KR20190093453A - 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents
이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- KR20190093453A KR20190093453A KR1020180013114A KR20180013114A KR20190093453A KR 20190093453 A KR20190093453 A KR 20190093453A KR 1020180013114 A KR1020180013114 A KR 1020180013114A KR 20180013114 A KR20180013114 A KR 20180013114A KR 20190093453 A KR20190093453 A KR 20190093453A
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- positive electrode
- electrode active
- secondary battery
- particle diameter
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/53—Particles with a specific particle size distribution bimodal size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
본 발명은 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상인 이차전지용 양극 활물질에 관한 것이다.
Description
본 발명은 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, 리튬 니켈 산화물(LiNiO2)의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)/알루미늄(Al)으로 치환한 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물' 또는 'NCA계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다.
또한, 전극의 단위 부피당 용량을 증가시키기 위해 대립자 및 소립자를 블렌딩(blending)하여 바이모달(bimodal)로 양극 활물질 층을 제조함으로써 압연 밀도를 증가시키는 등의 연구가 이루어지고 있다. 그러나, 아직까지 고용량이면서도 우수한 열 안정성을 동시에 만족하는 양극 활물질에 대한 개발이 여전히 필요한 실정이다.
본 발명은 대립자 및 소립자의 양극 활물질을 사용하여 에너지 밀도를 향상시키고, 압연에 의한 양극 활물질의 크랙(crack) 발생 및 깨짐을 방지하며, 고온 수명 특성을 향상시키고, 고온 저장 시 가스 발생량을 저하시키는 등 안정성을 개선한 이차전지용 양극 활물질을 제공하고자 하는 것이다.
본 발명은 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상인 이차전지용 양극 활물질을 제공한다.
또한, 본 발명은 제1 양극 활물질 및 제2 양극 활물질을 마련한 후, 상기 제1 양극 활물질 및 제2 양극 활물질을 혼합하는 단계를 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상이 되도록 과소성하여 제조된 이차전지용 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
본 발명에 따르면, 대립자 및 소립자를 블렌딩(blending)하여 바이모달(bimodal)의 양극 활물질을 제조함으로써 에너지 밀도를 향상시킬 수 있으며, 이때, 과소성하여 결정 사이즈(Crystalite size)가 200nm 이상인 소립자를 사용함으로써 압연에 의한 양극 활물질의 크랙(crack) 발생 및 깨짐을 방지할 수 있다. 이를 통해, 이차전지의 용량 특성 및 고온 수명 특성을 향상시키고, 고온 저장 시 가스 발생량을 저하시키는 등 안정성을 개선할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
<양극 활물질>
본 발명의 이차전지용 양극 활물질은 제1 양극 활물질 및 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상이다.
본 발명의 이차전지용 양극 활물질은 대립자인 제1 양극 활물질과 소립자인 제2 양극 활물질을 포함한다.
이차전지용 양극의 부피당 용량을 향상시키기 위해서는 양극 활물질 층의 밀도를 증가시킬 필요가 있는데, 양극 활물질 층의 밀도를 증가시키는 방법으로 양극 활물질 입자 사이의 공극을 줄여 압연 밀도(또는 전극 밀도)를 높이는 방법이 사용된다. 본 발명과 같이 대립자 및 소립자의 양극 활물질을 혼합한 바이모달(bimodal)의 양극 활물질의 경우, 대립자 양극 활물질의 입자들 사이의 빈 공간을 소립자 양극 활물질로 채울 수 있으므로, 보다 조밀한 충진이 가능하고, 양극의 에너지 밀도를 증가시킬 수 있다.
상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이다.
본 발명에 있어서, 평균 입경(D50)은 입경 분포 곡선에서 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.
보다 구체적으로는, 상기 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50) 비는 2:1 내지 8:1일 수 있고, 더욱 바람직하게는 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50) 비는 2:1 내지 4:1일 수 있다. 제1 양극 활물질 및 제2 양극 활물질의 평균 입경(D50) 비가 상기 범위 내를 만족함으로써, 양극 활물질 입자들 사이의 공극을 보다 효과적으로 줄이고, 충진 밀도를 높이며, 양극 밀도를 향상시켜 양극 부피당 용량을 효과적으로 향상시킬 수 있다.
구체적으로, 상기 제1 양극 활물질의 평균 입경(D50)은 8 내지 30㎛일 수 있으며, 보다 바람직하게는 9 내지 25㎛, 더욱 바람직하게는 10 내지 22㎛일 수 있다.
상기 제2 양극 활물질의 평균 입경(D50)은 9㎛ 이하일 수 있으며, 보다 바람직하게는 1 내지 9㎛, 더욱 바람직하게는 2 내지 8㎛일 수 있다.
상대적으로 소립자인 상기 제2 활물질은 과소성되어 결정 사이즈(Crystalite size)가 200nm 이상이다. 상기 제2 양극 활물질의 결정 사이즈(Crystalite size)가 200nm 미만인 경우 압연에 의해 양극 활물질의 크랙(crack) 및 깨짐이 발생하고, 고온 수명 특성 및 안정성이 저하될 수 있다. 상기 제2 양극 활물질을 과소성하는 방법은 결정 사이즈(Crystalite size)를 200nm 이상으로 증가시킬 수 있는 방법이라면 특별히 제한되지 않으나, 예를 들면, 소성하는 과정에서 일반적인 양극 활물질 소성 온도보다 약 50℃ 가량 증가시킨 온도로 과소성할 수 있다. 보다 바람직하게는 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200 내지 500nm, 더욱 바람직하게는 200 내지 400nm일 수 있다.
