WO2019147017A1 - 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents
이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- WO2019147017A1 WO2019147017A1 PCT/KR2019/000970 KR2019000970W WO2019147017A1 WO 2019147017 A1 WO2019147017 A1 WO 2019147017A1 KR 2019000970 W KR2019000970 W KR 2019000970W WO 2019147017 A1 WO2019147017 A1 WO 2019147017A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- transition metal
- metal oxide
- coating layer
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/10—Compounds containing boron and oxygen
- C01B35/12—Borates
- C01B35/121—Borates of alkali metal
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/1315—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/13915—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a cathode active material for a secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same.
- the lithium secondary battery has a structure in which an organic electrolyte or a polymer electrolyte is filled between a positive electrode and a negative electrode, which are made of an active material capable of intercalating and deintercalating lithium ions, and oxidized when lithium ions are inserted / And electrical energy is produced by the reduction reaction.
- Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4, etc.) and lithium iron phosphate compound (LiFePO 4 ) were used as the cathode active material of the lithium secondary battery .
- LiNiO 2 Lithium cobalt oxide
- LiNiO 2 lithium nickel oxide
- LiFePO 4 lithium iron phosphate compound
- the present invention relates to a high-Ni NCM cathode active material containing 60 mol% or more of nickel (Ni) in order to secure a high capacity, which can improve the thermal stability, reduce the residual amount of lithium byproducts, And a cathode active material for a secondary battery capable of preventing particle breakage during electrode rolling.
- the present invention relates to a lithium complex transition metal oxide comprising nickel (Ni), cobalt (Co) and manganese (Mn); And a glassy coating layer formed on the surface of the lithium composite transition metal oxide, wherein the lithium complex transition metal oxide has a content of nickel (Ni) of 60 mol% or more and a content of manganese (Mn) (Co), and the glassy coating layer comprises a glassy compound represented by the following formula (1).
- M 1 is at least one or more selected from the group consisting of B, Al, Si, Ti and P, and 1? A? 4, 1 b 8, 1 c 20.
- the present invention also provides a method of manufacturing a lithium-transition metal oxide comprising: providing a lithium complex transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn); And forming a glassy coating layer by dry mixing and heat-treating a coating source comprising the lithium complex transition metal oxide and at least one selected from the group consisting of B, Al, Si, Ti, and P, Wherein the transition metal oxide has a content of nickel (Ni) of 60 mol% or more and a content of manganese (Mn) larger than that of cobalt (Co), and the vitreous coating layer is a glassy compound
- the present invention also provides a method for producing a cathode active material for a secondary battery.
- M 1 is at least one or more selected from the group consisting of B, Al, Si, Ti and P, and 1? A? 4, 1 b 8, 1 c 20.
- the present invention also provides a positive electrode and a lithium secondary battery including the positive electrode active material.
- the cathode active material for a secondary battery according to the present invention is a high-Ni NCM cathode active material containing 60 mol% or more of nickel (Ni), can secure a high capacity, and can improve the thermal stability by increasing the concentration of manganese (Mn) The particle strength can be improved. Also, a part of the lithium by-products present in the high-Ni lithium complex transition metal oxide reacts to form a vitreous coating layer, thereby reducing lithium by-products.
- the positive electrode for a secondary battery is manufactured using the positive electrode active material according to the present invention, it is possible to prevent particle breakage during electrode rolling, thereby improving the high-temperature lifetime characteristics of the secondary battery, have.
- 1 is a graph showing the results of measurement of particle strength of a cathode active material according to Examples and Comparative Examples.
- FIG. 2 is a graph showing the particle size distribution after rolling the cathode active material according to Examples and Comparative Examples.
- FIG. 3 is a graph showing high temperature lifetime characteristics of a secondary battery manufactured using the cathode active material according to Examples and Comparative Examples.
- FIG. 4 is a graph showing the amount of gas generated during storage at a high temperature of a secondary battery manufactured using the cathode active material according to Examples and Comparative Examples.
- FIG. 4 is a graph showing the amount of gas generated during storage at a high temperature of a secondary battery manufactured using the cathode active material according to Examples and Comparative Examples.
- the cathode active material for a secondary battery of the present invention is a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn); And a glassy coating layer formed on the particle surface of the lithium-transition metal oxide.
- the lithium composite transition metal oxide is a high-nickel (NC) NCM including nickel (Ni), cobalt (Co), and manganese (Mn) and having a nickel content of 60 mol% or more in the entire transition metal content. More preferably, the content of nickel (Ni) in the entire transition metal may be 80 mol% or more. When the content of nickel (Ni) in the total transition metal content of the lithium-based composite transition metal oxide is 60 mol% or more, a high capacity can be secured.
- NC non-nickel
- Ni nickel
- Co cobalt
- Mn manganese
- the content of manganese (Mn) in the lithium composite transition metal oxide is larger than that of cobalt (Co).
- the thermal stability can be improved.
- the content of manganese (Mn) in the entire transition metal may be 15 to 35 mol%, more preferably 15 to 25 mol%, the content of cobalt (Co) is preferably 18 mol% or less, Can be from 5 mole% to 16 mole%.
- lithium complex transition metal oxide may be represented by the following general formula (2).
- M 2 is at least one or more elements selected from the group consisting of Al, Zr, B, W, Mg, Al, Ce, Hf, Ta, Ti, Sr, Ba, F, P, S , and La
- M 3 X is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo, W and Cr, z1? 0.1, 0? q1? 0.1, and x1 ⁇ y1, 0 ⁇ x1 + y1 + z1? 0.4.
- Li may be contained in an amount corresponding to p, that is, 0.9? P? 1.1. If b is less than 0.9, the capacity may decrease. If it exceeds 1.1, particles may be sintered in the firing process, which may make it difficult to manufacture the cathode active material. Considering the remarkable effect of improving the capacity characteristics of the cathode active material according to the Li content control and considering the balance of the sinterability at the time of manufacturing the cathode active material, Li is more preferably in the range of 1.0? P? 1.05.
- Ni may be included in an amount corresponding to 1- (x1 + y1 + z1), for example, 0.6 ⁇ 1- (x1 + y1 + z1) ⁇ 1.
- the content of Ni in the lithium composite transition metal oxide of Formula 2 is 0.6 or more, a sufficient amount of Ni is sufficient to contribute to charge and discharge and high capacity can be achieved.
- Ni may be included in the range of 0.8? 1 - (x1 + y1 + z1)? 0.9.
- Mn may be included in an amount corresponding to y1, that is, 0 ⁇ y1? 0.4. If y1 in the lithium complex transition metal oxide of Formula 2 is more than 0.4, the output characteristics and the capacity characteristics of the battery may be deteriorated. Considering the effect of improving the lifetime characteristics according to the inclusion of Mn, the Mn may be contained more specifically in an amount of 0.15? Y1? 0.35, more preferably 0.15? Y1? 0.25. In order to improve the stability of the active material and, as a result, to improve the stability of the battery, Mn may be contained in an amount larger than Co.
- M 2 may be a doping element contained in the crystal structure of the lithium complex transition metal oxide, and M 2 may be included in a content corresponding to z 1, that is, 0? Z 1? have.
- the metal element of M 3 may not be contained in the lithium complex transition metal oxide structure, and when the precursor and the lithium source are mixed and sintered, the M 3 source is mixed and fired ,
- a lithium complex transition metal oxide may be prepared by doping the surface of the M 3 -based lithium transition metal oxide with a method of forming a lithium complex transition metal oxide and then separately introducing an M 3 source and sintering.
- the M 3 may be included in an amount that does not degrade the characteristics of the cathode active material within the range of q1, that is, 0? Q1? 0.1.
- the cathode active material of the present invention includes a glassy coating layer formed on the surface of the lithium complex transition metal oxide.
- the glassy coating layer comprises a glassy compound represented by the following general formula (1).
- M 1 is at least one or more selected from the group consisting of B, Al, Si, Ti and P, and 1? A? 4, 1 b 8, 1 c 20.
- the present invention provides a lithium-transition metal oxide particle having a high-nickel (Ni) content of 60 mol% or more of nickel (Ni) and containing more manganese (Mn) than cobalt To form a glassy coating layer.
