WO2019151834A1 - 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2019151834A1
WO2019151834A1 PCT/KR2019/001473 KR2019001473W WO2019151834A1 WO 2019151834 A1 WO2019151834 A1 WO 2019151834A1 KR 2019001473 W KR2019001473 W KR 2019001473W WO 2019151834 A1 WO2019151834 A1 WO 2019151834A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
secondary battery
particle diameter
Prior art date
Application number
PCT/KR2019/001473
Other languages
English (en)
French (fr)
Inventor
이동훈
박영욱
정왕모
박성빈
김동휘
유태구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67478890&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019151834(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL19747241.8T priority Critical patent/PL3712990T3/pl
Priority to ES19747241T priority patent/ES2964486T3/es
Priority to EP19747241.8A priority patent/EP3712990B1/en
Priority to EP23196514.6A priority patent/EP4266418A1/en
Priority to CN201980006551.XA priority patent/CN111492510B/zh
Priority to JP2020552659A priority patent/JP7062173B2/ja
Priority to US16/770,820 priority patent/US11515522B2/en
Publication of WO2019151834A1 publication Critical patent/WO2019151834A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
  • lithium secondary battery has attracted attention as a driving power source for portable devices because of its light weight and high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries have been actively conducted.
  • the lithium secondary battery is oxidized when lithium ions are inserted / desorbed from the positive electrode and the negative electrode in a state in which an organic electrolyte or a polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalations and deintercalation of lithium ions. Electrical energy is produced by the reduction reaction.
  • lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4, etc.), lithium iron phosphate compound (LiFePO 4 ), and the like were used.
  • a portion of nickel (Ni) is replaced with cobalt (Co) or manganese (Mn) / aluminum (Al).
  • Lithium composite metal oxides hereinafter referred to simply as 'NCM based lithium composite transition metal oxides' or 'NCA based lithium composite transition metal oxides') have been developed.
  • the present invention improves the energy density by using the positive electrode active material of the large particles and small particles, prevents cracking and cracking of the positive electrode active material by rolling, improves the high temperature life characteristics, and reduces the amount of gas generated during high temperature storage It is to provide a cathode active material for secondary batteries with improved stability, such as.
  • the present invention includes a first positive electrode active material and a second positive electrode active material, wherein the average particle diameter (D 50 ) of the first positive electrode active material is at least two times the average particle diameter (D 50 ) of the second positive electrode active material, and the second
  • the cathode active material provides a cathode active material for a secondary battery having a crystal size of 200 nm or more.
  • the present invention includes preparing a first positive electrode active material and a second positive electrode active material, and then mixing the first positive electrode active material and the second positive electrode active material, the average particle diameter (D 50 ) of the first positive electrode active material is Provided is a method of manufacturing a positive electrode active material for a secondary battery, which is at least twice the average particle diameter (D 50 ) of the second positive electrode active material, and the second positive electrode active material is overfired to have a crystal size of 200 nm or more.
  • the present invention provides a cathode and a lithium secondary battery including the cathode active material.
  • the energy density may be improved by blending alleles and small particles to prepare a bimodal positive electrode active material.
  • the small particle having a crystal size of 200 nm or more due to overfiring By using it, the crack generation and the crack of the positive electrode active material by rolling can be prevented. Through this, it is possible to improve stability, such as improving the capacity characteristics and high temperature life characteristics of the secondary battery, reducing the amount of gas generated during high temperature storage.
  • the positive electrode active material for a secondary battery of the present invention includes a first positive electrode active material and a second positive electrode active material, and the average particle diameter (D 50 ) of the first positive electrode active material is twice or more than the average particle diameter (D 50 ) of the second positive electrode active material.
  • the second cathode active material has a crystal size of 200 nm or more.
  • the positive electrode active material for secondary batteries of the present invention includes a first positive electrode active material which is an allele and a second positive electrode active material which is a small particle.
  • the density of the positive electrode active material layer In order to improve the capacity per volume of the secondary battery positive electrode, it is necessary to increase the density of the positive electrode active material layer.
  • a method of increasing the density of the positive electrode active material layer increases the rolling density (or electrode density) by reducing the voids between the positive electrode active material particles. This is used.
  • the bimodal positive electrode active material in which the positive active material of the large particles and the small particles are mixed as in the present invention since the empty space between the particles of the large particle positive active material can be filled with the small particle positive electrode active material, more compact filling is achieved. It is possible to increase the energy density of the anode.
  • the average particle diameter (D 50 ) of the first positive electrode active material is two times or more the average particle diameter (D 50 ) of the second positive electrode active material.
  • the average particle diameter (D 50 ) may be defined as a particle size corresponding to 50% of the cumulative volume in the particle size distribution curve.
  • the average particle diameter D 50 may be measured using, for example, a laser diffraction method.
  • the measuring method of the average particle diameter (D 50 ) of the positive electrode active material is dispersed in the dispersion medium particles in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to After irradiating an ultrasonic wave of 28 kHz with an output of 60 W, the average particle diameter D 50 corresponding to 50% of the volume accumulation amount in the measuring device can be calculated.
  • the ratio of the average particle diameter (D 50 ) of the first positive electrode active material and the second positive electrode active material may be 2: 1 to 8: 1, and more preferably, the average of the first positive electrode active material and the second positive electrode active material.
  • the particle diameter (D 50 ) ratio may be 2: 1 to 4: 1.
  • the average particle diameter (D 50 ) ratio of the first positive electrode active material and the second positive electrode active material satisfies the above range, thereby effectively reducing the voids between the positive electrode active material particles, increasing the packing density, and improving the positive electrode density to increase the capacity per positive electrode volume. Can be effectively improved.
  • the average particle diameter (D 50 ) of the first positive electrode active material may be 8 to 30 ⁇ m, more preferably 9 to 25 ⁇ m, still more preferably 10 to 22 ⁇ m.
  • the average particle diameter (D 50 ) of the second positive electrode active material may be 9 ⁇ m or less, more preferably 1 to 9 ⁇ m, still more preferably 2 to 8 ⁇ m.
  • the second active material which is relatively small particles, is over-fired and has a crystal size of 200 nm or more.
  • the method of overfiring the second positive electrode active material is not particularly limited as long as it can increase the crystal size (Crystalite size) to 200nm or more, for example, about 50 ° C. than the general cathode active material firing temperature during the firing process. May overcalcin with increased temperature.
  • the second cathode active material may have a crystal size of 200 nm to 500 nm, and more preferably 200 nm to 400 nm.
  • the crystal size may be defined as one domain having aromaticity in the primary particles.
  • the crystal size can be derived from the scherrer equation with XRD measurement data.
  • the first positive electrode active material and the second positive electrode active material may be secondary particles formed by aggregation of primary particles.
  • the second cathode active material which is relatively small particles, may be over-fired so that an average particle diameter (D 50 ) of the primary particles may be 1 ⁇ m or more.
  • the average particle diameter (D 50 ) of the primary particles of the second positive electrode active material is less than 1 ⁇ m, cracking and cracking of the positive electrode active material may occur by rolling, and high temperature life characteristics and stability may be deteriorated.
  • the second positive electrode active material may have an average particle diameter (D 50 ) of the primary particles of 1 to 8 ⁇ m, and more specifically, the second positive electrode active material may have an average particle diameter (D 50 ) of the primary particles. 1 to 6 ⁇ m.
  • the average particle diameter (D 50 ) of the primary particles of the first positive electrode active material that is a relatively large particle may be 100nm to 3 ⁇ m.
  • the first positive electrode active material and the second positive electrode active material of the present invention may be a lithium composite transition metal oxide including at least two or more transition metals selected from the group consisting of nickel (Ni), cobalt (Co), and manganese (Mn).
  • the first positive electrode active material and the second positive electrode active material include nickel (Ni) and cobalt (Co), and at least one selected from the group consisting of manganese (Mn) and aluminum (Al). It may be a lithium composite transition metal oxide comprising a.
  • the first positive electrode active material and the second positive electrode active material may be an NCM-based positive electrode active material including nickel (Ni), cobalt (Co), and manganese (Mn), or nickel (Ni) and cobalt (Co).
  • an NCA-based cathode active material including aluminum (Al) and may be a four-component cathode active material including four components of nickel (Ni), cobalt (Co), manganese (Mn), and aluminum (Al).
  • the first positive electrode active material and the second positive electrode active material according to an embodiment of the present invention, the high content of nickel (Ni) of the total metal element contained in the lithium composite transition metal oxide (Ni) of 60 mol% or more (High -Ni) cathode active material. More preferably, the content of nickel (Ni) in the total metal elements may be 80 mol% or more. As described in the present invention, the use of the first positive electrode active material and the second positive electrode active material of high content nickel (High-Ni) having a content of nickel (Ni) in the total metal element of 60 mol% or more may enable higher capacity.
  • first positive electrode active material and the second positive electrode active material may be lithium composite transition metal oxides having the same composition or lithium composite transition metal oxides having different compositions.
  • first positive electrode active material and the second positive electrode active material may each independently be a lithium composite transition metal oxide represented by Formula 1 below.
  • M a is at least one element selected from the group consisting of Mn and Al
  • M b is at least one element selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb and Mo
  • M c is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo and Cr, 0.9 ⁇ p ⁇ 1.5, 0 ⁇ x1 ⁇ 0.4, 0 ⁇ y1 ⁇ 0.4, 0 ⁇ z1 ⁇ 0.1, 0 ⁇ q1 ⁇ 0.1, and 0 ⁇ x1 + y1 + z1 ⁇ 0.4.
  • Li may be included in an amount corresponding to p, that is, 0.9 ⁇ p ⁇ 1.5. If p is less than 0.9, the capacity may be lowered. If it is more than 1.5, the particles may be sintered in the firing process, and the production of the positive electrode active material may be difficult. Considering the remarkable effect of improving the capacity characteristics of the positive electrode active material according to the control of the Li content and the balance of the sintering property at the time of manufacturing the active material, the Li may be more preferably included in a content of 1.0 ⁇ p ⁇ 1.15.
  • Ni may be included as an amount corresponding to 1- (x1 + y1 + z1), for example, 0.6 ⁇ 1- (x1 + y1 + z1) ⁇ 1.
  • the Ni content in the lithium composite transition metal oxide of Formula 1 is 0.6 or more, the amount of Ni sufficient to contribute to charging and discharging may be secured, thereby achieving high capacity.
  • Ni may be included as 0.8 ⁇ 1- (x1 + y1 + z1) ⁇ 0.99.
  • Co may be included in an amount corresponding to x1, that is, 0 ⁇ x1 ⁇ 0.4.
  • the content of Co in the lithium composite transition metal oxide of Formula 1 exceeds 0.4, there is a fear of increase in cost.
  • Co may be included in a content of 0.05 ⁇ x1 ⁇ 0.2 more specifically.
  • M a may be Mn or Al, or Mn and Al, and these metal elements may improve the stability of the active material, and as a result, may improve the stability of the battery.
  • M a may be included in an amount corresponding to y1, that is, 0 ⁇ y1 ⁇ 0.4.
  • y1 in the lithium composite transition metal oxide of Formula 1 exceeds 0.4, the output characteristics and capacity characteristics of the battery may be deteriorated, and M a may be included in an amount of 0.05 ⁇ y1 ⁇ 0.2.
  • M b may be a doping element included in the crystal structure of the lithium composite transition metal oxide, and M b may be included in an amount corresponding to z1, that is, 0 ⁇ z1 ⁇ 0.1. have.
  • M c of the metal element is a lithium composite transition may not be contained in the metal oxide structure, when mixing the precursor and a lithium source and baking M c is mixed with a source firing or After forming the lithium composite transition metal oxide, a lithium composite transition metal oxide may be prepared in which the M c is doped onto the surface of the lithium composite transition metal oxide by adding and firing an M c source separately.
  • the M c may be included in an amount corresponding to q1, that is, a content which does not deteriorate the characteristics of the positive electrode active material within a range of 0 ⁇ q1 ⁇ 0.1.
  • the first positive electrode active material and the second positive electrode active material may be mixed in a weight ratio of 9: 1 to 1: 9, more preferably in a weight ratio of 8: 2 to 3: 7, most preferably May be mixed in a weight ratio of 8: 2 to 5: 5.
  • the first positive electrode active material, which is an allele and the second positive electrode active material, which is a small particle, whose crystal size is 200 nm or more within the above range, the energy density of the positive electrode can be increased, high capacity and excellent thermal stability can be ensured, and Side reactions can be suppressed.
  • the lithium secondary battery manufactured using the cathode active material as described above may realize high capacity and improve battery characteristics such as high temperature life characteristics.
  • the positive electrode active material of the present invention includes preparing a first positive electrode active material and a second positive electrode active material, and then mixing the first positive electrode active material and the second positive electrode active material, and the average particle diameter (D 50 ) of the first positive electrode active material is At least two times the average particle diameter (D 50 ) of the second positive electrode active material, and the second positive electrode active material is manufactured by underfiring so that a crystal size is 200 nm or more.
  • the first positive electrode active material may use an allele having an average particle diameter (D 50 ) of 8 to 30 ⁇ m, more preferably 9 to 25 ⁇ m, and more preferably 10 to 22 ⁇ m.
  • D 50 average particle diameter
  • the second positive electrode active material may use small particles having an average particle diameter (D 50 ) of 9 ⁇ m or less, more preferably 1 to 9 ⁇ m, and more preferably 2 to 8 ⁇ m.
  • D 50 average particle diameter
  • the second cathode active material which is relatively small particles, is manufactured by underfiring, and has a crystal size of 200 nm or more.
  • the overfiring method is not particularly limited, but for example, the underfiring method may be overfired at a temperature increased by about 50 ° C from about 800 to 1000 ° C, which is a firing temperature of a general cathode active material. More preferably, the second positive electrode active material may be manufactured by underfiring such that the crystal size is 200 to 500 nm, more preferably 200 to 400 nm.
  • the second cathode active material which is relatively small particles, may be manufactured by underfiring such that the average particle diameter (D 50 ) of the primary particles is 1 ⁇ m or more. More specifically, the second positive electrode active material has an average particle diameter (D 50 ) of the primary particles of 1 to 8 ⁇ m, and more specifically, the second positive electrode active material has an average particle diameter (D 50 ) of the primary particles of 1 to 6 ⁇ m. It may be prepared by overfiring to a thickness. On the other hand, the average particle diameter (D 50 ) of the primary particles of the first positive electrode active material that is a relatively large particle may be 100nm to 3 ⁇ m.
  • composition and the mixing ratio of the first positive electrode active material and the second positive electrode active material are overlapped with the description of the positive electrode active material, it will be omitted.
  • According to another embodiment of the present invention provides a lithium secondary battery positive electrode and a lithium secondary battery comprising the positive electrode active material.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical change in the battery.
  • the positive electrode current collector is made of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the positive electrode current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material layer may include a conductive material and a binder together with the cathode active material described above.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 to 30 wt% based on the total weight of the cathode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the composition for forming a cathode active material layer including the cathode active material and optionally, a binder and a conductive material may be coated on a cathode current collector, followed by drying and rolling.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity during application for the production of the positive electrode. Do.
  • the positive electrode may be manufactured by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of about 3 to 500 ⁇ m, and like the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode active material layer may be coated with a negative electrode active material and a negative electrode active material, and optionally a composition for forming a negative electrode including a binder and a conductive material and dried, or the negative electrode active material may be cast on a separate support. It can also be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular for ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • LiNi 0 as the first positive electrode active material . 88 Co 0 . 10 Mn 0 . 02 O 2 particles (D 50 14 ⁇ m), LiNi 0.
  • the first positive electrode active material is not overfired, the crystallite size is 145nm, the second positive electrode active material is overfired, the crystal size is 230nm, the average particle diameter of the primary particles (D 50 ) Was used at 2 ⁇ m.
  • the first positive electrode active material and the second positive electrode active material were mixed at a weight ratio of 8: 2 to prepare a positive electrode active material.
  • the first positive electrode active material is not overfired, the crystallite size is 140nm, the second positive electrode active material is underfired, the crystal size is 260nm, the average particle diameter of the primary particles (D 50 ) Was used at 2 ⁇ m.
  • the first positive electrode active material and the second positive electrode active material were mixed at a weight ratio of 7: 3 to prepare a positive electrode active material.
  • LiNi 0 as the first positive electrode active material . 88 Co 0 . 10 Mn 0 . 02 O 2 particles (D 50 14 ⁇ m), LiNi 0.
  • the first positive electrode active material and the second positive electrode active material are not under-fired, and the crystallite size of the first positive electrode active material is 145 nm, and the second positive electrode active material has a crystal size of 130 nm, 1
  • a positive electrode active material was prepared in the same manner as in Example 1 except that the average particle diameter (D 50 ) of the tea particles was 0.5 ⁇ m.
  • the rolling density was divided into 5 g of each of the positive electrode active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2 to fill the cylindrical holder without gaps, and then increased from 400 kgf to 400 kgf by 2000 kgf when a pressure of up to 2000 kgf was applied. The density of the powder was measured at.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Rolling Density (g / cm 3 ) 3.1 3.2 3.0 2.8
  • Examples 1 to 2 using a first positive active material that is an allele and a second positive active material having a small particle and a crystal size of 200 nm or more are compared using a monomodal positive electrode active material. Rolling density improved compared with Example 2.
  • the degree of particle cracking when the positive electrode active materials of Examples 1 to 2 and Comparative Examples 1 to 2 were rolled at 2,000 kgf in the same manner as in Experimental Example 1 was evaluated.
  • the degree of particle breakage was observed through a scanning electron microscope (SEM), and more specifically, the degree of particle breakage was calculated from the D 50 change amount of PSD (Particle Size Distribution), and the results are shown in Table 2. .
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Particle Cracking (%) 3.9 4.2 8.3 21.4
  • positive electrode active materials As positive electrode active materials, the positive electrode active materials, carbon black conductive materials, and PVdF binders prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were mixed in a N-methylpyrrolidone solvent in a weight ratio of 96.5: 1.5: 2. To prepare a positive electrode mixture (viscosity: 5000 mPa ⁇ s), apply it to one surface of an aluminum current collector, dry at 130 ° C., and roll to prepare a positive electrode. The negative electrode used lithium metal.
  • An electrode assembly was manufactured between the positive electrode and the negative electrode prepared as described above through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • Example 4 For each lithium secondary battery half cell prepared as in Example 3 using the respective positive electrode active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2, the SOC was 100% at 60 ° C. The gas generation amount was measured by storing for 2 weeks, and the results are shown in Table 4.
  • Examples 1 to 2 the bimodal of the alleles and the small particles are used, but when stored at a high temperature compared to Comparative Example 1 using the small particles having a crystalite size of less than 200 nm It can be seen that the gas generation amount is significantly reduced. In addition, in Examples 1 to 2, the amount of gas generated during high temperature storage was further reduced compared to Comparative Example 2 using a monomodal positive electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명은 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상인 이차전지용 양극 활물질에 관한 것이다.

Description

이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
관련출원과의 상호인용
본 출원은 2018년 2월 1일자 한국 특허 출원 제10-2018-0013114호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, 리튬 니켈 산화물(LiNiO2)의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)/알루미늄(Al)으로 치환한 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물' 또는 'NCA계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다.
또한, 전극의 단위 부피당 용량을 증가시키기 위해 대립자 및 소립자를 블렌딩(blending)하여 바이모달(bimodal)로 양극 활물질 층을 제조함으로써 압연 밀도를 증가시키는 등의 연구가 이루어지고 있다. 그러나, 아직까지 고용량이면서도 우수한 열 안정성을 동시에 만족하는 양극 활물질에 대한 개발이 여전히 필요한 실정이다.
본 발명은 대립자 및 소립자의 양극 활물질을 사용하여 에너지 밀도를 향상시키고, 압연에 의한 양극 활물질의 크랙(crack) 발생 및 깨짐을 방지하며, 고온 수명 특성을 향상시키고, 고온 저장 시 가스 발생량을 저하시키는 등 안정성을 개선한 이차전지용 양극 활물질을 제공하고자 하는 것이다.
본 발명은 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상인 이차전지용 양극 활물질을 제공한다.
또한, 본 발명은 제1 양극 활물질 및 제2 양극 활물질을 마련한 후, 상기 제1 양극 활물질 및 제2 양극 활물질을 혼합하는 단계를 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상이 되도록 과소성하여 제조된 이차전지용 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
본 발명에 따르면, 대립자 및 소립자를 블렌딩(blending)하여 바이모달(bimodal)의 양극 활물질을 제조함으로써 에너지 밀도를 향상시킬 수 있으며, 이때, 과소성하여 결정 사이즈(Crystalite size)가 200nm 이상인 소립자를 사용함으로써 압연에 의한 양극 활물질의 크랙(crack) 발생 및 깨짐을 방지할 수 있다. 이를 통해, 이차전지의 용량 특성 및 고온 수명 특성을 향상시키고, 고온 저장 시 가스 발생량을 저하시키는 등 안정성을 개선할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
<양극 활물질>
본 발명의 이차전지용 양극 활물질은 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상이다.
본 발명의 이차전지용 양극 활물질은 대립자인 제1 양극 활물질과 소립자인 제2 양극 활물질을 포함한다.
이차전지용 양극의 부피당 용량을 향상시키기 위해서는 양극 활물질 층의 밀도를 증가시킬 필요가 있는데, 양극 활물질 층의 밀도를 증가시키는 방법으로 양극 활물질 입자 사이의 공극을 줄여 압연 밀도(또는 전극 밀도)를 높이는 방법이 사용된다. 본 발명과 같이 대립자 및 소립자의 양극 활물질을 혼합한 바이모달(bimodal)의 양극 활물질의 경우, 대립자 양극 활물질의 입자들 사이의 빈 공간을 소립자 양극 활물질로 채울 수 있으므로, 보다 조밀한 충진이 가능하고, 양극의 에너지 밀도를 증가시킬 수 있다.
상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이다.
본 발명에 있어서, 평균 입경(D50)은 입경 분포 곡선에서 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.
보다 구체적으로는, 상기 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50) 비는 2:1 내지 8:1일 수 있고, 더욱 바람직하게는 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50) 비는 2:1 내지 4:1일 수 있다. 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50) 비가 상기 범위 내를 만족함으로써, 양극 활물질 입자들 사이의 공극을 보다 효과적으로 줄이고, 충진 밀도를 높이며, 양극 밀도를 향상시켜 양극 부피당 용량을 효과적으로 향상시킬 수 있다.
구체적으로, 상기 제1 양극 활물질의 평균 입경(D50)은 8 내지 30㎛일 수 있으며, 보다 바람직하게는 9 내지 25㎛, 더욱 바람직하게는 10 내지 22㎛일 수 있다.
상기 제2 양극 활물질의 평균 입경(D50)은 9㎛ 이하일 수 있으며, 보다 바람직하게는 1 내지 9㎛, 더욱 바람직하게는 2 내지 8㎛일 수 있다.
상대적으로 소립자인 상기 제2 활물질은 과소성되어 결정 사이즈(Crystalite size)가 200nm 이상이다. 상기 제2 양극 활물질의 결정 사이즈(Crystalite size)가 200nm 미만인 경우 압연에 의해 양극 활물질의 크랙(crack) 및 깨짐이 발생하고, 고온 수명 특성 및 안정성이 저하될 수 있다. 상기 제2 양극 활물질을 과소성하는 방법은 결정 사이즈(Crystalite size)를 200nm 이상으로 증가시킬 수 있는 방법이라면 특별히 제한되지 않으나, 예를 들면, 소성하는 과정에서 일반적인 양극 활물질 소성 온도보다 약 50℃ 가량 증가시킨 온도로 과소성할 수 있다. 보다 바람직하게는 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200 내지 500nm, 더욱 바람직하게는 200 내지 400nm일 수 있다.
본 발명에 있어서, 결정 사이즈(Crystalite size)는 1차 입자 중에서 방향성을 가지고 있는 하나의 도메인(domain)으로 정의할 수 있다. 상기 결정 사이즈(Crystalite size)는 XRD 측정 데이터를 가지고 scherrer equation을 통해 도출될 수 있다.
상기 제1 양극 활물질 및 제2 양극 활물질은 1차 입자가 응집되어 이루어진 2차 입자일 수 있다. 이때, 상대적으로 소립자인 상기 제2 양극 활물질은 과소성되어 1차 입자의 평균 입경(D50)이 1㎛ 이상일 수 있다. 상기 제2 양극 활물질의 1차 입자의 평균 입경(D50)이 1㎛ 미만인 경우 압연에 의해 양극 활물질의 크랙(crack) 및 깨짐이 발생하고, 고온 수명 특성 및 안정성이 저하될 수 있다. 보다 구체적으로, 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1 내지 8㎛일 수 있고, 더욱 구체적으로, 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1 내지 6㎛일 수 있다. 한편, 상대적으로 대립자인 상기 제1 양극 활물질의 1차 입자의 평균 입경(D50)은 100nm 내지 3㎛일 수 있다.
본 발명의 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 2 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물일 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물일 수 있다. 예를 들어, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 NCM계 양극 활물질일 수 있고, 또는 니켈(Ni), 코발트(Co) 및 알루미늄(Al)을 포함하는 NCA계 양극 활물질일 수 있으며, 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 양극 활물질일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 제1 양극 활물질 및 제2 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 양극 활물질일 수 있다. 보다 바람직하게는 전체 금속 원소 중 니켈(Ni)의 함량이 80몰% 이상일 수 있다. 본 발명과 같이 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 제1 양극 활물질 및 제2 양극 활물질을 사용하면 보다 더 고용량 확보가 가능할 수 있다.
한편, 상기 제1 양극 활물질 및 제2 양극 활물질은 서로 동일한 조성의 리튬 복합 전이금속 산화물일 수도 있고, 또는 상이한 조성의 리튬 복합 전이금속 산화물일 수 있다.
보다 구체적으로, 상기 제1 양극 활물질 및 제2 양극 활물질은 각각 독립적으로 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물일 수 있다.
[화학식 1]
LipNi1-(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2
상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1 이고, 0<x1+y1+z1≤0.4이다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Li은 p에 해당하는 함량, 즉 0.9≤p≤1.5로 포함될 수 있다. p가 0.9 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 양극 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극 활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때, 상기 Li는 보다 바람직하게는 1.0≤p≤1.15의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ni은 1-(x1+y1+z1)에 해당하는 함량, 예를 들어, 0.6≤1-(x1+y1+z1)<1로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Ni의 함량이 0.6 이상의 조성이 되면 충방전에 기여하기에 충분한 Ni량이 확보되어 고용량화를 도모할 수 있다. 보다 바람직하게는 Ni은 0.8≤1-(x1+y1+z1)≤0.99로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Co는 x1에 해당하는 함량, 즉 0<x1≤0.4으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Co의 함량이 0.4를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.05≤x1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ma은 Mn 또는 Al이거나, Mn 및 Al일 수 있고, 이러한 금속 원소는 활물질의 안정성을 향상시키고, 결과로서 전지의 안정성을 개선시킬 수 있다. 수명 특성 개선 효과를 고려할 때, 상기 Ma은 y1에 해당하는 함량, 즉 0<y1≤0.4의 함량으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 y1가 0.4를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있으며, 상기 Ma은 보다 구체적으로 0.05≤y1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mb는 리튬 복합 전이금속 산화물의 결정 구조 내 포함된 도핑원소일 수 있으며, Mb는 z1에 해당하는 함량, 즉 0≤z1≤0.1로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mc의 금속 원소는 리튬 복합 전이금속 산화물 구조 내에 포함되지 않을 수 있고, 전구체와 리튬 소스를 혼합하고 소성할 때 Mc 소스를 함께 혼합하여 소성하거나, 리튬 복합 전이금속 산화물을 형성한 후 별도로 Mc 소스를 투입하고 소성하는 방법을 통해 상기 Mc가 리튬 복합 전이금속 산화물의 표면에 도핑된 리튬 복합 전이금속 산화물을 제조할 수 있다. 상기 Mc는 q1에 해당하는 함량, 즉 0≤q1≤0.1의 범위 내에서 양극 활물질의 특성을 저하하지 않는 함량으로 포함될 수 있다.
본 발명의 일 실시예는 상기 제1 양극 활물질 및 제2 양극 활물질이 9:1 내지 1:9의 중량비로 혼합될 수 있으며, 보다 바람직하게는 8:2 내지 3:7의 중량비, 가장 바람직하게는 8:2 내지 5:5의 중량비로 혼합될 수 있다. 대립자인 제1 양극 활물질과, 소립자이며 결정 사이즈(Crystalite size)가 200nm 이상인 제2 양극 활물질을 상기 범위 내로 혼합 사용함으로써 양극의 에너지 밀도를 높이고, 고용량 및 우수한 열 안정성을 확보할 수 있으며, 전해액과의 부반응을 억제할 수 있다. 이에 따라, 상기와 같은 양극 활물질을 사용하여 제조된 리튬 이차전지는 높은 용량을 구현하고, 고온 수명 특성 등의 전지 특성이 향상될 수 있다.
<양극 활물질의 제조방법>
다음으로, 본 발명의 양극 활물질의 제조방법을 설명한다.
본 발명의 양극 활물질은 제1 양극 활물질 및 제2 양극 활물질을 마련한 후, 상기 제1 양극 활물질 및 제2 양극 활물질을 혼합하는 단계를 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상이 되도록 과소성하여 제조된다.
상기 제1 양극 활물질은 평균 입경(D50)이 8 내지 30㎛인 대립자를 사용할 수 있으며, 보다 바람직하게는 9 내지 25㎛, 더욱 바람직하게는 10 내지 22㎛일 수 있다.
상기 제2 양극 활물질은 평균 입경(D50)이 9㎛ 이하인 소립자를 사용할 수 있으며, 보다 바람직하게는 1 내지 9㎛, 더욱 바람직하게는 2 내지 8㎛일 수 있다.
이때, 상대적으로 소립자인 상기 제2 양극 활물질은 과소성하여 제조되어 결정 사이즈(Crystalite size)가 200nm 이상이다. 과소성 방법은 특별히 제한되지는 않으나, 예를 들면, 일반적인 양극 활물질의 소성 온도인 약 800 내지 1000℃ 범위보다 약 50℃ 가량 증가시킨 온도로 과소성할 수 있다. 보다 바람직하게는 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200 내지 500nm, 더욱 바람직하게는 200 내지 400nm가 되도록 과소성하여 제조될 수 있다.
또한, 상대적으로 소립자인 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1㎛ 이상이 되도록 과소성하여 제조될 수 있다. 보다 구체적으로, 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1 내지 8㎛, 더욱 구체적으로, 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1 내지 6㎛가 되도록 과소성하여 제조될 수 있다. 한편, 상대적으로 대립자인 상기 제1 양극 활물질의 1차 입자의 평균 입경(D50)은 100nm 내지 3㎛일 수 있다.
이외에 상기 제1 양극 활물질 및 제2 양극 활물질의 조성 및 혼합비 등은 앞서 양극 활물질에 대한 설명과 중복되므로 생략하도록 한다.
<양극 및 이차전지>
본 발명의 또 다른 일 실시예에 따르면 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질 층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극 활물질 층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질 층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
제1 양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 14㎛), 제2 양극 활물질로서 LiNi0 . 8Co0 . 1Mn0 . 1O2의 입자(D50= 5㎛)를 준비하였다. 이때, 상기 제1 양극 활물질은 과소성되지 않은 것으로 결정 사이즈(Crystallite size)가 145nm이고, 상기 제2 양극 활물질은 과소성되어 결정 사이즈(Crystalite size)가 230nm, 1차 입자의 평균 입경(D50)이 2㎛인 것을 사용하였다. 상기 제1 양극 활물질 및 제2 양극 활물질을 8:2의 중량비로 혼합하여 양극 활물질을 제조하였다.
실시예 2
제1 양극 활물질로서 LiNi0 . 87Co0 . 08Mn0 . 03Al0 . 02O2의 입자(D50= 15㎛)이며, 제2 양극 활물질로서 LiNi0 . 8Co0 . 1Mn0 . 1O2의 입자(D50= 6㎛)를 준비하였다. 이때, 상기 제1 양극 활물질은 과소성되지 않은 것으로 결정 사이즈(Crystallite size)가 140nm이고, 상기 제2 양극 활물질은 과소성되어 결정 사이즈(Crystalite size)가 260nm, 1차 입자의 평균 입경(D50)이 2㎛인 것을 사용하였다. 상기 제1 양극 활물질 및 제2 양극 활물질을 7:3의 중량비로 혼합하여 양극 활물질을 제조하였다.
비교예 1
제1 양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 14㎛), 제2 양극 활물질로서 LiNi0 . 8Co0 . 1Mn0 . 1O2의 입자(D50= 5㎛)를 준비하였다. 이때, 상기 제1 양극 활물질 및 제2 양극 활물질은 과소성되지 않은 것으로, 제1 양극 활물질의 결정 사이즈(Crystallite size)가 145nm이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 130nm, 1차 입자의 평균 입경(D50)이 0.5㎛인 것을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 2
양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 14㎛)인 모노모달(monomodal)로 사용하여 양극 활물질을 제조하였다.
[실험예 1: 압연 밀도 평가]
실시예 1 내지 2 및 비교예 1 내지 2에서 제조된 양극 활물질의 압연 밀도를 평가하였으며, 그 결과를 표 1에 나타내었다.
압연 밀도는, 실시예 1 내지 2 및 비교예 1 내지 2에서 제조된 각각의 양극 활물질 5g을 소분하여 원통형의 홀더에 빈틈없이 채운 후, 400kgf부터 400kgf씩 증가시켜 2000kgf까지의 압력을 가하였을 때 2000kgf에서 분체의 밀도를 측정하였다.
실시예1 실시예2 비교예1 비교예2
압연밀도(g/cm3) 3.1 3.2 3.0 2.8
상기 표 1을 참조하면, 대립자인 제1 양극 활물질과, 소립자이며 결정 사이즈(Crystalite size)가 200nm 이상인 제2 양극 활물질을 혼합 사용한 실시예 1 내지 2는 모노모달(monomodal)의 양극 활물질을 사용한 비교예 2에 비하여 압연 밀도가 향상되었다.
[실험예 2: 입자 깨짐 평가]
실시예 1 내지 2 및 비교예 1 내지 2의 양극 활물질을 실험예 1의 방법과 동일하게 2,000kgf로 압연했을 때의 입자 깨짐 정도를 평가하였다. 입자 깨짐 정도는, 주사전자현미경(SEM, Scanning Electron Microscope)을 통해 관찰하였으며, 더 자세히는, PSD(Particle Size Distribution)의 D50 변화량을 통해 입자 깨짐 정도를 계산하여 그 결과를 표 2에 나타내었다.
실시예1 실시예2 비교예1 비교예2
입자 깨짐(%) 3.9 4.2 8.3 21.4
상기 표 2를 참조하면, 실시예 1 내지 실시예 2의 경우, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만 결정 사이즈(Crystalite size)가 200nm 미만인 소립자를 사용한 비교예 1에 비하여 입자 깨짐 정도가 현저히 감소한 것을 확인할 수 있다. 또한, 실시예 1 내지 실시예 2의 경우, 모노모달(monomodal)의 양극 활물질을 사용한 비교예 2에 비해서 입자 깨짐 정도가 더욱 현저히 감소하였다.
[실험예 3: 고온 수명 특성 평가]
양극 활물질로서 실시예 1 내지 2 및 비교예 1 내지 2에 의해 제조된 각각의 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96.5:1.5:2의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다. 음극은 리튬 메탈을 사용하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
실시예 1 내지 실시예 2 및 비교예 1 내지 2에 의해 제조된 각각의 양극 활물질을 사용하여 제조된 각 리튬 이차전지 하프 셀(half cell)에 대해, 45℃에서 CCCV 모드로 0.5C, 4.25V가 될 때까지 충전(종료 전류 1/20C)하고, 0.5C의 정전류로 2.5V가 될 때까지 방전하여 100회 충방전 실험을 진행하였을 시의 용량 유지율을 측정하여 고온 수명 특성 평가를 진행하였다. 그 결과를 표 3에 나타내었다.
초기 용량(mAh/g) 용량유지율(%)(@100회 cycles)
실시예1 201 78
실시예2 200 76
비교예1 202 60
비교예2 198 57
상기 표 3을 참조하면, 실시예 1 내지 실시예 2의 경우, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만 결정 사이즈(Crystalite size)가 200nm 미만인 소립자를 사용한 비교예 1에 비하여 고온 수명 특성이 현저히 향상된 것을 확인할 수 있다. 또한, 실시예 1 내지 실시예 2의 경우, 모노모달(monomodal)의 양극 활물질을 사용한 비교예 2에 비해서 고온 수명 특성이 더욱 현저히 향상되었으며, 초기 용량도 증가하였다.
[실험예 4: 고온 저장 특성 평가]
실시예 1 내지 2 및 비교예 1 내지 2에 의해 제조된 각각의 양극 활물질을 사용하여 실험예 3에서와 같이 제조된 각 리튬 이차전지 하프 셀(half cell)에 대해, SOC 100%, 60℃에서 2주 저장하여 가스 발생량을 측정하였으며, 그 결과를 표 4에 나타내었다.
가스 발생량(㎕)
실시예1 78
실시예2 76
비교예1 110
비교예2 125
상기 표 4를 참조하면, 실시예 1 내지 실시예 2의 경우, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만 결정 사이즈(Crystalite size)가 200nm 미만인 소립자를 사용한 비교예 1에 비하여 고온 저장시 가스 발생량이 현저히 감소된 것을 확인할 수 있다. 또한, 실시예 1 내지 실시예 2의 경우, 모노모달(monomodal)의 양극 활물질을 사용한 비교예 2에 비해서 고온 저장시 가스 발생량이 더욱 감소하였다.

Claims (15)

  1. 제1 양극 활물질 및 제2 양극 활물질을 포함하며,
    상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고,
    상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상인 이차전지용 양극 활물질.
  2. 제1항에 있어서,
    상기 제2 양극 활물질은 1차 입자가 응집되어 이루어진 2차 입자이며, 상기 제2 양극 활물질의 1차 입자 평균 입경(D50)이 1㎛ 이상인 이차전지용 양극 활물질.
  3. 제1항에 있어서,
    상기 제2 양극 활물질의 평균 입경(D50)은 9㎛ 이하인 이차전지용 양극 활물질.
  4. 제1항에 있어서,
    상기 제1 양극 활물질의 평균 입경(D50)은 8 내지 30㎛인 이차전지용 양극 활물질.
  5. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은 서로 동일 또는 상이한 조성의 리튬 복합 전이금속 산화물인 이차전지용 양극 활물질.
  6. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은 각각 독립적으로 하기 화학식 1로 표시되는 이차전지용 양극 활물질.
    [화학식 1]
    LipNi1 -(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2
    상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1이고, 0<x1+y1+z1≤0.4이다.
  7. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은 9:1 내지 1:9의 중량비로 혼합된 이차전지용 양극 활물질.
  8. 제1 양극 활물질 및 제2 양극 활물질을 마련한 후, 상기 제1 양극 활물질 및 제2 양극 활물질을 혼합하는 단계를 포함하며,
    상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상이 되도록 과소성하여 제조된 이차전지용 양극 활물질의 제조방법.
  9. 제8항에 있어서,
    상기 제2 양극 활물질은 1차 입자가 응집되어 이루어진 2차 입자이며, 상기 제2 양극 활물질의 1차 입자 평균 입경(D50)이 1㎛ 이상인 이차전지용 양극 활물질의 제조방법.
  10. 제8항에 있어서,
    상기 제2 양극 활물질의 평균 입경(D50)은 9㎛ 이하인 이차전지용 양극 활물질의 제조방법.
  11. 제8항에 있어서,
    상기 제1 양극 활물질의 평균 입경(D50)은 8 내지 30㎛인 이차전지용 양극 활물질의 제조방법.
  12. 제8항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은 각각 독립적으로 하기 화학식 1로 표시되는 이차전지용 양극 활물질의 제조방법.
    [화학식 1]
    LipNi1 -(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2
    상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1이고, 0<x1+y1+z1≤0.4이다.
  13. 제8항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은 9:1 내지 1:9의 중량비로 혼합하는 이차전지용 양극 활물질의 제조방법.
  14. 제1항 내지 제7항 중 어느 한 항에 따른 양극 활물질을 포함하는 이차전지용 양극.
  15. 제14항에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2019/001473 2018-02-01 2019-02-01 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 WO2019151834A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL19747241.8T PL3712990T3 (pl) 2018-02-01 2019-02-01 Materiał aktywny katody do baterii akumulatorowej, sposób jego wytwarzania oraz litowa bateria akumulatorowa zawierająca ten materiał
ES19747241T ES2964486T3 (es) 2018-02-01 2019-02-01 Material activo de cátodo para batería secundaria, método de preparación para el mismo y batería secundaria de litio que comprende el mismo
EP19747241.8A EP3712990B1 (en) 2018-02-01 2019-02-01 Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
EP23196514.6A EP4266418A1 (en) 2018-02-01 2019-02-01 Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
CN201980006551.XA CN111492510B (zh) 2018-02-01 2019-02-01 二次电池用正极活性材料、其制备方法以及包含其的锂二次电池
JP2020552659A JP7062173B2 (ja) 2018-02-01 2019-02-01 二次電池用正極活物質、その製造方法、及びこれを含むリチウム二次電池
US16/770,820 US11515522B2 (en) 2018-02-01 2019-02-01 Positive electrode active material for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0013114 2018-02-01
KR1020180013114A KR102359103B1 (ko) 2018-02-01 2018-02-01 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2019151834A1 true WO2019151834A1 (ko) 2019-08-08

Family

ID=67478890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001473 WO2019151834A1 (ko) 2018-02-01 2019-02-01 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (9)

Country Link
US (1) US11515522B2 (ko)
EP (2) EP3712990B1 (ko)
JP (1) JP7062173B2 (ko)
KR (1) KR102359103B1 (ko)
CN (1) CN111492510B (ko)
ES (1) ES2964486T3 (ko)
HU (1) HUE064059T2 (ko)
PL (1) PL3712990T3 (ko)
WO (1) WO2019151834A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113383445A (zh) * 2019-08-12 2021-09-10 株式会社Lg化学 锂二次电池用正极和包含所述正极的锂二次电池
CN113474912A (zh) * 2019-08-12 2021-10-01 株式会社Lg化学 锂二次电池用正极和包含所述正极的锂二次电池
CN113764656A (zh) * 2020-06-04 2021-12-07 Sk新技术株式会社 锂二次电池的正极活性物质
CN113871609A (zh) * 2020-06-30 2021-12-31 三星Sdi株式会社 镍类锂金属复合氧化物、其制备方法和锂二次电池
EP3944366A1 (en) * 2020-07-20 2022-01-26 SK Innovation Co., Ltd. Cathode for lithium secondary battery and lithium secondary battery including the same
US20220109141A1 (en) * 2020-10-05 2022-04-07 Prime Planet Energy & Solutions, Inc. Positive electrode active material powder, positive electrode, lithium ion battery, and method of producing positive electrode
EP3951917A4 (en) * 2019-03-26 2022-06-22 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY
JP2023514346A (ja) * 2020-03-18 2023-04-05 エルジー・ケム・リミテッド リチウム二次電池用正極材、これを含む正極及びリチウム二次電池

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019003637T5 (de) * 2018-07-19 2021-04-01 Gs Yuasa International Ltd. Energiespeichereinrichtung
CN114342112A (zh) * 2019-08-30 2022-04-12 松下电器产业株式会社 非水电解质二次电池
JP7405655B2 (ja) * 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 非水電解質二次電池用正極及び非水電解質二次電池
KR102293034B1 (ko) * 2020-06-04 2021-08-24 에스케이이노베이션 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102649779B1 (ko) * 2020-10-14 2024-03-20 주식회사 엘 앤 에프 이차전지용 전극 활물질
KR102473536B1 (ko) * 2020-10-30 2022-12-02 삼성에스디아이 주식회사 니켈계 리튬 금속 복합 산화물, 그 제조방법, 이를 포함한 양극 및 리튬이차전지
WO2022098135A1 (ko) * 2020-11-05 2022-05-12 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022098136A1 (ko) * 2020-11-05 2022-05-12 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
EP4203100A1 (en) * 2020-11-10 2023-06-28 LG Energy Solution, Ltd. Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
KR102657449B1 (ko) * 2020-12-23 2024-04-16 주식회사 엘지에너지솔루션 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
KR102607568B1 (ko) * 2021-06-09 2023-11-30 재단법인대구경북과학기술원 이차전지용 전극 활물질의 깨짐율 분석방법
CN113921782A (zh) * 2021-09-26 2022-01-11 宁波容百新能源科技股份有限公司 一种高压实和高能量密度的超高镍三元正极材料
WO2023054308A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池
KR20230090008A (ko) * 2021-12-14 2023-06-21 삼성에스디아이 주식회사 전극, 이를 포함하는 리튬전지 및 이의 제조방법
KR20230123003A (ko) * 2022-02-15 2023-08-22 주식회사 엘지에너지솔루션 양극재, 이를 포함하는 양극 및 리튬 이차전지
JP7449321B2 (ja) 2022-03-10 2024-03-13 プライムプラネットエナジー&ソリューションズ株式会社 正極および電池
KR20240013516A (ko) * 2022-07-22 2024-01-30 삼성에스디아이 주식회사 건식 전극 필름, 이를 포함하는 전극 및 리튬전지
WO2024091625A1 (en) * 2022-10-26 2024-05-02 Texpower, Inc. Low-cobalt or cobalt-free cathode materials with bimodal particle size distribution for lithium batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061432A (ko) * 2010-12-03 2012-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN103782423A (zh) * 2011-09-12 2014-05-07 三洋电机株式会社 非水电解质二次电池的正极活性物质及非水电解质二次电池
KR20150081938A (ko) * 2014-01-07 2015-07-15 주식회사 엘지화학 양극 활물질 2차 입자 및 그를 포함하는 리튬 이차전지
KR20160049995A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20170069153A (ko) * 2015-12-10 2017-06-20 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW399029B (en) * 1996-12-25 2000-07-21 Sony Corp Graphite powder suitable for negative electrode material of lithium ion secondary batteries
KR100670507B1 (ko) * 2005-04-28 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지
CN101339991B (zh) * 2008-08-07 2010-09-08 华南理工大学 复合包覆改性高振实密度锂离子电池正极材料及其制备方法和应用
JP4972624B2 (ja) 2008-09-30 2012-07-11 日立ビークルエナジー株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
US20100330429A1 (en) * 2010-06-21 2010-12-30 Ngk Insulators, Ltd. Positive electrode active material and lithium secondary battery
EP2733776A4 (en) * 2011-07-13 2015-03-18 Gs Yuasa Int Ltd NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2013065468A (ja) * 2011-09-16 2013-04-11 Panasonic Corp リチウムイオン二次電池
JP2013218787A (ja) * 2012-04-04 2013-10-24 Sony Corp 正極活物質、正極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2013218875A (ja) * 2012-04-09 2013-10-24 Sony Corp 正極活物質、正極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5273274B1 (ja) * 2012-04-27 2013-08-28 東洋インキScホールディングス株式会社 リチウム二次電池電極形成用組成物、二次電池用電極
KR101718057B1 (ko) * 2012-08-02 2017-03-20 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 양극과 리튬전지
KR101540673B1 (ko) * 2012-08-03 2015-07-30 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20140024587A (ko) * 2012-08-20 2014-03-03 삼성에스디아이 주식회사 리튬 이차 전지
JP6107832B2 (ja) * 2012-10-17 2017-04-05 戸田工業株式会社 Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6159228B2 (ja) * 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
CN103022499B (zh) * 2012-12-03 2016-09-07 东莞新能源科技有限公司 一种锂离子电池混合正极材料
KR20160102083A (ko) * 2013-02-28 2016-08-26 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
JP6428996B2 (ja) * 2013-06-20 2018-11-28 株式会社Gsユアサ リチウム二次電池用混合活物質、リチウム二次電池用電極、及びリチウム二次電池
CN103811744B (zh) * 2014-02-13 2016-09-21 北大先行科技产业有限公司 一种锂离子电池三元正极材料的制备方法
CN103794799A (zh) * 2014-02-28 2014-05-14 大连交通大学 一步实现碳包覆和Na+掺杂制备LiFePO4正极材料的方法
CN104724763A (zh) * 2015-02-11 2015-06-24 江苏科捷锂电池有限公司 高压实三元正极材料的制备方法
KR102012427B1 (ko) 2015-11-30 2019-08-21 주식회사 엘지화학 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
KR101927295B1 (ko) * 2015-11-30 2018-12-10 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP6528666B2 (ja) * 2015-12-09 2019-06-12 株式会社村田製作所 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
FR3047544B1 (fr) 2016-02-10 2018-03-02 Safran Aircraft Engines Chambre de combustion de turbomachine
KR102636057B1 (ko) * 2016-05-30 2024-02-08 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR20180056310A (ko) * 2016-11-18 2018-05-28 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR102124950B1 (ko) * 2016-11-23 2020-06-22 주식회사 엘지화학 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
US11936041B2 (en) * 2016-12-16 2024-03-19 Sk On Co., Ltd. Lithium secondary battery
ES2960557T3 (es) * 2017-11-21 2024-03-05 Lg Energy Solution Ltd Material de cátodo para batería secundaria de litio, y cátodo y batería secundaria de litio que comprende el mismo
US20190190060A1 (en) * 2017-12-19 2019-06-20 3M Innovative Properties Company Electrochemical cells
US20220102731A1 (en) * 2019-01-16 2022-03-31 Lg Chem, Ltd. Lithium Secondary Battery and Production Method Thereof
KR20210067735A (ko) * 2019-11-29 2021-06-08 주식회사 엘지에너지솔루션 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061432A (ko) * 2010-12-03 2012-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN103782423A (zh) * 2011-09-12 2014-05-07 三洋电机株式会社 非水电解质二次电池的正极活性物质及非水电解质二次电池
KR20150081938A (ko) * 2014-01-07 2015-07-15 주식회사 엘지화학 양극 활물질 2차 입자 및 그를 포함하는 리튬 이차전지
KR20160049995A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20170069153A (ko) * 2015-12-10 2017-06-20 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951917A4 (en) * 2019-03-26 2022-06-22 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY
CN113383445A (zh) * 2019-08-12 2021-09-10 株式会社Lg化学 锂二次电池用正极和包含所述正极的锂二次电池
CN113474912A (zh) * 2019-08-12 2021-10-01 株式会社Lg化学 锂二次电池用正极和包含所述正极的锂二次电池
CN113383445B (zh) * 2019-08-12 2024-04-16 株式会社Lg化学 锂二次电池用正极和包含所述正极的锂二次电池
JP2023514346A (ja) * 2020-03-18 2023-04-05 エルジー・ケム・リミテッド リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
JP7456671B2 (ja) 2020-03-18 2024-03-27 エルジー・ケム・リミテッド リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
CN113764656A (zh) * 2020-06-04 2021-12-07 Sk新技术株式会社 锂二次电池的正极活性物质
CN113764656B (zh) * 2020-06-04 2024-04-16 Sk新能源株式会社 锂二次电池的正极活性物质
CN113871609A (zh) * 2020-06-30 2021-12-31 三星Sdi株式会社 镍类锂金属复合氧化物、其制备方法和锂二次电池
JP2022013822A (ja) * 2020-06-30 2022-01-18 三星エスディアイ株式会社 ニッケル系リチウム金属複合酸化物、その製造方法、及びそれを含む正極を含むリチウム二次電池
EP3944366A1 (en) * 2020-07-20 2022-01-26 SK Innovation Co., Ltd. Cathode for lithium secondary battery and lithium secondary battery including the same
US20220109141A1 (en) * 2020-10-05 2022-04-07 Prime Planet Energy & Solutions, Inc. Positive electrode active material powder, positive electrode, lithium ion battery, and method of producing positive electrode

Also Published As

Publication number Publication date
EP3712990A4 (en) 2021-01-13
JP2021507497A (ja) 2021-02-22
ES2964486T3 (es) 2024-04-08
US11515522B2 (en) 2022-11-29
PL3712990T3 (pl) 2024-02-12
JP7062173B2 (ja) 2022-05-06
EP3712990A1 (en) 2020-09-23
CN111492510B (zh) 2022-06-21
KR20190093453A (ko) 2019-08-09
EP3712990B1 (en) 2023-10-25
HUE064059T2 (hu) 2024-02-28
US20200388830A1 (en) 2020-12-10
KR102359103B1 (ko) 2022-02-08
CN111492510A (zh) 2020-08-04
EP4266418A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019164313A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2021145647A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2022164281A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020122511A1 (ko) 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552659

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019747241

Country of ref document: EP

Effective date: 20200615

NENP Non-entry into the national phase

Ref country code: DE