본 발명에 있어서, 결정 사이즈(Crystalite size)는 1차 입자 중에서 방향성을 가지고 있는 하나의 도메인(domain)으로 정의할 수 있다. 상기 결정 사이즈(Crystalite size)는 XRD 측정 값을 통해 도출될 수 있다.
상기 제1 양극 활물질 및 제2 양극 활물질은 1차 입자가 응집되어 이루어진 2차 입자일 수 있다. 이때, 상대적으로 소립자인 상기 제2 양극 활물질은 과소성되어 1차 입자의 평균 입경(D50)이 1㎛ 이상일 수 있다. 상기 제2 양극 활물질의 1차 입자의 평균 입경(D50)이 1㎛ 미만인 경우 압연에 의해 양극 활물질의 크랙(crack) 및 깨짐이 발생하고, 고온 수명 특성 및 안정성이 저하될 수 있다. 보다 구체적으로, 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1 내지 8㎛일 수 있고, 더욱 구체적으로, 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1 내지 6㎛일 수 있다. 한편, 상대적으로 대립자인 상기 제1 양극 활물질의 1차 입자의 평균 입경(D50)은 100nm 내지 3㎛일 수 있다.
본 발명의 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 2 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물일 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 복합 전이금속 산화물일 수 있다. 예를 들어, 상기 제1 양극 활물질 및 제2 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 NCM계 양극 활물질일 수 있고, 또는 니켈(Ni), 코발트(Co) 및 알루미늄(Al)을 포함하는 NCA계 양극 활물질일 수 있으며, 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 양극 활물질일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 제1 양극 활물질 및 제2 양극 활물질은, 리튬 복합 전이금속 산화물에 함유된 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 양극 활물질일 수 있다. 보다 바람직하게는 전체 금속 원소 중 니켈(Ni)의 함량이 80몰% 이상일 수 있다. 본 발명과 같이 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 제1 양극 활물질 및 제2 양극 활물질을 사용하면 보다 더 고용량 확보가 가능할 수 있다.
한편, 상기 제1 양극 활물질 및 제2 양극 활물질은 서로 동일한 조성의 리튬 복합 전이금속 산화물일 수도 있고, 또는 상이한 조성의 리튬 복합 전이금속 산화물일 수 있다.
보다 구체적으로, 상기 제1 양극 활물질 및 제2 양극 활물질은 각각 독립적으로 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물일 수 있다.
[화학식 1]
LipNi1 -(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2
상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1 이고, 0<x1+y1+z1≤0.4이다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Li은 p에 해당하는 함량, 즉 0.9≤p≤1.5로 포함될 수 있다. p가 0.9 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 양극 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극 활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때, 상기 Li는 보다 바람직하게는 1.0≤p≤1.15의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ni은 1-(x1+y1+z1)에 해당하는 함량, 예를 들어, 0.6≤1-(x1+y1+z1)<1로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Ni의 함량이 0.6 이상의 조성이 되면 충방전에 기여하기에 충분한 Ni량이 확보되어 고용량화를 도모할 수 있다. 보다 바람직하게는 Ni은 0.8≤1-(x1+y1+z1)≤0.99로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Co는 x1에 해당하는 함량, 즉 0<x1≤0.4으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Co의 함량이 0.4를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.05≤x1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ma은 Mn 또는 Al이거나, Mn 및 Al일 수 있고, 이러한 금속 원소는 활물질의 안정성을 향상시키고, 결과로서 전지의 안정성을 개선시킬 수 있다. 수명 특성 개선 효과를 고려할 때, 상기 Ma은 y1에 해당하는 함량, 즉 0<y1≤0.4의 함량으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 y1가 0.4를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있으며, 상기 Ma은 보다 구체적으로 0.05≤y1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mb는 리튬 복합 전이금속 산화물의 결정 구조 내 포함된 도핑원소일 수 있으며, Mb는 z1에 해당하는 함량, 즉 0≤z1≤0.1로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mc의 금속 원소는 리튬 복합 전이금속 산화물 구조 내에 포함되지 않을 수 있고, 전구체와 리튬 소스를 혼합하고 소성할 때 Mc 소스를 함께 혼합하여 소성하거나, 리튬 복합 전이금속 산화물을 형성한 후 별도로 Mc 소스를 투입하고 소성하는 방법을 통해 상기 Mc가 리튬 복합 전이금속 산화물의 표면에 도핑된 리튬 복합 전이금속 산화물을 제조할 수 있다. 상기 Mc는 q1에 해당하는 함량, 즉 0≤q1≤0.1의 범위 내에서 양극 활물질의 특성을 저하하지 않는 함량으로 포함될 수 있다.