- a lithium-transition metal oxide particle having a high-nickel (Ni) content of 60 mol% or more of nickel (Ni) and containing more manganese (Mn) than cobalt (Co)
- the thermal stability the thermal stability
- the particle strength was improved, and particle breakage during electrode rolling was prevented and the degree of roll contamination was also reduced.
- a portion of the lithium by-product reacted to form a glassy coating layer, thereby reducing lithium byproducts, improving the high-temperature lifetime characteristics of the battery, and suppressing gas generation at high temperature storage.
- the glassy coating layer may include at least one selected from the group consisting of lithium boron oxide and lithium aluminum oxide. And more preferably lithium-boron-aluminum oxide.
- the glassy coating layer may contain boron and aluminum in an amount of 0.3 part by weight: 1 part by weight to 0.8 part by weight: 1 part by weight, more preferably boron and aluminum in an amount of 0.4 part by weight: 1 part by weight to 0.6 part by weight: 1 part by weight May be included.
- the glassy coating layer may be formed on the surface of the primary particles of the lithium-transition metal oxide.
- the cathode active material according to an embodiment of the present invention may be a secondary particle formed by aggregating primary particles, wherein the glassy coating layer may be formed on the surface of the primary particle, and the glassy coating layer Can be formed.
- the glassy coating layer may be included in an amount of 0.02 to 0.2 part by weight, more preferably 0.04 to 0.15 part by weight, based on 100 parts by weight of the lithium-based composite transition metal oxide.
- the glassy coating layer may be formed to a thickness of 20 to 100 nm, more preferably to a thickness of 40 to 80 nm.
- the cathode active material of the present invention may have a particle strength of 150 MPa or more, more preferably 150 MPa to 250 MPa, and still more preferably 200 MPa to 250 MPa.
- the content of residual lithium by-products in the cathode active material of the present invention may be 1.0 wt% or less, more preferably 0.2 to 0.8 wt%, and still more preferably 0.3 to 0.7 wt%.
- the cathode active material of the present invention includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn); And a coating source containing at least one selected from the group consisting of lithium complex transition metal oxides and B, Al, Si, Ti and P is dry-mixed and heat-treated to form a glassy coating layer.
- the lithium complex transition metal oxide is a lithium complex transition metal oxide having a content of nickel (Ni) of 60 mol% or more and a content of manganese (Mn) larger than that of cobalt (Co) in the total content of transition metals.
- Ni nickel
- Mn manganese
- Co cobalt
- the glassy coating layer comprises a glassy compound represented by the following general formula (1).
- M1 is at least one or more selected from the group consisting of B, Al, Si, Ti and P, and 1? A? 4, 1 b 8, 1 c 20.
- the glassy coating layer is formed by dry mixing and heat-treating a coating source containing at least one selected from the group consisting of B, Al, Si, Ti and P, At this time, the lithium source may not be separately supplied.
- a coating source containing at least one selected from the group consisting of B, Al, Si, Ti and P
- the lithium source may not be separately supplied.
- the cathode active material thus formed may have a residual lithium byproduct content of 1.0 wt% or less, more preferably 0.2 to 0.8 wt%, and still more preferably 0.3 to 0.7 wt%.
- the coating source may include a compound containing at least one selected from the group consisting of boron (B) and aluminum (Al).
- the coating source is H 3 BO 3, B 2 O 3, HBPO 4, (NH 4) 2 B 4 O 7, Al 2 O 3, Al (OH) 3, Al (SO 4) 3 or Al (NO 3 ) 3, and the like.
- the glassy coating layer may contain boron and aluminum in an amount of 0.3 part by weight: 1 part by weight to 0.8 part by weight: 1 part by weight, more preferably boron and aluminum in an amount of 0.4 part by weight: 1 part by weight to 0.6 part by weight: 1 part by weight May be included.
- the coating source may be mixed in an amount of 0.02 to 2.0 parts by weight, more preferably 0.04 to 1.0 part by weight, based on 100 parts by weight of the lithium complex transition metal oxide.
- the coating source may be dry-mixed with the lithium complex transition metal oxide and then heat-treated at 500 to 750 ° C to form the glassy coating layer.
- the heat treatment is more preferably performed at 600 to 700 ° C.
- a positive electrode and a lithium secondary battery for a lithium secondary battery including the positive electrode active material.
- the positive electrode includes a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector and including the positive electrode active material.
- the cathode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, a metal such as stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
- the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the cathode current collector to increase the adhesive force of the cathode active material.
- it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the cathode active material layer may include a conductive material and a binder together with the cathode active material described above.
- the conductive material is used for imparting conductivity to the electrode.
- the conductive material can be used without particular limitation as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
- the conductive material may be typically contained in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
- the binder serves to improve adhesion between the positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode collector.
- specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof.
- the binder may be included in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
- the positive electrode may be manufactured according to a conventional positive electrode manufacturing method, except that the positive electrode active material described above is used. Specifically, the composition for forming a cathode active material layer containing the above-mentioned cathode active material and optionally a binder and a conductive material may be coated on the cathode current collector, followed by drying and rolling. At this time, the types and contents of the cathode active material, the binder, and the conductive material are as described above.
- the solvent examples include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and the like. Water and the like, and one kind or a mixture of two or more kinds can be used.
- the amount of the solvent to be used is sufficient to dissolve or disperse the cathode active material, the conductive material and the binder in consideration of the coating thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
- the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, then peeling off the support from the support, and laminating the obtained film on the positive electrode current collector.
- an electrochemical device including the anode.
- the electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
- the lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, as described above.
- the lithium secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
- the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
- the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
- the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
- the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
- it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
- the negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode including a negative electrode active material on the negative electrode collector and, optionally, a binder and a conductive material, or by casting the composition for forming a negative electrode on a separate support , And a film obtained by peeling from the support may be laminated on the negative electrode collector.
- a compound capable of reversible intercalation and deintercalation of lithium may be used.
- Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon;
- Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
- Metal oxides capable of doping and dedoping lithium such as SiO? (0 ⁇ ?
- the carbon material may be both low-crystalline carbon and high-crystallinity carbon. Examples of the low-crystalline carbon include soft carbon and hard carbon.
- Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitches. derived cokes).
- binder and the conductive material may be the same as those described above for the anode.
- the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions.
- the separator can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte.
- porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
- a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
- a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
- Examples of the electrolyte used in the present invention include an organic-based liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
- the electrolyte may include an organic solvent and a lithium salt.
- the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
- examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
- Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a straight, branched or cyclic hydrocarbon group of C2 to C20, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
- Ether solvents such as dibutyl ether or tetrahydrofuran
- Ketone solvents such as cyclohexanone
- a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
- a cyclic carbonate for example, ethylene carbonate or propylene carbonate
- ethylene carbonate or propylene carbonate for example, ethylene carbonate or propylene carbonate
- ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
- the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
- the lithium salt LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2.
- LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used.
- the concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
- the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
- the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
- portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
- HEV hybrid electric vehicles hybrid electric vehicle
- a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
- the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
- a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
- EV electric vehicle
- PHEV plug-in hybrid electric vehicle
- Lithium complex transition metal oxide LiNi 0 . 65 Co 0 . 15 Mn 0 . 20 O 2 And 0.29 parts by weight of H 3 BO 3 as a coating source were mixed and heat-treated at 650 ° C. for 5 hours to obtain LiNi 0 . 65 Co 0 . 15 Mn 0 . (LiBO 2 , Li 2 B 4 O 7 ) (B 500 ppm) was formed on the surface of the particles of 20 O 2 .
- LiBO 2 , Li 2 B 4 O 7 (B 1,000 ppm) was formed in the same manner as in Example 1, except that 0.58 parts by weight of H 3 BO 3 was mixed as a coating source, to prepare a positive electrode active material having a coating layer of lithium boron oxide .
- Boron-aluminum oxide (Li 2 B 5 AlO 10 , LiB 4 Al 7 , LiB 2 O 3) was prepared in the same manner as in Example 1, except that 0.29 parts by weight of H 3 BO 3 and 0.22 parts by weight of Al 2 O 3 were mixed as a coating source.
- O 17 (B 500 ppm, Al 1,000 ppm) was formed on the surface of the cathode active material.
- a cathode active material having no coating layer was prepared in the same manner as in Example 1, except that the coating source was not mixed.
- Lithium complex transition metal oxide LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 was used as a cathode active material, a cathode active material was prepared.
- Lithium complex transition metal oxide LiNi 0 . 5 Co 0 . 2 Mn 0 . 3 O 2 was used as the cathode active material, a cathode active material was prepared.
- Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Particle Strength (MPa) 151.6 173.2 225.5 113.5 137.1 145.2
- Examples 1 to 3 in which a glassy coating layer was formed, showed remarkably improved particle strength compared to Comparative Example 1 in which a glassy coating layer was not formed.
- Example 3 in which a lithium-boron-aluminum oxide coating layer was formed exhibited a better particle strength improving effect.
- Comparative Examples 2 and 3 in which the content of manganese (Mn) was not larger than that of cobalt (Co) or nickel (Ni) was less than 60 mol%, the particle strength was lower than those of Examples 1 to 3.
- the cathode active material, the carbon black conductive material, and the PVdF binder prepared in Examples 1 to 3 and Comparative Examples 1 to 3 were mixed in a N-methylpyrrolidone solvent in a weight ratio of 96.5: 1.5: 2 to prepare a positive electrode mixture : 5000mPa ⁇ s) to make and prepare a this aluminum current collector and then the entire coating on one side of, and then dried at 130 °C, a porosity of 25%, the rolling density 3.35g / cm 3 by rolling the positive electrode.
- the particle size distribution was measured by irradiating an ultrasonic wave of about 28 kHz at an output of 60 W using a laser diffraction particle size analyzer (Microtrac MT 3000), and the degree of particle breakage was evaluated. The results are shown in FIG.
- Comparative Example 1 in which a glassy coating layer was not formed showed a large change in particle size distribution compared with that before rolling, whereas Examples 1 to 3, in which a glassy coating layer was formed, It is confirmed that the degree of generation of fine particles is reduced and the change in particle size distribution is reduced. Thus, it can be seen that Examples 1 to 3 improved the particle strength by forming the glassy coating layer.
- the positive electrode was prepared as described above, and the degree of cracking of the roll press was measured by means of a chrominance meter when the roll was rolled for 200 m and 400 m relative to 0 m for the rolling section. Respectively.
- Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Retention rate before rolling (%) Before rolling 100 100 100 100 100 100 100 100 200m rolling 81.6 84.3 91.4 71.7 75.5 77.1 400m rolling 74.3 80.7 90.5 57.7 61.8 65.2
- Example 3 it can be seen that the roll contamination degree is significantly reduced in Examples 1 to 3 in which the glassy coating layer is formed, compared to Comparative Example 1 in which no glassy coating layer is formed. Particularly, in Example 3 in which the lithium-boron-aluminum oxide coating layer was formed, it was confirmed that the degree of roll contamination was further reduced. On the other hand, in Comparative Examples 2 and 3 in which the content of manganese (Mn) was not larger than that of cobalt (Co) or nickel (Ni) was less than 60 mol%, the degree of contamination was larger than those in Examples 1 to 3. Thus, it can be seen that Examples 1 to 3 improved the particle strength by forming the glassy coating layer.
- Mn manganese
- Co cobalt
- Ni nickel
- the cathode active material, the carbon black conductive material, and the PVdF binder prepared in Examples 1 to 3 and Comparative Examples 1 to 3 were mixed in a N-methylpyrrolidone solvent in a weight ratio of 96.5: 1.5: 2 to prepare a positive electrode mixture : 5000 mPa ⁇ ⁇ ) was coated on one surface of an aluminum current collector, dried at 130 ⁇ ⁇ , and rolled to prepare a positive electrode.
- a negative electrode active material natural graphite, a carbon black conductive material, and a PVdF binder were mixed in a N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 to prepare a composition for forming an anode, To prepare a negative electrode.
- a lithium secondary battery was prepared by preparing an electrode assembly between a positive electrode and a negative electrode manufactured as described above through a separator of porous polyethylene, positioning the electrode assembly inside a case, and then injecting an electrolyte into the case.
- Each of the lithium secondary battery full cells manufactured as described above was subjected to 100 cycles of charging and discharging at 45 ° C under the conditions of a charging end voltage of 4.25 V and a discharge end voltage of 2.5 V and a discharge capacity of 0.3 C / [%]) was measured. The measurement results are shown in FIG.
- Example 3 it can be seen that the high-temperature lifetime characteristics of Examples 1 to 3 in which the glassy coating layer was formed were significantly improved as compared with Comparative Example 1 in which the glassy coating layer was not formed.
- the high temperature lifetime characteristics of Examples 1 to 3 were superior to those of Comparative Example 2 in which manganese (Mn) content was not greater than cobalt (Co) and Comparative Example 3 in which nickel (Ni) was less than 60 mol%.
- Mn manganese
- Co cobalt
- Ni nickel
- Example 3 in which a lithium-boron-aluminum oxide coating layer was formed was confirmed to have further improved high-temperature storage stability.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물; 및 상기 리튬 복합 전이금속 산화물의 입자 표면에 형성된 유리질 코팅층;을 포함하며, 상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상이고, 망간(Mn)의 함량이 코발트(Co)의 함량보다 크며, 상기 유리질 코팅층은 하기 화학식 1로 표시되는 유리질 화합물을 포함하는 이차전지용 양극 활물질에 관한 것이다. [화학식 1] LiaM1
bOc 상기 식에서, M1은 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상이고, 1≤a≤4, 1≤b≤8, 1≤c≤20이다.
Description
관련출원과의 상호인용
본 출원은 2018년 1월 24일자 한국 특허 출원 제10-2018-0008909호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co) 및 망간(Mn)으로 치환한 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물' 이라 함)이 개발되었다. 그러나, 종래의 개발된 NCM계 리튬 복합 전이금속 산화물은 용량 특성이 충분하지 않아 적용에 한계가 있었다.
이와 같은 문제점을 개선하기 위해, 최근에는 NCM계 리튬 복합 전이금속 산화물에서 Ni의 함량을 증가시키려는 연구가 이루어지고 있다. 그러나, 니켈 함량이 높은 고농도 니켈 양극 활물질의 경우, 활물질의 구조적 안정성과 화학적 안정성이 떨어져 열 안정성이 급격히 저하된다는 문제점이 있다. 또한, 활물질 내의 니켈 함량이 높아짐에 따라 양극 활물질 표면에 LiOH, Li2CO3 형태로 존재하는 리튬 부산물이 증가하게 되고, 이로 인해 스웰링(swelling) 현상이 발생하며, 전지의 수명 및 안정성이 저하되는 문제점이 있었다.
또한, 고농도 니켈 양극 활물질의 열 안정성 향상을 위해 망간(Mn)의 농도를 증가시키게 되면 활물질의 입자 강도가 저하되어 전극 압연 시 입자 깨짐이 발생하고, 이로 인해 고온 수명 특성이 저하되고, 고온 저장 시 가스 발생의 문제가 있었다.
본 발명은 고용량 확보를 위해 니켈(Ni)을 60몰% 이상 함유한 High-Ni NCM계 양극 활물질에 있어서, 열 안정성을 향상시키고, 리튬 부산물의 잔존량을 감소시키며, 양극 활물질의 입자 강도를 개선하여 전극 압연 시 입자 깨짐을 방지할 수 있는 이차전지용 양극 활물질을 제공하고자 하는 것이다.
본 발명은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물; 및 상기 리튬 복합 전이금속 산화물의 입자 표면에 형성된 유리질 코팅층;을 포함하며, 상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상이고, 망간(Mn)의 함량이 코발트(Co)의 함량보다 크며, 상기 유리질 코팅층은 하기 화학식 1로 표시되는 유리질 화합물을 포함하는 이차전지용 양극 활물질을 제공한다.
[화학식 1]
LiaM1
bOc
상기 식에서, M1은 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상이고, 1≤a≤4, 1≤b≤8, 1≤c≤20이다.
또한, 본 발명은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물을 마련하는 단계; 및 상기 리튬 복합 전이금속 산화물 및 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 코팅 소스를 건식 혼합하고 열처리하여 유리질 코팅층을 형성하는 단계;를 포함하며, 상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상이고, 망간(Mn)의 함량이 코발트(Co)의 함량보다 크며, 상기 유리질 코팅층은 하기 화학식 1로 표시되는 유리질 화합물을 포함하는 이차전지용 양극 활물질의 제조방법을 제공한다.
[화학식 1]
LiaM1
bOc
상기 식에서, M1은 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상이고, 1≤a≤4, 1≤b≤8, 1≤c≤20이다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
본 발명에 따른 이차전지용 양극 활물질은 니켈(Ni)을 60몰% 이상 함유한 High-Ni NCM계 양극 활물질로서 고용량 확보가 가능하며, 망간(Mn)의 농도를 증가시켜 열 안정성을 향상시키면서도 유리질 코팅층으로 인해 입자 강도를 개선할 수 있다. 또한, High-Ni 리튬 복합 전이금속 산화물에 존재하는 리튬 부산물의 일부가 반응하여 유리질 코팅층을 형성함으로써 리튬 부산물을 감소시키는 효과도 발생시킬 수 있다.
또한, 본 발명에 따른 양극 활물질을 사용하여 이차전지용 양극을 제조하게 되면 전극 압연 시 입자 깨짐을 방지할 수 있으며, 이로 인해 이차전지의 고온 수명 특성을 개선하고, 고온 저장 시 가스 발생을 억제할 수 있다.
도 1은 실시예 및 비교예에 따른 양극 활물질의 입자 강도를 측정한 결과를 나타낸 그래프이다.
도 2는 실시예 및 비교예에 따른 양극 활물질의 압연 후 입도 분포를 나타낸 그래프이다.
도 3은 실시예 및 비교예에 따른 양극 활물질을 사용하여 제조된 이차전지의 고온 수명 특성을 나타낸 그래프이다.
도 4는 실시예 및 비교예에 따른 양극 활물질을 사용하여 제조된 이차전지의 고온 저장 시 가스 발생량을 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
<양극 활물질>
본 발명의 이차전지용 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물; 및 상기 리튬 복합 전이금속 산화물의 입자 표면에 형성된 유리질 코팅층;을 포함한다.
상기 리튬 복합 전이금속 산화물은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하고, 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상인 High-니켈(Ni) NCM이다. 보다 바람직하게는 전이금속 전체 함량 중 니켈(Ni)의 함량이 80몰% 이상일 수 있다. 상기 리튬 복합 전이금속 산화물의 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상일 경우 고용량 확보가 가능할 수 있다.
또한, 상기 리튬 복합 전이금속 산화물은 망간(Mn)의 함량이 코발트(Co)의 함량보다 크다. 망간(Mn)이 코발트(Co)보다 많이 함유됨으로써 열 안정성을 향상시킬 수 있다. 보다 바람직하게는 전이금속 전체 함량 중 망간(Mn)의 함량은 15 내지 35몰%, 더욱 바람직하게는 15 내지 25몰%일 수 있고, 코발트(Co)의 함량은 18몰% 이하, 더욱 바람직하게는 5몰% 내지 16몰%일 수 있다.
보다 구체적으로, 상기 리튬 복합 전이금속 산화물은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
LipNi1-(x1+y1+z1)Cox1Mny1M2
z1M3
q1O2
상기 식에서, M2는 Al, Zr, B, W, Mg, Al, Ce, Hf, Ta, Ti, Sr, Ba, F, P, S 및 La로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, M3는 Al, Zr, Ti, Mg, Ta, Nb, Mo, W 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.1, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1이고, x1<y1, 0<x1+y1+z1≤0.4이다.
상기 화학식 2의 리튬 복합 전이금속 산화물에 있어서, Li은 p에 해당하는 함량, 즉 0.9≤p≤1.1로 포함될 수 있다. b가 0.9 미만이면 용량이 저하될 우려가 있고, 1.1을 초과하면 소성 공정에서 입자가 소결되어 버려, 양극 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극 활물질의 용량 특성 개선 효과의 현저함 및 양극 활물질 제조시의 소결성이 발란스를 고려할 때, 상기 Li는 보다 바람직하게는 1.0≤p≤1.05의 함량으로 포함될 수 있다.
상기 화학식 2의 리튬 복합 전이금속 산화물에 있어서, Ni은 1-(x1+y1+z1)에 해당하는 함량, 예를 들어, 0.6≤1-(x1+y1+z1)<1로 포함될 수 있다. 상기 화학식 2의 리튬 복합 전이금속 산화물 내 Ni의 함량이 0.6 이상의 조성이 되면 충방전에 기여하기에 충분한 Ni량이 확보되어 고용량화를 도모할 수 있다. 보다 바람직하게는 Ni은 0.8≤1-(x1+y1+z1)≤0.9로 포함될 수 있다.
상기 화학식 2의 리튬 복합 전이금속 산화물에 있어서, Co는 x1에 해당하는 함량, 즉 0<x1≤0.4으로 포함될 수 있다. 상기 화학식 2의 리튬 복합 전이금속 산화물 내 Co의 함량이 0.4를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0<x1≤0.18, 더욱 바람직하게는 0.05≤x1≤0.16의 함량으로 포함될 수 있으며, Mn보다 적은 함량으로 포함될 수 있다.
상기 화학식 2의 리튬 복합 전이금속 산화물에 있어서, Mn는 y1에 해당하는 함량, 즉 0<y1≤0.4으로 포함될 수 있다. 상기 화학식 2의 리튬 복합 전이금속 산화물 내 y1이 0.4를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있다. Mn 포함에 따른 수명 특성 개선 효과를 고려할 때, 상기 Mn은 보다 구체적으로 0.15≤y1≤0.35, 더욱 바람직하게는 0.15≤y1≤0.25의 함량으로 포함될 수 있다. 활물질의 안정성을 향상시키고, 그 결과로서 전지의 안정성을 개선시키기 위해, Mn은 Co보다 많은 함량으로 포함될 수 있다.
상기 화학식 2의 리튬 복합 전이금속 산화물에 있어서, M2는 리튬 복합 전이금속 산화물의 결정 구조 내 포함된 도핑원소일 수 있으며, M2는 z1에 해당하는 함량, 즉 0≤z1≤0.1로 포함될 수 있다.
상기 화학식 2의 리튬 복합 전이금속 산화물에 있어서, M3의 금속 원소는 리튬 복합 전이금속 산화물 구조 내에 포함되지 않을 수 있고, 전구체와 리튬 소스를 혼합하고 소성할 때 M3 소스를 함께 혼합하여 소성하거나, 리튬 복합 전이금속 산화물을 형성한 후 별도로 M3 소스를 투입하고 소성하는 방법을 통해 상기 M3가 리튬 복합 전이금속 산화물의 표면에 도핑된 리튬 복합 전이금속 산화물을 제조할 수 있다. 상기 M3는 q1에 해당하는 함량, 즉 0≤q1≤0.1의 범위 내에서 양극 활물질의 특성을 저하하지 않는 함량으로 포함될 수 있다.
본 발명의 양극 활물질은 상기 리튬 복합 전이금속 산화물의 입자 표면에 형성된 유리질 코팅층을 포함한다. 상기 유리질 코팅층은 하기 화학식 1로 표시되는 유리질 화합물을 포함한다.
[화학식 1]
LiaM1
bOc
상기 식에서, M1은 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상이고, 1≤a≤4, 1≤b≤8, 1≤c≤20이다.
니켈(Ni)이 60몰% 이상인 High-니켈(Ni)계 양극 활물질의 열 안정성 향상을 위해 망간(Mn)의 농도를 증가시키게 되면 입자 강도가 저하되어 전극 압연 시 입자 깨짐이 발생하고, 이로 인해 고온 수명 특성이 저하되고, 고온 저장 시 가스 발생의 문제가 있었다. 또한, 니켈(Ni)이 60몰% 이상인 High-니켈(Ni)계 양극 활물질의 경우 리튬 부산물 잔존량이 증가하여 스웰링(swelling) 현상이 발생하고, 전지 수명 및 안정성이 저하되는 문제가 있었다.
본 발명은 이러한 문제를 해결하기 위하여, 니켈(Ni)이 60몰% 이상인 High-니켈(Ni)이면서 망간(Mn)이 코발트(Co)보다 많이 함유된 리튬 복합 전이금속 산화물 입자 표면에 상기와 같은 유리질 코팅층을 형성하였다. 이와 같이 니켈(Ni)이 60몰% 이상인 High-니켈(Ni)이면서 망간(Mn)이 코발트(Co)보다 많이 함유된 리튬 복합 전이금속 산화물 입자 표면에 유리질 코팅층을 형성함으로써, 양극 활물질의 열 안정성을 향상시키면서도 입자 강도를 개선하였으며, 전극 압연 시 입자 깨짐을 방지하고 롤 오염도도 감소시킬 수 있었다. 또한, 리튬 부산물의 일부가 반응하여 유리질 코팅층을 형성함으로써 리튬 부산물을 감소시켰으며, 전지의 고온 수명 특성을 개선하고, 고온 저장 시 가스 발생을 억제하였다.
상기 유리질 코팅층은 보다 바람직하게는 리튬 붕소 산화물 및 리튬 알루미늄 산화물로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. 더욱 바람직하게는 리튬-붕소-알루미늄 산화물을 포함할 수 있다.
상기 유리질 코팅층은 붕소 및 알루미늄이 0.3중량부:1중량부 내지 0.8중량부:1중량부로 함유될 수 있으며, 보다 바람직하게는 붕소 및 알루미늄이 0.4중량부:1중량부 내지 0.6중량부:1중량부로 함유될 수 있다. 붕소 및 알루미늄의 함량비가 상기 범위 내를 만족함으로써 입자 강도를 더욱 향상시키고, 고온 수명 특성 및 고온 저장 안정성을 더욱 향상시킬 수 있다.
상기 유리질 코팅층은 상기 리튬 복합 전이금속 산화물의 1차 입자 표면에 형성될 수 있다. 본 발명의 일 실시예에 따른 양극 활물질은 1차 입자가 응집되어 이루어진 2차 입자일 수 있는데, 이때, 상기 유리질 코팅층이 1차 입자 표면에 형성될 수 있으며, 상기 2차 입자 표면에도 상기 유리질 코팅층이 형성될 수 있다.
상기 유리질 코팅층은 리튬 복합 전이금속 산화물 100중량부에 대하여 0.02 내지 0.2중량부로 포함될 수 있으며, 보다 바람직하게는 0.04 내지 0.15중량부로 포함될 수 있다.
상기 유리질 코팅층은 20 내지 100nm의 두께로 형성될 수 있으며, 보다 바람직하게는 40 내지 80nm 두께로 형성될 수 있다.
본 발명의 양극 활물질은 입자 강도가 150MPa 이상일 수 있으며, 보다 바람직하게는 150MPa 내지 250MPa을 만족할 수 있고, 더욱 바람직하게는 200MPa 내지 250MPa을 만족할 수 있다.
또한, 본 발명의 양극 활물질은 잔류 리튬 부산물의 함량이 1.0중량% 이하일 수 있으며, 보다 바람직하게는 0.2 내지 0.8중량%, 더욱 바람직하게는 0.3 내지 0.7중량%일 수 있다.
<양극 활물질의 제조방법>
본 발명의 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물을 마련하는 단계; 및 상기 리튬 복합 전이금속 산화물 및 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 코팅 소스를 건식 혼합하고 열처리하여 유리질 코팅층을 형성하는 단계;를 포함하여 제조한다.
상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상이고, 망간(Mn)의 함량이 코발트(Co)의 함량보다 큰 리튬 복합 전이금속 산화물이다. 상기 리튬 복합 전이금속 산화물의 보다 구체적인 조성은 앞서 양극 활물질에서 설명한 것과 동일하게 적용될 수 있다.
상기 유리질 코팅층은 하기 화학식 1로 표시되는 유리질 화합물을 포함한다.
[화학식 1]
LiaM1
bOc
상기 식에서, M1은 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상이고, 1≤a≤4, 1≤b≤8, 1≤c≤20이다.
상기 유리질 코팅층은 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 코팅 소스를 건식 혼합하고 열처리하여 형성한다. 이때, 리튬 소스는 별도로 투입하지 않을 수 있다. 니켈(Ni)이 60몰% 이상인 High-니켈(Ni)계 리튬 복합 전이금속 산화물의 경우 리튬 부산물의 잔존량이 많으므로, 리튬 소스를 별도로 투입하지 않고 리튬 부산물의 일부를 반응시켜 상기 유리질 코팅층을 형성함으로써 리튬 부산물을 감소시키는 효과도 발생시킬 수 있다. 이와 같이 형성된 상기 양극 활물질은 잔류 리튬 부산물의 함량이 1.0중량% 이하일 수 있으며, 보다 바람직하게는 0.2 내지 0.8중량%, 더욱 바람직하게는 0.3 내지 0.7중량%일 수 있다.
상기 코팅 소스는 붕소(B) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 함유하는 화합물을 포함할 수 있다. 예를 들어, 상기 코팅 소스는 H3BO3, B2O3, HBPO4, (NH4)2B4O7, Al2O3, Al(OH)3, Al(SO4)3 또는 Al(NO3)3 등 일 수 있다.
상기 유리질 코팅층은 붕소 및 알루미늄이 0.3중량부:1중량부 내지 0.8중량부:1중량부로 함유될 수 있으며, 보다 바람직하게는 붕소 및 알루미늄이 0.4중량부:1중량부 내지 0.6중량부:1중량부로 함유될 수 있다.
상기 코팅 소스는 리튬 복합 전이금속 산화물 100중량부에 대하여 0.02 내지 2.0중량부로 혼합할 수 있으며, 보다 바람직하게는 0.04 내지 1.0중량부로 혼합할 수 있다.
상기 코팅 소스를 리튬 복합 전이금속 산화물과 건식 혼합한 후, 500 내지 750℃로 열처리하여 상기 유리질 코팅층을 형성할 수 있다. 상기 열처리는 보다 바람직하게는 600 내지 700℃에서 수행할 수 있다.
<양극 및 이차전지>
본 발명의 또 다른 일 실시예에 따르면 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질 층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극 활물질 층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극활물질 층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOα(0 < α < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
리튬 복합 전이금속 산화물 LiNi0
.
65Co0
.
15Mn0
.
20O2
100중량부 및 코팅 소스로서 H3BO3 0.29중량부를 혼합한 후 650℃로 5시간 동안 열처리하여 LiNi0
.
65Co0
.
15Mn0
.
20O2의 입자 표면에 리튬 붕소 산화물(LiBO2, Li2B4O7)(B 500ppm)의 코팅층이 형성된 양극 활물질을 제조하였다.
실시예 2
코팅 소스로서 H3BO3 0.58중량부를 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 리튬 붕소 산화물(LiBO2, Li2B4O7)(B 1,000ppm)의 코팅층이 형성된 양극 활물질을 제조하였다.
실시예 3
코팅 소스로서 H3BO3 0.29중량부 및 Al2O3 0.22중량부를 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 리튬-붕소-알루미늄 산화물(Li2B5AlO10, LiB4Al7O17)(B 500ppm, Al 1,000ppm)의 코팅층이 형성된 양극 활물질을 제조하였다.
비교예 1
코팅 소스를 혼합하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 코팅층이 형성되지 않은 양극 활물질을 제조하였다.
비교예 2
리튬 복합 전이금속 산화물 LiNi0
.
6Co0
.
2Mn0
.
2O2을 사용한 것을 제외하고는 실시예 3과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예
3
리튬 복합 전이금속 산화물 LiNi0
.
5Co0
.
2Mn0
.
3O2을 사용한 것을 제외하고는 실시예 3과 동일하게 실시하여 양극 활물질을 제조하였다.
[실험예 1: 입자 강도 평가]
실시예 1~3 및 비교예 1~3에서 제조된 양극 활물질에 대해 Shimadzu MCT-W500 장비로 압자를 양극 활물질 입자에 접촉하여 힘을 가하는 방식으로 입자 강도를 측정하였으며, 그 결과를 표 1 및 도 1에 나타내었다.
실시예1 | 실시예2 | 실시예3 | 비교예1 | 비교예2 | 비교예3 | |
입자강도(MPa) | 151.6 | 173.2 | 225.5 | 113.5 | 137.1 | 145.2 |
상기 표 1 및 도 1을 참조하면, 유리질 코팅층을 형성하지 않은 비교예 1에 비하여 유리질 코팅층을 형성한 실시예 1~3은 입자 강도가 현저히 향상된 것을 확인할 수 있다. 특히, 리튬-붕소-알루미늄 산화물 코팅층을 형성한 실시예 3은 더욱 우수한 입자 강도 개선 효과를 보였다. 한편, 망간(Mn)의 함량이 코발트(Co)보다 크지 않거나, 니켈(Ni)이 60몰% 미만인 비교예 2 및 3의 경우 실시예 1~3에 비하여 입자 강도가 낮게 나타났다.
[실험예 2: 잔류 리튬 부산물 평가]
실시예 1~3 및 비교예 1~2에서 제조된 양극 활물질 10g을 물 100mL에 분산시킨 후 0.1M의 HCl로 적정하면서 pH 값의 변화를 측정하여 pH 적정 곡선(pH titration Curve)을 얻었다. 상기 pH 적정 곡선을 이용하여 각 양극 활물질 내의 LiOH 잔류량과 Li2CO3 잔류량을 계산하였으며, 이들을 합한 값을 전체 리튬 부산물 잔류량으로 평가하여 하기 표 2에 나타내었다.
LiOH 잔류량(wt%) | Li2CO3 잔류량(wt%) | 전체 리튬 부산물 잔류량(wt%) | |
실시예1 | 0.41 | 0.45 | 0.86 |
실시예2 | 0.34 | 0.39 | 0.73 |
실시예3 | 0.26 | 0.33 | 0.59 |
비교예1 | 0.63 | 0.54 | 1.17 |
비교예2 | 0.47 | 0.49 | 0.96 |
상기 표 2를 참조하면, 유리질 코팅층을 형성하지 않은 비교예 1에 비하여 유리질 코팅층을 형성한 실시예 1~3이 잔류 리튬 부산물의 함량이 현저히 감소되었다.
[실험예 3: 입자 깨짐 평가]
실시예 1~3 및 비교예 1~3에서 제조된 각 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96.5:1.5:2의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 공극률 25%, 압연 밀도 3.35g/cm3 압연하여 양극을 제조하였다.
압연 후, 레이저 회절 입도 측정 장치(Microtrac MT 3000)를 이용하여 약 28kHz의 초음파를 출력 60W로 조사하여 입도 분포를 측정하여 입자 깨짐 정도를 평가하였으며, 그 결과를 도 2에 나타내었다.
도 2를 참조하면, 유리질 코팅층을 형성하지 않은 비교예 1은 압연 후 미립자가 많이 형성되고, 압연 전과 비교하였을 때 입도 분포 변화가 큰 반면에, 유리질 코팅층을 형성한 실시예 1~3은 압연 후 미립자 발생 정도가 저하되고, 입도 분포 변화가 감소한 것을 확인할 수 있다. 이를 통해, 실시예 1~3이 유리질 코팅층이 형성됨으로써 입자 강도가 개선된 것을 알 수 있다.
또한, 상기와 같이 양극을 제조하였으며, 롤 프레스 압연 시 압연 구간 0m 대비 200m, 400m 구간 동안 압연했을 때의 색차계치를 통해 롤 프레스 오염도를 측정하여 입자 깨짐 정도를 평가하였으며, 그 결과를 하기 표 2에 나타내었다.
실시예1 | 실시예2 | 실시예3 | 비교예1 | 비교예2 | 비교예3 | ||
압연 전 대비 유지율(%) | 압연 전 | 100 | 100 | 100 | 100 | 100 | 100 |
200m 압연 | 81.6 | 84.3 | 91.4 | 71.7 | 75.5 | 77.1 | |
400m 압연 | 74.3 | 80.7 | 90.5 | 57.7 | 61.8 | 65.2 |
상기 표 3을 참조하면, 유리질 코팅층을 형성하지 않은 비교예 1에 비하여 유리질 코팅층을 형성한 실시예 1~3은 롤 오염도가 현저히 감소된 것을 확인할 수 있다. 특히, 리튬-붕소-알루미늄 산화물 코팅층을 형성한 실시예 3은 더욱 롤 오염도가 감소된 것을 확인할 수 있다. 한편, 망간(Mn)의 함량이 코발트(Co)보다 크지 않거나, 니켈(Ni)이 60몰% 미만인 비교예 2 및 3의 경우 실시예 1~3에 비하여 오염도가 크게 나타났다. 이를 통해, 실시예 1~3이 유리질 코팅층이 형성됨으로써 입자 강도가 개선된 것을 알 수 있다.
[실험예 4: 전지 성능 평가]
실시예 1~3 및 비교예 1~3에서 제조된 각 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96.5:1.5:2의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
음극 활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체의 일면에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
상기와 같이 제조된 각 리튬 이차 전지 풀 셀(full cell)을 45℃에서 충전 종지 전압 4.25V, 방전 종지 전압 2.5V, 0.3C/0.3C 조건으로 100 사이클 충방전을 실시하면서 용량 유지율(Capacity Retention[%])을 측정하였으며, 그 측정 결과는 도 3에 나타내었다.
또한, 상기와 같이 제조된 각 리튬 이차 전지 풀 셀(full cell)을 45℃에서 3주간 보관하면서 가스 발생량을 측정하였으며, 그 측정 결과는 도 4에 나타내었다.
도 3을 참조하면, 유리질 코팅층을 형성하지 않은 비교예 1에 비하여 유리질 코팅층을 형성한 실시예 1~3의 고온 수명 특성이 현저히 향상된 것을 확인할 수 있다. 또한, 망간(Mn)의 함량이 코발트(Co)보다 크지 않은 비교예 2 및 니켈(Ni)이 60몰% 미만인 비교예 3에 비해서 실시예 1~3의 고온 수명 특성이 우수하였다. 특히, 리튬-붕소-알루미늄 산화물 코팅층을 형성한 실시예 3은 고온 수명 특성이 더욱 향상된 것을 확인할 수 있다.
도 4를 참조하면, 유리질 코팅층을 형성하지 않은 비교예 1에 비하여 유리질 코팅층을 형성한 실시예 1~3의 고온 저장 시 가스 발생량이 현저히 감소한 것을 확인할 수 있다. 또한, 망간(Mn)의 함량이 코발트(Co)보다 크지 않은 비교예 2 및 니켈(Ni)이 60몰% 미만인 비교예 3에 비해서 실시예 1~3의 고온 저장 안정성이 우수하였다. 특히, 리튬-붕소-알루미늄 산화물 코팅층을 형성한 실시예 3은 고온 저장 안정성이 더욱 향상된 것을 확인할 수 있다.
Claims (19)
- 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물; 및 상기 리튬 복합 전이금속 산화물의 입자 표면에 형성된 유리질 코팅층;을 포함하며,상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상이고, 망간(Mn)의 함량이 코발트(Co)의 함량보다 크며,상기 유리질 코팅층은 하기 화학식 1로 표시되는 유리질 화합물을 포함하는 이차전지용 양극 활물질.[화학식 1]LiaM1 bOc상기 식에서, M1은 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상이고, 1≤a≤4, 1≤b≤8, 1≤c≤20이다.
- 제1항에 있어서,상기 양극 활물질은 잔류 리튬 부산물의 함량이 1.0중량% 이하인 이차전지용 양극 활물질.
- 제1항에 있어서,상기 양극 활물질은 입자 강도가 150MPa 이상인 이차전지용 양극 활물질.
- 제1항에 있어서,상기 유리질 코팅층은 리튬-붕소-알루미늄 산화물을 포함하는 이차전지용 양극 활물질.
- 제4항에 있어서,상기 유리질 코팅층은 붕소 및 알루미늄이 0.3중량부:1중량부 내지 0.8중량부:1중량부로 함유되는 이차전지용 양극 활물질.
- 제1항에 있어서,상기 리튬 복합 전이금속 산화물은 하기 화학식 2로 표시되는 이차전지용 양극 활물질.[화학식 2]LipNi1 -(x1+y1+z1)Cox1Mny1M2 z1M3 q1O2상기 식에서, M2는 Al, Zr, B, W, Mg, Al, Ce, Hf, Ta, Ti, Sr, Ba, F, P, S 및 La로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, M3는 Al, Zr, Ti, Mg, Ta, Nb, Mo, W 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.1, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1이고, x1<y1, 0<x1+y1+z1≤0.4이다.
- 제1항에 있어서,상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 80몰% 이상인 이차전지용 양극 활물질.
- 제1항에 있어서,상기 유리질 코팅층이 상기 리튬 복합 전이금속 산화물의 1차 입자 표면에 형성된 이차전지용 양극 활물질.
- 제1항에 있어서,상기 유리질 코팅층은 리튬 복합 전이금속 산화물 100중량부에 대하여 0.02 내지 0.2중량부로 포함되는 이차전지용 양극 활물질.
- 제1항에 있어서,상기 유리질 코팅층은 20 내지 100nm의 두께로 형성되는 이차전지용 양극 활물질.
- 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물을 마련하는 단계; 및상기 리튬 복합 전이금속 산화물 및 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 코팅 소스를 건식 혼합하고 열처리하여 유리질 코팅층을 형성하는 단계;를 포함하며,상기 리튬 복합 전이금속 산화물은 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상이고, 망간(Mn)의 함량이 코발트(Co)의 함량보다 크며,상기 유리질 코팅층은 하기 화학식 1로 표시되는 유리질 화합물을 포함하는 이차전지용 양극 활물질의 제조방법.[화학식 1]LiaM1 bOc상기 식에서, M1은 B, Al, Si, Ti, P로 이루어진 군에서 선택된 적어도 하나 이상이고, 1≤a≤4, 1≤b≤8, 1≤c≤20이다.
- 제11항에 있어서,상기 유리질 코팅층을 형성하는 단계에서, 리튬 소스를 투입하지 않는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법.
- 제11항에 있어서,상기 양극 활물질은 잔류 리튬 부산물의 함량이 1.0중량% 이하인 이차전지용 양극 활물질의 제조방법.
- 제11항에 있어서,상기 코팅 소스는 붕소(B) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 함유하는 화합물을 포함하는 이차전지용 양극 활물질의 제조방법.
- 제11항에 있어서,상기 유리질 코팅층은 붕소 및 알루미늄이 0.3중량부:1중량부 내지 0.8중량부:1중량부로 함유되는 이차전지용 양극 활물질의 제조방법.
- 제11항에 있어서,상기 코팅 소스는 리튬 복합 전이금속 산화물 100중량부에 대하여 0.02 내지 2.0중량부로 혼합하는 이차전지용 양극 활물질의 제조방법.
- 제11항에 있어서,상기 열처리는 500 내지 750℃에서 수행하는 이차전지용 양극 활물질의 제조방법.
- 제1항 내지 제10항 중 어느 한 항에 따른 양극 활물질을 포함하는 이차전지용 양극.
- 제18항에 따른 양극을 포함하는 리튬 이차전지.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/771,139 US11870070B2 (en) | 2018-01-24 | 2019-01-23 | Positive electrode active material for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material |
EP24165528.1A EP4372843A3 (en) | 2018-01-24 | 2019-01-23 | Positive electrode active material for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material |
ES19744539T ES2981290T3 (es) | 2018-01-24 | 2019-01-23 | Material activo de electrodo positivo para batería secundaria, método de preparación del mismo y batería secundaria de litio que incluye el material activo de electrodo positivo |
EP19744539.8A EP3712989B1 (en) | 2018-01-24 | 2019-01-23 | Positive electrode active material for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material |
PL19744539.8T PL3712989T3 (pl) | 2018-01-24 | 2019-01-23 | Materiał aktywny elektrody dodatniej dla baterii akumulatorowej, sposób jego przygotowania i litowa bateria akumulatorowa zawierająca materiał aktywny elektrody dodatniej |
JP2020549540A JP7048860B2 (ja) | 2018-01-24 | 2019-01-23 | 二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池 |
CN201980006557.7A CN111492511B (zh) | 2018-01-24 | 2019-01-23 | 二次电池用正极活性材料、其制备方法以及包含该正极活性材料的锂二次电池 |
US18/210,427 US20230327107A1 (en) | 2018-01-24 | 2023-06-15 | Positive Electrode Active Material for Secondary Battery, Method of Preparing the Same, and Lithium Secondary Battery Including the Positive Electrode Active Material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0008909 | 2018-01-24 | ||
KR20180008909 | 2018-01-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/771,139 A-371-Of-International US11870070B2 (en) | 2018-01-24 | 2019-01-23 | Positive electrode active material for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material |
US18/210,427 Continuation US20230327107A1 (en) | 2018-01-24 | 2023-06-15 | Positive Electrode Active Material for Secondary Battery, Method of Preparing the Same, and Lithium Secondary Battery Including the Positive Electrode Active Material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019147017A1 true WO2019147017A1 (ko) | 2019-08-01 |
Family
ID=67396085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/000970 WO2019147017A1 (ko) | 2018-01-24 | 2019-01-23 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
Country Status (9)
Country | Link |
---|---|
US (2) | US11870070B2 (ko) |
EP (2) | EP4372843A3 (ko) |
JP (1) | JP7048860B2 (ko) |
KR (2) | KR20190090350A (ko) |
CN (1) | CN111492511B (ko) |
DE (1) | DE202019005967U1 (ko) |
ES (1) | ES2981290T3 (ko) |
PL (1) | PL3712989T3 (ko) |
WO (1) | WO2019147017A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110459759A (zh) * | 2019-08-19 | 2019-11-15 | 湖南金富力新能源股份有限公司 | 用回转装置制备的锂离子电池正极材料及其制法和应用 |
WO2022203408A1 (ko) * | 2021-03-23 | 2022-09-29 | 한양대학교 에리카산학협력단 | 양극용 전극 구조체의 제조 방법, 이를 통해 제조된 전극 구조체, 및 이를 포함하는 이차 전지 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102288290B1 (ko) | 2018-02-23 | 2021-08-10 | 주식회사 엘지화학 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
JP7215004B2 (ja) * | 2018-07-20 | 2023-01-31 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極合剤ペースト、及び、リチウムイオン二次電池 |
KR102533811B1 (ko) * | 2018-12-03 | 2023-05-19 | 주식회사 엘지에너지솔루션 | 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 및 리튬 이차전지 |
KR102288491B1 (ko) * | 2019-08-16 | 2021-08-10 | 주식회사 에스엠랩 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
KR102292889B1 (ko) * | 2019-10-10 | 2021-08-24 | 주식회사 에코프로비엠 | 리튬 복합 산화물 및 이를 포함하는 리튬 이차전지 |
CN114079043A (zh) * | 2020-08-11 | 2022-02-22 | 厦门厦钨新能源材料股份有限公司 | 一种高镍正极材料和锂离子电池及其制备方法 |
KR102622332B1 (ko) * | 2020-10-30 | 2024-01-09 | 주식회사 엘지화학 | 양극 활물질 및 이의 제조방법 |
JP7269266B2 (ja) * | 2021-01-25 | 2023-05-08 | プライムプラネットエナジー&ソリューションズ株式会社 | 非水電解質二次電池 |
KR20220137426A (ko) * | 2021-04-02 | 2022-10-12 | 삼성에스디아이 주식회사 | 전고체 전지용 복합양극활물질, 그 제조방법, 전고체 전지용 양극층 및 이를 포함하는 전고체 전지 |
KR102607568B1 (ko) * | 2021-06-09 | 2023-11-30 | 재단법인대구경북과학기술원 | 이차전지용 전극 활물질의 깨짐율 분석방법 |
WO2023174824A1 (en) * | 2022-03-15 | 2023-09-21 | Basf Se | Process for making a coated electrode active material |
CN115101713B (zh) * | 2022-08-26 | 2022-11-11 | 蜂巢能源科技股份有限公司 | 一种锂离子电池极片及电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100017344A (ko) * | 2007-05-07 | 2010-02-16 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 리튬 혼합된 금속 산화물 캐소드 조성물 및 그것을 포함하는 리튬 이온 전기화학 전지 |
KR101562722B1 (ko) * | 2011-04-06 | 2015-10-23 | 우미코르 | 재충전 전지용 유리 코팅된 캐소드 분말 |
JP2017050204A (ja) * | 2015-09-03 | 2017-03-09 | 日立マクセル株式会社 | 非水電解質二次電池用正極材料、その製造方法および非水電解質二次電池 |
KR101746187B1 (ko) * | 2014-10-15 | 2017-06-12 | 주식회사 포스코 | 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지 |
KR20170113366A (ko) * | 2016-03-29 | 2017-10-12 | 주식회사 엘지화학 | 이차전지용 양극활물질 및 이를 포함하는 이차전지 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6753111B2 (en) | 2000-09-25 | 2004-06-22 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium batteries and method for preparing same |
KR100674015B1 (ko) * | 2001-02-12 | 2007-01-24 | 주식회사 엘지화학 | 수명특성이 우수한 리튬 2 차 전지의 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 2차 전지 |
US8029930B2 (en) | 2002-12-06 | 2011-10-04 | Kawatetsu Mining Co., Ltd. | Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery |
CN100420088C (zh) | 2004-11-08 | 2008-09-17 | 深圳市比克电池有限公司 | 具有镍基正极活性材料的锂离子二次电池及其制备方法 |
KR101264337B1 (ko) * | 2010-08-13 | 2013-05-14 | 삼성에스디아이 주식회사 | 양극 활물질 및 이를 이용한 리튬 전지 |
CN102832389B (zh) | 2012-09-25 | 2015-04-15 | 湖南长远锂科有限公司 | 表面改性的锂离子电池高镍正极活性材料及其制备方法 |
US10626248B2 (en) | 2012-12-29 | 2020-04-21 | Saint-Gobain Performance Plastics Corporation | Flexible tube |
US20150221943A1 (en) * | 2013-03-26 | 2015-08-06 | Sanyo Electric Co., Ltd. | Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
KR101605254B1 (ko) * | 2013-07-31 | 2016-03-22 | 한양대학교 산학협력단 | 리튬 복합 산화물 및 이의 제조 방법 |
TWI609519B (zh) * | 2013-10-29 | 2017-12-21 | Lg化學股份有限公司 | 陰極活性材料之製造方法、及由此所製造之用於鋰二次電池之陰極活性材料 |
US10141566B2 (en) * | 2014-08-15 | 2018-11-27 | Samsung Electronics Co., Ltd. | Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same |
KR101772737B1 (ko) * | 2014-09-01 | 2017-09-12 | 주식회사 엘지화학 | 리튬이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지 |
KR101777466B1 (ko) | 2014-10-02 | 2017-09-11 | 주식회사 엘지화학 | 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 |
KR20160081545A (ko) | 2014-12-31 | 2016-07-08 | 주식회사 에코프로 | 양극활물질 및 이의 제조 방법 |
JP6533734B2 (ja) | 2015-10-29 | 2019-06-19 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池 |
WO2017095134A1 (ko) | 2015-11-30 | 2017-06-08 | 주식회사 엘지화학 | 이차전지용 양극활물질 및 이를 포함하는 이차전지 |
KR102114229B1 (ko) | 2016-03-04 | 2020-05-22 | 주식회사 엘 앤 에프 | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
PL3486979T3 (pl) * | 2017-02-02 | 2021-01-25 | Lg Chem, Ltd. | Materiał czynny elektrody dodatniej dla akumulatora i sposób jego wytwarzania |
-
2019
- 2019-01-23 DE DE202019005967.9U patent/DE202019005967U1/de active Active
- 2019-01-23 EP EP24165528.1A patent/EP4372843A3/en active Pending
- 2019-01-23 EP EP19744539.8A patent/EP3712989B1/en active Active
- 2019-01-23 JP JP2020549540A patent/JP7048860B2/ja active Active
- 2019-01-23 WO PCT/KR2019/000970 patent/WO2019147017A1/ko unknown
- 2019-01-23 CN CN201980006557.7A patent/CN111492511B/zh active Active
- 2019-01-23 ES ES19744539T patent/ES2981290T3/es active Active
- 2019-01-23 PL PL19744539.8T patent/PL3712989T3/pl unknown
- 2019-01-23 KR KR1020190008672A patent/KR20190090350A/ko not_active Application Discontinuation
- 2019-01-23 US US16/771,139 patent/US11870070B2/en active Active
-
2021
- 2021-08-31 KR KR1020210115409A patent/KR102417199B1/ko active IP Right Grant
-
2023
- 2023-06-15 US US18/210,427 patent/US20230327107A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100017344A (ko) * | 2007-05-07 | 2010-02-16 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 리튬 혼합된 금속 산화물 캐소드 조성물 및 그것을 포함하는 리튬 이온 전기화학 전지 |
KR101562722B1 (ko) * | 2011-04-06 | 2015-10-23 | 우미코르 | 재충전 전지용 유리 코팅된 캐소드 분말 |
KR101746187B1 (ko) * | 2014-10-15 | 2017-06-12 | 주식회사 포스코 | 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지 |
JP2017050204A (ja) * | 2015-09-03 | 2017-03-09 | 日立マクセル株式会社 | 非水電解質二次電池用正極材料、その製造方法および非水電解質二次電池 |
KR20170113366A (ko) * | 2016-03-29 | 2017-10-12 | 주식회사 엘지화학 | 이차전지용 양극활물질 및 이를 포함하는 이차전지 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110459759A (zh) * | 2019-08-19 | 2019-11-15 | 湖南金富力新能源股份有限公司 | 用回转装置制备的锂离子电池正极材料及其制法和应用 |
CN110459759B (zh) * | 2019-08-19 | 2020-10-20 | 湖南金富力新能源股份有限公司 | 用回转装置制备的锂离子电池正极材料及其制法和应用 |
WO2022203408A1 (ko) * | 2021-03-23 | 2022-09-29 | 한양대학교 에리카산학협력단 | 양극용 전극 구조체의 제조 방법, 이를 통해 제조된 전극 구조체, 및 이를 포함하는 이차 전지 |
Also Published As
Publication number | Publication date |
---|---|
JP2021506091A (ja) | 2021-02-18 |
EP4372843A3 (en) | 2024-09-11 |
KR20210111728A (ko) | 2021-09-13 |
KR20190090350A (ko) | 2019-08-01 |
EP4372843A2 (en) | 2024-05-22 |
CN111492511B (zh) | 2022-05-24 |
US11870070B2 (en) | 2024-01-09 |
CN111492511A (zh) | 2020-08-04 |
US20210151754A1 (en) | 2021-05-20 |
EP3712989A1 (en) | 2020-09-23 |
KR102417199B1 (ko) | 2022-07-06 |
DE202019005967U1 (de) | 2023-09-15 |
EP3712989B1 (en) | 2024-05-22 |
EP3712989A4 (en) | 2020-12-09 |
US20230327107A1 (en) | 2023-10-12 |
PL3712989T3 (pl) | 2024-07-22 |
ES2981290T3 (es) | 2024-10-08 |
JP7048860B2 (ja) | 2022-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019147017A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019103460A1 (ko) | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
WO2019103463A1 (ko) | 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지 | |
WO2019164313A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019151834A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019050282A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2019103363A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019083221A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2017095061A1 (ko) | 이차전지용 양극활물질 및 이를 포함하는 이차전지 | |
WO2019059552A2 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019168301A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019143047A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020116858A1 (ko) | 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 | |
WO2021049918A1 (ko) | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
WO2019098541A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019059647A2 (ko) | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020111545A1 (ko) | 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 | |
WO2019212321A1 (ko) | 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질 | |
WO2021187907A1 (ko) | 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지 | |
WO2020122511A1 (ko) | 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 | |
WO2022092906A1 (ko) | 양극 활물질 및 이의 제조방법 | |
WO2021101281A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질 | |
WO2021096265A1 (ko) | 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법 | |
WO2021096204A1 (ko) | 비가역 첨가제, 상기 비가역 첨가제를 포함하는 양극재, 상기 양극재를 포함하는 리튬 이차전지 | |
WO2022039576A1 (ko) | 양극 활물질의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19744539 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020549540 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019744539 Country of ref document: EP Effective date: 20200615 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |