WO2019103460A1 - 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 - Google Patents

이차전지용 양극재 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2019103460A1
WO2019103460A1 PCT/KR2018/014371 KR2018014371W WO2019103460A1 WO 2019103460 A1 WO2019103460 A1 WO 2019103460A1 KR 2018014371 W KR2018014371 W KR 2018014371W WO 2019103460 A1 WO2019103460 A1 WO 2019103460A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
transition metal
positive electrode
lithium
Prior art date
Application number
PCT/KR2018/014371
Other languages
English (en)
French (fr)
Inventor
한정민
정왕모
이동훈
박성빈
김지혜
김동휘
조형만
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020520747A priority Critical patent/JP7049551B2/ja
Priority to EP18881658.1A priority patent/EP3686970B1/en
Priority to US16/758,247 priority patent/US11699788B2/en
Priority to CN201880067206.2A priority patent/CN111226330A/zh
Publication of WO2019103460A1 publication Critical patent/WO2019103460A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode material for a secondary battery and a lithium secondary battery including the same.
  • the lithium secondary battery has a structure in which an organic electrolyte or a polymer electrolyte is filled between a positive electrode and a negative electrode, which are made of an active material capable of intercalating and deintercalating lithium ions, and oxidized when lithium ions are inserted / And electrical energy is produced by the reduction reaction.
  • Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4, etc.) and lithium iron phosphate compound (LiFePO 4 ) were used as the cathode active material of the lithium secondary battery .
  • LiNiO 2 lithium nickel oxide
  • lithium iron phosphate compound LiFePO 4
  • LiFePO 4 lithium iron phosphate compound
  • An object of the present invention is to provide a cathode material for a secondary battery capable of increasing the electrode density of the anode, improving the thermal stability while improving the capacity, preventing particle breakage of the cathode active material and suppressing side reactions with the electrolyte.
  • the present invention provides a lithium secondary battery comprising a first positive electrode active material and a second positive electrode active material, wherein the first positive electrode active material and the second positive electrode active material include at least two transition metals selected from the group consisting of nickel (Ni), cobalt (Co) and manganese a lithium composite transition metal oxide comprising a metal, wherein the average particle size of the first cathode active material (D 50) is the second and more than twice the average particle diameter (D 50) of the positive electrode active material, the first cathode active material, lithium Wherein at least one of nickel (Ni), cobalt (Co) and manganese (Mn) contained in the composite transition metal oxide has a concentration gradient in which the concentration difference between the center and the surface of the lithium composite transition metal oxide particle is 1.5 mol% Provide ashes.
  • the first positive electrode active material and the second positive electrode active material include at least two transition metals selected from the group consisting of nickel (Ni), cobalt (Co) and manganese a lithium composite transition metal oxide comprising
  • the present invention also provides a positive electrode and a lithium secondary battery including the positive electrode material.
  • the present invention by mixing the first cathode active material, which is an opposite electrode having a concentration gradient, with the second cathode active material, which is a second anode active material having no concentration gradient, it is possible to increase the electrode density of the anode and secure high heat stability with high capacity. In addition, it is possible to prevent particle collision of the particles having a concentration gradient with the small particles having no concentration gradient, thereby suppressing side reactions with the electrolyte.
  • the lithium secondary battery manufactured using the cathode material for a secondary battery according to the present invention can realize a high capacity and improve battery characteristics such as lifetime characteristics.
  • FIG. 1 is a graph showing a leakage current of a lithium secondary battery cell using an anode manufactured according to Examples and Comparative Examples.
  • FIG. 2 is a graph showing lifetime characteristics of a lithium secondary battery cell using a positive electrode manufactured according to Examples and Comparative Examples.
  • the cathode material for a secondary battery of the present invention includes a first cathode active material and a second cathode active material, wherein the first cathode active material and the second cathode active material are selected from the group consisting of Ni, Co, and Mn Wherein the average particle diameter (D 50 ) of the first cathode active material is at least two times the average particle diameter (D 50 ) of the second cathode active material, and the first positive electrode At least one of nickel (Ni), cobalt (Co) and manganese (Mn) contained in the lithium composite transition metal oxide has a concentration gradient in which the concentration difference between the center and the surface of the lithium composite transition metal oxide particle is 1.5 mol% I have.
  • the cathode material for a secondary battery of the present invention includes a first cathode active material as a major particle and a second cathode active material as a minor particle.
  • the cathode active material layer In order to improve the capacity per unit volume of the anode for a secondary battery, it is necessary to increase the density of the cathode active material layer.
  • a method of increasing the rolling density (or electrode density) Is used.
  • the void space between the particles of the major cathode active material can be filled with the cathode active material of the small particle, And the density of the anode can be increased.
  • the average particle diameter (D 50 ) of the first cathode active material is at least two times the average particle diameter (D 50 ) of the second cathode active material.
  • the average particle diameter (D 50 ) can be defined as a particle diameter corresponding to 50% of the volume accumulation amount in the particle diameter distribution curve.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method.
  • the average particle diameter (D 50 ) of the cathode active material is measured by dispersing the particles of the cathode active material in a dispersion medium and introducing the particles into a commercially available laser diffraction particle size analyzer (for example, Microtrac MT 3000) An ultrasonic wave of 28 kHz is irradiated at an output of 60 W, and an average particle diameter (D 50 ) corresponding to 50% of the volume accumulation amount in the measuring apparatus can be calculated.
  • the average particle diameter (D 50 ) of the first cathode active material and the second cathode active material may be 5: 1 to 2: 1, and most preferably, the average particle diameter of the first cathode active material and the second cathode active material (D 50 ) may be from 4: 1 to 2.5: 1.
  • the average particle diameter (D 50 ) ratio of the first cathode active material and the second cathode active material satisfies the above range, the voids between the cathode active material particles are more effectively reduced, the filling density is increased, the anode density is improved, Can be effectively improved.
  • the average particle diameter (D 50 ) of the first cathode active material may be 10 to 30 ⁇ , more preferably 13 to 25 ⁇ , and most preferably 15 to 22 ⁇ .
  • the average particle diameter (D 50 ) of the second cathode active material may be 1 to 10 ⁇ , more preferably 2 to 8 ⁇ , and most preferably 3 to 6 ⁇ .
  • the first cathode active material and the second cathode active material of the present invention are lithium complex transition metal oxides containing at least two transition metals selected from the group consisting of nickel (Ni), cobalt (Co) and manganese (Mn).
  • the first cathode active material which is an opposite major particle, is a lithium complex transition metal oxide having a concentration gradient
  • the second cathode active material, which is a minor particle is a lithium complex transition metal oxide having no concentration gradient.
  • the small particle having no concentration gradient can prevent the particle of the large particle having a concentration gradient from being broken Side reaction with the electrolyte can be suppressed.
  • At least one of nickel (Ni), cobalt (Co), and manganese (Mn) contained in a lithium composite transition metal oxide is a lithium complex transition metal oxide having a concentration gradient of a metal composition
  • the concentration difference between the center of the oxide particle and the surface thereof is 1.5 mol% or more. More preferably, the concentration difference of the nickel (Ni) contained in the lithium composite transition metal oxide at the center and the surface of the lithium composite transition metal oxide particle may be 2 mol% or more, more preferably 3 mol% or more.
  • the concentration gradient and concentration of the transition metal in the cathode active material particle can be measured by an electron probe micro analyzer (EPMA), an inductively coupled plasma-atomic emission spectrometer (ICP- (AES), time-of-flight secondary ion mass spectrometry (ToF-SIMS), or X-ray photoelectron spectroscopy (XPS)
  • EPMA electron probe micro analyzer
  • ICP- AES
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • At least one of nickel (Ni), cobalt (Co), and manganese (Mn) contained in the lithium composite transition metal oxide is formed from the center of the lithium composite transition metal oxide particle It may have a concentration gradient that gradually changes to the surface.
  • the first cathode active material may have a concentration gradient in which nickel (Ni) gradually decreases from the center of the lithium composite transition metal oxide particle to the surface. Since the concentration of nickel (Ni) is maintained at a high concentration at the center of the particles of the first cathode active material and the concentration of nickel (Ni) decreases toward the surface, the decrease in capacity can be prevented while exhibiting thermal stability.
  • At least one of manganese (Mn) and cobalt (Co) may have a concentration gradient gradually increasing from the center of the lithium composite transition metal oxide particle to the surface.
  • concentration of manganese (Mn) is kept low at the center of the particles of the first cathode active material and the concentration of manganese (Mn) increases toward the particle surface, excellent thermal stability can be obtained without decreasing the capacity,
  • concentration of cobalt (Co) is maintained at a low concentration at the center of the particle of the cathode active material and the concentration of cobalt (Co) is increased as it goes to the surface of the particle, thereby reducing the amount of cobalt (Co) and preventing a decrease in capacity.
  • the concentration of nickel (Ni) contained in the first cathode active material decreases with a continuous gradient from the center of the particles to the surface layer of the particles
  • cobalt (Co) may increase with a concentration gradient that is complementary to a concentration gradient of the nickel (Ni) from the center of the particle to the surface of the particle.
  • the concentration of nickel (Ni) gradually decreases from the center of the particles to the surface of the particles in the first cathode active material, and the concentration of manganese (Mn) and / or cobalt (Co) By having a gradient, thermal stability can be exhibited while maintaining the capacity characteristics.
  • a concentration gradient in which the concentration of the transition metal gradually changes (increases or decreases) means that the concentration of the transition metal exists in a concentration distribution that gradually changes over the entire particle.
  • the concentration distribution is such that the change in the transition metal concentration per 1 mu m in the particles is 0.1 to 5 mol%, more specifically 0.1 to 3 mol% based on the total molar number of the metal contained in the cathode active material %, More specifically from 1 to 2 mol%.
  • the characteristics of the transition metal can be easily utilized to further improve the battery performance improvement effect of the cathode active material .
  • concentration of the transition metal in the first cathode active material particle has a continuously changing concentration gradient, there is no abrupt phase boundary region from the center of the particle to the surface, Can be stabilized and the thermal stability can be increased. Further, when the gradient of the concentration gradient of the transition metal is constant, the effect of improving the structural stability can be further improved.
  • the second cathode active material is a lithium composite transition metal oxide having no concentration gradient of a metal composition, and is a lithium complex transition metal oxide containing at least one of nickel (Ni), cobalt (Co), and manganese (Mn).
  • the first cathode active material and the second cathode active material may be NCM-based cathode active materials including nickel (Ni), cobalt (Co), and manganese (Mn) And an aluminum (Al), and may be a four-component cathode active material that essentially includes four components of nickel (Ni), cobalt (Co), manganese (Mn), and aluminum .
  • first cathode active material and the second cathode active material may have a high content nickel (Li) content in which the content of nickel (Ni) in the total metal elements contained in the lithium composite transition metal oxide is 60 mol% -Ni). ≪ / RTI > More preferably, the content of nickel (Ni) in the total metal elements may be 70 mol% or more, more preferably 80 mol% or more.
  • the use of a high-Ni first cathode active material and a second cathode active material having a Ni content of 60 mol% or more among the entire metal elements can secure a higher capacity.
  • first cathode active material and the second cathode active material may be lithium-transition metal oxides having the same composition as each other, or lithium-transition metal oxides having different compositions.
  • first cathode active material and the second cathode active material may be a lithium complex transition metal oxide represented by the following formula (1).
  • M a is at least one or more elements selected from the group consisting of Mn and Al and M b is at least one element selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, c is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo and Cr; 0.9? p? 1.5, 0 ⁇ x1? 0.4, 0 ⁇ y1? 0.4, 0? z1 0.1, 0? Q1? 0.1, and 0 ⁇ x1 + y1 + z1? 0.4.
  • Li may be contained in an amount corresponding to p, that is, 0.9? P? 1.5. If p is less than 0.9, there is a possibility that the capacity is lowered. If p is more than 1.5, particles are sintered in the firing step, and thus the production of the cathode active material may be difficult. Considering the remarkable effect of improving the capacity characteristics of the cathode active material according to the Li content control and the sintering property at the time of manufacturing the active material, Li is more preferably in the range of 1.0? P? 1.15.
  • Ni may be included in an amount corresponding to 1- (x1 + y1 + z1), for example, 0.6? 1- (x1 + y1 + z1) ⁇ 1.
  • the content of Ni in the lithium composite transition metal oxide of Formula 1 is 0.6 or more, a sufficient amount of Ni can be secured to contribute to charge and discharge, and high capacity can be achieved.
  • Ni may be included in the range of 0.8? 1 - (x1 + y1 + z1)? 0.99.
  • Co may be included in an amount corresponding to x1, that is, 0 ⁇ x1? 0.4.
  • the content of Co in the lithium complex transition metal oxide of Formula 1 exceeds 0.4, there is a fear of an increase in cost.
  • the Co may be more specifically included in an amount of 0.05? X1? 0.2.
  • M a may be Mn or Al, or Mn and Al. Such a metal element may improve the stability of the active material and, as a result, improve the stability of the battery. Considering the effect of improving lifetime characteristics, the M a may be included in the content corresponding to y 1, that is, the content of 0 ⁇ y 1 ⁇ 0.4. If the y1 value in the lithium complex transition metal oxide of Formula 1 is more than 0.4, the output characteristics and the capacity characteristics of the battery may be deteriorated. The M a may be more specifically contained in an amount of 0.05? Y1? 0.2.
  • M b may be a doping element contained in the crystal structure of the lithium complex transition metal oxide, and M b may be included in the content corresponding to z 1, that is, 0? Z 1? have.
  • the metal element of M c may not be contained in the lithium complex transition metal oxide structure, and when the precursor and the lithium source are mixed and fired, M c sources are mixed together and fired ,
  • a lithium complex transition metal oxide may be prepared by doping the M c on the surface of the lithium composite transition metal oxide through a method of adding an M c source separately after forming a lithium complex transition metal oxide and firing the mixture.
  • the M c may be included in a content corresponding to q 1, that is, a content not lowering the characteristics of the cathode active material within a range of 0? Q 1? 0.1.
  • the second cathode active material which is a small particle, may have low thermal stability
  • at least one or more selected from the group consisting of boron (B) and manganese (Mn) may be added to at least a part of the particle surface of the second cathode active material To form a coating layer containing lithium oxide.
  • the coating layer of the second positive electrode active material is LiBO 2, Li 2 B 4 O 7 or LiB 3 O 5
  • a lithium boron oxide such as LiMn 2 O 4 Lithium manganese oxides such as lithium manganese oxide, or mixtures thereof.
  • the first cathode active material and the second cathode active material may be mixed in a weight ratio of 9: 1 to 1: 9, more preferably in a weight ratio of 8: 2 to 3: 7, May be mixed in a weight ratio of 8: 2 to 5: 5.
  • the first cathode active material having an opposite particle and the concentration gradient and the second cathode active material having no concentration gradient with the use of the second cathode active material in the range described above, it is possible to increase the electrode density of the anode and secure a high capacity and excellent thermal stability, Can be suppressed. Accordingly, the lithium secondary battery manufactured using the above-mentioned cathode active material can realize a high capacity and battery characteristics such as lifetime characteristics can be improved.
  • a positive electrode and a lithium secondary battery for a lithium secondary battery including the positive electrode material.
  • the positive electrode includes a positive electrode collector and a positive electrode mixture layer formed on the positive electrode collector and including the positive electrode material.
  • the cathode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, a metal such as stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the cathode current collector to increase the adhesive strength of the cathode material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the positive electrode material mixture layer may include a conductive material and a binder together with the above-described positive electrode material.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material can be used without particular limitation as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may be typically contained in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
  • the positive electrode may be produced according to a conventional positive electrode manufacturing method, except that the positive electrode material is used. Specifically, the composition for forming a positive electrode material mixture layer containing the above-mentioned positive electrode material and optionally a binder and a conductive material may be coated on the positive electrode current collector, followed by drying and rolling. At this time, the types and contents of the cathode material, the binder, and the conductive material are as described above.
  • the solvent examples include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and the like. Water and the like, and one kind or a mixture of two or more kinds can be used.
  • the amount of the solvent to be used is sufficient to dissolve or disperse the cathode active material, the conductive material and the binder in consideration of the coating thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
  • the anode may be produced by casting the composition for forming the positive electrode material mixture layer on a separate support, and then laminating a film obtained by peeling off the support onto the positive electrode collector.
  • an electrochemical device including the anode.
  • the electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, as described above.
  • the lithium secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode collector and a negative electrode mixture layer disposed on the negative electrode collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode material mixture layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode material mixture layer may be formed by, for example, applying a negative electrode active material on a negative electrode collector, and optionally a binder and a conductive material, and drying the composition, or casting the composition for forming a negative electrode on a separate support , And a film obtained by peeling from the support may be laminated on the negative electrode collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon;
  • Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; SiO ⁇ (0 ⁇ ⁇ 2 ), SnO 2, vanadium oxide, which can dope and de-dope a lithium metal oxide such as lithium vanadium oxide;
  • a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material may be both low-crystalline carbon and high-crystallinity carbon.
  • Examples of the low-crystalline carbon include soft carbon and hard carbon.
  • Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
  • binder and the conductive material may be the same as those described above for the anode.
  • the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions.
  • the separator can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte.
  • porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
  • Examples of the electrolyte used in the present invention include an organic-based liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a straight, branched or cyclic hydrocarbon group of C2 to C20, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohexanone
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethylene carbonate or propylene carbonate
  • ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2.
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
  • the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • HEV hybrid electric vehicles hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the LiNi 0 as the first positive electrode active material. 88 Co 0 . 10 Mn 0 . 02 particles of the O 2, and (D 50 16 ⁇ m), the content of nickel (Ni) at the particle center 89 mol%, the content of nickel (Ni) on the surface of the particles 86 mol%, of nickel (Ni) A lithium complex transition metal oxide whose concentration gradually decreased from the center of the particle to the surface and whose concentration of cobalt (Co) and manganese (Mn) gradually increased from the center of the particle to the surface was used.
  • the first cathode active material and the second cathode active material were mixed at a weight ratio of 8: 2, and the cathode material, the carbon black conductive material and the PVdF binder were mixed in a N-methylpyrrolidone solvent in a ratio of 96.5: 1.5: 2.0
  • a composition for forming an anode This composition was coated on one side of an aluminum current collector, dried at 130 ° C, and rolled to prepare a positive electrode.
  • the LiNi 0 as the first positive electrode active material. 92 Co 0 . 04 Mn 0 . 04 particles of the O 2, and (D 50 14 ⁇ m), the content of nickel (Ni) at the particle center 93 mol%, the content of nickel (Ni) in a particle surface of 90% by mole, of nickel (Ni)
  • the positive electrode was prepared in the same manner as in Example 1.
  • the LiNi 0 as the first positive electrode active material. 87 Co 0 . 08 Mn 0 . 03 A1 0 . 02 particles of the O 2, and (D 50 16 ⁇ m), the content of nickel (Ni) at the particle center 88 mol%, the content of nickel (Ni) on the surface of the particles 86 mol%, of nickel (Ni)
  • the positive electrode was prepared in the same manner as in Example 1.
  • the positive electrode was prepared in the same manner as in Example 1.
  • LiNi 0 . 88 Co 0 . 10 Mn 0 . 02 particles of the O 2, and (D 50 12 ⁇ m), the content of nickel (Ni) at the particle center 89 mol%, the content of nickel (Ni) on the surface of the particles to 87% by mole, of nickel (Ni)
  • a lithium complex transition metal oxide whose concentration gradually decreases from the center of the particle to the surface and whose concentration of cobalt (Co) and manganese (Mn) gradually increases from the center of the particle to the surface is monomodal, was used in place of the compound of Example 1 to prepare a positive electrode.
  • EDS Electronic Dispersive X-ray Spectrometer
  • SEM scanning electron microscope
  • Examples 1 to 3 in which a first cathode active material having an opposite particle concentration gradient and a second cathode active material having no concentration gradient are mixed with each other, was used as a monomodal cathode material
  • the rolling density was improved as compared with Comparative Example 1.
  • it was confirmed that the degree of allele breaking was markedly reduced as compared with Comparative Example 2 in which bimodal of the major and minor particles was used but the major and minor particles having no concentration gradient were used .
  • a lithium secondary battery half cell was prepared using the positive electrodes prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
  • LiPF 6 lithium hexafluorophosphate
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Average leakage current (mAh / h, 120 hr) 0.09 0.04 0.06 0.10 0.34 0.18
  • Examples 1 to 4 using a mixture of a first cathode active material having an opposite particle concentration gradient and a second cathode active material having a small particle size and a gradient of concentration are monomodal, The amount of the leakage current during 120 hours was significantly reduced as compared with Comparative Example 1 using the positive electrode active material. In the case of Examples 1 to 4, the bimodal of the major and minor particles was used, but the average leakage current was higher than that of Comparative Example 2 using the major and minor particles having no concentration gradient. And the amount of leakage current is more remarkable from around 100 hours later.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 High Temperature Life (Capacity Retention) (%) (45 °C) (@ 30cycles) 96.2 94.7 93.1 96.8 92.1 88.7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 2 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물이며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제1 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 니켈(Ni), 코발트(Co) 및 망간(Mn) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심과 표면에서의 농도 차가 1.5몰% 이상인 농도구배를 가지는 이차전지용 양극재에 관한 것이다.

Description

이차전지용 양극재 및 이를 포함하는 리튬 이차전지
관련출원과의 상호인용
본 출원은 2017년 11월 21일자 한국 특허 출원 제10-2017-0155955호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지용 양극재 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, 리튬 니켈 산화물(LiNiO2)의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)/알루미늄(Al)으로 치환한 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물' 또는 'NCA계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다.
이러한 리튬 복합 전이금속 산화물의 단위 부피당 용량을 증가시키고, 안정성을 향상시키기 위해 금속 조성의 농도 구배를 형성하거나, 니켈의 함량을 증가시키거나, 양극 활물질 층의 압연 밀도를 증가시키는 등의 연구가 이루어지고 있다. 그러나, 아직까지 고용량이면서도 우수한 열 안정성을 동시에 만족하는 양극 활물질에 대한 개발이 여전히 필요한 실정이다.
본 발명은 양극의 전극 밀도를 높이고, 고용량이면서도 열 안정성을 개선하며, 양극 활물질의 입자 깨짐을 방지하여 전해액과의 부반응을 억제할 수 있는 이차전지용 양극재를 제공하고자 하는 것이다.
본 발명은 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 2 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물이며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제1 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 니켈(Ni), 코발트(Co) 및 망간(Mn) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심과 표면에서의 농도 차가 1.5몰% 이상인 농도구배를 가지는 이차전지용 양극재를 제공한다.
또한, 본 발명은 상기 양극재를 포함하는 양극 및 리튬 이차전지를 제공한다.
본 발명에 따르면, 농도구배를 갖는 대립자인 제1 양극 활물질과 농도구배를 갖지 않는 소립자인 제2 양극 활물질을 혼합 사용함으로써, 양극의 전극 밀도를 높이고, 고용량이면서도 우수한 열 안정성을 확보할 수 있다. 또한, 농도구배를 갖지 않는 소립자가 농도구배를 갖는 대립자의 입자 깨짐을 방지하여 전해액과의 부반응을 억제할 수 있다.
이와 같은 본 발명에 따른 이차전지용 양극재를 사용하여 제조된 리튬 이차전지는 높은 용량을 구현하고, 수명 특성 등의 전지 특성이 향상될 수 있다.
도 1은 실시예 및 비교예에 따라 제조된 양극을 사용한 리튬 이차전지 셀의 누설전류를 측정한 그래프이다.
도 2는 실시예 및 비교예에 따라 제조된 양극을 사용한 리튬 이차전지 셀의 수명 특성을 평가한 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 이차전지용 양극재는 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 2 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물이며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제1 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 니켈(Ni), 코발트(Co) 및 망간(Mn) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심과 표면에서의 농도 차가 1.5몰% 이상인 농도구배를 가진다.
본 발명의 이차전지용 양극재는 대립자인 제1 양극 활물질과 소립자인 제2 양극 활물질을 포함한다.
이차전지용 양극의 부피당 용량을 향상시키기 위해서는 양극 활물질 층의 밀도를 증가시킬 필요가 있는데, 양극 활물질 층의 밀도를 증가시키는 방법으로 양극 활물질 입자 사이의 공극을 줄여 압연 밀도(또는 전극 밀도)를 높이는 방법이 사용된다. 본 발명과 같이 대립자 및 소립자의 양극 활물질을 혼합한 바이모달(bimodal)의 양극재의 경우, 대립자 양극 활물질의 입자들 사이의 빈 공간을 소립자 양극 활물질로 채울 수 있으므로, 보다 조밀한 충진이 가능하고, 양극의 밀도를 증가시킬 수 있다.
상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이다.
본 발명에 있어서, 평균 입경(D50)은 입경 분포 곡선에서 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.
보다 바람직하게는, 상기 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50)은 5:1 내지 2:1일 수 있고, 가장 바람직하게는 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50)은 4:1 내지 2.5:1일 수 있다. 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50) 비가 상기 범위 내를 만족함으로써, 양극 활물질 입자들 사이의 공극을 보다 효과적으로 줄이고, 충진 밀도를 높이며, 양극 밀도를 향상시켜 양극 부피당 용량을 효과적으로 향상시킬 수 있다.
구체적으로, 상기 제1 양극 활물질의 평균 입경(D50)은 10 내지 30㎛일 수 있으며, 보다 바람직하게는 13 내지 25㎛, 가장 바람직하게는 15 내지 22㎛일 수 있다.
상기 제2 양극 활물질의 평균 입경(D50)은 1 내지 10㎛일 수 있으며, 보다 바람직하게는 2 내지 8㎛, 가장 바람직하게는 3 내지 6㎛일 수 있다.
본 발명의 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 2 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물이다. 이때, 대립자인 상기 제1 양극 활물질은 농도구배를 갖는 리튬 복합 전이금속 산화물이며, 소립자인 상기 제2 양극 활물질은 농도구배를 갖지 않는 리튬 복합 전이금속 산화물이다. 이와 같이, 농도구배를 갖는 대립자와 농도구배를 갖지 않는 소립자를 혼합 사용함으로써, 보다 더 고용량이면서도 열적 안정성을 확보할 수 있고, 농도구배를 갖지 않는 소립자가 농도구배를 갖는 대립자의 입자 깨짐을 방지하여 전해액과의 부반응을 억제할 수 있다.
상기 제1 양극 활물질은 금속 조성의 농도구배를 갖는 리튬 복합 전이금속 산화물로서, 리튬 복합 전이금속 산화물에 함유된 니켈(Ni), 코발트(Co) 및 망간(Mn) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심과 표면에서의 농도 차가 1.5몰% 이상을 나타낸다. 보다 바람직하게는 리튬 복합 전이금속 산화물에 함유된 니켈(Ni)이 리튬 복합 전이금속 산화물 입자의 중심과 표면에서의 농도 차가 2몰% 이상, 더욱 바람직하게는 3몰% 이상일 수 있다.
본 발명에 있어서, 양극 활물질 입자 내에서의 전이금속의 농도구배 조성 및 농도는 전자선 마이크로 애널라이저(Electron Probe Micro Analyzer, EPMA), 유도결합 플라스마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 비행 시간형 2차 이온 질량분석기(Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS), 또는 X선 광전자 분광법(XPS) 등의 방법을 이용하여 확인할 수 있으며, 구체적으로는 EPMA를 이용하여 양극 활물질의 중심에서부터 표면으로 이동하면서 각 금속의 원소비(atomic ratio)를 측정하거나, XPS를 통하여 양극 활물질의 표면에서부터 중심으로 에칭하면서 각 금속의 원소비(atomic ratio)를 측정할 수 있다.
본 발명의 일 실시예의 경우, 상기 제1 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 니켈(Ni), 코발트(Co) 및 망간(Mn) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심에서부터 표면까지 점진적으로 변하는 농도구배를 가질 수 있다.
보다 바람직하게는, 상기 제1 양극 활물질은, 니켈(Ni)이 리튬 복합 전이금속 산화물 입자의 중심에서부터 표면까지 점진적으로 감소하는 농도구배를 가질 수 있다. 제1 양극 활물질의 입자 중심에서 니켈(Ni)의 농도가 고농도를 유지하고, 표면으로 갈수록 니켈(Ni)의 농도가 감소하기 때문에 열 안정성을 나타내면서도 용량의 감소를 방지할 수 있다.
또는, 망간(Mn) 및 코발트(Co) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심에서부터 표면까지 점진적으로 증가하는 농도구배를 가질 수 있다. 이 경우, 제1 양극 활물질의 입자 중심에서 망간(Mn)의 농도가 저농도를 유지하고, 입자 표면으로 갈수록 망간(Mn)의 농도가 증가하기 때문에 용량 감소 없이 우수한 열 안정성을 얻을 수 있으며, 제1 양극 활물질의 입자 중심에서 코발트(Co)의 농도가 저농도를 유지하고, 입자 표면으로 갈수록 코발트(Co)의 농도를 증가시킴으로써 코발트(Co)의 사용량을 감소시키면서도 용량의 감소를 방지할 수 있다.
본 발명의 일 실시예에 따른 제1 양극 활물질은, 제1 양극 활물질 내 포함된 니켈(Ni)의 농도는 입자의 중심에서부터 입자 표면층으로 갈수록 연속적인 농도구배를 가지면서 감소하고, 망간(Mn) 및 코발트(Co) 중 적어도 하나는 입자의 중심에서부터 입자 표면으로 갈수록 상기 니켈(Ni)의 농도구배와 상보적으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이와 같이, 제1 양극 활물질 내에서 입자의 중심에서부터 입자 표면으로 갈수록 니켈(Ni)의 농도는 점진적으로 감소하고, 망간(Mn) 및/또는 코발트(Co)의 농도는 점진적으로 증가하는 조합의 농도구배를 가짐으로써, 용량 특성을 유지하면서도 열 안전성을 나타낼 수 있다.
본 발명에 있어서, "전이금속의 농도가 점진적으로 변화(증가 또는 감소)하는 농도구배를 나타낸다"란, 전이금속의 농도가 입자 전체에 걸쳐 점진적으로 변화하는 농도 분포로 존재한다는 것을 의미한다. 구체적으로, 상기 농도 분포는 입자 내에서 1㎛당 전이금속 농도의 변화가, 양극 활물질 내 포함되는 해당 금속의 총 몰 수를 기준으로, 각각 0.1 내지 5몰%, 보다 구체적으로는 0.1 내지 3몰%, 보다 더 구체적으로는 1 내지 2몰%의 차이가 있는 것일 수 있다.
상기와 같이 대립자인 제1 양극 활물질을 입자 내 위치에 따라 전이금속 원소의 농도를 달리하여 농도구배를 갖도록 함으로써, 해당 전이금속의 특성을 용이하게 활용하여 양극 활물질의 전지 성능 개선 효과를 더욱 향상시킬 수 있다. 또한, 본 발명의 일 실시예에 따라, 제1 양극 활물질 입자 내 전이금속의 농도가 연속적으로 변화하는 농도구배를 갖게 되면, 입자 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가할 수 있다. 또한, 전이금속의 농도구배의 기울기가 일정할 경우, 구조 안정성 개선 효과를 더욱 향상시킬 수 있다.
한편, 상기 제2 양극 활물질은 금속 조성의 농도구배를 갖지 않는 리튬 복합 전이금속 산화물이며, 니켈(Ni), 코발트(Co) 및 망간(Mn) 중 적어도 하나를 포함하는 리튬 복합 전이금속 산화물이다.
본 발명의 일 실시예에 따르면, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합전이금속 산화물일 수 있다. 예를 들어, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 NCM계 양극 활물질일 수 있고, 또는 니켈(Ni), 코발트(Co) 및 알루미늄(Al)을 포함하는 NCA계 양극 활물질일 수 있으며, 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 양극 활물질일 수도 있다.
또한, 본 발명의 일 실시예에 따른 상기 제1 양극 활물질 및 제2 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 양극 활물질일 수 있다. 보다 바람직하게는 전체 금속 원소 중 니켈(Ni)의 함량이 70몰% 이상, 더욱 바람직하게는 80몰% 이상일 수 있다. 본 발명과 같이 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 제1 양극 활물질 및 제2 양극 활물질을 사용하면 보다 더 고용량 확보가 가능할 수 있다.
한편, 상기 제1 양극 활물질 및 제2 양극 활물질은 서로 동일한 조성의 리튬 복합 전이금속 산화물일 수도 있고, 또는 상이한 조성의 리튬 복합 전이금속 산화물일 수 있다.
보다 구체적으로, 상기 제1 양극 활물질 및 제2 양극 활물질은 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물일 수 있다.
[화학식 1]
LipNi1-(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2
상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1 이고, 0<x1+y1+z1≤0.4이다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Li은 p에 해당하는 함량, 즉 0.9≤p≤1.5로 포함될 수 있다. p가 0.9 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 양극 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극 활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때, 상기 Li는 보다 바람직하게는 1.0≤p≤1.15의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ni은 1-(x1+y1+z1)에 해당하는 함량, 예를 들어, 0.6≤1-(x1+y1+z1)<1로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Ni의 함량이 0.6 이상의 조성이 되면 충방전에 기여하기에 충분한 Ni량이 확보되어 고용량화를 도모할 수 있다. 보다 바람직하게는 Ni은 0.8≤1-(x1+y1+z1)≤0.99로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Co는 x1에 해당하는 함량, 즉 0<x1≤0.4으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Co의 함량이 0.4를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.05≤x1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ma은 Mn 또는 Al이거나, Mn 및 Al일 수 있고, 이러한 금속 원소는 활물질의 안정성을 향상시키고, 결과로서 전지의 안정성을 개선시킬 수 있다. 수명 특성 개선 효과를 고려할 때, 상기 Ma은 y1에 해당하는 함량, 즉 0<y1≤0.4의 함량으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 y1가 0.4를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있으며, 상기 Ma은 보다 구체적으로 0.05≤y1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mb는 리튬 복합 전이금속 산화물의 결정 구조 내 포함된 도핑원소일 수 있으며, Mb는 z1에 해당하는 함량, 즉 0≤z1≤0.1로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mc의 금속 원소는 리튬 복합 전이금속 산화물 구조 내에 포함되지 않을 수 있고, 전구체와 리튬 소스를 혼합하고 소성할 때 Mc 소스를 함께 혼합하여 소성하거나, 리튬 복합 전이금속 산화물을 형성한 후 별도로 Mc 소스를 투입하고 소성하는 방법을 통해 상기 Mc가 리튬 복합 전이금속 산화물의 표면에 도핑된 리튬 복합 전이금속 산화물을 제조할 수 있다. 상기 Mc는 q1에 해당하는 함량, 즉 0≤q1≤0.1의 범위 내에서 양극 활물질의 특성을 저하하지 않는 함량으로 포함될 수 있다.
한편, 소립자인 제2 양극 활물질의 경우 열적 안정성이 취약할 수 있기 때문에, 상기 제2 양극 활물질의 입자 표면의 적어도 일부에 붕소(B) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 1종 이상을 함유하는 리튬 산화물을 포함하는 코팅층을 형성할 수 있다. 예를 들어, 제2 양극 활물질의 상기 코팅층은 LiBO2, Li2B4O7 또는 LiB3O5 등의 리튬 붕소 산화물을 포함하거나, LiMn2O4 등의 리튬 망간 산화물을 포함하거나, 또는 이들의 혼합물을 포함할 수 있다.
본 발명의 일 실시예는 상기 제1 양극 활물질 및 제2 양극 활물질이 9:1 내지 1:9의 중량비로 혼합될 수 있으며, 보다 바람직하게는 8:2 내지 3:7의 중량비, 가장 바람직하게는 8:2 내지 5:5의 중량비로 혼합될 수 있다. 대립자이며 농도구배를 갖는 제1 양극 활물질과, 소립자이며 농도구배를 갖지 않는 제2 양극 활물질을 상기 범위 내로 혼합 사용함으로써 양극의 전극 밀도를 높이고, 고용량 및 우수한 열 안정성을 확보할 수 있으며, 전해액과의 부반응을 억제할 수 있다. 이에 따라, 상기와 같은 양극 활물질을 사용하여 제조된 리튬 이차전지는 높은 용량을 구현하고, 수명 특성 등의 전지 특성이 향상될 수 있다.
본 발명의 또 다른 일 실시예에 따르면 상기 양극재를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극재를 포함하는 양극 합제 층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극재의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극 합제 층은 앞서 설명한 양극재와 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극재를 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극재 및 선택적으로, 바인더 및 도전재를 포함하는 양극 합제 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극재, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 합제 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 합제 층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 합제 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 합제 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
제1 양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 16㎛)이며, 입자 중심에서의 니켈(Ni)의 함량이 89몰%, 입자 표면에서의 니켈(Ni)의 함량이 86몰%이고, 니켈(Ni)의 농도가 입자의 중심에서부터 표면까지 점진적으로 감소하며, 코발트(Co) 및 망간(Mn)의 농도가 입자의 중심에서부터 표면까지 점진적으로 증가하는 농도구배를 갖는 리튬 복합 전이금속 산화물을 사용하였다.
제2 양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 5㎛)이며, 농도구배를 갖지 않는 리튬 복합 전이금속 산화물을 사용하였다.
상기 제1 양극 활물질 및 제2 양극 활물질을 8:2의 중량비로 혼합 사용하고, 이러한 양극재, 카본 블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96.5:1.5:2.0의 비율로 혼합하여 양극 형성용 조성물을 제조하고, 이를 알루미늄 집전체의 일면에 도포하고, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
실시예 2
제1 양극 활물질로서 LiNi0 . 92Co0 . 04Mn0 . 04O2의 입자(D50= 14㎛)이며, 입자 중심에서의 니켈(Ni)의 함량이 93몰%, 입자 표면에서의 니켈(Ni)의 함량이 90몰%이고, 니켈(Ni)의 농도가 입자의 중심에서부터 표면까지 점진적으로 감소하며, 코발트(Co) 및 망간(Mn)의 농도가 입자의 중심에서부터 표면까지 점진적으로 증가하는 농도구배를 갖는 리튬 복합 전이금속 산화물을 사용하며, 제2 양극 활물질로서 LiNi0.92Co0.04Mn0.04O2의 입자(D50= 4㎛)이며, 농도구배를 갖지 않고, 입자 표면에 리튬 붕소 산화물을 포함하는 코팅층을 형성한 리튬 복합 전이금속 산화물을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
실시예 3
제1 양극 활물질로서 LiNi0 . 87Co0 . 08Mn0 . 03Al0 . 02O2의 입자(D50= 16㎛)이며, 입자 중심에서의 니켈(Ni)의 함량이 88몰%, 입자 표면에서의 니켈(Ni)의 함량이 86몰%이고, 니켈(Ni)의 농도가 입자의 중심에서부터 표면까지 점진적으로 감소하며, 코발트(Co) 및 망간(Mn)의 농도가 입자의 중심에서부터 표면까지 점진적으로 증가하는 농도구배를 갖는 리튬 복합 전이금속 산화물을 사용하며, 제2 양극 활물질로서 LiNi0.88Co0.09Mn0.03O2의 입자(D50= 5㎛)이며, 농도구배를 갖지 않고, 입자 표면에 리튬 붕소 산화물을 포함하는 코팅층을 형성한 리튬 복합 전이금속 산화물을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
실시예 4
제1 양극 활물질로서 LiNi0 . 70Co0 . 10Mn0 . 20O2의 입자(D50= 16㎛)이며, 입자 중심에서의 니켈(Ni)의 함량이 72몰%, 입자 표면에서의 니켈(Ni)의 함량이 69몰%이고, 니켈(Ni)의 농도가 입자의 중심에서부터 표면까지 점진적으로 감소하며, 코발트(Co) 및 망간(Mn)의 농도가 입자의 중심에서부터 표면까지 점진적으로 증가하는 농도구배를 갖는 리튬 복합 전이금속 산화물을 사용하며, 제2 양극 활물질로서 LiNi0.70Co0.10Mn0.20O2의 입자(D50= 5㎛)이며, 농도구배를 갖지 않고, 입자 표면에 리튬 붕소 산화물을 포함하는 코팅층을 형성한 리튬 복합 전이금속 산화물을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
비교예 1
양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 12㎛)이며, 입자 중심에서의 니켈(Ni)의 함량이 89몰%, 입자 표면에서의 니켈(Ni)의 함량이 87몰%이고, 니켈(Ni)의 농도가 입자의 중심에서부터 표면까지 점진적으로 감소하며, 코발트(Co) 및 망간(Mn)의 농도가 입자의 중심에서부터 표면까지 점진적으로 증가하는 농도구배를 갖는 리튬 복합 전이금속 산화물을 모노모달(monomodal)로 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
비교예 2
제1 양극 활물질로서 LiNi0 . 83Co0 . 11Mn0 . 06O2의 입자(D50= 16㎛)이며, 농도구배를 갖지 않는 리튬 복합 전이금속 산화물을 사용하고, 제2 양극 활물질로서 LiNi0.83Co0.11Mn0.06O2의 입자(D50= 5㎛)이며, 농도구배를 갖지 않는 리튬 복합 전이금속 산화물을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.
[실험예 1: 압연 밀도 및 대립자 깨짐 평가]
실시예 1 내지 4 및 비교예 1 내지 2에서 제조된 양극의 압연 밀도 및 대립자 깨짐 정도를 평가하였으며, 그 결과를 표 1에 나타내었다.
압연 밀도는, 실시예 1 내지 4 및 비교예 1 내지 2에서 사용된 각각의 양극 활물질 5g을 소분하여 원통형의 홀더에 빈틈없이 채운 후, 400kgf부터 400kgf씩 증가시켜 2000kgf까지의 압력을 가하였을 때 2000kgf에서 분체의 밀도를 측정하였다.
대립자 깨짐 정도는, 주사전자현미경(SEM, Scanning Electron Microscope)에 부착된 EDS(Energy Dispersive X-ray Spectrometer)를 통해 관찰하였으며, 더 자세히는, 압연된 전극 단면을 시료로 준비하여 동일 배율에서의 EDS Mapping을 통해 입자 분포를 관찰하였다. Mapping 시 대립자 전체 대비 깨진 대립자의 개수를 세어 대립자 깨짐 정도를 계산하였다.
압연 밀도(g/cm3) 대립자 깨짐(%)
실시예 1 3.33 18
실시예 2 3.35 15
실시예 3 3.31 20
실시예 4 3.01 16
비교예 1 3.13 60
비교예 2 3.31 41
상기 표 1을 참조하면, 대립자이며 농도구배를 갖는 제1 양극 활물질과, 소립자이며 농도구배를 갖지 않는 제2 양극 활물질을 혼합 사용한 실시예 1 내지 3은 모노모달(monomodal)의 양극재를 사용한 비교예 1에 비하여 압연 밀도가 향상되었다. 또한, 실시예 1 내지 실시예 4의 경우, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만 농도 구배를 갖지 않는 대립자 및 소립자를 사용한 비교예 2에 비하여 대립자 깨짐 정도가 현저히 감소한 것을 확인할 수 있다.
[실험예 2: 전해액 부반응 및 누설전류 평가]
실시예 1 내지 실시예 4 및 비교예 1 내지 2에 의해 제조된 양극을 사용하여 리튬 이차전지 하프 셀(Half cell)를 제조하였다.
구체적으로, 음극은 300㎛의 리튬 메탈을 사용하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 80㎕ 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켰고, 첨가제로 비닐렌카보네이트(Vinylene Carbonate)/프로판설톤(Propane Sultone)/에틸렌설페이트(Ethylene Sulfate)(VC/PS/Esa의 혼합 부피비 =3/0.5/1)를 용해시켜 제조하였다.
상기와 같이 실시예 1 내지 실시예 4 및 비교예 1 내지 2에 의해 제조된 각각의 양극을 사용하여 제조된 각 리튬 이차전지 하프 셀(Half cell)에 대해 10시간의 휴지(wetting) 후, 양극 활물질 질량에 비례하는 0.2C의 전류로 4.25V까지 충전 후, 2.5V까지 동일한 0.2C의 전류로 방전시켜 formation을 진행하였다. 그 후, 0.1C의 일정 전류로 4.7V까지 충전한 후 4.7V에서 120시간 동안 전압을 유지하였을 때 일정 전류를 유지하지 못하고 발생하는 전류의 양을 측정하는 방법으로, 누설 전류(leak current)를 측정하였으며, 그 결과를 하기 표 2 및 도 1에 나타내었다. 양극 활물질 간의 동일 조건에서의 비교를 위하여 120시간 동안 발생하는 누설 전류의 양을 적분하여 120시간으로 나눈 평균 누설 전류의 값을 사용하였다.
실시예1 실시예2 실시예3 실시예4 비교예1 비교예2
평균 누설전류(mAh/h, 120hr) 0.09 0.04 0.06 0.10 0.34 0.18
상기 표 2 및 도 1을 참조하면, 대립자이며 농도구배를 갖는 제1 양극 활물질과, 소립자이며 농도구배를 갖지 않는 제2 양극 활물질을 혼합 사용한 실시예 1 내지 실시예 4는 모노모달(monomodal)의 양극 활물질을 사용한 비교예 1에 비하여 120시간 동안의 평균 누설전류(leak current) 양이 현저히 감소한 것을 알 수 있다. 또한, 실시예 1 내지 실시예 4의 경우, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만, 농도 구배를 갖지 않는 대립자 및 소립자를 사용한 비교예 2에 비하여도 평균 누설전류(leak current) 양이 현저히 감소하였으며, 약 100시간 가량 이후부터 누설전류 양의 차이가 더욱 현저한 것을 확인할 수 있다. 이는 대립자이며 농도구배를 갖는 제1 양극 활물질과, 소립자이며 농도구배를 갖지 않는 제2 양극 활물질을 혼합 사용한 실시예 1 내지 실시예 4의 경우가 대립자 깨짐을 감소시켜 전해액과의 부반응을 억제한 결과로 생각된다.
[실험예 3: 수명 특성 평가]
실험예 2에서와 같이 실시예 1 내지 실시예 4 및 비교예 1 내지 2에 의해 제조된 각각의 양극을 사용하여 제조된 각 리튬 이차전지 하프 셀(half cell)에 대해, 45℃에서 0.33C의 전류 값으로 충방전을 진행하는 사이클링을 30회 진행하였을 시의 용량 유지율을 측정하여 고온 수명 특성 평가를 진행하였다. 그 결과를 표 3 및 도 2에 나타내었다.
실시예1 실시예2 실시예3 실시예4 비교예1 비교예2
고온 수명 특성(Capacity Retention)(%)(45℃)(@30cycles) 96.2 94.7 93.1 96.8 92.1 88.7
상기 표 3 및 도 2를 참조하면, 대립자이며 농도구배를 갖는 제1 양극 활물질과, 소립자이면서 농도구배를 갖지 않는 제2 양극 활물질을 혼합 사용한 실시예 1 내지 실시예 4의 경우, 농도구배를 갖는 모노모달의 비교예 1이나, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만 농도 구배를 갖지 않는 대립자 및 소립자를 사용한 비교예 2에 비하여 대립자의 깨짐을 감소시켜 전해액과의 부반응을 억제한 결과로 고온 수명 특성이 우수하게 나타났다.

Claims (15)

  1. 제1 양극 활물질 및 제2 양극 활물질을 포함하며,
    상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 2 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물이며,
    상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고,
    상기 제1 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 니켈(Ni), 코발트(Co) 및 망간(Mn) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심과 표면에서의 농도 차가 1.5몰% 이상인 농도구배를 가지는 이차전지용 양극재.
  2. 제1항에 있어서,
    상기 제1 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 니켈(Ni), 코발트(Co) 및 망간(Mn) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심에서부터 표면까지 점진적으로 변하는 농도구배를 가지는 이차전지용 양극재.
  3. 제1항에 있어서,
    상기 제1 양극 활물질은, 니켈(Ni)이 리튬 복합 전이금속 산화물 입자의 중심에서부터 표면까지 점진적으로 감소하는 농도구배를 가지는 이차전지용 양극재.
  4. 제1항에 있어서,
    상기 제1 양극 활물질은, 망간(Mn) 및 코발트(Co) 중 적어도 하나가 리튬 복합 전이금속 산화물 입자의 중심에서부터 표면까지 점진적으로 증가하는 농도구배를 가지는 이차전지용 양극재.
  5. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 이차전지용 양극재.
  6. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은, 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)을 포함하는 리튬 복합 전이금속 산화물인 이차전지용 양극재.
  7. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은 하기 화학식 1로 표시되는 이차전지용 양극재.
    [화학식 1]
    LipNi1 -(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2
    상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1 이고, 0<x1+y1+z1≤0.4이다.
  8. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은 서로 동일 또는 상이한 조성의 리튬 복합 전이금속 산화물인 이차전지용 양극재.
  9. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50)은 5:1 내지 2:1인 이차전지용 양극재.
  10. 제1항에 있어서,
    상기 제1 양극 활물질의 평균 입경(D50)은 10 내지 30㎛인 이차전지용 양극 재.
  11. 제1항에 있어서,
    상기 제2 양극 활물질의 평균 입경(D50)은 1 내지 10㎛인 이차전지용 양극재.
  12. 제1항에 있어서,
    상기 제1 양극 활물질 및 제2 양극 활물질은 9:1 내지 1:9의 중량비로 혼합된 이차전지용 양극재.
  13. 제1항에 있어서,
    상기 제2 양극 활물질은 입자 표면의 적어도 일부에 코팅층을 더 포함하며,
    상기 코팅층은 붕소(B) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 1종 이상을 함유하는 리튬 산화물을 포함하는 이차전지용 양극재.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 양극재를 포함하는 이차전지용 양극.
  15. 제14항에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2018/014371 2017-11-21 2018-11-21 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 WO2019103460A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020520747A JP7049551B2 (ja) 2017-11-21 2018-11-21 二次電池用正極材及びこれを含むリチウム二次電池
EP18881658.1A EP3686970B1 (en) 2017-11-21 2018-11-21 Positive electrode material for secondary battery and lithium secondary battery comprising same
US16/758,247 US11699788B2 (en) 2017-11-21 2018-11-21 Positive electrode material for secondary battery and lithium secondary battery including the same
CN201880067206.2A CN111226330A (zh) 2017-11-21 2018-11-21 二次电池用正极材料和包含该正极材料的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0155955 2017-11-21
KR20170155955 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019103460A1 true WO2019103460A1 (ko) 2019-05-31

Family

ID=66630664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014371 WO2019103460A1 (ko) 2017-11-21 2018-11-21 이차전지용 양극재 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US11699788B2 (ko)
EP (1) EP3686970B1 (ko)
JP (1) JP7049551B2 (ko)
KR (1) KR102227313B1 (ko)
CN (1) CN111226330A (ko)
WO (1) WO2019103460A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156124A1 (en) * 2020-02-07 2021-08-12 Basf Se Cathode active material and method for making such cathode active material
EP3929160A1 (en) * 2020-06-18 2021-12-29 Ecopro Co. Ltd. Positive electrode active material and lithium secondary battery comprising the same
EP3955344A4 (en) * 2020-03-20 2022-08-17 Lg Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR A SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY WITH IT
JP2023514346A (ja) * 2020-03-18 2023-04-05 エルジー・ケム・リミテッド リチウム二次電池用正極材、これを含む正極及びリチウム二次電池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156164A1 (de) * 2015-10-14 2017-04-19 Siemens Aktiengesellschaft Verfahren zur herstellung eines werkstücks durch generatives herstellen ; entsprechendes werkstück
JP7324119B2 (ja) * 2019-10-30 2023-08-09 パナソニックホールディングス株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
CN112825349B (zh) * 2019-11-20 2022-05-17 郑州宇通集团有限公司 复合正极极片、锂二次电池
KR102392379B1 (ko) * 2020-06-30 2022-04-29 삼성에스디아이 주식회사 니켈계 리튬 금속 복합 산화물, 그 제조방법 및 이를 포함하는 양극을 함유한 리튬이차전지
KR102397756B1 (ko) * 2020-09-02 2022-05-13 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
KR102473536B1 (ko) * 2020-10-30 2022-12-02 삼성에스디아이 주식회사 니켈계 리튬 금속 복합 산화물, 그 제조방법, 이를 포함한 양극 및 리튬이차전지
CN114804224A (zh) * 2021-01-29 2022-07-29 微宏动力系统(湖州)有限公司 正极材料前驱体的制备方法、正极材料前驱体、正极材料及电池
CN113420471B (zh) * 2021-06-01 2022-02-18 上海交通大学 基于电化学机理的动力锂电池热模型构建建立方法及系统
KR20230026161A (ko) * 2021-08-17 2023-02-24 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN113823797B (zh) * 2021-09-22 2023-02-28 蜂巢能源科技有限公司 一种二元无钴材料活性层、极片、其制备方法和用途
KR102647676B1 (ko) * 2021-10-26 2024-03-14 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
CN114122314A (zh) * 2021-11-05 2022-03-01 惠州锂威新能源科技有限公司 一种二次电池
CN114530585A (zh) * 2022-02-21 2022-05-24 远景动力技术(江苏)有限公司 正极、电化学装置和电子设备
CN115196683B (zh) * 2022-07-19 2023-10-20 欣旺达动力科技股份有限公司 一种正极材料、二次电池及用电设备
CN116868376A (zh) * 2023-04-18 2023-10-10 宁德时代新能源科技股份有限公司 正极活性材料组合物、正极极片、电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090032138A (ko) * 2007-06-21 2009-03-31 에이지씨 세이미 케미칼 가부시키가이샤 리튬 함유 복합 산화물 분말 및 그 제조 방법
KR20090082790A (ko) * 2008-01-28 2009-07-31 주식회사 에너세라믹 리튬 이차 전지용 복합 양극 활물질, 이의 제조 방법, 및이를 포함하는 리튬 이차 전지
KR20140018628A (ko) * 2012-08-02 2014-02-13 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 양극과 리튬전지
KR20140085347A (ko) * 2012-12-26 2014-07-07 한양대학교 산학협력단 리튬 이차전지용 양극활물질
KR20170063373A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793054B2 (ja) 2001-07-27 2006-07-05 日立マクセル株式会社 非水電解質二次電池
JP4578790B2 (ja) * 2003-09-16 2010-11-10 Agcセイミケミカル株式会社 リチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法
CN102569774B (zh) * 2010-12-29 2015-05-13 比亚迪股份有限公司 一种正极活性材料及其制备方法、一种正极材料和锂离子电池
KR20130138073A (ko) 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
CN105229830A (zh) 2013-02-28 2016-01-06 汉阳大学校产学协力团 锂二次电池用正极活性物质
CN104051720B (zh) 2013-03-15 2017-12-08 神华集团有限责任公司 一种材料及其制备以及含有该材料的锂离子正极活性物质、正极材料、电池正极和电池
KR101746899B1 (ko) 2013-05-31 2017-06-14 한양대학교 산학협력단 리튬 전지용 양극 활물질 및 이의 제조방법
CN104781960B (zh) * 2013-10-29 2018-03-06 株式会社Lg 化学 正极活性物质的制备方法及由该方法制备的锂二次电池用正极活性物质
PL3248232T3 (pl) 2015-01-23 2020-01-31 Umicore Proszki katodowe z tlenkiem litowo-niklowo- manganowo-kobaltowym do baterii litowo-jonowych o wysokim napięciu
CN105958062A (zh) * 2016-06-12 2016-09-21 湖南杉杉新能源有限公司 锂离子电池用多晶高镍正极材料及其制备方法
EP3324465A1 (en) * 2016-11-18 2018-05-23 SK Innovation Co., Ltd. Lithium secondary battery and method of fabricating the same
CN106410170B (zh) 2016-12-08 2018-11-09 深圳市鑫永丰科技有限公司 复合锂离子电池正极材料及其制备方法与锂离子电池
US11462725B2 (en) * 2016-12-22 2022-10-04 Posco Cathode active material for lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090032138A (ko) * 2007-06-21 2009-03-31 에이지씨 세이미 케미칼 가부시키가이샤 리튬 함유 복합 산화물 분말 및 그 제조 방법
KR20090082790A (ko) * 2008-01-28 2009-07-31 주식회사 에너세라믹 리튬 이차 전지용 복합 양극 활물질, 이의 제조 방법, 및이를 포함하는 리튬 이차 전지
KR20140018628A (ko) * 2012-08-02 2014-02-13 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 양극과 리튬전지
KR20140085347A (ko) * 2012-12-26 2014-07-07 한양대학교 산학협력단 리튬 이차전지용 양극활물질
KR20170063373A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686970A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156124A1 (en) * 2020-02-07 2021-08-12 Basf Se Cathode active material and method for making such cathode active material
JP2023514346A (ja) * 2020-03-18 2023-04-05 エルジー・ケム・リミテッド リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
EP4089764A4 (en) * 2020-03-18 2023-06-28 Lg Chem, Ltd. Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same
JP7456671B2 (ja) 2020-03-18 2024-03-27 エルジー・ケム・リミテッド リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
EP3955344A4 (en) * 2020-03-20 2022-08-17 Lg Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR A SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY WITH IT
EP3929160A1 (en) * 2020-06-18 2021-12-29 Ecopro Co. Ltd. Positive electrode active material and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
KR102227313B1 (ko) 2021-03-15
EP3686970A1 (en) 2020-07-29
CN111226330A (zh) 2020-06-02
US11699788B2 (en) 2023-07-11
US20200266438A1 (en) 2020-08-20
KR20190058360A (ko) 2019-05-29
EP3686970A4 (en) 2020-11-25
JP2020537316A (ja) 2020-12-17
JP7049551B2 (ja) 2022-04-07
EP3686970B1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019164313A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019147017A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019022422A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021145647A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022164281A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021225396A1 (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020122511A1 (ko) 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2019093869A2 (ko) 이차전지용 양극 활물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520747

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018881658

Country of ref document: EP

Effective date: 20200421

NENP Non-entry into the national phase

Ref country code: DE