본 발명의 일 실시예는 상기 제1 양극 활물질 및 제2 양극 활물질이 9:1 내지 1:9의 중량비로 혼합될 수 있으며, 보다 바람직하게는 8:2 내지 3:7의 중량비, 가장 바람직하게는 8:2 내지 5:5의 중량비로 혼합될 수 있다. 대립자인 제1 양극 활물질과, 소립자이며 결정 사이즈(Crystalite size)가 200nm 이상인 제2 양극 활물질을 상기 범위 내로 혼합 사용함으로써 양극의 에너지 밀도를 높이고, 고용량 및 우수한 열 안정성을 확보할 수 있으며, 전해액과의 부반응을 억제할 수 있다. 이에 따라, 상기와 같은 양극 활물질을 사용하여 제조된 리튬 이차전지는 높은 용량을 구현하고, 고온 수명 특성 등의 전지 특성이 향상될 수 있다.
<양극 활물질의 제조방법>
다음으로, 본 발명의 양극 활물질의 제조방법을 설명한다.
본 발명의 양극 활물질은 제1 양극 활물질 및 제2 양극 활물질을 마련한 후, 상기 제1 양극 활물질 및 제2 양극 활물질을 혼합하는 단계를 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상이 되도록 과소성하여 제조된다.
상기 제1 양극 활물질은 평균 입경(D50)이 8 내지 30㎛인 대립자를 사용할 수 있으며, 보다 바람직하게는 9 내지 25㎛, 더욱 바람직하게는 10 내지 22㎛일 수 있다.
상기 제2 양극 활물질은 평균 입경(D50)이 9㎛ 이하인 소립자를 사용할 수 있으며, 보다 바람직하게는 1 내지 9㎛, 더욱 바람직하게는 2 내지 8㎛일 수 있다.
이때, 상대적으로 소립자인 상기 제2 양극 활물질은 과소성하여 제조되어 결정 사이즈(Crystalite size)가 200nm 이상이다. 과소성 방법은 특별히 제한되지는 않으나, 예를 들면, 일반적인 양극 활물질의 소성 온도인 약 800 내지 1000℃ 범위보다 약 50℃ 가량 증가시킨 온도로 과소성할 수 있다. 보다 바람직하게는 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200 내지 500nm, 더욱 바람직하게는 200 내지 400nm가 되도록 과소성하여 제조될 수 있다.
또한, 상대적으로 소립자인 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1㎛ 이상이 되도록 과소성하여 제조될 수 있다. 보다 구체적으로, 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1 내지 8㎛, 더욱 구체적으로, 상기 제2 양극 활물질은 1차 입자의 평균 입경(D50)이 1 내지 6㎛가 되도록 과소성하여 제조될 수 있다. 한편, 상대적으로 대립자인 상기 제1 양극 활물질의 1차 입자의 평균 입경(D50)은 100nm 내지 3㎛일 수 있다.
이외에 상기 제1 양극 활물질 및 제2 양극 활물질의 조성 및 혼합비 등은 앞서 양극 활물질에 대한 설명과 중복되므로 생략하도록 한다.
<양극 및 이차전지>
본 발명의 또 다른 일 실시예에 따르면 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질 층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극 활물질 층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질 층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
1
제1 양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 14㎛), 제2 양극 활물질로서 LiNi0 . 8Co0 . 1Mn0 . 1O2의 입자(D50= 5㎛)를 준비하였다. 이때, 상기 제2 양극 활물질은 과소성되어 결정 사이즈(Crystalite size)가 230nm, 1차 입자의 평균 입경(D50)이 2㎛인 것을 사용하였다. 상기 제1 양극 활물질 및 제2 양극 활물질을 8:2의 중량비로 혼합하여 양극 활물질을 제조하였다.
실시예
2
제1 양극 활물질로서 LiNi0 . 87Co0 . 08Mn0 . 03Al0 . 02O2의 입자(D50= 15㎛)이며, 제2 양극 활물질로서 LiNi0 . 8Co0 . 1Mn0 . 1O2의 입자(D50= 6㎛)를 준비하였다. 이때, 상기 제2 양극 활물질은 과소성되어 결정 사이즈(Crystalite size)가 260nm, 1차 입자의 평균 입경(D50)이 2㎛인 것을 사용하였다. 상기 제1 양극 활물질 및 제2 양극 활물질을 7:3의 중량비로 혼합하여 양극 활물질을 제조하였다.
비교예
1
제1 양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 14㎛), 제2 양극 활물질로서 LiNi0 . 8Co0 . 1Mn0 . 1O2의 입자(D50= 5㎛)를 준비하였다. 이때, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 130nm, 1차 입자의 평균 입경(D50)이 0.5㎛인 것을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예
2
양극 활물질로서 LiNi0 . 88Co0 . 10Mn0 . 02O2의 입자(D50= 14㎛)인 모노모달(monomodal)로 사용하여 양극 활물질을 제조하였다.
[
실험예
1: 압연 밀도 평가]
실시예 1 내지 2 및 비교예 1 내지 2에서 제조된 양극 활물질의 압연 밀도를 평가하였으며, 그 결과를 표 1에 나타내었다.
압연 밀도는, 실시예 1 내지 2 및 비교예 1 내지 2에서 제조된 각각의 양극 활물질 5g을 소분하여 원통형의 홀더에 빈틈없이 채운 후, 400kgf부터 400kgf씩 증가시켜 2000kgf까지의 압력을 가하였을 때 2000kgf에서 분체의 밀도를 측정하였다.
실시예1 | 실시예2 | 비교예1 | 비교예2 | |
압연밀도(g/cm3) | 3.1 | 3.2 | 3.0 | 2.8 |
상기 표 1을 참조하면, 대립자인 제1 양극 활물질과, 소립자이며 결정 사이즈(Crystalite size)가 200nm 이상인 제2 양극 활물질을 혼합 사용한 실시예 1 내지 2는 모노모달(monomodal)의 양극 활물질을 사용한 비교예 2에 비하여 압연 밀도가 향상되었다.
[
실험예
2: 입자 깨짐 평가]
실시예 1 내지 2 및 비교예 1 내지 2의 양극 활물질을 실험예 1의 방법과 동일하게 2,000kgf로 압연했을 때의 입자 깨짐 정도를 평가하였다. 입자 깨짐 정도는, 주사전자현미경(SEM, Scanning Electron Microscope)을 통해 관찰하였으며, 더 자세히는, PSD(Particle Size Distribution)의 D50 변화량을 통해 입자 깨짐 정도를 계산하여 그 결과를 표 2에 나타내었다.
실시예1 | 실시예2 | 비교예1 | 비교예2 | |
입자 깨짐(%) | 3.9 | 4.2 | 8.3 | 21.4 |
상기 표 2를 참조하면, 실시예 1 내지 실시예 2의 경우, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만 결정 사이즈(Crystalite size)가 200nm 미만인 소립자를 사용한 비교예 1에 비하여 입자 깨짐 정도가 현저히 감소한 것을 확인할 수 있다. 또한, 실시예 1 내지 실시예 2의 경우, 모노모달(monomodal)의 양극 활물질을 사용한 비교예 2에 비해서 입자 깨짐 정도가 더욱 현저히 감소하였다.
[
실험예
3: 고온 수명 특성 평가]
양극 활물질로서 실시예 1 내지 2 및 비교예 1 내지 2에 의해 제조된 각각의 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96.5:1.5:2의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다. 음극은 리튬 메탈을 사용하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
실시예 1 내지 실시예 2 및 비교예 1 내지 2에 의해 제조된 각각의 양극 활물질을 사용하여 제조된 각 리튬 이차전지 하프 셀(half cell)에 대해, 45℃에서 CCCV 모드로 0.5C, 4.25V가 될 때까지 충전(종료 전류 1/20C)하고, 0.5C의 정전류로 2.5V가 될 때까지 방전하여 100회 충방전 실험을 진행하였을 시의 용량 유지율을 측정하여 고온 수명 특성 평가를 진행하였다. 그 결과를 표 3에 나타내었다.
초기 용량(mAh/g) | 용량유지율(%) (@100회 cycles) |
|
실시예1 | 201 | 78 |
실시예2 | 200 | 76 |
비교예1 | 202 | 60 |
비교예2 | 198 | 57 |
상기 표 3을 참조하면, 실시예 1 내지 실시예 2의 경우, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만 결정 사이즈(Crystalite size)가 200nm 미만인 소립자를 사용한 비교예 1에 비하여 고온 수명 특성이 현저히 향상된 것을 확인할 수 있다. 또한, 실시예 1 내지 실시예 2의 경우, 모노모달(monomodal)의 양극 활물질을 사용한 비교예 2에 비해서 고온 수명 특성이 더욱 현저히 향상되었으며, 초기 용량도 증가하였다.
[
실험예
4: 고온 저장 특성 평가]
실시예 1 내지 2 및 비교예 1 내지 2에 의해 제조된 각각의 양극 활물질을 사용하여 실험예 3에서와 같이 제조된 각 리튬 이차전지 하프 셀(half cell)에 대해, SOC 100%, 60℃에서 2주 저장하여 가스 발생량을 측정하였으며, 그 결과를 표 4에 나타내었다.
가스 발생량(㎕) | |
실시예1 | 78 |
실시예2 | 76 |
비교예1 | 110 |
비교예2 | 125 |
상기 표 4를 참조하면, 실시예 1 내지 실시예 2의 경우, 대립자 및 소립자의 바이모달(bimodal)을 사용하였지만 결정 사이즈(Crystalite size)가 200nm 미만인 소립자를 사용한 비교예 1에 비하여 고온 저장시 가스 발생량이 현저히 감소된 것을 확인할 수 있다. 또한, 실시예 1 내지 실시예 2의 경우, 모노모달(monomodal)의 양극 활물질을 사용한 비교예 2에 비해서 고온 저장시 가스 발생량이 더욱 감소하였다.
Claims (15)
- 제1 양극 활물질 및 제2 양극 활물질을 포함하며,
상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고,
상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상인 이차전지용 양극 활물질.
- 제1항에 있어서,
상기 제2 양극 활물질은 1차 입자가 응집되어 이루어진 2차 입자이며, 상기 제2 양극 활물질의 1차 입자 평균 입경(D50)이 1㎛ 이상인 이차전지용 양극 활물질.
- 제1항에 있어서,
상기 제2 양극 활물질의 평균 입경(D50)은 9㎛ 이하인 이차전지용 양극 활물질.
- 제1항에 있어서,
상기 제1 양극 활물질의 평균 입경(D50)은 8 내지 30㎛인 이차전지용 양극 활물질.
- 제1항에 있어서,
상기 제1 양극 활물질 및 제2 양극 활물질은 서로 동일 또는 상이한 조성의 리튬 복합 전이금속 산화물인 이차전지용 양극 활물질.
- 제1항에 있어서,
상기 제1 양극 활물질 및 제2 양극 활물질은 각각 독립적으로 하기 화학식 1로 표시되는 이차전지용 양극 활물질.
[화학식 1]
LipNi1-(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2
상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1이고, 0<x1+y1+z1≤0.4이다.
- 제1항에 있어서,
상기 제1 양극 활물질 및 제2 양극 활물질은 9:1 내지 1:9의 중량비로 혼합된 이차전지용 양극 활물질.
- 제1 양극 활물질 및 제2 양극 활물질을 마련한 후, 상기 제1 양극 활물질 및 제2 양극 활물질을 혼합하는 단계를 포함하며,
상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 2배 이상이고, 상기 제2 양극 활물질은 결정 사이즈(Crystalite size)가 200nm 이상이 되도록 과소성하여 제조된 이차전지용 양극 활물질의 제조방법.
- 제8항에 있어서,
상기 제2 양극 활물질은 1차 입자가 응집되어 이루어진 2차 입자이며, 상기 제2 양극 활물질의 1차 입자 평균 입경(D50)이 1㎛ 이상인 이차전지용 양극 활물질의 제조방법.
- 제8항에 있어서,
상기 제2 양극 활물질의 평균 입경(D50)은 9㎛ 이하인 이차전지용 양극 활물질의 제조방법.
- 제8항에 있어서,
상기 제1 양극 활물질의 평균 입경(D50)은 8 내지 30㎛인 이차전지용 양극 활물질의 제조방법.
- 제8항에 있어서,
상기 제1 양극 활물질 및 제2 양극 활물질은 각각 독립적으로 하기 화학식 1로 표시되는 이차전지용 양극 활물질의 제조방법.
[화학식 1]
LipNi1-(x1+y1+z1)Cox1Ma y1Mb z1Mc q1O2
상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, Mc는 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1, 0≤q1≤0.1이고, 0<x1+y1+z1≤0.4이다.
- 제8항에 있어서,
상기 제1 양극 활물질 및 제2 양극 활물질은 9:1 내지 1:9의 중량비로 혼합하는 이차전지용 양극 활물질의 제조방법.
- 제1항 내지 제7항 중 어느 한 항에 따른 양극 활물질을 포함하는 이차전지용 양극.
- 제14항에 따른 양극을 포함하는 리튬 이차전지.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180013114A KR102359103B1 (ko) | 2018-02-01 | 2018-02-01 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
US16/770,820 US11515522B2 (en) | 2018-02-01 | 2019-02-01 | Positive electrode active material for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material |
JP2020552659A JP7062173B2 (ja) | 2018-02-01 | 2019-02-01 | 二次電池用正極活物質、その製造方法、及びこれを含むリチウム二次電池 |
HUE19747241A HUE064059T2 (hu) | 2018-02-01 | 2019-02-01 | Katód aktív anyag szekunder akkumulátorhoz, eljárás annak elõállítására, és az azt tartalmazó lítium akkumulátor |
EP19747241.8A EP3712990B1 (en) | 2018-02-01 | 2019-02-01 | Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same |
CN201980006551.XA CN111492510B (zh) | 2018-02-01 | 2019-02-01 | 二次电池用正极活性材料、其制备方法以及包含其的锂二次电池 |
PCT/KR2019/001473 WO2019151834A1 (ko) | 2018-02-01 | 2019-02-01 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
PL19747241.8T PL3712990T3 (pl) | 2018-02-01 | 2019-02-01 | Materiał aktywny katody do baterii akumulatorowej, sposób jego wytwarzania oraz litowa bateria akumulatorowa zawierająca ten materiał |
EP23196514.6A EP4266418A1 (en) | 2018-02-01 | 2019-02-01 | Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same |
ES19747241T ES2964486T3 (es) | 2018-02-01 | 2019-02-01 | Material activo de cátodo para batería secundaria, método de preparación para el mismo y batería secundaria de litio que comprende el mismo |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180013114A KR102359103B1 (ko) | 2018-02-01 | 2018-02-01 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190093453A true KR20190093453A (ko) | 2019-08-09 |
KR102359103B1 KR102359103B1 (ko) | 2022-02-08 |
Family
ID=67478890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180013114A KR102359103B1 (ko) | 2018-02-01 | 2018-02-01 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11515522B2 (ko) |
EP (2) | EP4266418A1 (ko) |
JP (1) | JP7062173B2 (ko) |
KR (1) | KR102359103B1 (ko) |
CN (1) | CN111492510B (ko) |
ES (1) | ES2964486T3 (ko) |
HU (1) | HUE064059T2 (ko) |
PL (1) | PL3712990T3 (ko) |
WO (1) | WO2019151834A1 (ko) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210019388A (ko) * | 2019-08-12 | 2021-02-22 | 주식회사 엘지화학 | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 |
KR20210019389A (ko) * | 2019-08-12 | 2021-02-22 | 주식회사 엘지화학 | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 |
CN113410428A (zh) * | 2020-03-17 | 2021-09-17 | 松下电器产业株式会社 | 非水电解质二次电池用正极及非水电解质二次电池 |
CN114342112A (zh) * | 2019-08-30 | 2022-04-12 | 松下电器产业株式会社 | 非水电解质二次电池 |
KR20220049129A (ko) * | 2020-10-14 | 2022-04-21 | 주식회사 엘 앤 에프 | 이차전지용 전극 활물질 |
WO2022098136A1 (ko) * | 2020-11-05 | 2022-05-12 | 주식회사 엘지에너지솔루션 | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 |
WO2022098135A1 (ko) * | 2020-11-05 | 2022-05-12 | 주식회사 엘지에너지솔루션 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
WO2022103105A1 (ko) * | 2020-11-10 | 2022-05-19 | 주식회사 엘지에너지솔루션 | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 |
KR20220166048A (ko) * | 2021-06-09 | 2022-12-16 | 재단법인대구경북과학기술원 | 이차전지용 전극 활물질의 깨짐율 분석방법 |
WO2023158219A1 (ko) * | 2022-02-15 | 2023-08-24 | 주식회사 엘지에너지솔루션 | 양극재, 이를 포함하는 양극 및 리튬 이차전지 |
US12126020B2 (en) | 2021-01-29 | 2024-10-22 | Lg Energy Solution, Ltd. | Positive electrode and lithium secondary battery including the same |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210273219A1 (en) * | 2018-07-19 | 2021-09-02 | Gs Yuasa International Ltd. | Energy storage device |
EP3951917A4 (en) * | 2019-03-26 | 2022-06-22 | Panasonic Intellectual Property Management Co., Ltd. | SECONDARY BATTERY |
US20230073433A1 (en) * | 2020-03-18 | 2023-03-09 | Lg Chem, Ltd. | Positive Electrode Material for Lithium Secondary Battery, and Positive Electrode and Lithium Secondary Battery Which Include the Same |
KR102293034B1 (ko) * | 2020-06-04 | 2021-08-24 | 에스케이이노베이션 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
KR20210150863A (ko) * | 2020-06-04 | 2021-12-13 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
KR102392379B1 (ko) * | 2020-06-30 | 2022-04-29 | 삼성에스디아이 주식회사 | 니켈계 리튬 금속 복합 산화물, 그 제조방법 및 이를 포함하는 양극을 함유한 리튬이차전지 |
KR20220010999A (ko) * | 2020-07-20 | 2022-01-27 | 에스케이온 주식회사 | 리튬 이차 전지 |
JP7315520B2 (ja) * | 2020-10-05 | 2023-07-26 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極活物質粉体、正極、リチウムイオン電池および正極の製造方法 |
KR102473536B1 (ko) * | 2020-10-30 | 2022-12-02 | 삼성에스디아이 주식회사 | 니켈계 리튬 금속 복합 산화물, 그 제조방법, 이를 포함한 양극 및 리튬이차전지 |
JP2023553178A (ja) * | 2020-12-23 | 2023-12-20 | エルジー エナジー ソリューション リミテッド | 正極活物質、これを含む正極及びリチウム二次電池 |
US20240097112A1 (en) * | 2021-02-26 | 2024-03-21 | Lg Energy Solution, Ltd. | Positive Electrode and Lithium Secondary Battery Including the Same |
CN113921782A (zh) * | 2021-09-26 | 2022-01-11 | 宁波容百新能源科技股份有限公司 | 一种高压实和高能量密度的超高镍三元正极材料 |
EP4411916A1 (en) * | 2021-09-30 | 2024-08-07 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery |
KR20230090008A (ko) * | 2021-12-14 | 2023-06-21 | 삼성에스디아이 주식회사 | 전극, 이를 포함하는 리튬전지 및 이의 제조방법 |
JP7449321B2 (ja) | 2022-03-10 | 2024-03-13 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極および電池 |
KR20240013516A (ko) * | 2022-07-22 | 2024-01-30 | 삼성에스디아이 주식회사 | 건식 전극 필름, 이를 포함하는 전극 및 리튬전지 |
WO2024091625A1 (en) * | 2022-10-26 | 2024-05-02 | Texpower, Inc. | Low-cobalt or cobalt-free cathode materials with bimodal particle size distribution for lithium batteries |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060112823A (ko) * | 2005-04-28 | 2006-11-02 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
JP4972624B2 (ja) | 2008-09-30 | 2012-07-11 | 日立ビークルエナジー株式会社 | リチウム二次電池用正極材料及びそれを用いたリチウム二次電池 |
JP2013065468A (ja) * | 2011-09-16 | 2013-04-11 | Panasonic Corp | リチウムイオン二次電池 |
KR20140024587A (ko) * | 2012-08-20 | 2014-03-03 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR20150073969A (ko) * | 2012-10-17 | 2015-07-01 | 도다 고교 가부시끼가이샤 | Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW399029B (en) * | 1996-12-25 | 2000-07-21 | Sony Corp | Graphite powder suitable for negative electrode material of lithium ion secondary batteries |
CN101339991B (zh) | 2008-08-07 | 2010-09-08 | 华南理工大学 | 复合包覆改性高振实密度锂离子电池正极材料及其制备方法和应用 |
US20100330429A1 (en) * | 2010-06-21 | 2010-12-30 | Ngk Insulators, Ltd. | Positive electrode active material and lithium secondary battery |
KR101173868B1 (ko) | 2010-12-03 | 2012-08-14 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
KR20140039264A (ko) * | 2011-07-13 | 2014-04-01 | 가부시키가이샤 지에스 유아사 | 비수 전해질 2차 전지 |
WO2013038918A1 (ja) | 2011-09-12 | 2013-03-21 | 三洋電機株式会社 | 非水電解質二次電池の正極活物質及び非水電解質二次電池 |
JP2013218787A (ja) | 2012-04-04 | 2013-10-24 | Sony Corp | 正極活物質、正極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP2013218875A (ja) * | 2012-04-09 | 2013-10-24 | Sony Corp | 正極活物質、正極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP5273274B1 (ja) * | 2012-04-27 | 2013-08-28 | 東洋インキScホールディングス株式会社 | リチウム二次電池電極形成用組成物、二次電池用電極 |
KR101718057B1 (ko) | 2012-08-02 | 2017-03-20 | 삼성에스디아이 주식회사 | 양극 활물질 및 이를 채용한 양극과 리튬전지 |
KR101540673B1 (ko) * | 2012-08-03 | 2015-07-30 | 주식회사 엘지화학 | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 |
JP6159228B2 (ja) * | 2012-11-07 | 2017-07-05 | 株式会社半導体エネルギー研究所 | 非水系二次電池用正極の製造方法 |
CN103022499B (zh) * | 2012-12-03 | 2016-09-07 | 东莞新能源科技有限公司 | 一种锂离子电池混合正极材料 |
KR20160102083A (ko) * | 2013-02-28 | 2016-08-26 | 닛산 지도우샤 가부시키가이샤 | 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지 |
JP6428996B2 (ja) | 2013-06-20 | 2018-11-28 | 株式会社Gsユアサ | リチウム二次電池用混合活物質、リチウム二次電池用電極、及びリチウム二次電池 |
KR101684589B1 (ko) | 2014-01-07 | 2016-12-08 | 주식회사 엘지화학 | 양극 활물질 2차 입자 및 그를 포함하는 리튬 이차전지 |
CN103811744B (zh) * | 2014-02-13 | 2016-09-21 | 北大先行科技产业有限公司 | 一种锂离子电池三元正极材料的制备方法 |
CN103794799A (zh) * | 2014-02-28 | 2014-05-14 | 大连交通大学 | 一步实现碳包覆和Na+掺杂制备LiFePO4正极材料的方法 |
PL3214672T3 (pl) * | 2014-10-28 | 2019-12-31 | Lg Chem, Ltd. | Materiał aktywny anody dla akumulatora litowego, sposób jego wytwarzania i akumulator litowy obejmujący materiał aktywny anody |
CN104724763A (zh) * | 2015-02-11 | 2015-06-24 | 江苏科捷锂电池有限公司 | 高压实三元正极材料的制备方法 |
KR101927295B1 (ko) | 2015-11-30 | 2018-12-10 | 주식회사 엘지화학 | 이차전지용 양극활물질 및 이를 포함하는 이차전지 |
KR102012427B1 (ko) | 2015-11-30 | 2019-08-21 | 주식회사 엘지화학 | 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지 |
JP6528666B2 (ja) * | 2015-12-09 | 2019-06-12 | 株式会社村田製作所 | 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
KR102101006B1 (ko) | 2015-12-10 | 2020-04-14 | 주식회사 엘지화학 | 이차전지용 양극 및 이를 포함하는 이차전지 |
FR3047544B1 (fr) | 2016-02-10 | 2018-03-02 | Safran Aircraft Engines | Chambre de combustion de turbomachine |
KR102636057B1 (ko) * | 2016-05-30 | 2024-02-08 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 |
KR20180056310A (ko) * | 2016-11-18 | 2018-05-28 | 삼성전자주식회사 | 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법 |
KR102124950B1 (ko) * | 2016-11-23 | 2020-06-22 | 주식회사 엘지화학 | 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
US11936041B2 (en) * | 2016-12-16 | 2024-03-19 | Sk On Co., Ltd. | Lithium secondary battery |
PL3696894T3 (pl) * | 2017-11-21 | 2024-03-04 | Lg Energy Solution, Ltd. | Materiał katody dla litowej baterii akumulatorowej oraz katoda i litowa bateria akumulatorowa, która ją zawiera |
US20190190060A1 (en) * | 2017-12-19 | 2019-06-20 | 3M Innovative Properties Company | Electrochemical cells |
WO2020149679A1 (ko) * | 2019-01-16 | 2020-07-23 | 주식회사 엘지화학 | 리튬 이차전지 및 이의 제조방법 |
KR20210067735A (ko) * | 2019-11-29 | 2021-06-08 | 주식회사 엘지에너지솔루션 | 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지 |
-
2018
- 2018-02-01 KR KR1020180013114A patent/KR102359103B1/ko active IP Right Grant
-
2019
- 2019-02-01 US US16/770,820 patent/US11515522B2/en active Active
- 2019-02-01 PL PL19747241.8T patent/PL3712990T3/pl unknown
- 2019-02-01 CN CN201980006551.XA patent/CN111492510B/zh active Active
- 2019-02-01 HU HUE19747241A patent/HUE064059T2/hu unknown
- 2019-02-01 EP EP23196514.6A patent/EP4266418A1/en active Pending
- 2019-02-01 EP EP19747241.8A patent/EP3712990B1/en active Active
- 2019-02-01 JP JP2020552659A patent/JP7062173B2/ja active Active
- 2019-02-01 ES ES19747241T patent/ES2964486T3/es active Active
- 2019-02-01 WO PCT/KR2019/001473 patent/WO2019151834A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060112823A (ko) * | 2005-04-28 | 2006-11-02 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
JP4972624B2 (ja) | 2008-09-30 | 2012-07-11 | 日立ビークルエナジー株式会社 | リチウム二次電池用正極材料及びそれを用いたリチウム二次電池 |
JP2013065468A (ja) * | 2011-09-16 | 2013-04-11 | Panasonic Corp | リチウムイオン二次電池 |
KR20140024587A (ko) * | 2012-08-20 | 2014-03-03 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR20150073969A (ko) * | 2012-10-17 | 2015-07-01 | 도다 고교 가부시끼가이샤 | Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210019389A (ko) * | 2019-08-12 | 2021-02-22 | 주식회사 엘지화학 | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 |
KR20210019388A (ko) * | 2019-08-12 | 2021-02-22 | 주식회사 엘지화학 | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 |
CN114342112B (zh) * | 2019-08-30 | 2024-10-22 | 松下控股株式会社 | 非水电解质二次电池 |
CN114342112A (zh) * | 2019-08-30 | 2022-04-12 | 松下电器产业株式会社 | 非水电解质二次电池 |
CN113410428A (zh) * | 2020-03-17 | 2021-09-17 | 松下电器产业株式会社 | 非水电解质二次电池用正极及非水电解质二次电池 |
US20210296638A1 (en) * | 2020-03-17 | 2021-09-23 | Panasonic Corporation | Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery |
KR20220049129A (ko) * | 2020-10-14 | 2022-04-21 | 주식회사 엘 앤 에프 | 이차전지용 전극 활물질 |
WO2022098136A1 (ko) * | 2020-11-05 | 2022-05-12 | 주식회사 엘지에너지솔루션 | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 |
WO2022098135A1 (ko) * | 2020-11-05 | 2022-05-12 | 주식회사 엘지에너지솔루션 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
WO2022103105A1 (ko) * | 2020-11-10 | 2022-05-19 | 주식회사 엘지에너지솔루션 | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 |
US12126020B2 (en) | 2021-01-29 | 2024-10-22 | Lg Energy Solution, Ltd. | Positive electrode and lithium secondary battery including the same |
KR20220166048A (ko) * | 2021-06-09 | 2022-12-16 | 재단법인대구경북과학기술원 | 이차전지용 전극 활물질의 깨짐율 분석방법 |
WO2023158219A1 (ko) * | 2022-02-15 | 2023-08-24 | 주식회사 엘지에너지솔루션 | 양극재, 이를 포함하는 양극 및 리튬 이차전지 |
Also Published As
Publication number | Publication date |
---|---|
HUE064059T2 (hu) | 2024-02-28 |
EP4266418A1 (en) | 2023-10-25 |
EP3712990A4 (en) | 2021-01-13 |
CN111492510B (zh) | 2022-06-21 |
KR102359103B1 (ko) | 2022-02-08 |
CN111492510A (zh) | 2020-08-04 |
ES2964486T3 (es) | 2024-04-08 |
EP3712990A1 (en) | 2020-09-23 |
JP2021507497A (ja) | 2021-02-22 |
US20200388830A1 (en) | 2020-12-10 |
EP3712990B1 (en) | 2023-10-25 |
JP7062173B2 (ja) | 2022-05-06 |
WO2019151834A1 (ko) | 2019-08-08 |
US11515522B2 (en) | 2022-11-29 |
PL3712990T3 (pl) | 2024-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102359103B1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR102227313B1 (ko) | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
KR102417199B1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
US20240038987A1 (en) | Positive Electrode Active Material for Secondary Battery, Method for Preparing Same, and Lithium Secondary Battery Including the Same | |
KR102062689B1 (ko) | 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
KR102178878B1 (ko) | 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
KR102459883B1 (ko) | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
KR102410662B1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR102158680B1 (ko) | 이차전지용 양극의 제조방법 | |
KR102270113B1 (ko) | 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
KR102242254B1 (ko) | 이차전지 양극용 슬러리의 제조방법 | |
KR102328991B1 (ko) | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR102453273B1 (ko) | 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
KR102177798B1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR20210031325A (ko) | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
KR102464769B1 (ko) | 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR20190038395A (ko) | 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR102268076B1 (ko) | 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR102294867B1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR20240046148A (ko) | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR20210071612A (ko) | 리튬 이차전지용 양극재, 상기 양극재의 제조 방법 | |
KR20210031324A (ko) | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR102459882B1 (ko) | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
KR102568566B1 (ko) | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR20200118768A (ko) | 이차전지용 양극 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |