WO2021225396A1 - 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2021225396A1
WO2021225396A1 PCT/KR2021/005710 KR2021005710W WO2021225396A1 WO 2021225396 A1 WO2021225396 A1 WO 2021225396A1 KR 2021005710 W KR2021005710 W KR 2021005710W WO 2021225396 A1 WO2021225396 A1 WO 2021225396A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
material layer
transition metal
metal oxide
Prior art date
Application number
PCT/KR2021/005710
Other languages
English (en)
French (fr)
Inventor
류지훈
한송이
성기원
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180007136.3A priority Critical patent/CN114788043B/zh
Priority to EP21800590.8A priority patent/EP4060761A4/en
Priority to JP2022537186A priority patent/JP7451709B2/ja
Priority to US17/784,241 priority patent/US20230044623A1/en
Publication of WO2021225396A1 publication Critical patent/WO2021225396A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode for a secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
  • lithium secondary battery has been in the spotlight as a driving power source for a portable device because it is lightweight and has a high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries are being actively conducted.
  • an organic electrolyte or a polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions, and lithium ions are intercalated/deintercalated from the positive electrode and the negative electrode.
  • Electric energy is produced by a reduction reaction with A lithium transition metal oxide is used as a cathode active material of a lithium secondary battery, and a lithium metal, a lithium alloy, crystalline or amorphous carbon or a carbon composite is used as an anode active material.
  • the active material is applied to the electrode current collector with an appropriate thickness and length, or the active material itself is coated in a film shape and wound or laminated together with a separator, which is an insulator, to make an electrode group, and then placed in a can or similar container, and then the electrolyte is injected to manufacture a secondary battery.
  • a separator which is an insulator
  • the electrode is formed in a multi-layer structure to improve the battery performance of the lithium secondary battery and the type or composition of the electrode active material of each layer electrode is different or the composition is different, the type of the electrode active material for each electrode layer within the positive electrode (or negative electrode) or Since the composition is different, there has been a demand for different electrolyte components in order to improve battery performance, but there is a problem in that the composition of the electrolyte is uniformly applied.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 1997-320569
  • An object of the present invention is to provide a positive electrode for a secondary battery capable of improving the high-temperature performance of a lithium secondary battery by varying the electrolyte component for each electrode layer in a positive electrode for a secondary battery having a multilayer structure having different types of positive electrode active material.
  • the present invention provides a positive electrode for a secondary battery having a multilayer structure including a first positive electrode active material layer and a second positive electrode active material layer, wherein the first positive electrode active material layer includes a first lithium composite transition metal oxide containing nickel, cobalt and manganese and the second cathode active material layer includes a second lithium composite transition metal oxide including nickel, cobalt and manganese, and the first lithium composite transition metal oxide and the second lithium composite transition metal oxide have a nickel content of each other.
  • the positive electrode active material layer including a lithium composite transition metal oxide having a relatively high nickel content includes an electrolyte solution additive
  • the positive electrode active material layer including a lithium composite transition metal oxide having a relatively low nickel content includes an electrolyte solution additive.
  • a positive electrode for a secondary battery that is not included.
  • the present invention forms a first positive electrode slurry comprising a positive electrode active material of a lithium composite transition metal oxide having a relatively high content of nickel and an electrolyte additive, and a positive electrode active material of a lithium composite transition metal oxide having a relatively low nickel content, and
  • the present invention is the positive electrode; a negative electrode positioned opposite to the positive electrode and including an anode active material; a separator positioned between the anode and the cathode; and an electrolyte impregnated in the positive electrode and the negative electrode, wherein the electrolyte solution additive is included only in the electrolyte in the positive electrode active material layer including a lithium composite transition metal oxide having a relatively high nickel content in the positive electrode.
  • the present invention in a positive electrode for a secondary battery having a multilayer structure having a different type of positive active material, by varying the electrolyte component for each electrode layer, the high temperature performance of the lithium secondary battery is improved, and the electrolytic solution side reaction is suppressed to reduce gas generation as well as It is possible to minimize the increase in resistance due to the electrolyte additive.
  • the present invention provides a positive electrode for a secondary battery having a multilayer structure including a first positive electrode active material layer and a second positive electrode active material layer, wherein the first positive electrode active material layer includes a first lithium composite transition metal oxide containing nickel, cobalt and manganese and the second cathode active material layer includes a second lithium composite transition metal oxide including nickel, cobalt and manganese, and the first lithium composite transition metal oxide and the second lithium composite transition metal oxide have a nickel content of each other.
  • the positive electrode active material layer including a lithium composite transition metal oxide having a relatively high nickel content includes an electrolyte solution additive
  • the positive electrode active material layer including a lithium composite transition metal oxide having a relatively low nickel content includes an electrolyte solution additive.
  • a positive electrode for a secondary battery that is not included.
  • Electrolyte additives used in lithium secondary batteries mainly suppress side reactions of electrolyte on the surface of the anode to reduce gas generation, improve ion conductivity to improve low-temperature output, reduce resistance, and elution of transition metals by protecting the interface of the anode functions to suppress, etc.
  • the composition in the liquid electrolyte is uniform, so it is inevitable to use a lot of solvents and electrolyte additives unnecessarily to satisfy the battery performance. Rather, there was a problem in that the side reaction of the electrolyte was increased or the resistance was increased.
  • the electrolyte additive is applied differently according to the characteristics of the positive electrode active material of each layer.
  • the electrode for a multilayer secondary battery including different types of positive active materials with different nickel contents of lithium composite transition metal oxide containing nickel, cobalt, and manganese in each layer lithium composite transition metal having a relatively high nickel content
  • the electrolyte additive is included in the positive electrode active material layer including the positive electrode active material of the lithium composite transition metal oxide having a relatively high nickel content, and the lithium composite transition metal having a relatively low nickel content.
  • An electrolyte solution additive was not included in the positive electrode active material layer including the oxide positive active material.
  • the high-temperature performance of the lithium secondary battery can be improved, and the increase in resistance can be minimized while reducing gas generation by suppressing the electrolyte side reaction.
  • the first lithium composite transition metal oxide may contain 60 mol% or more of nickel among metals other than lithium, and the second lithium composite transition metal oxide is more nickel than the first lithium composite transition metal oxide.
  • the content of is small, the first positive electrode active material layer may include an electrolyte solution additive, and the second positive electrode active material layer may not include an electrolyte solution additive.
  • the nickel content of the lithium composite transition metal oxide is 60 mol% or more, it is possible to secure a high capacity of the lithium secondary battery.
  • the first lithium composite transition metal oxide may contain 80 mol% or more of nickel among metals other than lithium, and the second lithium composite transition metal oxide contains less nickel than the first lithium composite transition metal oxide.
  • Nickel may be contained in 33 to 75 mol%.
  • the lithium secondary battery may further secure high capacity.
  • the first and second lithium composite transition metal oxides may each independently be represented by the following Chemical Formula 1.
  • Q is from the group consisting of Al, Si, B, W, Mo, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Ta, Sn, Sr, La, Ce, Pr and Zr. It is any one or more elements selected, and 0.9 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 1.0, 0 ⁇ c ⁇ 1.0, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 1.0, -0.1 ⁇ 1.0.
  • the order of the first and second positive electrode active material layers is not limited.
  • the first positive electrode active material layer (including the first lithium composite transition metal oxide of relatively high content nickel) is formed on the positive electrode current collector, and the second positive electrode active material layer (relatively high) on the first positive electrode active material layer A second lithium composite transition metal oxide of low content nickel) may be formed, and as another example, the second positive electrode active material layer (including a second lithium composite transition metal oxide of relatively low nickel content) is formed on the positive electrode current collector,
  • the first positive electrode active material layer including the first lithium composite transition metal oxide having a relatively high content of nickel may be formed on the second positive electrode active material layer.
  • first and second positive electrode active material layers do not necessarily have to be formed adjacent to each other, and other positive electrode active material layers containing different types of positive electrode active materials or having different compositions are further adjacent to the first and second positive electrode active material layers. It may be formed to be included.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the positive electrode current collector.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body, and the like.
  • the electrolyte additive may be used without limitation as long as it exists in a solid state at room temperature among electrolyte additives generally used in lithium secondary batteries, for example, succinonitrile (SN), ethylene carbonate (Ethylene carbonate, EC) , may be at least one selected from the group consisting of polyethylene glycol (PEG) and cyclic phosphate (CP), and the polyethylene glycol (PEG) may have a molecular weight of 1,000 or more, and inhibit side reactions of the electrolyte To reduce gas generation, more preferably, succinonitrile (SN) can be used.
  • the succinonitrile (SN) is particularly widely used in small batteries that require high voltage, and can be applied to most batteries in addition, and has the advantage of no impurities.
  • the electrolyte additive may be included in an amount of 0.1 to 5 parts by weight, more preferably 1 to 3 parts by weight, based on 100 parts by weight of the first positive electrode active material layer (including the first lithium composite transition metal oxide with a relatively high content of nickel), More preferably, it may be included in an amount of 1.5 to 2 parts by weight. Since the electrolyte solution additive is included within the weight range, it is possible to suppress the increase in resistance while effectively reducing gas generation by suppressing a side reaction of the electrolyte solution.
  • the first and second positive electrode active material layers may include a conductive material and a binder together with the positive electrode active material.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it does not cause chemical change and has electronic conductivity.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or a conductive polymer such as a polyphenylene derivative, and the like, and one or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the positive electrode material particles and the adhesive force between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode for a secondary battery of the present invention forms a first positive electrode slurry comprising a positive electrode active material of a lithium composite transition metal oxide having a relatively high nickel content and an electrolyte additive, and a lithium composite transition metal oxide having a relatively low nickel content.
  • the first positive electrode slurry and the second positive electrode slurry are coated on a positive electrode current collector in a multi-layer structure, dried and rolled.
  • a positive electrode may be manufactured by coating the first positive electrode slurry on a positive electrode current collector, drying the second positive electrode slurry thereon, drying and rolling.
  • the first and second positive electrode slurries may optionally further include a binder and a conductive material.
  • the binder and the conductive material may be applied in the same type and content as those described above for the positive electrode for a secondary battery.
  • the first and second cathode slurries may be prepared by dissolving or dispersing a cathode active material (and an electrolyte solution additive) of a lithium composite transition metal oxide in a solvent.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is to dissolve or disperse the positive electrode active material (and the electrolyte additive), optionally the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and then exhibit excellent thickness uniformity when applied for positive electrode production. It is enough to make it have viscosity.
  • the electrolyte additive particularly succinonitrile (SN)
  • SN succinonitrile
  • NMP N-methylpyrrolidone
  • the solvent (eg, N-methylpyrrolidone (NMP)) used during application and drying of the positive electrode slurry is removed by volatilization, but the electrolyte additive (eg, succinonitrile (SN)) remains without volatilization. After drying, it can be uniformly distributed as a solid phase in the positive electrode active material layer at room temperature.
  • an electrolyte additive for example, succinonitrile (SN)
  • the melting point is low (about 57°C), and at room temperature, it exists as a waxy solid and does not affect the physical properties of the electrode. It turns into a liquid within a few seconds.
  • the concentration of the desired electrolyte additive in the electrode can be easily controlled, and the amount of the total electrolyte additive can be reduced.
  • the electrolyte additive can be applied differently according to the characteristics of the positive electrode active material of each layer in the electrode for a secondary battery having a multilayer structure without adding or changing a special device during the positive electrode manufacturing process.
  • an electrochemical device including the positive electrode is provided.
  • the electrochemical device may specifically be a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery includes the positive electrode according to the present invention, the negative electrode positioned opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and the electrolyte impregnated in the positive electrode and the negative electrode, the positive electrode as described above
  • the electrolyte additive is included only in the electrolyte in the positive electrode active material layer including the lithium composite transition metal oxide having a relatively high nickel content in the positive electrode.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel surface. Carbon, nickel, titanium, one surface-treated with silver, an aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 to 500 ⁇ m, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam body, a nonwoven body, and the like.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the anode active material layer may be formed by applying a composition for forming an anode including an anode active material, and optionally a binder and a conductive material on an anode current collector and drying, or casting the composition for forming a cathode on a separate support, and then , may also be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide;
  • a composite including the above-mentioned metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, flaky, spherical or fibrous shape, and Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • binder and the conductive material may be the same as described above for the positive electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to and excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or these
  • a laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • the electrolyte used in the present invention may include, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, and the like, which can be used in manufacturing a lithium secondary battery.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether-based solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon-based solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a C2 to C20 linear, branched or cycl
  • a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 and the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, the electrolyte has an appropriate conductivity and viscosity, and thus excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • the lithium secondary battery including the positive electrode material according to the present invention stably exhibits excellent discharge capacity, output characteristics and capacity retention rate, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle, HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 as the first lithium composite transition metal oxide, a carbon black conductive material and a PVdF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 96:2:2, and the first lithium A first positive electrode slurry was prepared by mixing 2 parts by weight of succinonitrile (SN) with respect to 100 parts by weight of the composite transition metal oxide, carbon black conductive material, and PVdF binder.
  • SN succinonitrile
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 LiNi 0.6 Co 0.2 Mn 0.2 O 2 , a carbon black conductive material and a PVdF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 96:2:2 to obtain a second positive electrode slurry was prepared.
  • a positive electrode was prepared by coating a first positive electrode slurry on one surface of an aluminum current collector and drying at 130°C, applying a second positive electrode slurry thereon, drying at 130°C, and then rolling.
  • a positive electrode was manufactured in the same manner as in Example 1, except that 1 part by weight of succinonitrile (SN) was mixed in preparing the first positive electrode slurry.
  • SN succinonitrile
  • a positive electrode was manufactured in the same manner as in Example 1, except that 3 parts by weight of succinonitrile (SN) was mixed in preparing the first positive electrode slurry.
  • SN succinonitrile
  • a positive electrode was manufactured in the same manner as in Example 1, except that 2 parts by weight of succinonitrile (SN) was not mixed during the preparation of the first positive electrode slurry.
  • SN succinonitrile
  • succinonitrile (SN) When preparing the first positive electrode slurry, 1 part by weight of succinonitrile (SN) is mixed, and when preparing the second positive electrode slurry, succinonitrile (SN) is mixed with 100 parts by weight of the second lithium composite transition metal oxide, carbon black conductive material and PVdF binder. ) A positive electrode was prepared in the same manner as in Example 1, except that 1 part by weight was mixed.
  • Each of the positive electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 3 was used as the positive electrode.
  • artificial graphite, carbon black conductive material, and PVdF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 96:1:3 to prepare a negative electrode mixture, which was coated on one side of a copper current collector, and then 120 After drying at °C and rolling to prepare a negative electrode.
  • An electrode assembly was prepared by interposing a separator of porous polyethylene between the positive electrode and the negative electrode prepared as described above, and the electrode assembly was placed inside the case, and then the electrolyte was injected into the case to prepare a lithium secondary battery.
  • lithium secondary battery mono-cell prepared in this way For each lithium secondary battery mono-cell prepared in this way, it is charged until it becomes 0.2C and 4.2V in CCCV mode at 45°C, discharged at 0.2C to 2.5V in CC mode, and then in CCCV mode at 45°C. It was charged at 0.5C until it became 4.2V, and discharged to 2.5V at a constant current of 0.5C to measure the capacity retention rate when 100 times of charging and discharging experiments were performed. The results are shown in Table 1 below.
  • Example 1 For each lithium secondary battery mono-cell (Examples 1 to 3, Comparative Examples 1 to 4) prepared as in Experimental Example 1 using the positive electrodes of Examples 1 to 3 and Comparative Examples 1 to 3, CC- In CV mode, the amount of gas generation was evaluated by measuring the volume change after charging (end current 1/20C) until it became 0.7C and 4.2V, and storing it at a high temperature for 4 weeks at 60°C. In addition, after high-temperature storage at 60°C for 4 weeks, at room temperature, the cells are charged and discharged three times in the range of 4.2V-3.0V with a constant current of 0.5C, then set to 50% SOC, 2.5C, 10 seconds of discharge. The amount of resistance increase was measured by voltage decrease/applied current. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 제1 양극활물질층 및 제2 양극활물질층을 포함하는 다층 구조의 이차전지용 양극에 있어서, 상기 제1 양극활물질층은 니켈, 코발트 및 망간을 포함하는 제1 리튬 복합 전이금속 산화물을 포함하며, 상기 제2 양극활물질층은 니켈, 코발트 및 망간을 포함하는 제2 리튬 복합 전이금속 산화물을 포함하고, 상기 제1 리튬 복합 전이금속 산화물 및 제2 리튬 복합 전이금속 산화물은 니켈의 함량이 서로 상이하며, 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층은 전해액 첨가제를 포함하고, 니켈의 함량이 상대적으로 적은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층은 전해액 첨가제를 포함하지 않는 이차전지용 양극에 관한 것이다.

Description

이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
관련 출원과의 상호 인용
본 출원은 2020년 05월 08일자 한국특허출원 제10-2020-0054986호에 기초한 우선권이 이익을 주장하며, 해당 한국특허출원이 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다. 리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 사용되고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소 또는 탄소 복합체 등이 사용되고 있다. 상기 활물질을 적당한 두께와 길이로 전극 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포하여 절연체인 분리막과 함께 감거나 적층하여 전극군을 만든 다음, 캔 또는 이와 유사한 용기에 넣은 후, 전해액을 주입하여 이차전지를 제조한다.
일반적인 리튬 이차전지는 액체 상태의 전해액을 사용하기 때문에 전해액 내 조성이 균일하게 유지된다. 하지만 양극 및 음극의 전극에 따라 필요한 전해액 성분이 다름에도 불구하고 전해액의 조성이 균일하기 때문에 원하는 전지 성능을 만족시키기 위해서는 불필요하게 많은 용매 및 전해액 첨가제를 사용해야하는 문제가 있었다. 이 경우 불필요하게 많은 용매 및 전해액 첨가제로 인해 부반응이 증가할 수 있고, 추가적인 첨가로 인해 가격이 증가하는 문제도 있다.
또한, 리튬 이차전지의 전지 성능을 향상시키기 위해 전극을 다층 구조로 형성하고, 각 층 전극의 전극 활물질의 종류를 다르게 하거나 조성을 다르게 하는 경우, 양극 (또는 음극) 내에서도 전극 층별로 전극 활물질의 종류나 조성이 다르기 때문에 전지 성능 향상을 위해서는 전해액 성분을 다르게 해야 하는 요구가 있었으나, 전해액의 조성이 균일하게 적용되는 문제가 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본공개특허 제1997-320569호
본 발명은 양극 활물질의 종류가 다른 다층 구조의 이차전지용 양극에 있어서 전극 층별로 전해액 성분을 다르게 함으로써, 리튬 이차전지의 고온 성능을 향상시킬 수 있는 이차전지용 양극을 제공하고자 한다.
본 발명은 제1 양극활물질층 및 제2 양극활물질층을 포함하는 다층 구조의 이차전지용 양극에 있어서, 상기 제1 양극활물질층은 니켈, 코발트 및 망간을 포함하는 제1 리튬 복합 전이금속 산화물을 포함하며, 상기 제2 양극활물질층은 니켈, 코발트 및 망간을 포함하는 제2 리튬 복합 전이금속 산화물을 포함하고, 상기 제1 리튬 복합 전이금속 산화물 및 제2 리튬 복합 전이금속 산화물은 니켈의 함량이 서로 상이하며, 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층은 전해액 첨가제를 포함하고, 니켈의 함량이 상대적으로 적은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층은 전해액 첨가제를 포함하지 않는 이차전지용 양극을 제공한다.
또한, 본 발명은 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물의 양극활물질 및 전해액 첨가제를 포함하는 제1 양극 슬러리를 형성하고, 니켈의 함량이 상대적으로 적은 리튬 복합 전이금속 산화물의 양극활물질 및 전해액 첨가제를 포함하지 않는 제2 양극 슬러리를 형성한 후, 양극 집전체 상에 상기 제1 양극 슬러리 및 제2 양극 슬러리를 다층 구조로 도포하고 건조 및 압연하여 제조하는 제1항에 따른 이차전지용 양극의 제조방법을 제공한다.
또한, 본 발명은 상기 양극; 상기 양극에 대향하여 위치하며, 음극 활물질을 포함하는 음극; 상기 양극 및 음극 사이에 위치한 분리막; 및 상기 양극 및 음극 내 함침된 전해액;을 포함하며, 상기 양극 중 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층 내 전해액에만 전해액 첨가제가 포함된 리튬 이차전지를 제공한다.
본 발명에 따르면, 양극 활물질의 종류가 다른 다층 구조의 이차전지용 양극에 있어서 전극 층별로 전해액 성분을 다르게 함으로써, 리튬 이차전지의 고온 성능을 향상시키고, 전해액 부반응을 억제하여 가스 발생을 저감시킬 뿐 아니라 전해액 첨가제로 인한 저항 증가를 최소화할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
<이차전지용 양극 및 그 제조방법>
본 발명은 제1 양극활물질층 및 제2 양극활물질층을 포함하는 다층 구조의 이차전지용 양극에 있어서, 상기 제1 양극활물질층은 니켈, 코발트 및 망간을 포함하는 제1 리튬 복합 전이금속 산화물을 포함하며, 상기 제2 양극활물질층은 니켈, 코발트 및 망간을 포함하는 제2 리튬 복합 전이금속 산화물을 포함하고, 상기 제1 리튬 복합 전이금속 산화물 및 제2 리튬 복합 전이금속 산화물은 니켈의 함량이 서로 상이하며, 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층은 전해액 첨가제를 포함하고, 니켈의 함량이 상대적으로 적은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층은 전해액 첨가제를 포함하지 않는 이차전지용 양극을 제공한다.
리튬 이차전지에 사용되는 전해액 첨가제는 주로 양극 표면에서 전해액 부반응을 억제하여 가스 발생을 저감시키거나, 이온 전도성을 높여 저온 출력을 향상시키고, 저항 또한 감소시키며, 양극의 계면을 보호함으로써 전이금속의 용출을 억제하는 등의 기능을 한다. 그러나, 전해액 첨가제를 과량 사용시 저항 증가의 문제가 있다.
종래에는 다층 구조 전극의 각 층 조성에 따라 필요한 전해액 성분이 다름에도 불구하고 액체 상태의 전해액 내 조성이 균일하기 때문에 전지 성능을 만족시키기 위해서 불필요하게 많은 용매 및 전해액 첨가제를 사용할 수 밖에 없었고, 이로 인해 오히려 전해액 부반응이 증가하거나, 저항이 증가하는 문제가 발생하였다.
이에 본 발명은 이러한 문제를 해결하기 위하여 다층 구조의 이차전지용 전극에 있어서 각 층의 양극 활물질의 특성에 맞게 전해액 첨가제를 다르게 적용하였다. 구체적으로 니켈, 코발트, 망간을 포함하는 리튬 복합 전이금속 산화물의 니켈의 함량을 달리한 이종의 양극 활물질을 각 층에 포함하는 다층 이차전지용 전극에 있어서, 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물의 경우 전해액과의 반응성이 더 크기 때문에 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물의 양극 활물질을 포함하는 양극 활물질 층에 전해액 첨가제를 포함시키고, 니켈의 함량이 상대적으로 적은 리튬 복합 전이금속 산화물의 양극 활물질을 포함하는 양극 활물질 층에는 전해액 첨가제를 포함시키지 않았다.
이를 통해, 리튬 이차전지의 고온 성능을 향상시키고, 전해액 부반응을 억제하여 가스 발생을 저감시키면서도 저항 증가는 최소화할 수 있다.
본 발명의 일 실시예는, 상기 제1 리튬 복합 전이금속 산화물은 리튬을 제외한 금속 중 니켈이 60몰% 이상일 수 있고, 상기 제2 리튬 복합 전이금속 산화물은 상기 제1 리튬 복합 전이금속 산화물보다 니켈의 함량이 적고, 상기 제1 양극활물질층은 전해액 첨가제를 포함하고, 제2 양극 활물질층은 전해액 첨가제를 포함하지 않을 수 있다. 상기 리튬 복합 전이금속 산화물의 니켈 함량이 60몰% 이상이 됨으로써 리튬 이차전지의 고용량을 확보할 수 있다.
보다 바람직하게는 상기 제1 리튬 복합 전이금속 산화물은 리튬을 제외한 금속 중 니켈이 80몰% 이상일 수 있으며, 상기 제2 리튬 복합 전이금속 산화물은 상기 제1 리튬 복합 전이금속 산화물보다 니켈의 함량이 적어 니켈이 33 내지 75몰%로 함유될 수 있다. 상기 제1 리튬 복합 전이금속 산화물의 니켈 함량이 80몰% 이상이 됨으로써 리튬 이차전지가 더욱 고용량을 확보할 수 있다.
상기 제1 및 제2 리튬 복합 전이금속 산화물은 각각 독립적으로 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LiaNi1-b-c-dCobMncQdO2+δ
상기 화학식 1에서, Q은 Al, Si, B, W, Mo, Mg, V, Ti, Zn, Ga, In, Ru, Nb, Ta, Sn, Sr, La, Ce, Pr 및 Zr로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤a≤1.5, 0<b<1.0, 0<c<1.0, 0≤d≤0.1, 0<b+c+d<1.0, -0.1≤δ≤1.0이다.
본 발명의 제1 양극활물질층 및 제2 양극활물질층을 포함하는 다층 구조의 이차전지용 양극은, 제1 및 제2 양극 활물질층의 순서는 제한하지 않는다. 예를 들면, 양극 집전체 상에 상기 제1 양극활물질층(상대적 고함량 니켈의 제1 리튬 복합 전이금속 산화물 포함)이 형성되고, 상기 제1 양극활물질층 상에 상기 제2 양극활물질층(상대적 저함량 니켈의 제2 리튬 복합 전이금속 산화물 포함)이 형성될 수 있고, 다른 예로, 양극 집전체 상에 상기 제2 양극활물질층(상대적 저함량 니켈의 제2 리튬 복합 전이금속 산화물 포함)이 형성되고, 상기 제2 양극활물질층 상에 상기 제1 양극활물질층(상대적 고함량 니켈의 제1 리튬 복합 전이금속 산화물 포함)이 형성될 수도 있다. 또한, 상기 제1 및 제2 양극활물질층이 반드시 인접해서 형성되어야 하는 것은 아니고, 다른 종류의 양극 활물질이 포함되거나 조성이 상이한 다른 양극활물질층이 상기 제1 및 제2 양극활물질층과 인접하게 더 포함되도록 형성될 수도 있다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 전해액 첨가제는 리튬 이차전지에 일반적으로 사용되는 전해액 첨가제 중 상온에서 고체 상태로 존재하는 것이라면 제한 없이 사용 가능하며, 예를 들면, 석시노니트릴(Succinonitrile, SN), 에틸렌카보네이트(Ethylene carbonate, EC), 폴리에틸렌글리콜(Polyethylene glycol, PEG) 및 사이클릭 포스페이트(Cyclic phosphate, CP)로 이루어진 군에서 선택된 적어도 하나일 수 있고, 상기 폴리에틸렌글리콜(PEG)은 분자량이 1,000 이상인 것일 수 있으며, 전해액의 부반응을 억제하여 가스 생성을 저감시키는 용도로서 보다 바람직하게는 석시노니트릴(Succinonitrile, SN)을 사용할 수 있다. 상기 석시노니트릴(Succinonitrile, SN)는 고전압이 필요한 소형 전지에서 특히 많이 사용되고, 이외에도 대부분의 전지에 적용 가능하며, 불순물이 없는 장점이 있다.
상기 전해액 첨가제는 상기 제1 양극활물질층(상대적 고함량 니켈의 제1 리튬 복합 전이금속 산화물 포함) 100중량부에 대하여 0.1 내지 5중량부로 포함할 수 있으며, 보다 바람직하게는 1 내지 3중량부, 더욱 바람직하게는 1.5 내지 2중량부로 포함할 수 있다. 상기 전해액 첨가제가 상기 중량 범위 내로 포함됨으로써 전해액의 부반응을 억제하여 가스 생성을 효과적으로 저감시키면서도 저항 증가를 억제할 수 있다.
상기 제1 및 제2 양극활물질층은 상기 양극활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극재 입자들 간의 부착 및 양극활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
다음으로, 본 발명의 이차전지용 양극의 제조방법을 설명한다.
본 발명의 상기 이차전지용 양극은 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물의 양극활물질 및 전해액 첨가제를 포함하는 제1 양극 슬러리를 형성하고, 니켈의 함량이 상대적으로 적은 리튬 복합 전이금속 산화물의 양극활물질 및 전해액 첨가제를 포함하지 않는 제2 양극 슬러리를 형성한 후, 양극 집전체 상에 상기 제1 양극 슬러리 및 제2 양극 슬러리를 다층 구조로 도포하고 건조 및 압연하여 제조한다. 본 발명의 일 실시예로는, 양극 집전체 상에 상기 제1 양극 슬러리를 도포하고 건조 후 그 위에 상기 제2 양극 슬러리를 도포하고 건조 후 압연하여 양극을 제조할 수 있다.
상기 제1 및 제2 양극 슬러리는 선택적으로 바인더 및 도전재를 더 포함할 수 있다. 상기 바인더 및 도전재는 앞서 이차전지용 양극에서 설명한 것과 종류 및 함량이 동일하게 적용될 수 있다.
상기 제1 및 제2 양극 슬러리는 리튬 복합 전이금속 산화물의 양극활물질 (및 전해액 첨가제)를 용매에 용해 또는 분산시켜 제조할 수 있다. 상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질 (및 전해액 첨가제), 선택적으로 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다. 전해액 첨가제, 특히 석시노니트릴(Succinonitrile, SN)의 경우 용매(예를 들면, N-메틸피롤리돈(NMP))에 녹아 양극 슬러리 내 액상으로 균일하게 분산될 수 있다. 양극 슬러리 도포 및 건조 시에 사용된 용매(예를 들면, N-메틸피롤리돈(NMP))는 휘발되어 제거되지만, 전해액 첨가제(예를 들면, 석시노니트릴(SN))는 휘발되지 않고 남아 건조 후 상온에서 양극활물질층 내 고상으로 균일하게 분포할 수 있다. 전해액 첨가제(예를 들면, 석시노니트릴(SN))의 경우 녹는점이 낮아(약 57℃) 상온에서는 왁스 상태인 고체로 존재하여 전극의 물성에는 영향을 미치지 않고, 셀 조립 과정에서 전해액 주입시 전해액과 만나면 수초 내에 액상으로 변하게 된다.
상기 제1 양극 슬러리의 제조시 전해액 첨가제의 함량을 조절하여 전극 내 원하는 전해액 첨가제의 농도를 쉽게 조절할 수 있으며, 전체 전해액 첨가제의 사용량을 감소시킬 수 있다. 또한, 양극 제조 공정 상 특별한 장치의 추가나 변경 사항 없이도 다층 구조의 이차전지용 전극에 있어서 각 층의 양극 활물질의 특성에 맞게 전해액 첨가제를 다르게 적용이 가능한 장점이 있다.
<리튬 이차전지>
또한, 본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 상기 본 발명에 따른 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 상기 양극 및 음극 내 함침된 전해액을 포함하며, 상기 양극은 앞서 설명한 바와 같으며, 상기 양극 중 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층 내 전해액에만 전해액 첨가제가 포함된다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질 층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해액으로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해액은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해액이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기와 같이 본 발명에 따른 양극재를 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
제1 리튬 복합 전이금속 산화물로서 LiNi0.8Co0.1Mn0.1O2,, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96:2:2의 비율로 혼합하고, 제1 리튬 복합 전이금속 산화물, 카본블랙 도전재 및 PVdF 바인더 전체 100중량부에 대하여 석시노니트릴(SN) 2중량부를 혼합하여 제1 양극 슬러리를 제조하였다.
제2 리튬 복합 전이금속 산화물로서 LiNi0.6Co0.2Mn0.2O2,, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96:2:2의 비율로 혼합하여 제2 양극 슬러리를 제조하였다.
알루미늄 집전체의 일면에 제1 양극 슬러리를 도포하고 130℃에서 건조 후, 그 위에 제2 양극 슬러리를 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
실시예 2
제1 양극 슬러리 제조시 석시노니트릴(SN)를 1중량부로 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
실시예 3
제1 양극 슬러리 제조시 석시노니트릴(SN)를 3중량부로 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
비교예 1
제1 양극 슬러리 제조시 석시노니트릴(SN) 2중량부를 혼합하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
비교예 2
제1 양극 슬러리 제조시 석시노니트릴(SN) 1중량부로 혼합하고, 제2 양극 슬러리 제조시 제2 리튬 복합 전이금속 산화물, 카본블랙 도전재 및 PVdF 바인더 전체 100중량부에 대하여 석시노니트릴(SN) 1중량부를 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
비교예 3
제1 양극 슬러리 제조시 석시노니트릴(SN) 2중량부를 혼합하지 않고, 제2 양극 슬러리 제조시 제2 리튬 복합 전이금속 산화물, 카본블랙 도전재 및 PVdF 바인더 전체 100중량부에 대하여 석시노니트릴(SN) 2중량부를 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
[실험예 1: 고온 수명 특성]
양극으로 실시예 1~3 및 비교예 1~3에서 제조된 각각의 양극을 사용하였다.
음극은 인조흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96:1:3의 비율로 혼합하여 음극 합재을 제조하고, 이를 구리 집전체의 일면에 도포한 후, 120℃에서 건조 후, 압연하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/에틸메틸카보네이트/디에틸카보네이트/(EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
또한, 양극으로 비교예 1에서 제조된 양극을 사용하되, 전해액으로 에틸렌카보네이트/에틸메틸카보네이트/디에틸카보네이트/(EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)와 전해액 첨가제로서 석시노니트릴(SN) 1중량부(양극활물질층 100중량부에 대해)를 용해한 것을 사용하여 리튬 이차전지를 제조하였다(비교예 4).
이와 같이 제조된 각 리튬 이차전지 모노 셀에 대해, 45℃에서 CCCV 모드로 0.2C, 4.2V가 될 때까지 충전하고, CC모드로 2.5V까지 0.2C로 방전시키고, 이후 45℃에서 CCCV모드로 0.5C로 4.2V가 될 때까지 충전하고, 0.5C의 정전류로 2.5V까지 방전하여 100회 충방전 실험을 진행하였을 시의 용량 유지율을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
용량유지율(%)
실시예1 97.1
실시예2 96.7
실시예3 92.6
비교예1 88.7
비교예2 90.8
비교예3 89.6
비교예4 89.1
상기 표 1을 참조하면, 실시예 1~3의 경우 비교예 1~4에 비하여 고온 수명 특성이 현저히 향상된 것을 확인할 수 있다.
[실험예 2: 고온 저장 후 가스 발생 및 저항 평가]
실시예 1~3 및 비교예 1~3의 양극을 사용하여 실험예 1과 같이 제조된 각 리튬 이차전지 모노 셀(실시예 1~3, 비교예 1~4)에 대해, 25℃에서 CC-CV 모드로 0.7C, 4.2V가 될 때까지 충전(종료 전류 1/20C)하고, 60℃에서 4주 동안 고온 저장한 후의 부피 변화량을 측정하여 가스 발생량을 평가하였다. 또한, 60℃에서 4주 동안 고온 보관 후 상온에서 셀은 0.5C의 정전류로 4.2V-3.0V 범위에서 3회 충방전을 진행한 후 SOC 50%로 맞추고, 2.5C, 10초 방전시 발생하는 전압 감소/인가 전류로 저항 증가량을 측정하였다. 그 결과를 표 2에 나타내었다.
가스 발생량(ml) 저항 증가율(%)
실시예1 5.68 4.31
실시예2 5.89 4.82
실시예3 7.35 6.89
비교예1 10.3 11.2
비교예2 8.85 7.58
비교예3 9.73 10.35
비교예4 9.58 10.21
상기 표 2를 참조하면, 실시예 1~3의 경우 비교예 1~4에 비하여 고온 저장 후 가스 발생량이 현저히 감소하고, 저항 증가율이 현저히 감소한 것을 확인할 수 있다.

Claims (9)

  1. 제1 양극활물질층 및 제2 양극활물질층을 포함하는 다층 구조의 이차전지용 양극에 있어서,
    상기 제1 양극활물질층은 니켈, 코발트 및 망간을 포함하는 제1 리튬 복합 전이금속 산화물을 포함하며, 상기 제2 양극활물질층은 니켈, 코발트 및 망간을 포함하는 제2 리튬 복합 전이금속 산화물을 포함하고, 상기 제1 리튬 복합 전이금속 산화물 및 제2 리튬 복합 전이금속 산화물은 니켈의 함량이 서로 상이하며,
    니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층은 전해액 첨가제를 포함하고, 니켈의 함량이 상대적으로 적은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층은 전해액 첨가제를 포함하지 않는 이차전지용 양극.
  2. 제1항에 있어서,
    상기 제1 리튬 복합 전이금속 산화물은 리튬을 제외한 금속 중 니켈이 60몰% 이상이며, 상기 제2 리튬 복합 전이금속 산화물은 상기 제1 리튬 복합 전이금속 산화물보다 니켈의 함량이 적고,
    상기 제1 양극활물질층은 전해액 첨가제를 포함하고, 제2 양극 활물질층은 전해액 첨가제를 포함하지 않는 이차전지용 양극.
  3. 제1항에 있어서,
    상기 전해액 첨가제는 석시노니트릴(Succinonitrile, SN), 에틸렌카보네이트(Ethylene carbonate, EC), 폴리에틸렌글리콜(Polyethylene glycol, PEG) 및 사이클릭 포스페이트(Cyclic phosphate, CP)로 이루어진 군에서 선택된 적어도 하나인 이차전지용 양극.
  4. 제1항에 있어서,
    상기 전해액 첨가제는 석시노니트릴(Succinonitrile, SN)인 이차전지용 양극.
  5. 제1항에 있어서,
    상기 전해액 첨가제는 상기 제1 양극활물질층 100중량부에 대하여 0.1 내지 5중량부로 포함된 이차전지용 양극.
  6. 제2항에 있어서,
    상기 제1 리튬 복합 전이금속 산화물은 리튬을 제외한 금속 중 니켈이 80몰% 이상인 이차전지용 양극.
  7. 제2항에 있어서,
    양극 집전체 상에 상기 제1 양극활물질층이 형성되고, 상기 제1 양극활물질층 상에 상기 제2 양극활물질층이 형성되거나,
    양극 집전체 상에 상기 제2 양극활물질층이 형성되고, 상기 제2 양극활물질층 상에 상기 제1 양극활물질층이 형성된 이차전지용 양극.
  8. 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물의 양극활물질 및 전해액 첨가제를 포함하는 제1 양극 슬러리를 형성하고, 니켈의 함량이 상대적으로 적은 리튬 복합 전이금속 산화물의 양극활물질 및 전해액 첨가제를 포함하지 않는 제2 양극 슬러리를 형성한 후,
    양극 집전체 상에 상기 제1 양극 슬러리 및 제2 양극 슬러리를 다층 구조로 도포하고 건조 및 압연하여 제조하는 제1항에 따른 이차전지용 양극의 제조방법.
  9. 제1항에 따른 양극;
    상기 양극에 대향하여 위치하며, 음극 활물질을 포함하는 음극;
    상기 양극 및 음극 사이에 위치한 분리막; 및
    상기 양극 및 음극 내 함침된 전해액;을 포함하며,
    상기 양극 중 니켈의 함량이 상대적으로 많은 리튬 복합 전이금속 산화물을 포함하는 양극활물질층 내 전해액에만 전해액 첨가제가 포함된 리튬 이차전지.
PCT/KR2021/005710 2020-05-08 2021-05-07 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 WO2021225396A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180007136.3A CN114788043B (zh) 2020-05-08 2021-05-07 二次电池用正极、其制造方法以及包含其的锂二次电池
EP21800590.8A EP4060761A4 (en) 2020-05-08 2021-05-07 CATHODE FOR SECONDARY BATTERY, METHOD FOR MANUFACTURING IT, AND SECONDARY LITHIUM BATTERY COMPRISING IT
JP2022537186A JP7451709B2 (ja) 2020-05-08 2021-05-07 二次電池用正極、その製造方法、およびそれを含むリチウム二次電池
US17/784,241 US20230044623A1 (en) 2020-05-08 2021-05-07 Positive Electrode for Secondary Battery, Method of Manufacturing the Same, and Lithium Secondary Battery Including the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200054986 2020-05-08
KR10-2020-0054986 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021225396A1 true WO2021225396A1 (ko) 2021-11-11

Family

ID=78468262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005710 WO2021225396A1 (ko) 2020-05-08 2021-05-07 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US20230044623A1 (ko)
EP (1) EP4060761A4 (ko)
JP (1) JP7451709B2 (ko)
KR (1) KR20210136877A (ko)
CN (1) CN114788043B (ko)
WO (1) WO2021225396A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031410A (zh) * 2023-03-29 2023-04-28 长安新能源南京研究院有限公司 一种复合正极极片、制备方法及应用
CN116960364A (zh) * 2023-09-21 2023-10-27 宁德时代新能源科技股份有限公司 正极集流体、正极极片、电池单体、电池和用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320569A (ja) 1996-05-30 1997-12-12 Ricoh Co Ltd 非水系2次電池
JP2006080020A (ja) * 2004-09-13 2006-03-23 Nissan Motor Co Ltd 二次電池
KR100892048B1 (ko) * 2006-09-18 2009-04-06 주식회사 엘지화학 고율 방전 특성이 향상된 이차전지
KR101050333B1 (ko) * 2008-07-07 2011-07-19 삼성에스디아이 주식회사 리튬이차전지
KR101477724B1 (ko) * 2006-10-26 2014-12-30 히다치 막셀 가부시키가이샤 비수 2차전지
KR20190064462A (ko) * 2017-11-30 2019-06-10 주식회사 엘지화학 이중층 구조의 활물질층을 구비한 양극 및 이를 포함하는 리튬이차전지
KR20200043612A (ko) * 2018-10-18 2020-04-28 에스케이이노베이션 주식회사 리튬 이차 전지

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0506508B8 (pt) * 2004-02-16 2023-01-10 Lg Chemical Ltd Eletrodo e bateria secundária de lítio
JP5151329B2 (ja) * 2007-09-07 2013-02-27 トヨタ自動車株式会社 正極体およびそれを用いたリチウム二次電池
JP4972624B2 (ja) * 2008-09-30 2012-07-11 日立ビークルエナジー株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
CN103515577A (zh) * 2012-06-26 2014-01-15 广州鹏辉能源科技股份有限公司 一种双层复合锂离子电池的电极及生产方法
JP2014067629A (ja) * 2012-09-26 2014-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
WO2014141695A1 (ja) * 2013-03-11 2014-09-18 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP6396105B2 (ja) * 2013-09-30 2018-09-26 パナソニック株式会社 非水電解質二次電池
JP2017191651A (ja) * 2016-04-11 2017-10-19 株式会社Gsユアサ 蓄電素子
KR102176633B1 (ko) * 2017-02-28 2020-11-09 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190003110A (ko) * 2017-06-30 2019-01-09 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR102415542B1 (ko) * 2018-01-18 2022-06-30 주식회사 엘지에너지솔루션 고체 전해질 전지용 양극 활물질 슬러리 및 그로부터 제조된 고체 전해질 전지용 양극
KR102415543B1 (ko) * 2018-01-18 2022-06-30 주식회사 엘지에너지솔루션 고체 전해질 전지용 전극 및 그를 포함하는 고체 전해질 전지
JP6773059B2 (ja) * 2018-02-14 2020-10-21 トヨタ自動車株式会社 非水電解質二次電池
CN109004175B (zh) * 2018-02-26 2020-09-18 宁德新能源科技有限公司 正极极片和锂离子电池
KR102281373B1 (ko) * 2018-04-26 2021-07-22 주식회사 엘지에너지솔루션 고체 전해질 전지용 양극 및 그를 포함하는 고체 전해질 전지
CN111092194B (zh) * 2018-10-23 2021-03-26 宁德时代新能源科技股份有限公司 一种正极极片、其制备方法以及锂离子二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320569A (ja) 1996-05-30 1997-12-12 Ricoh Co Ltd 非水系2次電池
JP2006080020A (ja) * 2004-09-13 2006-03-23 Nissan Motor Co Ltd 二次電池
KR100892048B1 (ko) * 2006-09-18 2009-04-06 주식회사 엘지화학 고율 방전 특성이 향상된 이차전지
KR101477724B1 (ko) * 2006-10-26 2014-12-30 히다치 막셀 가부시키가이샤 비수 2차전지
KR101050333B1 (ko) * 2008-07-07 2011-07-19 삼성에스디아이 주식회사 리튬이차전지
KR20190064462A (ko) * 2017-11-30 2019-06-10 주식회사 엘지화학 이중층 구조의 활물질층을 구비한 양극 및 이를 포함하는 리튬이차전지
KR20200043612A (ko) * 2018-10-18 2020-04-28 에스케이이노베이션 주식회사 리튬 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060761A4

Also Published As

Publication number Publication date
JP2023508273A (ja) 2023-03-02
KR20210136877A (ko) 2021-11-17
EP4060761A4 (en) 2023-08-02
CN114788043B (zh) 2024-01-09
US20230044623A1 (en) 2023-02-09
CN114788043A (zh) 2022-07-22
JP7451709B2 (ja) 2024-03-18
EP4060761A1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019164313A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019022422A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021145647A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022164281A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2021225396A1 (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020226354A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 양극 및 이를 포함하는 리튬 이차전지
WO2019093869A2 (ko) 이차전지용 양극 활물질의 제조방법
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537186

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021800590

Country of ref document: EP

Effective date: 20220613

NENP Non-entry into the national phase

Ref country code: DE