then, 1.5 wt%, 0.5 wt%, and 0.5 wt% of vinylene carbonate (VC), 1,3-propanesultone (PS), and ethylene sulfate (ESA) were respectively based on the total content of the organic solvent mixture prepared. Further added, and the LiPF 6 and LiFSI 1: a mixture in a ratio of 1 (vol%) is dissolved so that the concentration of 1 M to prepare a nonaqueous electrolyte. Subsequently, a negative electrode, a positive electrode, and a secondary battery were manufactured in the same manner as in Example 1.
- an electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that LiFSI was used at a concentration of 2.5 M.
- LiPF 6 and LiFSI were mixed in a ratio of 1: 1 (vol%) and used at a concentration of 1 M, the electrolyte and a secondary including the same in the same manner as in Example 1 above.
- the battery was prepared.
- An electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1 except that dimethyl carbonate was used instead of acetonitrile as an organic solvent when preparing the non-aqueous electrolyte.
- the output according to time was calculated using the voltage difference generated when the secondary batteries prepared in Examples 1 and 2 and Comparative Example 1 were charged and discharged at 0 ° C., and the results are shown in FIG. 1 and Table 1 below. .
- Example 2 LiFSI 4.5 M AN 1.56
- Comparative Example 1 LiPF 6 + LiFSI (1: 1 vol%) 1 M EC + PC + EMC VC + PS + ESA 1.5wt% + 0.5wt% + 0.5wt% 1.60
- Comparative Example 3 LiPF 6 + LiFSI (1: 1 vol%) 1 M AN - - 1.60
- the secondary batteries (battery capacity 40 mAh) prepared in Examples 1 to 8 and Comparative Example 2 were subjected to 350 cycles at 25 ° C. at a charge and discharge rate of 1C / 1C.
- the lithium secondary battery having a battery capacity of 40 mAh manufactured in Examples 1 to 8 and Comparative Example 2 was charged at 25 ° C. until 1C constant current until 4.15 V, and then charged at a constant voltage of 4.15 V, Charging was terminated when the current reached 2 mA. Thereafter, it was left for 10 minutes and then discharged until it became 3 V at 1 C constant current.
- the charge-discharge behavior was 1 cycle, and the cycle was repeatedly performed 350 times, and then the charge / discharge capacity according to the present example and the comparative example was measured and shown in Table 2 and FIG. 2.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio of battery capacity.
- LiFSI 3.5 M AN - - 82.12 LiFSI 3.5 M AN VEC 1wt% 92.07
- Example 4 LiFSI 3.5 M AN SA 1wt% 89.73
- Example 5 LiFSI 3.5 M AN SN 1wt% 84.42
- Example 6 LiFSI 3.5 M AN PS 1wt% 91.46
- Example 7 LiFSI 3.5 M AN VC 1wt% 95.19
- Comparative Example 2 LiFSI 2.5 M AN - - 75.73
- Comparative Example 3 LiPF 6 + LiFSI (1: 1 vol%) 1 M AN - - - -
- Example 1 and Comparative Example 4 were measured for ion conductivity at 25 ° C. using a probe conductivity ion conductivity measuring device (Inolab 740), and at 25 ° C. using an RS150 viscometer. The viscosity was measured. The results are shown in Table 3 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 리튬 이차 전지용 비수성 전해액에 관한 것으로서, 구체적으로 리튬염; 및 유기용매;를 포함하며, 상기 리튬염의 농도가 3.5 M 이상인, 비수성 전해액을 제공한다.
Description
[관련출원과의 상호인용]
본 출원은 2016.11.24.자 한국 특허출원 제2016-0157555호 및 2017.11.20.자 한국특허출원 제2017-0154623호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 비수성 전해액 및 상기 비수성 전해액을 포함하는 리튬 이차 전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
특히, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차 전지에 대한 수요가 높다.
이러한 리튬 이차 전지는 리튬 이온이 양극의 리튬 금속 산화물로부터 음극의 흑연 전극으로 삽입(intercalation)되고 탈리(deintercalation)되는 과정을 반복하면서 충방전이 진행된다.
이때 리튬 이온은 반응성이 강하기 때문에 탄소 전극과 반응하여 Li2CO3, LiO, LiOH 등을 생성시켜 음극의 표면에 고체 전해질(solid electrolyte interface, SEI) 막을 형성하게 된다. 충전 초기에 형성된 상기 SEI 막은 충방전 시 전해액의 분해를 방지하고, 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해액의 유기용매들이 탄소 음극에 함께 삽입되어(cointercalation) 탄소 음극의 구조를 붕괴시키는 것을 방지하는 이온 터널(ion tunnel) 역할을 수행한다. 상기 SEI 막이 높은 안정성 및 낮은 저항을 가질수록 리튬 이차 전지의 수명이 향상될 수 있다. 따라서, 상기 리튬 이차 전지의 고온 사이클 특성 및 저온 출력을 향상시키기 위해서는, 안정한 SEI 막을 형성해야 한다.
최근, 상기 SEI 막의 안정화를 위한 전해액에 대해서 다양하게 연구되고 있다. 이와 관련하여,특허문헌 1은 0.01 M 내지 2 M의 LiFSI 및 혼합 첨가제를 포함하는 비수성 전해액에 대해 개시하고 있다.
그러나, 상기 특허문헌 1에 개시된 비수성 전해액은 0.01 M 내지 2 M의 전해질염을 사용함으로써 전해액 중 존재하는 이온량이 적어 이온전도도에 한계가 있고, 이에 따른 이차 전지 성능의 한계가 존재한다.
이에, 현재 통용되는 전해액보다 높은 수율(transference number)을 갖는 고농도 전해액을 사용하여 고출력, 급속 충전, 저온 출력, 전지 안정성, 및 고로딩 특성 등에 이점이 있는 고농도 전해액이 요구되고 있다.
[선행기술문헌]
(특허문헌 1) 대한민국 특허공개공보 제10-2016-0036810호
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제 1 기술적 과제는 3.5 M 이상의 고농도 비수성 전해액을 사용함으로써 저온 출력 특성을 개선할 수 있는 리튬 이차 전지용 비수성 전해액을 제공하는 것이다.
본 발명의 제 2 기술적 과제는 추가적인 첨가제의 사용에 의해 사이클 성능을 개선할 수 있는 리튬 이차 전지용 비수성 전해액을 제공하는 것이다.
또한, 본 발명의 제 3 기술적 과제는 상기 비수성 전해액을 포함하는 이차전지를 제공하는 것이다.
구체적으로, 본 발명의 일 실시예에서는
리튬염; 및
니트릴계 유기 용매;를 포함하며,
상기 리튬염의 농도가 3.5 M 이상인, 비수성 전해액을 제공한다.
또한, 본 발명의 일 실시예에서는 양극과 음극, 상기 양극과 음극 사이에 개재된 분리막 및 본 발명의 비수성 전해액을 포함하는, 리튬 이차전지를 제공한다.
이상에서 설명한 바와 같이, 본 발명에 따른 3.5 M 이상의 고농도 리튬염을 포함하는 비수성 전해액은, 높은 수율을 가지는 고농도 전해액을 사용함으로써 출력 효과를 달성할 수 있다.
더불어, 상기 비수성 전해액에 추가적으로 첨가제를 사용함으로써 상기 고농도 리튬염을 포함하는 비수성 전해액의 사이클에 따른 수명 또한 향상시킬 수 있다.
도 1은 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 출력 특성을 나타낸 비교 그래프이다.
도 2는 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 사이클 특성을 나타낸 비교 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
구체적으로, 본 발명의 일 실시예에 따른 비수성 전해액은, 3.5 M 이상의 리튬염 및 유기용매를 포함한다.
상기 본 발명의 비수성 전해액에 포함되는 상기 리튬염은 이차 전지용 전해액에 통상적으로 사용되는 리튬염이라면 특별한 제한 없이 사용될 수 있으며, 바람직하게는, 리튬 비스 플루오로 설포닐 이미드[lithium bis(fluoro sulfonyl) imide, LiFSI], 리튬 비스 트리플루오로메탄 설포닐 이미드[lithium bis(trifluoro methane sulfonyl) imide, LiTFSI], 및 리튬 헥사플루오로 포스페이트(lithium hexafluoro phosphate, LiPF6)로 이루어진 군에서 선택되는 어느 하나를 포함할 수 있다. 상기 리튬염은 1 종 또는 필요에 따라 2 종 이상을 혼합하여 사용할 수도 있다.
상기 리튬염의 농도는 3.5 M 이상이며, 바람직하게는 3.5 M 내지 6 M일 수 있다. 본 발명과 같이 3.5 M 내지 6 M의 고농도 리튬염을 포함하는 비수성 전해액을 사용할 경우, 상기 농도를 포함하는 비수성 전해액은 높은 수율(transference number)을 달성할 수 있고, 리튬 이온의 확산 저항 감소 효과 또한 달성할 수 있다.
본 발명에 따른 상기 비수성 전해액에 포함되는 유기 용매는 니트릴계 용매일 수 있다.
상기 니트릴계 유기 용매는, 예를 들면, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴, 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 비수성 전해액은 니트릴계 유기 용매 외에 카보네이트계 용매, 에테르계 용매, 에스테르계 용매 및 이들의 조합으로 이루어진 군으로부터 선택되는 유기 용매를 추가로 포함할 수 있다.
상기 카보네이트계 화합물은 환형 카보네이트 화합물 및 선형 카보네이트 화합물로 구분될 수 있다. 상기 환형 카보네이트 화합물은 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트(FEC)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함한다. 또한, 상기 선형 카보네이트 화합물은 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함한다.
특히, 상기 카보네이트 화합물 중 환형 카보네이트 화합물인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서, 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트 화합물에 디메틸 카보네이트 또는 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트 화합물을 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
또한, 상기 에테르계 화합물은 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
더불어, 상기 에스테르계 화합물은 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 부틸 프로피오네이트와 같은 선형 에스테르; 및 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, 및 ε-카프로락톤과 같은 환형 에스테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
한편, 본 발명에 따른 상기 비수성 전해액은 상기 리튬염 및 유기 용매 이외에, 필요에 따라 첨가제를 더 포함할 수 있다.
상기 첨가제는 비닐렌 카보네이트(VC), 옥살릴디플루오로보레이트(ODFB), 비닐에틸렌카보네이트(VEC), 숙시닉 언하이드라이드(SA), 숙시노 니트릴(SN), 1,3-프로판설톤(PS), 또는 이들의 조합을 포함한다. 상기 첨가제는 바람직하게는 비닐렌 카보네이트(VC)를 포함하며, 가장 바람직하게는 비닐렌 카보네이트(VC) 및 옥살릴디플루오로보레이트(ODFB)를 포함한다. 상기 첨가제를 상기 비수성 전해액에 추가하여 이차 전지를 제조할 경우, 상기 첨가제가 상기 리튬염과 함께 음극에 안정한 SEI 막을 형성함으로써 출력 특성을 개선시킬 수 있고, 양극 표면의 분해를 억제하고 전해액의 산화 반응을 방지할 수 있다. 이에 따라, 이차 전지의 출력 특성을 효과적으로 향상시킬 수 있다. 더불어, 상기 첨가제가 이차 전지의 Al 부식 및 Cu 손상을 억제하여, 사이클에 따른 수명 특성이 향상될 수 있다.
상기 첨가제는 상기 비수성 전해액 총 중량에 대하여 0.1 중량% 내지 10 중량%, 바람직하게는 0.5 중량% 내지 3 중량%로 포함되는 것일 수 있다. 상기 첨가제가 0.1 중량% 미만으로 포함될 경우, 이차 전지의 저온 출력 및 고온 안정성 특성 개선의 효과가 미미할 수 있고, 상기 첨가제의 함량이 10 중량%를 초과할 경우, 이차 전지의 충방전시 상기 비수성 전해액 내의 부반응이 과도하게 발생할 수 있다. 특히, 상기 첨가제가 상기 비수성 전해액 내에 과량 추가될 경우, 고온에서 충분히 분해되지 못하여 상온에서 미반응물로 존재할 수 있으며, 이에 따라 이차 전지의 수명 또는 저항 특성이 저해될 수 있다.
상기 첨가제를 필요에 따라 적절히 조합하여 상기 비수성 전해액에 포함시켜 리튬 이차 전지를 제조함으로써, 본 발명에 따른 리튬 이차 전지는 출력 특성이 향상되면서도, 음극 표면에 안정한 SEI 막을 형성하고, 전해액의 분해를 효과적으로 억제하며, 사이클 특성 또한 개선되어 최종적으로 안정성이 향상될 수 있다.
한편, 본 발명의 일 실시예에 따른 리튬 이차 전지는, 양극과 음극, 상기 양극과 상기 음극 사이에 개재된 분리막 및 상기 본 발명에 따른 비수성 전해액을 포함한다.
상기 비수성 전해액은 상술한 바와 동일하므로 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
구체적으로, 본 발명의 리튬 이차전지는 양극, 음극, 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 본 발명의 비수성 전해액을 주입하여 제조할 수 있다. 이때, 전극 구조체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
이때, 상기 양극은 양극 집전체 상에 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 합제를 코팅하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1
-
YMnYO2(여기에서, 0<Y<1), LiMn2
-
zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1
-
Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2
-
z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물[예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등] 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 각각의 양극 합제의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 합제의 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 통상적으로 양극 합제의 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케첸 블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.
상기 양극 합제 제조 시 사용되는 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
또한, 상기 음극은 예를 들어, 리튬 금속, 리튬 합금 등의 금속재, 저결정성 탄소, 고결정성 탄소 등의 탄소재를 포함하거나, 또는 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 합제를 코팅하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물; 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다.
상기 음극 활물질은 음극 합제의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 합제의 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 합제의 전체 중량을 기준으로 1 중량% 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 음극 합제 제조 시 사용되는 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
[비수성 전해액의 제조]
아세토니트릴 유기 용매에 LiFSI를 3.5 M 농도가 되도록 용해시켜 비수성 전해액을 제조하였다.
[양극 제조]
용제인 N-메틸-2-피롤리돈(NMP) 100 중량부를 기준으로 양극 활물질 입자로 리튬 코발트 복합산화물(LiCO2), 도전재로 카본 블랙 및 바인더로 폴리비닐리덴플로라이드(PVDF)를 90 : 5 : 5 (wt%)의 비율로 혼합한 양극 합제 40 중량부를 첨가하여 양극 합제를 제조하였다. 상기 양극 합제를 두께가 100 ㎛인 양극 집전체(Al 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
[음극 제조]
용제인 N-메틸-2-피롤리돈(NMP) 100 중량부를 기준으로 음극 활물질로 천연 흑연, 바인더로 PVDF, 도전재로 카본 블랙을 95 : 2 : 3 (wt%)의 비율로 음극 합제 80 중량부를 첨가하여 음극 합제를 제조하였다. 상기 음극 합제를 두께가 90㎛인 음극 집전체(Cu 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
[이차 전지 제조]
전술한 방법으로 제조한 양극과 음극을 폴리에틸렌 다공성 필름과 함께 통상적인 방법으로 코인형 전지를 제조한 후, 상기 제조된 비수성 전해액을 주액하여 리튬 이차전지를 제조하였다.
실시예 2
비수성 전해액 제조시, LiFSI를 4.5 M 농도가 되도록 용해시키는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
실시예 3
비수성 전해액 제조시, 첨가제로서 비닐에틸렌카보네이트(VEC)을 1 중량% 추가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
실시예 4
비수성 전해액 제조시, 첨가제로서 숙시닉 언하이드라이드(SA)을 1 중량% 추가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
실시예 5
비수성 전해액 제조시, 첨가제로서 숙시노 니트릴(SN)을 1 중량% 추가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
실시예 6
비수성 전해액 제조시, 첨가제로서 1,3-프로판설톤(PS)을 1 중량% 추가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
실시예 7
비수성 전해액 제조시, 첨가제로서 비닐렌 카보네이트(VC)을 1 중량% 추가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
실시예 8
비수성 전해액 제조시, 첨가제로서 옥살릴디플루오로보레이트(ODFB)을 1 중량% 추가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
실시예 9
비수성 전해액 제조시, 첨가제로서 VC 2 중량% 및 ODFB 1 중량%를 추가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
비교예
비교예 1
에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 및 에틸렌카보네이트(EMC)를 10 : 20 : 70(vol%)의 비율로 혼합하여 유기 용매 혼합액을 제조하였다. 이후, 제조된 유기 용매 혼합액 전체 함량을 기준으로 비닐렌 카보네이트(VC), 1,3-프로판설톤(PS), 및 에틸렌 설페이트(ESA)를 각각 1.5 중량%, 0.5 중량%, 및 0.5 중량%를 더 첨가하고, LiPF6 및 LiFSI을 1 : 1(vol%)의 비율로 혼합하여 1 M 농도가 되도록 용해시켜 비수성 전해액을 제조하였다. 이어서, 상기 실시예 1과 동일한 방법으로 음극, 양극, 및 이차 전지를 제조하였다.
비교예 2
상기 비수성 전해액의 제조시, LiFSI를 2.5 M 농도로 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
비교예 3
상기 비수성 전해액의 제조시, LiPF6 및 LiFSI을 1 : 1(vol%)의 비율로 혼합하여 1 M 농도로 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차 전지를 제조하였다.
비교예 4
비수성 전해액 제조시 유기 용매로 아세토니트릴 대신에 디메틸 카보네이트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 이차전지를 제조하였다.
실험예
실험예 1: 저온 출력 특성
실시예 1, 2 및 비교예 1에서 제조된 이차 전지를 0℃에서 충전 및 방전하는 경우 발생하는 전압차를 이용하여 시간에 따른 출력을 계산하여, 그 결과를 도 1 및 하기 표 1에 나타내었다.
리튬이온 | 용매 | 첨가제 | 첨가제 함량 | 저항(Ω) | ||
종류 | 농도 | |||||
실시예 1 | LiFSI | 3.5 M | AN | - | - | 1.21 |
실시예 2 | LiFSI | 4.5 M | AN | 1.56 | ||
비교예 1 | LiPF6+LiFSI(1:1 vol%) | 1 M | EC+PC+EMC | VC+PS+ESA | 1.5wt%+0.5wt%+0.5wt% | 1.60 |
비교예 3 | LiPF6+LiFSI(1:1 vol%) | 1 M | AN | - | - | 1.60 |
상기 표 1 및 도 1에 나타난 바와 같이, 3.5 M의 고농도 리튬염을 포함하는 본원 실시예 1의 비수성 전해액에서, 1.21 Ω으로 저항이 가장 낮은 것으로 나타났으며, 이에 따라 리튬 이차전지의 출력 특성 또한 향상될 수 있었다.
실험예 2: 사이클 특성
실시예 1 내지 8 및 비교예 2에서 제조된 이차 전지의 사이클 특성을 실험하였다.
상기 실시예 1 내지 8 및 비교예 2에서 제조된 이차 전지(전지용량 40 mAh)를 25℃에서 1C/1C의 충방전 속도로 350 사이클 실시하였다.
구체적으로, 상기 실시예 1 내지 8 및 비교예 2에서 제조된 전지용량 40 mAh의 리튬 이차 전지를 25℃에서 1C 정전류로 4.15 V가 될 때까지 충전하고, 이후 4.15 V의 정전압으로 충전하여, 충전 전류가 2 mA가 되면 충전을 종료하였다. 이후, 10 분간 방치한 다음, 1C 정전류로 3 V가 될 때까지 방전하였다. 상기 충방전 거동을 1 사이클로 하며, 이러한 사이클을 350회 반복 실시한 후, 본 실시예 및 비교예에 따른 충방전 용량을 측정하여 하기 표 2 및 도 2에 나타내었다.
여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate를 나타내는 것으로서 통상 전지 용량의 비율로 표시된다.
리튬이온 | 용매 | 첨가제 | 첨가제 함량 | Capacity Retention (%) | ||
종류 | 농도 | |||||
실시예 1 | LiFSI | 3.5 M | AN | - | - | 82.12 |
실시예 3 | LiFSI | 3.5 M | AN | VEC | 1wt% | 92.07 |
실시예 4 | LiFSI | 3.5 M | AN | SA | 1wt% | 89.73 |
실시예 5 | LiFSI | 3.5 M | AN | SN | 1wt% | 84.42 |
실시예 6 | LiFSI | 3.5 M | AN | PS | 1wt% | 91.46 |
실시예 7 | LiFSI | 3.5 M | AN | VC | 1wt% | 95.19 |
실시예 8 | LiFSI | 3.5 M | AN | ODFB | 1wt% | 93.64 |
실시예 9 | LiFSI | 3.5 M | AN | VC+ODFB | 3 wt% | 95.44 |
비교예 2 | LiFSI | 2.5 M | AN | - | - | 75.73 |
비교예 3 | LiPF6+LiFSI(1:1 vol%) | 1 M | AN | - | - | - |
상기 표 2 및 도 2에 나타난 바와 같이, 3.5 M의 고농도 리튬염을 포함하는 본원 실시예 1의 비수성 전해액의 경우, 동일 조건에서 리튬염의 농도가 낮은 경우(비교예 2) 보다 사이클 특성이 우수한 것으로 나타났다. 더불어, 3.5 M의 고농도 리튬염을 포함할 뿐만 아니라, 첨가제를 추가하는 경우 사이클 특성을 더욱 향상하는 것으로 나타났다. 이는, 상기 첨가제의 추가에 따라 이차 전지의 Al 부식 및 Cu 손상이 억제되어, 사이클에 따른 수명 특성이 향상된 것으로 사료되었다.
한편, 거의 유사한 조건이나, 리튬염의 농도가 1 M로, 비교예 2보다도 낮은 경우, 리튬 이차전지의 구동이 어려워 용량 유지율(Capacity Retention)을 측정할 수 없었다. 즉 전해액 용매로서 니트릴계 용매를 사용할 경우에는 3.5 M 이상의 고농도 리튬염을 사용하는 것이 바람직하다는 점을 확인할 수 있었다.
실험예 3. 전해액 점도 및 이온 전도도 측정
상기 실시예 1 및 비교예 4에서 제조한 비수성 전해액을 각각 Probe 형태의 이온전도도 측정 장비 (Inolab 740 기기)를 이용하여 25℃에서의 이온전도도를 측정하였고, RS150 점도계를 사용하여 25℃ 에서의 점도를 측정하였다. 그 결과는 하기 표 3에 기재하였다.
전해액 | 점도 (cP) | 이온 전도도 (mS/cm) |
실시예 1(3.5M LiFSI in ACN) | 12.2 | 14.4 |
비교예 4(3.5M LiFSI in DMC) | 21.8 | 4.64 |
상기 표 3에서 나타낸 바와 같이, 리튬염 (LiFSI)의 농도가 3.5M로 높을 경우, 디메틸카보네이트 용매를 사용한 경우 (비교예 4)에 비하여, 니트릴계 용매를 사용한 경우 (실시예 1)가 점도가 낮고, 이온 전도도가 높다는 점을 알 수 있었다. 즉, 아세토니트릴계 용매 및 고농도의 리튬염을 포함하는 전해액을 리튬 이차전지에 적용하였을 경우 전지 성능 개선에 효과가 있을 것임을 예측할 수 있으며, 고농도의 리튬염을 포함하더라도 전해액의 용매로 카보네이트계 용매만을 사용할 경우에는 이온 전도도가 낮아져서 이차전지 성능을 향상시키는데 한계가 있다.
Claims (9)
- 리튬염; 및니트릴계 유기 용매;를 포함하며,상기 리튬염의 농도가 3.5 M 이상인, 비수성 전해액.
- 청구항 1에 있어서,상기 리튬염의 농도는 3.5 M 내지 6 M인, 비수성 전해액.
- 청구항 1에 있어서,상기 리튬염은 리튬 비스 플루오로 설포닐 이미드, 리튬 비스 트리플루오로메탄 설포닐 이미드, 및 리튬 헥사플루오로 포스페이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것인, 비수성 전해액.
- 청구항 1에 있어서,상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 비수성 전해액.
- 청구항 1에 있어서,상기 비수성 전해액은 에스테르계 용매, 에테르계 용매, 카보네이트계 용매 및 이들의 조합으로 이루어진 군으로부터 선택되는 유기 용매를 추가로 포함하는 것인, 비수성 전해액.
- 청구항 1에 있어서,상기 비수성 전해액은 첨가제를 추가로 포함하는 것인, 비수성 전해액.
- 청구항 6에 있어서,상기 첨가제는 비닐렌 카보네이트(VC), 옥살릴디플루오로보레이트(ODFB), 비닐에틸렌카보네이트(VEC), 숙시닉 언하이드라이드(SA), 숙시노 니트릴(SN), 1,3-프로판설톤(PS), 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 비수성 전해액.
- 청구항 6에 있어서,상기 첨가제는 비수성 전해액 총 중량에 대하여 0.1 중량% 내지 10 중량%로 포함되는 것인, 비수성 전해액.
- 양극과 음극, 상기 양극과 음극 사이에 개재된 분리막 및 청구항 1의 비수성 전해액을 포함하는, 리튬 이차전지.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/402,425 US20190260080A1 (en) | 2016-11-24 | 2019-05-03 | Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0157555 | 2016-11-24 | ||
KR20160157555 | 2016-11-24 | ||
KR10-2017-0154623 | 2017-11-20 | ||
KR1020170154623A KR20180058633A (ko) | 2016-11-24 | 2017-11-20 | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/402,425 Continuation-In-Part US20190260080A1 (en) | 2016-11-24 | 2019-05-03 | Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018097575A1 true WO2018097575A1 (ko) | 2018-05-31 |
Family
ID=62195200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/013282 WO2018097575A1 (ko) | 2016-11-24 | 2017-11-21 | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018097575A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112186255A (zh) * | 2019-07-03 | 2021-01-05 | 万向一二三股份公司 | 一种锂离子电池电解液及倍率型nmc锂离子电池的制备方法 |
CN112640180A (zh) * | 2019-06-28 | 2021-04-09 | 旭化成株式会社 | 非水系电解液及非水系二次电池 |
CN114824482A (zh) * | 2022-05-16 | 2022-07-29 | 香河昆仑新能源材料股份有限公司 | 一种锂离子电池非水电解液和锂离子电池 |
CN115332637A (zh) * | 2022-09-06 | 2022-11-11 | 香河昆仑新能源材料股份有限公司 | 一种高锂盐浓度电解液及其在锂离子电池中的使用方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010037100A (ko) * | 1999-10-13 | 2001-05-07 | 김덕중 | 고분자 전해질, 이의 제조방법 및 이를 이용한 리튬이차전지 |
KR20110053456A (ko) * | 2008-09-11 | 2011-05-23 | 닛본 덴끼 가부시끼가이샤 | 이차 전지 |
KR20120046225A (ko) * | 2009-08-04 | 2012-05-09 | 도요타지도샤가부시키가이샤 | 비수전해액형 리튬 이온 2차 전지 |
KR20120046226A (ko) * | 2009-08-04 | 2012-05-09 | 도요타지도샤가부시키가이샤 | 비수전해액형 리튬 이온 2차 전지 |
-
2017
- 2017-11-21 WO PCT/KR2017/013282 patent/WO2018097575A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010037100A (ko) * | 1999-10-13 | 2001-05-07 | 김덕중 | 고분자 전해질, 이의 제조방법 및 이를 이용한 리튬이차전지 |
KR20110053456A (ko) * | 2008-09-11 | 2011-05-23 | 닛본 덴끼 가부시끼가이샤 | 이차 전지 |
KR20120046225A (ko) * | 2009-08-04 | 2012-05-09 | 도요타지도샤가부시키가이샤 | 비수전해액형 리튬 이온 2차 전지 |
KR20120046226A (ko) * | 2009-08-04 | 2012-05-09 | 도요타지도샤가부시키가이샤 | 비수전해액형 리튬 이온 2차 전지 |
Non-Patent Citations (1)
Title |
---|
YAMADA, YUKI ET AL.: "Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries", J. AM. CHEM. SOC., vol. 136, no. 13, 2014, pages 5039 - 5046, XP055275013, DOI: doi:10.1021/ja412807w * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112640180A (zh) * | 2019-06-28 | 2021-04-09 | 旭化成株式会社 | 非水系电解液及非水系二次电池 |
CN112186255A (zh) * | 2019-07-03 | 2021-01-05 | 万向一二三股份公司 | 一种锂离子电池电解液及倍率型nmc锂离子电池的制备方法 |
CN114824482A (zh) * | 2022-05-16 | 2022-07-29 | 香河昆仑新能源材料股份有限公司 | 一种锂离子电池非水电解液和锂离子电池 |
CN115332637A (zh) * | 2022-09-06 | 2022-11-11 | 香河昆仑新能源材料股份有限公司 | 一种高锂盐浓度电解液及其在锂离子电池中的使用方法 |
CN115332637B (zh) * | 2022-09-06 | 2024-03-26 | 香河昆仑新能源材料股份有限公司 | 一种高锂盐浓度电解液及其在锂离子电池中的使用方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102264735B1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
KR20190008100A (ko) | 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지 | |
WO2014189329A1 (ko) | 다층의 활물질층을 포함하는 리튬 이차전지 | |
WO2016159702A1 (ko) | 비수 전해액 및 이를 구비한 리튬 이차전지 | |
WO2015037867A1 (ko) | 리튬 전극 및 그를 포함하는 리튬 이차전지 | |
WO2017086672A1 (ko) | 비수전해액 및 이를 포함하는 리튬 이차전지 | |
KR102103898B1 (ko) | 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지 | |
WO2014185750A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2020032545A1 (ko) | 셀 내 전극의 전해액 함침 정도 정밀 분석법 | |
WO2014193148A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019168301A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR20190115706A (ko) | 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2016048106A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2019216695A1 (ko) | 리튬 이차 전지 | |
WO2020085823A1 (ko) | 리튬 이차전지용 음극의 제조방법 | |
WO2020153690A1 (ko) | 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법 | |
WO2018097575A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 | |
KR102069212B1 (ko) | 비수전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지 | |
WO2019221410A1 (ko) | 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지 | |
KR102439774B1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질 | |
KR102566003B1 (ko) | 이차전지용 양극의 제조방법, 이와 같이 제조된 양극 및 이를 포함하는 리튬 이차전지 | |
WO2016053040A1 (ko) | 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 | |
WO2021225396A1 (ko) | 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR101340031B1 (ko) | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2020153701A1 (ko) | 이차전지용 양극 활물질의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17874735 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17874735 Country of ref document: EP Kind code of ref document: A1 |