WO2013038918A1 - 非水電解質二次電池の正極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池の正極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2013038918A1
WO2013038918A1 PCT/JP2012/072024 JP2012072024W WO2013038918A1 WO 2013038918 A1 WO2013038918 A1 WO 2013038918A1 JP 2012072024 W JP2012072024 W JP 2012072024W WO 2013038918 A1 WO2013038918 A1 WO 2013038918A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
electrolyte secondary
secondary battery
Prior art date
Application number
PCT/JP2012/072024
Other languages
English (en)
French (fr)
Inventor
太祐 西出
史治 新名
浩史 川田
吉田 智一
喜田 佳典
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013533605A priority Critical patent/JP5991718B2/ja
Priority to CN201280043469.2A priority patent/CN103782423B/zh
Priority to US14/343,825 priority patent/US9577247B2/en
Publication of WO2013038918A1 publication Critical patent/WO2013038918A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses a secondary battery using a lithium composite oxide containing cobalt as a positive electrode active material.
  • the main object of the present invention is to provide a positive electrode active material capable of improving the output characteristics of a non-aqueous electrolyte secondary battery.
  • the positive electrode active material of the nonaqueous electrolyte secondary battery of the present invention includes a first positive electrode active material and a second positive electrode active material.
  • the first positive electrode active material has a cobalt content of 15% or more in terms of atomic percentage in the transition metal.
  • the second positive electrode active material has a cobalt content of 5% or less as an atomic percentage in the transition metal.
  • the average secondary particle diameter r1 of the first positive electrode active material is smaller than the average secondary particle diameter r2 of the second positive electrode active material.
  • the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode including the positive electrode active material, a negative electrode, a nonaqueous electrolyte, and a separator.
  • a positive electrode active material that can improve the output characteristics of a nonaqueous electrolyte secondary battery can be provided.
  • FIG. 1 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a three-electrode test cell using a positive electrode produced in Examples and the like as a working electrode.
  • FIG. 3 is a graph plotting capacity characteristics and output characteristics against the cobalt content in the positive electrode active materials of Experiments 1 to 6.
  • FIG. 4 is a diagram showing the relationship between the mixing ratio of the second positive electrode active material and the calculated output characteristic ratio.
  • FIG. 5 is a diagram showing XRD patterns before and after fitting of diffraction peaks of 018 and 110.
  • the nonaqueous electrolyte secondary battery 1 includes a battery container 17.
  • the battery case 17 is a cylindrical shape.
  • the shape of the battery container is not limited to a cylindrical shape.
  • the shape of the battery container may be, for example, a flat shape.
  • an electrode body 10 impregnated with a nonaqueous electrolyte is accommodated.
  • non-aqueous electrolyte for example, a known non-aqueous electrolyte can be used.
  • the non-aqueous electrolyte includes a solute, a non-aqueous solvent, and the like.
  • a known lithium salt can be used as the solute of the nonaqueous electrolyte.
  • the lithium salt preferably used as the solute of the nonaqueous electrolyte include a lithium salt containing at least one element selected from the group consisting of P, B, F, O, S, N, and Cl.
  • Specific examples of such a lithium salt include, for example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4 , and the like.
  • LiPF 6 is more preferably used as the solute of the nonaqueous electrolyte from the viewpoint of improving the high rate charge / discharge characteristics and durability.
  • the non-aqueous electrolyte may contain a kind of solute or may contain a plurality of kinds of solutes.
  • a lithium salt having an oxalate complex as an anion can also be used as a solute of the nonaqueous electrolytic solution.
  • the lithium salt having the oxalate complex as an anion include LiBOB [lithium-bisoxalate borate] and a lithium salt having an anion in which C 2 O 4 2 ⁇ is coordinated to the central atom, for example, Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group) Group, x is a positive integer, and y is 0 or a positive integer).
  • Li [B (C 2 O 4 ) F 2 ] Li [P (C 2 O 4 ) F 4 ] Li [P (C 2 O 4 ) 2 F 2 ]
  • LiBOB Li [B (C 2 O 4 ) F 2 ]
  • non-aqueous solvent for the non-aqueous electrolyte examples include cyclic carbonates, chain carbonates, and mixed solvents of cyclic carbonates and chain carbonates.
  • cyclic carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like.
  • a mixed solvent of a cyclic carbonate and a chain carbonate is preferably used as a non-aqueous solvent having a low viscosity, a low melting point, and a high lithium ion conductivity.
  • the mixing ratio of cyclic carbonate to chain carbonate should be in the range of 2: 8 to 5: 5 by volume ratio. Is preferred.
  • the non-aqueous solvent may be a mixed solvent of a cyclic carbonate and an ether solvent such as 1,2-dimetaxethane and 1,2-diethoxyethane.
  • an ionic liquid can be used as a nonaqueous solvent for the nonaqueous electrolyte.
  • the cation species and anion species of the ionic liquid are not particularly limited. From the viewpoint of low viscosity, electrochemical stability, and hydrophobicity, for example, a pyridinium cation, an imidazolium cation, or a quaternary ammonium cation is preferably used as the cation.
  • an ionic liquid containing a fluorine-containing imide anion is preferably used as the anion.
  • the non-aqueous electrolyte may be a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide or polyacrylonitrile with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N.
  • the electrode body 10 is formed by winding a negative electrode 11, a positive electrode 12, and a separator 13 disposed between the negative electrode 11 and the positive electrode 12.
  • the separator 13 is not particularly limited as long as it can suppress a short circuit due to contact between the negative electrode 11 and the positive electrode 12 and is impregnated with a nonaqueous electrolyte to obtain lithium ion conductivity.
  • Separator 13 can be constituted by a porous film made of resin, for example.
  • the resin porous film include a polypropylene or polyethylene porous film, a laminate of a polypropylene porous film and a polyethylene porous film, and the like.
  • the negative electrode 11 has a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector.
  • the negative electrode current collector can be made of, for example, a metal such as copper or an alloy containing a metal such as copper.
  • the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium.
  • the negative electrode active material include a carbon material, a material alloyed with lithium, and a metal oxide such as tin oxide.
  • the material to be alloyed with lithium include one or more metals selected from the group consisting of silicon, germanium, tin, and aluminum, or one or more types selected from the group consisting of silicon, germanium, tin, and aluminum.
  • the thing which consists of an alloy containing a metal is mentioned.
  • Specific examples of the carbon material include natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, hard carbon, fullerene, and carbon nanotube. From the viewpoint of improving the high rate charge / discharge characteristics, it is preferable to use a carbon material obtained by coating a graphite material with low crystalline carbon as the negative electrode active material.
  • the negative electrode active material layer may contain a known carbon conductive agent such as graphite and a known binder such as sodium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SB).
  • a known carbon conductive agent such as graphite
  • a known binder such as sodium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SB).
  • the positive electrode 12 has a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode current collector is preferably made of aluminum or an aluminum alloy.
  • the positive electrode current collector is preferably composed of an aluminum foil and an alloy foil containing aluminum.
  • the positive electrode active material layer is provided on at least one surface of the positive electrode current collector.
  • the surface of the positive electrode current collector is covered with a positive electrode active material layer.
  • the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material layer may contain appropriate materials such as a binder and a conductive agent in addition to the positive electrode active material.
  • a binder preferably used include, for example, polyvinylidene fluoride.
  • a conductive agent preferably used include carbon materials such as graphite, carbon black, and acetylene black.
  • the positive electrode active material includes a first positive electrode active material and a second positive electrode active material.
  • the cobalt content in the first positive electrode active material is 15% or more in terms of atomic percentage in the transition metal.
  • the first positive electrode active material preferably has a cobalt content of 15% to 40%, more preferably 17% to 35%, in terms of atomic percentage in the transition metal.
  • the first positive electrode active material preferably has a layered structure.
  • the first positive electrode active material is a compound represented by the general formula (1), by satisfying the relationship of 0.15 ⁇ c1 / (a1 + b1 + c1), the cobalt content in the positive electrode active material is reduced. A decrease in output characteristics can be suppressed.
  • the cobalt content in the second positive electrode active material is 5% or less as an atomic percentage in the transition metal.
  • the second positive electrode active material preferably has a layered structure.
  • the second positive electrode active material may not substantially contain cobalt.
  • the second positive electrode active material is a compound represented by the general formula (2)
  • the cobalt content in the positive electrode active material is reduced by satisfying the relationship of 0 ⁇ c2 / (a2 + b2 + c2) ⁇ 0.05. While suppressing, it is possible to suppress a decrease in output characteristics.
  • the first and second positive electrode active materials are compounds represented by the general formulas (1) and (2), respectively, 0.7 ⁇ a1 / b1 ⁇ 3.0, 0.7 ⁇ a2 /
  • the thermal stability of the positive electrode active material is extremely lowered, the temperature at which the heat generation reaches a peak is suppressed from being lowered, and the safety can be improved.
  • a1 / b1 and a2 / b2 are within this range, the ratio of Mn in the positive electrode active material does not increase excessively, and an impurity layer is generated and capacity can be suppressed from decreasing.
  • the conditions of 1.0 ⁇ a1 / b1 ⁇ 2.0 and 1.0 ⁇ a2 / b2 ⁇ 2.0 are more satisfied, respectively. preferable.
  • first and second positive electrode active materials are compounds represented by the general formulas (1) and (2), respectively, 0 ⁇ x1 ⁇ 0.1 and 0 ⁇ x2 ⁇ 0.1, respectively.
  • filling conditions it can suppress that the alkali which remains on the surface of a 1st positive electrode active material increases.
  • a slurry gelatinizes it can suppress that a slurry gelatinizes, and can suppress that the amount of transition metals which perform oxidation-reduction reaction falls, and a capacity
  • first and second positive electrode active materials are compounds represented by the general formulas (1) and (2), respectively, by satisfying the condition of ⁇ 0.1 ⁇ d ⁇ 0.1, respectively.
  • the positive electrode active material is in an oxygen deficient state or an oxygen excess state and the crystal structure is damaged.
  • the first and second positive electrode active materials each include a group consisting of boron, fluorine, magnesium, aluminum, titanium, chromium, vanadium, iron, copper, zinc, niobium, molybdenum, zirconium, tin, tungsten, sodium, and potassium. At least one kind selected from may be included.
  • the average secondary particle diameter r1 of the first positive electrode active material is preferably about 1 ⁇ m to 30 ⁇ m, more preferably about 2 ⁇ m to 25 ⁇ m.
  • the average secondary particle diameter r2 of the second positive electrode active material is preferably about 1 ⁇ m to 30 ⁇ m, more preferably about 2 ⁇ m to 25 ⁇ m. It can suppress that the discharge performance of the nonaqueous electrolyte secondary battery 1 falls because the average secondary particle diameter of a 1st and 2nd positive electrode active material exists in this range. Moreover, it can suppress that the 1st and 2nd positive electrode active material reacts with a non-aqueous electrolyte, and a storage characteristic etc. worsen.
  • the average secondary particle diameters of the first and second positive electrode active materials are median diameter values obtained by particle size distribution measurement by a laser diffraction method, respectively.
  • the secondary particles of the first and second positive electrode active materials are formed by agglomerating about several hundred primary particles, for example.
  • the average secondary particle diameter r1 of the first positive electrode active material is smaller than the average secondary particle diameter r2 of the second positive electrode active material.
  • the first positive electrode active material is preferably attached to the surface of the second positive electrode active material.
  • the second positive electrode active material is covered with the first positive electrode active material by attaching a large number of first positive electrode active materials to the surface of the second positive electrode active material. Since the average secondary particle diameter r1 of the first positive electrode active material is smaller than the average secondary particle diameter r2 of the second positive electrode active material, the entire surface of the second positive electrode active material can be covered. It is considered that lithium ions easily diffuse on the surface of the positive electrode active material. It is preferable that the average secondary particle diameter r1 of the first positive electrode active material and the average secondary particle diameter r2 of the second positive electrode active material satisfy the relationship r1 / r2 ⁇ 0.8.
  • the content of the second positive electrode active material in the positive electrode active material is preferably 10% by mass or more, and preferably 90% by mass or less. From the viewpoint of reducing the cobalt content in the positive electrode active material, the content of the second positive electrode active material in the positive electrode active material is more preferably 40% by mass or more. From the viewpoint of improving the output characteristics of the nonaqueous electrolyte secondary battery 1, the content of the second positive electrode active material in the positive electrode active material is more preferably 50% by mass or more, and 60% by mass or more. Is particularly preferred.
  • the content of the first positive electrode active material in the positive electrode active material is preferably 10% by mass or more.
  • the content of the first positive electrode active material in the positive electrode active material is preferably 90% by mass or less, more preferably 60% by mass or less, further preferably 50% by mass or less, It is particularly preferable that the content is not more than mass%.
  • the first and second positive electrode active materials can be obtained, for example, by combining a Li compound, a transition metal composite hydroxide, a transition metal composite oxide, or the like as raw materials and firing them at an appropriate temperature.
  • a known mixing method can be used for mixing the first and second positive electrode active materials.
  • the first positive electrode active material and the second particle may be mixed with each other so as to be combined.
  • the kind of Li compound is not specifically limited, For example, at least 1 type, such as lithium hydroxide, lithium carbonate, lithium chloride, lithium sulfate, lithium acetate, and these hydrates, can be used.
  • the firing temperature for firing the above raw material varies depending on the composition, particle size, etc.
  • transition metal composite hydroxide or transition metal composite oxide used as the raw material it is difficult to determine uniquely. Usually, it is in the range of about 500 ° C to 1100 ° C, preferably in the range of about 600 ° C to 1000 ° C, and more preferably in the range of about 700 ° C to 900 ° C.
  • a non-aqueous electrolyte secondary battery using a positive electrode active material having a low cobalt content has a problem that sufficient output characteristics cannot be obtained.
  • the present inventor conducted the following experiments 1 to 6, and investigated the influence of the cobalt content in the positive electrode active material on the capacity characteristics and output characteristics of the nonaqueous electrolyte secondary battery.
  • Li 2 CO 3 and Ni 0.5 Mn 0.5 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 1000 ° C. in the air to form Li layer having a layered structure.
  • a positive electrode active material composed of 1.06 Ni 0.47 Mn 0.47 O 2 was obtained.
  • Li 2 CO 3 and Ni 0.35 Co 0.3 Mn 0.35 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 900 ° C. in air to form a layered structure.
  • a positive electrode active material composed of Li 1.06 Ni 0.33 Co 0.28 Mn 0.33 O 2 having a structure was obtained.
  • Each positive electrode active material obtained in Experiments 1 to 6 carbon black as a conductive agent, and N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride is dissolved as a binder, a positive electrode active material, a conductive agent, The mixture was kneaded so that the mass ratio with the binder was 92: 5: 3 to prepare a slurry of the positive electrode mixture. This slurry was applied onto a positive electrode current collector made of an aluminum foil, dried, and then rolled with a rolling roller to attach an aluminum current collecting tab to produce a positive electrode.
  • the positive electrode was used as the working electrode 21.
  • metallic lithium was used as the counter electrode 22 and the reference electrode 23 serving as the negative electrode.
  • the non-aqueous electrolyte 24 LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 3: 3: 4 to a concentration of 1 mol / l, and vinylene carbonate was further added. 1% by mass was used. Using these, a three-electrode test cell 20 as shown in FIG. 2 was produced.
  • each three-electrode test cell 20 using the positive electrode active material obtained in Experiments 1 to 6 is 4.3 V (current density of 0.2 mA / cm 2) at a temperature of 25 ° C. vs.Li/Li +) to perform constant current charging, 4.3 V (after the current density at a constant voltage of vs.Li/Li +) was subjected to constant-voltage charge until the 0.04mA / cm 2, 0 A constant current discharge was performed to 2.5 V (vs. Li / Li + ) at a current density of 2 mA / cm 2 . The discharge capacity at this time was defined as the rated capacity of each three-electrode test cell 20.
  • each of the three-electrode test cells 20 is charged to 50% of the rated capacity as described above, the SOC 50 is set, and each three-electrode test cell 20 is output at the SOC 50 under the condition of 25 ° C. Characteristics were measured. A graph plotting capacity characteristics and output characteristics with respect to cobalt content in the positive electrode active material is shown in FIG.
  • the positive electrode active material having a cobalt content of 15% by mass or more and the second positive electrode active material having a cobalt content of 5% by mass or less. Substances. Furthermore, the average secondary particle diameter r1 of the first positive electrode active material is smaller than the average secondary particle diameter r2 of the second positive electrode active material. Thereby, the positive electrode active material which concerns on this embodiment can provide a high output characteristic to the nonaqueous electrolyte secondary battery 1.
  • lithium ions are preferentially inserted into the first positive electrode active material that has a relatively high cobalt content and can impart excellent output characteristics.
  • the potential of the first positive electrode active material drops.
  • a potential difference is generated between the first positive electrode active material and the second positive electrode active material, and lithium ions diffuse to the surface of the positive electrode active material.
  • lithium ions are supplied to the surface of the second positive electrode active material.
  • the positive electrode active material according to the present embodiment is preferably used as a positive electrode active material for a non-aqueous electrolyte secondary battery that requires high output characteristics, such as a non-aqueous electrolyte secondary battery of a hybrid electric vehicle. it can.
  • Example 1 Li 2 CO 3 and Ni 0.35 Co 0.35 Mn 0.3 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 900 ° C. in air to form a layered structure.
  • the average secondary particle diameter r1 of the first positive electrode active material was about 3.7 ⁇ m.
  • Li 2 CO 3 and Ni 0.6 Mn 0.4 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 1000 ° C. in the air to form a layered structure. to obtain a second positive electrode active material composed of Li 1.07 Ni 0.56 Mn 0.37 O 2 having a.
  • the average secondary particle diameter r2 of the second positive electrode active material particles was about 8.0 ⁇ m.
  • the first positive electrode active material and the second positive electrode active material were mixed so that the mixing ratio was 58:42 (mass percentage) to produce a positive electrode active material.
  • a three-electrode test cell 20 was produced in the same manner as in Experiments 1 to 6 except that the positive electrode active material obtained in Example 1 was used.
  • Example 2 A positive electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of the first positive electrode active material and the second positive electrode active material was 28:72 in terms of mass percentage. Next, using the positive electrode active material obtained in Example 2, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 1 A positive electrode active material was produced in the same manner as in Example 1 except that only the first positive electrode active material was used as the positive electrode active material. Next, using the positive electrode active material obtained in Reference Example 1, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 1 A positive electrode active material was produced in the same manner as in Example 1 except that only the second positive electrode active material was used as the positive electrode active material. Next, using the positive electrode active material obtained in Comparative Example 1, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 3 Li 2 CO 3 and Ni 0.50 Co 0.20 Mn 0.30 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 900 ° C. in air to form a layered structure.
  • the average secondary particle diameter r1 of the first positive electrode active material was about 5.6 ⁇ m.
  • Example 3 Except that the first positive electrode active material produced in Example 3 and the second positive electrode active material produced in Example 1 were mixed so as to have a mass percentage of 50:50 as the positive electrode active material.
  • a positive electrode active material was prepared in the same manner as in Example 1. Next, using the positive electrode active material obtained in Example 3, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 2 A positive electrode active material was produced in the same manner as in Example 1 except that only the first positive electrode active material obtained in Example 3 was used as the positive electrode active material. Next, using the positive electrode active material obtained in Reference Example 2, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 4 Li 2 CO 3 and Ni 0.46 Co 0.28 Mn 0.26 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 900 ° C. in air to form a layered structure.
  • the average secondary particle diameter r1 of the first positive electrode active material was about 5.7 ⁇ m.
  • Example 4 Except that the first positive electrode active material produced in Example 4 and the second positive electrode active material produced in Example 1 were mixed so as to have a mass percentage of 10:90 as the positive electrode active material.
  • a positive electrode active material was prepared in the same manner as in Example 1.
  • a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 5 Except that the positive electrode active material was prepared by mixing the first positive electrode active material prepared in Example 4 and the second positive electrode active material prepared in Example 1 so as to have a mass percentage of 40:60. A positive electrode active material was prepared in the same manner as in Example 1. Next, using the positive electrode active material obtained in Example 5, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 3 A positive electrode active material was produced in the same manner as in Example 1 except that only the first positive electrode active material obtained in Example 4 was used as the positive electrode active material. Next, using the positive electrode active material obtained in Reference Example 3, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Li 2 CO 3 and Ni 0.35 Co 0.35 Mn 0.3 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 900 ° C. in the air to form a layered structure.
  • a first positive electrode active material made of Li 1.09 Ni 0.32 Co 0.32 Mn 0.27 O 2 having a structure was obtained.
  • the average secondary particle diameter r1 of the first positive electrode active material was about 7.8 ⁇ m.
  • a positive electrode active material was produced in the same manner as in Example 1 except that only the first positive electrode active material obtained in Reference Example 4 was used as the positive electrode active material. Next, using the positive electrode active material obtained in Reference Example 4, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Li 2 CO 3 and Ni 0.6 Mn 0.4 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 1000 ° C. in the air to form Li layer having a layered structure.
  • a second positive electrode active material composed of 1.06 Ni 0.56 Mn 0.38 O 2 was obtained.
  • the average secondary particle diameter r2 of the second positive electrode active material was about 4.5 ⁇ m.
  • Example 1 Except that the first positive electrode active material produced in Reference Example 4 and the second positive electrode active material produced in Comparative Example 2 were mixed so as to have a mass percentage of 58:42 as the positive electrode active material.
  • a positive electrode active material was prepared in the same manner as in Example 1.
  • a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Comparative Example 3 A positive electrode active material was produced in the same manner as in Comparative Example 2, except that the mixing ratio of the first positive electrode active material and the second positive electrode active material was 28:72 in terms of mass percentage. Next, using the positive electrode active material obtained in Comparative Example 3, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 4 A positive electrode active material was produced in the same manner as in Example 1 except that only the second positive electrode active material obtained in Comparative Example 2 was used as the positive electrode active material. Next, using the positive electrode active material obtained in Comparative Example 4, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Li 2 CO 3 and Ni 0.60 Co 0.20 Mn 0.20 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired in air at 850 ° C. to form a layered structure.
  • a second positive electrode active material composed of Li 1.07 Ni 0.56 Co 0.19 Mn 0.18 O 2 having a structure was obtained.
  • the average secondary particle diameter r2 of the second positive electrode active material was about 5.7 ⁇ m.
  • Example 1 Except that the first positive electrode active material obtained in Example 1 and the second positive electrode active material obtained in Comparative Example 5 were mixed so as to have a mass percentage of 58:42 as the positive electrode active material. Produced a positive electrode active material in the same manner as in Example 1. Next, using the positive electrode active material obtained in Comparative Example 5, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Comparative Example 6 A positive electrode active material was produced in the same manner as in Comparative Example 5 except that the mixing ratio of the first positive electrode active material and the second positive electrode active material was 28:72 in terms of mass percentage. Next, using the positive electrode active material obtained in Comparative Example 6, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Example 7 A positive electrode active material was produced in the same manner as in Example 1 except that only the second positive electrode active material obtained in Comparative Example 5 was used as the positive electrode active material. Next, using the obtained positive electrode active material, a three-electrode test cell 20 was produced in the same manner as in Example 1.
  • Calculation output characteristic (output characteristic of only the first positive electrode active material) ⁇ (mixing ratio of the first positive electrode active material) + (output characteristic of only the second positive electrode active material) ⁇ (second positive electrode active material) Mixing ratio of substances)
  • the output characteristics of the three-electrode test cells 20 of Examples 1 to 5 are the ratios of the measured output characteristics to the calculated output characteristics, respectively. It becomes 1.32, 1.63, 1.33, 1.51, 1.60, and it can be seen that the output is greatly improved. Moreover, the ratio of the output characteristics with respect to Comparative Example 1 using only the second positive electrode active material is 2.60, 2.95, 2.86, 1.89, 3.65, and the output is greatly improved. .
  • the potential of the first positive electrode active material is lowered by preferentially inserting lithium ions into the first positive electrode active material that contains a large amount of cobalt and has excellent output characteristics. At this time, a potential difference is generated between the second positive electrode active material, lithium ions diffuse, and lithium ions are supplied to the surface of the second positive electrode active material. And reaction in a positive electrode active material advances rapidly, and an output characteristic improves.
  • the diffusion of lithium ions is such that the average secondary particle diameter r1 of the first positive electrode active material is smaller than the average secondary particle diameter r2 of the second positive electrode active material, and the first positive electrode active material is the second positive electrode active material. It is thought to be caused by covering the substance.
  • the output characteristics of the three-electrode test cell 20 using the positive electrode active material obtained by mixing the first and second positive electrode active materials are calculated.
  • a value equivalent to the output characteristic was shown. This is because the average secondary particle diameter of the first positive electrode active material is larger than the average secondary particle diameter of the second positive electrode active material, so that the first positive electrode active material covers the surface of the second positive electrode active material. This is probably because the lithium ion diffusion to the surface of the second positive electrode active material did not occur.
  • Example 2 although there are many second positive electrode active materials having inferior output characteristics as a single substance, the output characteristics are superior to those in Example 1 and measured output characteristics with respect to the calculated output characteristics. The ratio of was also high.
  • the second positive electrode active material was 90 mass% and 60 mass%, but the ratio of the measured output characteristic to the calculated output characteristic was higher than that of Example 1. From these results, it was found that when the second positive electrode active material is present at 60% by mass to 90% by mass as shown in FIG. 4, the output characteristics are specifically excellent. The details of this reason are not clear, but can be considered as follows, for example. That is, it is considered that the presence of a large amount of the second positive electrode active material causes more lithium ions to be supplied to the second positive electrode active material, the reaction in the positive electrode active material proceeds quickly, and the output characteristics are improved. It is done.
  • Example 6 A mixture of the first positive electrode active material produced in Example 4 and the second positive electrode active material produced in Example 1 in a mass percentage of 36:64 was used as the positive electrode active material.
  • the mass ratio of the positive electrode active material, the conductive agent and the binder to the positive electrode active material, the carbon black as the conductive agent, and the N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride is dissolved as the binder. was kneaded so as to be 92: 5: 3 to prepare a positive electrode mixture slurry.
  • the slurry is applied on an aluminum foil as a current collector and then dried, and then the current collector applied with the positive electrode mixture is rolled with a rolling roller, and an aluminum current collecting tab is attached thereto. Thus, a positive electrode was obtained.
  • graphite powder was put into a solution in which CMC (carboxymethylcellulose) as a thickener was dissolved in water, and after stirring and mixing, SBR as a binder was mixed to prepare a slurry.
  • the mass ratio of graphite, SBR, and CMC was 98: 1: 1.
  • the obtained slurry was applied to both sides of a copper foil and vacuum dried at 150 ° C. for 2 hours to produce a negative electrode.
  • An ion-permeable polyethylene microporous membrane was used as a separator, interposed between the positive electrode and the negative electrode, and wound into a spiral shape to produce an electrode body.
  • 1 mol of LiPF 6 was mixed in a mixed solvent in which ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 3: 3: 4 as a non-aqueous electrolyte.
  • 1% by mass of vinylene carbonate was dissolved.
  • the above electrolytic solution in which 0.1 mol / liter of LiBOB [lithium-bisoxalate borate] was dissolved was further injected and sealed to produce a cylindrical battery according to this example.
  • Example 7 Li 2 CO 3 and Ni 0.46 Co 0.28 Mn 0.26 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 880 ° C. in air to form a layered structure.
  • the average secondary particle diameter r1 of the first positive electrode active material was about 5.7 ⁇ m.
  • Li 2 CO 3 and Ni 0.6 Mn 0.4 (OH) 2 obtained by the coprecipitation method are mixed at a predetermined ratio, and these are fired at 980 ° C. in the air to form a layered structure.
  • a second positive electrode active material composed of Li 1.07 Ni 0.56 Mn 0.37 O 2 having a.
  • the average secondary particle diameter r2 of the second positive electrode active material particles was about 8.0 ⁇ m.
  • the first positive electrode active material and the second positive electrode active material were mixed so that the mixing ratio was 36:64 (mass percentage) to produce a positive electrode active material.
  • a cylindrical battery was produced in the same manner as in Example 6.
  • Comparative Example 9 A cylindrical battery was fabricated in the same manner as in Comparative Example 8, except that only the second positive electrode active material used in Example 7 was used as the positive electrode active material.
  • Example 5 A positive electrode active material was produced in the same manner as in Example 6 except that only the first positive electrode active material obtained in Example 6 was used as the positive electrode active material. Next, using the positive electrode active material obtained in Reference Example 5, a cylindrical battery was produced in the same manner as in Example 6.
  • Example 6 A positive electrode active material was produced in the same manner as in Example 7 except that only the first positive electrode active material obtained in Example 7 was used as the positive electrode active material. Next, using the positive electrode active material obtained in Reference Example 6, a cylindrical battery was produced in the same manner as in Example 7.
  • Calculation output characteristic (output characteristic of only the first positive electrode active material) ⁇ (mixing ratio of the first positive electrode active material) + (output characteristic of only the second positive electrode active material) ⁇ (second positive electrode active material) Mixing ratio of substances)
  • NISTSRM660bLaB6 which has high crystallinity and has a very small half width
  • Ten peaks of 311 were obtained, and fitting was performed using the divided pseudo-voigt function.
  • approximation with a quadratic curve was performed to calculate an approximate expression for the half-value width with respect to the angle.
  • FWHM110 was calculated by subtracting the device-dependent component of the positive electrode active material and the second positive electrode active material.
  • Table 6 shows the results of the output characteristics of the cylindrical batteries of Examples 6 and 7 and the FWHM110 of the first and second positive electrode active materials.
  • the output characteristics of the cylindrical batteries of Examples 6 and 7 have a ratio of the measured output characteristics to the calculated output characteristics of 1.42 and 1.69, respectively. It can be seen that the output is improved. Moreover, the ratio of the output characteristic with respect to the comparative example 8 using only the 2nd positive electrode active material will be 3.17 and 3.76, and the output is improving significantly.
  • the output characteristics of the cylindrical batteries of Examples 6 and 7 were greatly improved are not clear, the following can be considered as in the case of the three-electrode test cells of Examples 1 to 5. It can. That is, the potential of the first positive electrode active material is lowered by preferentially inserting lithium ions into the first positive electrode active material that contains a large amount of cobalt and has excellent output characteristics. At this time, a potential difference is generated between the second positive electrode active material, lithium ions diffuse, and lithium ions are supplied to the surface of the second positive electrode active material. And reaction in a positive electrode active material advances rapidly, and an output characteristic improves.
  • the diffusion of lithium ions is such that the average secondary particle diameter r1 of the first positive electrode active material is smaller than the average secondary particle diameter r2 of the second positive electrode active material, and the first positive electrode active material is the second positive electrode active material. It is thought to be caused by covering the substance.
  • Example 7 the output characteristics of Example 7 are greatly improved as compared with Example 6. Details of this reason are not clear, but can be considered as follows. It is considered that the output characteristics are improved because the FWHM110 of the positive electrode active material is increased to reduce the crystallite size and the Li ion diffusion distance. At this time, since lithium ions are preferentially inserted into the first positive electrode active material having excellent output characteristics, the FWHM 110 of the first positive electrode active material is preferably larger, and the FWHM 110 of the first positive electrode active material is It is preferable to regulate to 0.1 ° or more and 0.3 ° or less.
  • Example 7 since the output characteristics of Example 7 are improved as compared with Example 6, the range of FWHM110 of the first positive electrode active material is further restricted to 0.2 ° or more and 0.3 ° or less. preferable.
  • the lithium ion is preferentially inserted into the first positive electrode active material, thereby causing a potential difference with the second positive electrode active material, so that the lithium ions diffuse, and lithium ions are formed on the surface of the second positive electrode active material. Therefore, it is preferable that the second positive electrode active material also has a short lithium ion diffusion distance.
  • the FWHM 110 may be regulated to 0.1 ° to 0.3 °. preferable. If it is such a range, even if it uses a positive electrode active material with low cobalt content, an output characteristic can be improved.
  • the range of FWHM110 of the second positive electrode active material is further restricted to 0.2 ° or more and 0.3 ° or less. preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 非水電解質二次電池の出力特性を改善し得る正極活物質を提供する。 非水電解質二次電池1の正極活物質は、第1の正極活物質と、第2の正極活物質とを含む。第1の正極活物質は、コバルトの含有量が遷移金属中の原子百分率で15%以上である。第2の正極活物質は、コバルトの含有量が遷移金属中の原子百分率で5%以下である。第1の正極活物質の平均二次粒子径r1は、第2の正極活物質の平均二次粒子径r2よりも小さい。

Description

非水電解質二次電池の正極活物質及び非水電解質二次電池
 本発明は、非水電解質二次電池の正極活物質及び非水電解質二次電池に関する。
 非水電解質二次電池の正極活物質としては、リチウム複合酸化物が広く用いられている。例えば、特許文献1には、コバルトを含むリチウム複合酸化物を正極活物質として用いた二次電池が開示されている。
特開2010-86693号公報
 近年、コバルト価格の上昇に伴い、コバルトの含有量が低い正極活物質の開発が求められている。しかしながら、コバルトの含有量が低い正極活物質を使用した非水電解質二次電池では、十分な出力特性が得られないという問題がある。
 本発明は、非水電解質二次電池の出力特性を改善し得る正極活物質を提供することを主な目的とする。
 本発明の非水電解質二次電池の正極活物質は、第1の正極活物質と、第2の正極活物質とを含む。第1の正極活物質は、コバルトの含有量が遷移金属中の原子百分率で15%以上である。第2の正極活物質は、コバルトの含有量が遷移金属中の原子百分率で5%以下である。第1の正極活物質の平均二次粒子径r1は、第2の正極活物質の平均二次粒子径r2よりも小さい。
 本発明の非水電解質二次電池は、上記正極活物質を含む正極と、負極と、非水電解質と、セパレータとを備える。
 本発明によれば、非水電解質二次電池の出力特性を改善し得る正極活物質を提供することができる。
図1は、本発明の一実施形態に係る非水電解質二次電池の略図的断面図である。 図2は、実施例等で作製した正極を作用極として用いた三電極式試験用セルの模式図である。 図3は、実験1~6の正極活物質中のコバルト含有量に対する容量特性と出力特性をプロットしたグラフである。 図4は、第2の正極活物質の混合比と、計算上の出力特性比との関係を示す図である。 図5は、018及び110の回折ピークのフィッティング前及びフィッティング後のXRDパターンを示す図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1に示されるように、非水電解質二次電池1は、電池容器17を備えている。本実施形態では、電池容器17は、円筒型である。但し、本発明において、電池容器の形状は、円筒型に限定されない。電池容器の形状は、例えば、扁平形状であってもよい。
 電池容器17内には、非水電解質を含浸した電極体10が収納されている。
 非水電解質としては、例えば、公知の非水電解質を用いることができる。非水電解質は、溶質、非水系溶媒などを含む。
 非水電解質の溶質としては、例えば、公知のリチウム塩を用いることができる。非水電解質の溶質として好ましく用いられるリチウム塩としては、P、B、F、O、S、N及びClからなる群から選ばれた少なくとも一種の元素を含むリチウム塩が挙げられる。このようなリチウム塩の具体例としては、例えば、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、LiAsF、LiClO等が挙げられる。なかでも、高率充放電特性や耐久性を改善する観点から、LiPFが非水電解質の溶質としてより好ましく用いられる。非水電解質は、一種の溶質を含んでいてもよいし、複数種類の溶質を含んでいてもよい。
 また、非水電解液の溶質としては、オキサレート錯体をアニオンとするリチウム塩を用いることもできる。このオキサレート錯体をアニオンとするリチウム塩としては、LiBOB〔リチウム-ビスオキサレートボレート〕の他、中心原子にC 2-が配位したアニオンを有するリチウム塩、例えば、Li[M(C](式中、Mは遷移金属,周期律表のIIIb族,IVb族,Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である。)で表わされるものを用いることができる。具体的には、Li[B(C)F]、Li[P(C)F]、Li[P(C]等がある。但し、高温環境下においても負極の表面に安定な被膜を形成するためには、オキサレート錯体をアニオンとするリチウム塩の中では、LiBOBを用いることが最も好ましい。
 非水電解質の非水系溶媒としては、例えば、環状カーボネート、鎖状カーボネート、及び環状カーボネートと鎖状カーボネートとの混合溶媒等が挙げられる。環状カーボネートの具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。鎖状カーボネートの具体例としては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等が挙げられる。なかでも、低粘度且つ低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒が好ましく用いられる。環状カーボネートと鎖状カーボネートとの混合溶媒においては、環状カーボネートと鎖状カーボネートとの混合比(環状カーボネート:鎖状カーボネート)は、体積比で、2:8~5:5の範囲内にあることが好ましい。
 非水系溶媒は、環状カーボネートと、1,2-ジメタキシエタン、1,2-ジエトキシエタンなどのエーテル系溶媒との混合溶媒であってもよい。
 また、非水電解質の非水系溶媒としてイオン性液体を用いることもできる。イオン性液体のカチオン種、アニオン種は、特に限定されない。低粘度、電気化学的安定性、疎水性の観点から、カチオンとしては、例えばピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンが好ましく用いられる。アニオンとしては、例えばフッ素含有イミド系アニオンを含むイオン性液体が好ましく用いられる。
 また、非水電解質は、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質、LiI、LiNなどの無機固体電解質などであってもよい。
 電極体10は、負極11と、正極12と、負極11及び正極12の間に配置されているセパレータ13とが巻回されてなる。
 セパレータ13は、負極11と正極12との接触による短絡を抑制でき、かつ非水電解質を含浸して、リチウムイオン伝導性が得られるものである限りにおいて特に限定されない。セパレータ13は、例えば、樹脂製の多孔膜により構成することができる。樹脂製の多孔膜の具体例としては、例えば、ポリプロピレン製やポリエチレン製の多孔膜、ポリプロピレン製の多孔膜とポリエチレン製の多孔膜との積層体などが挙げられる。
 負極11は、負極集電体と、負極集電体の少なくとも一方の表面の上に配された負極活物質層とを有する。負極集電体は、例えば、銅などの金属や、銅などの金属を含む合金により構成することができる。
 負極活物質は、リチウムを可逆的に吸蔵・放出できるものであれば特に限定されない。負極活物質としては、例えば、炭素材料、リチウムと合金化する材料、酸化スズ等の金属酸化物等が挙げられる。リチウムと合金化する材料としては、例えば、シリコン、ゲルマニウム、スズ及びアルミニウムからなる群から選ばれた1種以上の金属、またはシリコン、ゲルマニウム、スズ及びアルミニウムからなる群から選ばれた1種以上の金属を含む合金からなるものが挙げられる。炭素材料の具体例としては、例えば、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブ等が挙げられる。高率充放電特性を向上させる観点からは、黒鉛材料を低結晶性炭素で被覆した炭素材料を負極活物質として用いることが好ましい。
 負極活物質層には、グラファイトなどの公知の炭素導電剤、カルボキシメチルセルロースナトリウム(CMC)、スチレンブタジエンゴム(SB)などの公知の結着剤などが含まれていてもよい。
 正極12は、正極集電体と、正極活物質層とを有する。正極集電体は、アルミニウムまたはアルミニウム合金からなることが好ましい。具体的には、正極集電体は、アルミニウム箔、アルミニウムを含む合金箔により構成されていることが好ましい。
 正極活物質層は、正極集電体の少なくとも一方の表面上に設けられている。正極集電体の表面は、正極活物質層によって覆われている。
 正極活物質層は、正極活物質を含む。正極活物質層は、正極活物質に加えて、結着剤、導電剤などの適宜の材料を含んでいてもよい。好ましく用いられる結着剤の具体例としては、例えばポリフッ化ビニリデン等が挙げられる。好ましく用いられる導電剤の具体例としては、例えば、黒鉛、カーボンブラック、アセチレンブラックなどの炭素材料等が挙げられる。
 正極活物質は、第1の正極活物質と第2の正極活物質とを含む。
 第1の正極活物質におけるコバルトの含有量は、遷移金属中の原子百分率で15%以上である。第1の正極活物質は、コバルトの含有量が遷移金属中の原子百分率で15%~40%であるものが好ましく、17%~35%であるものであることがより好ましい。第1の正極活物質は、層状構造を有することが好ましい。
 第1の正極活物質は、下記一般式(1):
 Li1+x1Nia1Mnb1Coc12+d1 (1)
 [式中、x1,a1,b1,c1,d1は、x1+a1+b1+c1=1、0<x1≦0.1、0.15≦c1/(a1+b1+c1)、0.7≦a1/b1≦3.0、-0.1≦d1≦0.1の条件を満たす。]で表される化合物であることが好ましい。
 第1の正極活物質が、一般式(1)で表される化合物である場合、0.15≦c1/(a1+b1+c1)の関係を充足することにより、正極活物質中のコバルト含有量の低下による出力特性の低下を抑制し得る。
 第2の正極活物質におけるコバルトの含有量は、遷移金属中の原子百分率で5%以下である。第2の正極活物質は、層状構造を有することが好ましい。第2の正極活物質は、実質的にコバルトを含有しなくてもよい。
 第2の正極活物質は、一般式(2):
 Li1+x2Nia2Mnb2Coc22+d2 (2)
 [式中、x2,a2,b2,c2,d2は、x2+a2+b2+c2=1、0<x2≦0.1、0≦c2/(a2+b2+c2)≦0.05、0.7≦a2/b2≦3.0、-0.1≦d2≦0.1の条件を満たす。]で表される化合物であることが好ましい。
 第2の正極活物質が、一般式(2)で表される化合物である場合、0≦c2/(a2+b2+c2)≦0.05の関係を充足することにより、正極活物質中のコバルト含有量を抑制しつつ、出力特性の低下を抑制し得る。
 第1及び第2の正極活物質が、それぞれ一般式(1)及び(2)で表される化合物である場合、それぞれ、0.7≦a1/b1≦3.0、0.7≦a2/b2≦3.0の条件を満たすことにより、正極活物質の熱安定性が極端に低下し、発熱がピークになる温度が低くなることを抑制し、安全性を高めることができる。また、a1/b1及びa2/b2がこの範囲内にあることにより、正極活物質中のMnの割合が多くなりすぎず、不純物層が生じて容量が低下することを抑制し得る。このような観点から、一般式(1)及び(2)においては、それぞれ、1.0≦a1/b1≦2.0、1.0≦a2/b2≦2.0の条件を満たすことがより好ましい。
 また、第1及び第2の正極活物質が、それぞれ一般式(1)及び(2)で表される化合物である場合、それぞれ、0<x1≦0.1、0<x2≦0.1の条件を満たすことにより、第1の正極活物質の表面に残留するアルカリが多くなることを抑制し得る。これにより、正極活物質を製造する工程において、スラリーがゲル化することを抑制すると共に、酸化還元反応を行う遷移金属量が低下して容量が低下することを抑制することができる。よって、非水電解質二次電池1の出力特性を向上し得る。一般式(1)及び(2)においては、それぞれ、0.05≦x1≦0.1、0.05≦x2≦0.1の条件を満たすことが好ましく、0.07≦x1≦0.1、0.07≦x2≦0.1の条件を満たすことがより好ましい。
 さらに、第1及び第2の正極活物質が、それぞれ一般式(1)及び(2)で表される化合物である場合、それぞれ、-0.1≦d≦0.1の条件を満たすことにより、正極活物質が酸素欠損状態または酸素過剰状態になって、その結晶構造が損なわれることを抑制し得る。
 第1及び第2の正極活物質には、それぞれ、ホウ素、フッ素、マグネシウム、アルミニウム、チタン、クロム、バナジウム、鉄、銅、亜鉛、ニオブ、モリブデン、ジルコニウム、錫、タングステン、ナトリウム及びカリウムからなる群れから選択される少なくとも一種が含まれていてもよい。
 第1の正極活物質の平均二次粒子径r1は、1μm~30μm程度であることが好ましく、2μm~25μm程度であることがより好ましい。また、第2の正極活物質の平均二次粒子径r2は、1μm~30μm程度であることが好ましく、2μm~25μm程度であることがより好ましい。第1及び第2の正極活物質の平均二次粒子径がこの範囲内にあることにより、非水電解質二次電池1の放電性能が低下することを抑制し得る。また、第1及び第2の正極活物質が非水電解質と反応して、保存特性などが悪くなることを抑制し得る。
 なお、本発明において、第1及び第2の正極活物質の平均二次粒子径は、それぞれ、レーザー回折法による粒度分布測定で得られたメジアン径の値である。また、第1及び第2の正極活物質の二次粒子は、例えば、一次粒子が数百個程度凝集して形成されたものである。
 第1の正極活物質の平均二次粒子径r1は、第2の正極活物質の平均二次粒子径r2よりも小さい。正極活物質中において、第2の正極活物質の表面に第1の正極活物質が付着していることが好ましい。さらには、第2の正極活物質の表面に多数の第1の正極活物質が付着することにより、第2の正極活物質が第1の正極活物質により覆われていることが好ましい。第1の正極活物質の平均二次粒子径r1の方が、第2の正極活物質の平均二次粒子径r2よりも小さいことにより、第2の正極活物質の表面全体を覆うことができ、正極活物質の表面などにリチウムイオンが拡散しやすくなると考えられる。第1の正極活物質の平均二次粒子径r1と、第2の正極活物質の平均二次粒子径r2とは、r1/r2<0.8の関係を充足することが好ましい。
 また、正極活物質中の第2の正極活物質の含有量は、10質量%以上であることが好ましく、90質量%以下であることが好ましい。正極活物質中におけるコバルト含有量を低くする観点から、正極活物質中の第2の正極活物質の含有量は、40質量%以上であることがより好ましい。非水電解質二次電池1の出力特性を改善する観点から、正極活物質中の第2の正極活物質の含有量は、50質量%以上であることがさらに好ましく、60質量%以上であることが特に好ましい。
 正極活物質中の前記第1の正極活物質の含有量は、10質量%以上であることが好ましい。正極活物質中の前記第1の正極活物質の含有量は、90質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、40質量%以下であることが特に好ましい。
 第1及び第2の正極活物質は、例えば原料として、Li化合物と、遷移金属複合水酸化物や遷移金属複合酸化物などとを組み合わせ、これらを適当な温度で焼成することにより得られる。第1及び第2の正極活物質の混合には、公知の混合方法を用いることができ、例えば、一方の粒子に他方の粒子を付着させて複合化するようして混合してもよい。Li化合物の種類は特に限定されず、例えば、水酸化リチウム、炭酸リチウム、塩化リチウム、硫酸リチウム、酢酸リチウム、これらの水和物などの少なくとも一種を用いることができる。また、上記の原料を焼成させる焼成温度は、原料となる上記の遷移金属複合水酸化物又は遷移金属複合酸化物の組成や粒子サイズ等により異なるため、一義的に定めることは困難であるが、通常500℃~1100℃程度の範囲であり、600℃~1000℃程度の範囲であることが好ましく、700℃~900℃程度の範囲であることがより好ましい。
 ところで、上述の通り、コバルトの含有量が低い正極活物質を使用した非水電解質二次電池では、十分な出力特性が得られないという問題がある。
 本発明者は、この問題を解決すべく以下のような実験1~6を行い、正極活物質中のコバルト含有量が非水電解質二次電池の容量特性と出力特性に与える影響を調べた。
 (実験1)
 Li2CO3と、共沈法によって得たNi0.5Mn0.5(OH)とを所定の割合で混合し、これらを空気中において1000℃で焼成させて、層状構造を有するLi1.06Ni0.47Mn0.472からなる正極活物質を得た。
 (実験2)
 Li2CO3と、共沈法によって得たNi0.49Co0.03Mn0.49(OH)とを所定の割合で混合し、これらを空気中において980℃で焼成させて、層状構造を有するLi1.06Ni0.46Co0.03Mn0.462からなる正極活物質を得た。
 (実験3)
 Li2CO3と、共沈法によって得たNi0.48Co0.05Mn0.48(OH)とを所定の割合で混合し、これらを空気中において960℃で焼成させて、層状構造を有するLi1.06Ni0.45Co0.05Mn0.45からなる正極活物質を得た。
 (実験4)
 Li2CO3と、共沈法によって得たNi0.45Co0.1Mn0.45(OH)とを所定の割合で混合し、これらを空気中において940℃で焼成させて、層状構造を有するLi1.06Ni0.43Co0.09Mn0.43からなる正極活物質を得た。
 (実験5)
 Li2CO3と、共沈法によって得たNi0.4Co0.2Mn0.4(OH)とを所定の割合で混合し、これらを空気中において920℃で焼成させて、層状構造を有するLi1.06Ni0.38Co0.19Mn0.38からなる正極活物質を得た。
 (実験6)
 Li2CO3と、共沈法によって得たNi0.35Co0.3Mn0.35(OH)とを所定の割合で混合し、これらを空気中において900℃で焼成させて、層状構造を有するLi1.06Ni0.33Co0.28Mn0.332からなる正極活物質を得た。
 実験1~6で得られた各正極活物質と、導電剤としてカーボンブラックと、結着剤としてポリフッ化ビニリデンを溶解させたN-メチル-2-ピロリドン溶液とを、正極活物質と導電剤と結着剤との質量比が92:5:3となるようにして混練し、正極合剤のスラリーを作製した。このスラリーをアルミニウム箔からなる正極集電体の上に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、アルミニウムの集電タブを取りつけて正極を作製した。
 次に、図2に示されるように、作用極21として上記の正極を用いた。また、負極となる対極22及び参照極23として、それぞれ金属リチウムを用いた。非水電解質24として、エチレンカーボネートとメチルエチルカーボネートとジメチルカーボネートとを3:3:4の体積比で混合させた混合溶媒にLiPFを1mol/lの濃度になるように溶解させ、さらにビニレンカーボネートを1質量%溶解させたものを用いた。これらを用いて、図2に示されるような三電極式試験用セル20を作製した。
 次に、実験1~6で得られた正極活物質を用いた各三電極式試験用セル20を、それぞれ25℃の温度条件下において、0.2mA/cmの電流密度で4.3V(vs.Li/Li)まで定電流充電を行い、4.3V(vs.Li/Li)の定電圧で電流密度が0.04mA/cmになるまで定電圧充電を行った後、0.2mA/cmの電流密度で2.5V(vs.Li/Li)まで定電流放電を行った。このときの放電容量を、各三電極式試験用セル20の定格容量とした。
 次に、各三電極式試験用セル20を、上記のようにして定格容量の50%まで充電させた時点をSOC50とし、各三電極式試験用セル20について、25℃の条件でSOC50における出力特性を測定した。正極活物質中のコバルト含有量に対する容量特性と出力特性をプロットしたグラフを図3に示す。
 図3から、実験1~6において、正極活物質中のコバルト含有量が少なくなると、容量特性は同等であるのに対し、出力特性は悪くなり、コバルト含有量が0~5質量%の領域では特に悪いことが分かった。
 これに対して、本実施形態に係る正極活物質では、コバルトの含有量が15質量%以上である第1の正極活物質と、コバルトの含有量が5質量%以下である第2の正極活物質とを含む。さらに、第1の正極活物質の平均二次粒子径r1は、第2の正極活物質の平均二次粒子径r2よりも小さい。これにより、本実施形態に係る正極活物質は、非水電解質二次電池1に高い出力特性を付与し得る。すなわち、平均二次粒子径が小さくコバルト含有量の多い第1の正極活物質と、平均二次粒子径が大きくコバルト含有量が少ない第2の正極活物質の2種類の正極活物質を混合して使用することにより、非水電解質二次電池1に高い出力特性を付与することができる。
 本実施形態に係る正極活物質では、コバルトの含有量が相対的に多く、優れた出力特性を付与できる第1の正極活物質へ優先的にリチウムイオンが挿入される。これにより、第1の正極活物質の電位が降下する。このとき、第1の正極活物質と第2の正極活物質との間に電位差が生じ、正極活物質表面などにリチウムイオンが拡散する。その結果、第2の正極活物質表面にリチウムイオンが供給される。これにより、第1及び第2の正極活物質を含む正極活物質全体での反応が速やかに進行し、出力特性が向上するものと考えられる。
 本実施形態に係る正極活物質は、例えば、ハイブリッド型電気自動車の非水電解質二次電池など、高い出力特性が要求される非水電解質二次電池用の正極活物質として好適に使用することができる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。但し、本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1)
 LiCOと、共沈法によって得たNi0.35Co0.35Mn0.3(OH)とを所定の割合で混合し、これらを空気中において900℃で焼成させて、層状構造を有するLi1.09Ni0.32Co0.32Mn0.27からなる第1の正極活物質を得た。第1の正極活物質の平均二次粒子径r1は、約3.7μmであった。
 次に、LiCOと、共沈法によって得たNi0.6Mn0.4(OH)とを所定の割合で混合し、これらを空気中において1000℃で焼成させて、層状構造を有するLi1.07Ni0.56Mn0.37からなる第2の正極活物質を得た。第2の正極活物質粒子の平均二次粒子径r2は、約8.0μmであった。
 第1の正極活物質と第2の正極活物質とを、混合割合が58:42(質量百分率)となるようにして混合し、正極活物質を作製した。
 次に、実施例1で得られた正極活物質を用いたこと以外は、上記の実験1~6と同様にして、三電極式試験用セル20を作製した。
 (実施例2)
 第1の正極活物質と、第2の正極活物質との混合割合を質量百分率で28:72としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、実施例2で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (参考例1)
 第1の正極活物質のみを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、参考例1で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (比較例1)
 第2の正極活物質のみを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、比較例1で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (実施例3)
 Li2CO3と、共沈法によって得たNi0.50Co0.20Mn0.30(OH)とを所定の割合で混合し、これらを空気中において900℃で焼成させて、層状構造を有するLi1.07Ni0.46Co0.18Mn0.282からなる第1の正極活物質を得た。第1の正極活物質の平均二次粒子径r1は、約5.6μmであった。
 実施例3で作製した第1の正極活物質と、実施例1で作製した第2の正極活物質とを質量百分率で50:50となるように混合したものを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、実施例3で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (参考例2)
 実施例3で得られた第1の正極活物質のみを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、参考例2で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (実施例4)
 Li2CO3と、共沈法によって得たNi0.46Co0.28Mn0.26(OH)とを所定の割合で混合し、これらを空気中において900℃で焼成させて、層状構造を有するLi1.08Ni0.43Co0.26Mn0.242からなる第1の正極活物質を得た。第1の正極活物質の平均二次粒子径r1は、約5.7μmであった。
 実施例4で作製した第1の正極活物質と、実施例1で作製した第2の正極活物質とを質量百分率で10:90となるように混合したものを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、実施例4で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (実施例5)
 実施例4で作製した第1の正極活物質と、実施例1で作製した第2の正極活物質とを質量百分率で40:60となるように混合したものを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、実施例5で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (参考例3)
 実施例4で得られた第1の正極活物質のみを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、参考例3で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (参考例4)
 Li2CO3と、共沈法によって得たNi0.35Co0.35Mn0.3(OH)とを所定の割合で混合し、これらを空気中において900℃で焼成させて、層状構造を有するLi1.09Ni0.32Co0.32Mn0.27からなる第1の正極活物質を得た。第1の正極活物質の平均二次粒子径r1は、約7.8μmであった。
 参考例4で得られた第1の正極活物質のみを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、参考例4で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (比較例2)
 Li2CO3と、共沈法によって得たNi0.6Mn0.4(OH)とを所定の割合で混合し、これらを空気中において1000℃で焼成させて、層状構造を有するLi1.06Ni0.56Mn0.38からなる第2の正極活物質を得た。第2の正極活物質の平均二次粒子径r2は、約4.5μmであった。
 参考例4で作製した第1の正極活物質と、比較例2で作製した第2の正極活物質とを質量百分率で58:42となるように混合したものを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、比較例2で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (比較例3)
 第1の正極活物質と、第2の正極活物質との混合割合を質量百分率で28:72としたこと以外は、比較例2と同様にして正極活物質を作製した。次に、比較例3で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (比較例4)
 比較例2で得られた第2の正極活物質のみを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、比較例4で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (比較例5)
 Li2CO3と、共沈法によって得たNi0.60Co0.20Mn0.20(OH)とを所定の割合で混合し、これらを空気中において850℃で焼成させて、層状構造を有するLi1.07Ni0.56Co0.19Mn0.18からなる第2の正極活物質を得た。第2の正極活物質の平均二次粒子径r2は、約5.7μmであった。
 実施例1で得られた第1の正極活物質と比較例5で得られた第2の正極活物質とを質量百分率で58:42となるように混合したものを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、比較例5で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (比較例6)
 第1の正極活物質と、第2の正極活物質との混合割合を質量百分率で28:72としたこと以外は、比較例5と同様にして正極活物質を作製した。次に、比較例6で得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (比較例7)
 比較例5で得られた第2正極活物質のみを正極活物質としたこと以外は、実施例1と同様にして正極活物質を作製した。次に、得られた正極活物質を用いて、実施例1と同様にして、三電極式試験用セル20を作製した。
 (出力特性の比較)
 実施例、比較例、参考例で得られた各三電極式試験用セル20の定格容量及び出力特性を、上記実験1~6と同様にして求めた。次に、第1の正極活物質と第2の正極活物質を混合せずに作製した正極活物質を使用した参考例1~4、比較例1,4,7の各三電極式試験用セル20におけるそれぞれの出力特性の測定値を用い、第1及び第2の正極活物質の混合比に応じて加重平均した25℃での計算上の出力特性を以下の式で算出した。
 計算上の出力特性=(第1の正極活物質のみの出力特性)×(第1の正極活物質の混合比)+(第2の正極活物質のみの出力特性)×(第2の正極活物質の混合比)
 得られた計算上の出力特性を基準とし、第1の正極活物質と第2の正極活物質を混合した正極活物質を用いた実施例1~5,比較例2,3,5,6の各三電極式試験用セル20における各出力特性の測定値から、以下の式により、計算上の出力特性に対する測定した出力特性の比を算出した。
 (計算上の出力特性に対する測定した出力特性の比)=(測定した出力測定)/(計算上の出力特性)
 出力特性の比較の結果を、第1及び第2の正極活物質の組成ごとに、表1~5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1、表4及び表5に示される結果から分かるように、実施例1~5の三電極式試験用セル20の出力特性は、計算上の出力特性に対する測定した出力特性の比が、それぞれ1.32,1.63,1.33,1.51,1.60となり、大幅に出力が向上していることが分かる。また、第2の正極活物質のみを用いた比較例1に対する出力特性の比が2.60,2.95,2.86,1.89,3.65となり、大幅に出力が向上している。
 実施例1~5の三電極式試験用セル20の出力特性が大幅に向上した理由の詳細は明らかではないが、次のように考えることができる。すなわち、コバルトを多く含み、出力特性に優れる第1の正極活物質へ優先的にリチウムイオンが挿入されることで第1の正極活物質の電位が降下する。このとき、第2の正極活物質との間に電位差が生じて、リチウムイオンが拡散し、第2の正極活物質表面にリチウムイオンが供給される。そして、正極活物質中での反応が速やかに進行し、出力特性が向上する。リチウムイオンの拡散は、第1の正極活物質の平均二次粒子径r1が、第2の正極活物質の平均二次粒子径r2よりも小さく、第1の正極活物質が第2の正極活物質を覆っていることによって、生じるものと考えられる。
 例えば、表2に示されるように、比較例2,3において、第1及び第2の正極活物質を混合した正極活物質を用いた三電極式試験用セル20の出力特性は、計算上の出力特性と同等の値を示した。これは、第1の正極活物質の平均二次粒子径が、第2の正極活物質の平均二次粒子径よりも大きいため、第1の正極活物質が第2の正極活物質の表面を覆うことができず、第2の正極活物質表面へのリチウムイオン拡散が起こらなかったためと考えられる。
 また、実施例2では、単体での出力特性の劣る第2の正極活物質が多く存在するにも関わらず、実施例1よりも、出力特性に優れ、計算上の出力特性に対する測定した出力特性の比も高かった。実施例4、5では、第2の正極活物質が90質量%、60質量%存在するが、計算上の出力特性に対する測定した出力特性の比は実施例1よりも高かった。これらの結果から、図4に示されるように第2の正極活物質が60質量%~90質量%存在することにより、出力特性が特異的に優れることがわかった。この理由の詳細は定かではないが、例えば次のように考えることができる。すなわち、第2の正極活物質が多く存在することにより、第2の正極活物質にリチウムイオンがより多く供給され、正極活物質中での反応が速やかに進行し、出力特性が向上したと考えられる。
 また、表3に示されるように、比較例5,6において、第1及び第2の正極活物質を混合した正極活物質を用いた三電極式試験用セル20の出力特性は、計算上の出力特性よりも劣っていた。これは、第2の正極活物質が、コバルトを遷移金属中の原子百分率で5%よりも多く含んでおり、出力特性に優れるため、第1の正極活物質へのリチウムイオンの優先的な挿入が起こらず、活物質間に電位差も生じないため、リチウムイオンの拡散が起こらなかったためと考えられる。
 次に、以下実施例6,7及び比較例8,9に係る正極活物質を用いた円筒電池を作製し、その性能を評価した。
 (実施例6)
 実施例4で作製した第1の正極活物質と、実施例1で作製した第2の正極活物質とを質量百分率で36:64となるように混合したものを正極活物質とした。上記、正極活物質と、導電剤としてカーボンブラックと、結着剤としてポリフッ化ビニリデンを溶解させたN-メチル-2-ピロリドン溶液とを、正極活物質と導電剤と結着剤との質量比が92:5:3となるようにして混練し、正極合剤のスラリーを作製した。
 上記スラリーを、集電体としてのアルミニウム箔上に塗布した後乾燥し、その後、集電体上に正極合剤が塗布されたものを圧延ローラにより圧延し、これにアルミニウムの集電タブを取り付けることにより正極を得た。
 次に、増粘剤であるCMC(カルボキシメチルセルロース)を水に溶解した溶液に、黒鉛粉末を投入し、攪拌混合した後、バインダーであるSBRを混合してスラリーを調整した。黒鉛、SBR、及びCMCの質量比は、98:1:1とした。得られたスラリーを、銅箔の両面に塗布し、150℃で2時間真空乾燥して、負極を作製した。
 イオン透過性のポリエチレン微多孔膜をセパレータとして用い、上記正極及び負極の間に介在させ、スパイラル状に巻き取り、電極体を作製した。
 この電極体を電池缶に挿入した後、非水電解液として、エチレンカーボネートとメチルエチルカーボネートとジメチルカーボーネートとをそれぞれ3:3:4の体積比で混合させた混合溶媒にLiPFを1mol/lの濃度になるように溶解させ、さらにビニレンカーボネートを1質量%溶解させた。その後、さらにLiBOB〔リチウム-ビスオキサレートボレート〕を0.1モル/リットル溶解させた上記電解液を注入し、封止して、本件実施例に係る円筒型電池を作製した。
 (実施例7)
 LiCOと、共沈法によって得たNi0.46Co0.28Mn0.26(OH)とを所定の割合で混合し、これらを空気中において880℃で焼成させて、層状構造を有するLi1.08Ni0.43Co0.26Mn0.242からなる第1の正極活物質を得た。第1の正極活物質の平均二次粒子径r1は、約5.7μmであった。
 次に、LiCOと、共沈法によって得たNi0.6Mn0.4(OH)とを所定の割合で混合し、これらを空気中において980℃で焼成させて、層状構造を有するLi1.07Ni0.56Mn0.37からなる第2の正極活物質を得た。第2の正極活物質粒子の平均二次粒子径r2は、約8.0μmであった。
 第1の正極活物質と第2の正極活物質とを、混合割合が36:64(質量百分率)となるようにして混合し、正極活物質を作製した。次に、実施例7で得られた正極活物質を用いて、実施例6と同様にして、円筒型電池を作製した。
 (比較例8)
 次に、比較例1で得られた正極活物質(すなわち第2の正極活物質のみ)を用いて、実施例6と同様にして、円筒型電池を作製した。
 (比較例9)
 実施例7で用いた第2の正極活物質のみを正極活物質として用いた以外は、比較例8と同様にして、円筒型電池を作製した。
 (参考例5)
 実施例6で得られた第1の正極活物質のみを正極活物質としたこと以外は、実施例6と同様にして正極活物質を作製した。次に、参考例5で得られた正極活物質を用いて、実施例6と同様にして、円筒型電池を作製した。
 (参考例6)
 実施例7で得られた第1の正極活物質のみを正極活物質としたこと以外は、実施例7と同様にして正極活物質を作製した。次に、参考例6で得られた正極活物質を用いて、実施例7と同様にして、円筒型電池を作製した。
 (出力特性の比較)
 上記のように円筒型電池を作製した後、25℃の条件下、電流値1200mAで4.2Vまで定電流充電を行い、4.2Vで定電圧充電を行った後に1200mAで2.5Vまで定電流放電を行った。この時の放電容量を上記、円筒型電池の定格容量とした。
 次に、上記のようにして作製した実施例6、7、比較例8、9、参考例5、6の各円筒型電池を定格容量の50%充電した後に、電池温度-30℃において、放電終止電圧を2.5Vとしたときの、10秒間放電可能な最大電流値から充電深度(SOC)50%における出力値を以下の式より求めた。
 出力値(SOC50%)=(最大電流値)×放電終止電圧(2.5V)
 次に、第1の正極活物質と第2の正極活物質を混合せずに作製した正極活物質を使用した参考例5、比較例8の各円筒型電池におけるそれぞれの出力特性の測定値を用い、第1及び第2の正極活物質の混合比に応じて加重平均したー30℃での計算上の出力特性を以下の式で算出した。
 計算上の出力特性=(第1の正極活物質のみの出力特性)×(第1の正極活物質の混合比)+(第2の正極活物質のみの出力特性)×(第2の正極活物質の混合比)
 得られた計算上の出力特性を基準とし、第1の正極活物質と第2の正極活物質を混合した正極活物質を用いた実施例6、7の各円筒型電池における各出力特性の測定値から、以下の式により、計算上の出力特性に対する測定した出力特性の比を算出した。
 (計算上の出力特性に対する測定した出力特性の比)=(測定した出力測定)/(計算上の出力特性)
 (半値幅の算出)
 次に、実施例6、7で用いた第1の正極活物質及び第2の正極活物質の2θ=64.5°±1.0°の範囲に存在するピークの半値幅FWHM110を次のように算出した。
 X線源としてCuKαを用いた粉体X線回折装置(株式会社リガク製)を用いて、上記リチウム含有遷移金属酸化物のXRDパターンを得た後、分割型擬voigt関数を用いて、上記リチウム含有遷移金属酸化物のXRDパターンの中から003、101、006、012、104、015、107、018、110、113の10本のピークを求め、それらを用いて、分割型擬voigt関数でピークフィッティングして、精度良くFWHM110(装置依存含む)を算出した。図5に018、110のピークのフィッティング前後のXRDパターンを示す。
 さらに、装置に依存する半値幅を算出するため、結晶性が高くて、それ自体の半値幅が極めて小さなNISTSRM660bLaB6を用いて、100、110、111、200、210、211、220、221、310、311の10本のピークを求め、それらを用いて分割型擬voigt関数でフィッティングした。得られた各格子面の半値幅を用いて、二次曲線で近似して、角度に対する半値幅の近似式を算出した。
 そして、該近似式における各角度での値が、装置に依存する半値幅となるため、FWHM110(装置依存含む)から装置に依存する半値幅を減算することにより、実施例6、7の第1の正極活物質及び第2の正極活物質の装置依存分を減算したFWHM110を算出した。
 実施例6、7の円筒型電池での出力特性の結果及び第1及び第2の正極活物質のFWHM110を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示される結果から分かるように、実施例6、7の円筒型電池の出力特性は、計算上の出力特性に対する測定した出力特性の比が、それぞれ1.42、1.69となり、大幅に出力が向上していることが分かる。また、第2の正極活物質のみを用いた比較例8に対する出力特性の比が3.17、3.76となり、大幅に出力が向上している。
 実施例6、7の円筒型電池の出力特性が大幅に向上した理由の詳細は明らかではないが、実施例1~5の三電極式試験用セルの場合と同様に次のように考えることができる。すなわち、コバルトを多く含み、出力特性に優れる第1の正極活物質へ優先的にリチウムイオンが挿入されることで第1の正極活物質の電位が降下する。このとき、第2の正極活物質との間に電位差が生じて、リチウムイオンが拡散し、第2の正極活物質表面にリチウムイオンが供給される。そして、正極活物質中での反応が速やかに進行し、出力特性が向上する。リチウムイオンの拡散は、第1の正極活物質の平均二次粒子径r1が、第2の正極活物質の平均二次粒子径r2よりも小さく、第1の正極活物質が第2の正極活物質を覆っていることによって、生じるものと考えられる。
 また、実施例7は、実施例6と比べると出力特性が大きく向上しているのがわかる。この理由の詳細は明らかではないが、次のように考えることができる。正極活物質のFWHM110が大きくなることで、結晶子サイズが小さくなり、Liイオンの拡散距離が短くなるために、出力特性が向上したと考えられる。この際、出力特性に優れる第1の正極活物質へ優先的にリチウムイオンが挿入すると考えられるため、第1の正極活物質のFWHM110が大きい方が好ましく、第1の正極活物質のFWHM110は、0.1°以上0.3°以下に規制することが好ましい。これは、FWHM110が0.1°以下であると、結晶子サイズが成長し、Liイオンの拡散距離が長くなり、出力特性が低下し、FWHM110が0.3°以上であると、結晶の成長が不十分となるため、リチウムの挿入、脱離が困難となり、正極容量、出力が低下するためである。また、実施例6に比べて実施例7の出力特性が向上していることから、第1の正極活物質のFWHM110の範囲として、0.2°以上0.3°以下に規制することが更に好ましい。
 また、第1の正極活物質へ優先的にリチウムイオンが挿入されることで第2の正極活物質との間に電位差が生じ、リチウムイオンが拡散し、第2の正極活物質表面にリチウムイオンが供給されるため、第2の正極活物質もリチウムイオンの拡散距離が短いほうが好ましく、第1の正極活物質と同様にFWHM110は、0.1°以上0.3°以下に規制することが好ましい。このような範囲であれば、コバルトの含有量が低い正極活物質を用いても、出力特性を向上させることができる。また、実施例6に比べて実施例7の出力特性が向上していることから、第2の正極活物質のFWHM110の範囲として、0.2°以上0.3°以下に規制することが更に好ましい。
1…非水電解質二次電池
10…電極体
11…負極
12…正極
13…セパレータ
17…電池容器
20…三電極式試験用セル
21…作用極
22…対極
23…参照極
24…非水電解質

Claims (10)

  1.  コバルトの含有量が遷移金属中の原子百分率で15%以上である第1の正極活物質と、コバルトの含有量が遷移金属中の原子百分率で5%以下である第2の正極活物質とを含み、
     前記第1の正極活物質の平均二次粒子径r1は、前記第2の正極活物質の平均二次粒子径r2よりも小さい、非水電解質二次電池の正極活物質。
  2.  前記第1の正極活物質の平均二次粒子径r1と、前記第2の正極活物質の平均二次粒子径r2とは、r1/r2<0.8の関係を充足する、請求項1に記載の非水電解質二次電池の正極活物質。
  3.  前記第2の正極活物質の含有量が、10質量%~90質量%である、請求項1または2に記載の非水電解質二次電池の正極活物質。
  4.  前記第2の正極活物質の含有量が、40質量%~90質量%である、請求項1~3のいずれか一項に記載の非水電解質二次電池の正極活物質。
  5.  前記第2の正極活物質の含有量が、60質量%~90質量%である、請求項1~4のいずれか一項に記載の非水電解質二次電池の正極活物質。
  6.  前記第1の正極活物質は、一般式(1):
     Li1+x1Nia1Mnb1Coc12+d1(1)
     [式中、x1,a1,b1,c1,d1は、x1+a1+b1+c1=1、0<x1≦0.1、0.15≦c1/(a1+b1+c1)、0.7≦a1/b1≦3.0、-0.1≦d1≦0.1の条件を満たす。]で表される化合物であり、
     前記第2の正極活物質は、一般式(2):
     Li1+x2Nia2Mnb2Coc22+d2(2)
     [式中、x2,a2,b2,c2,d2は、x2+a2+b2+c2=1、0<x2≦0.1、0≦c2/(a2+b2+c2)≦0.05、0.7≦a2/b2≦3.0、-0.1≦d2≦0.1の条件を満たす。]で表される化合物である、請求項1~5のいずれか一項に記載の非水電解質二次電池の正極活物質。
  7.  前記第2の正極活物質は、実質的にコバルトを含有しない、請求項1~6のいずれか一項に記載の非水電解質二次電池の正極活物質。
  8.  前記第1の正極活物質は、CuKα線を使用した粉末X線回折測定において、回折角2θが64.5°±1.0°の範囲に存在する110回折ピークの半値幅をFWHM110としたときに、0.1°≦FWHM110≦0.3°となっている、請求項1~7のいずれか一項に記載の非水電解質二次電池の正極活物質。
  9.  前記第2の正極活物質は、CuKα線を使用した粉末X線回折測定において、回折角2θが64.5°±1.0°の範囲に存在する110回折ピークの半値幅をFWHM110としたときに、0.1°≦FWHM110≦0.3°となっている、請求項8に記載の非水電解質二次電池の正極活物質。
  10.  請求項1~9のいずれか一項に記載の正極活物質を含む正極と、負極と、非水電解質と、セパレータとを備える、非水電解質二次電池。
PCT/JP2012/072024 2011-09-12 2012-08-30 非水電解質二次電池の正極活物質及び非水電解質二次電池 WO2013038918A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013533605A JP5991718B2 (ja) 2011-09-12 2012-08-30 非水電解質二次電池の正極活物質及び非水電解質二次電池
CN201280043469.2A CN103782423B (zh) 2011-09-12 2012-08-30 非水电解质二次电池的正极活性物质及非水电解质二次电池
US14/343,825 US9577247B2 (en) 2011-09-12 2012-08-30 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011197920 2011-09-12
JP2011-197920 2011-09-12
JP2012042653 2012-02-29
JP2012-042653 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013038918A1 true WO2013038918A1 (ja) 2013-03-21

Family

ID=47883151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072024 WO2013038918A1 (ja) 2011-09-12 2012-08-30 非水電解質二次電池の正極活物質及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US9577247B2 (ja)
JP (1) JP5991718B2 (ja)
CN (1) CN103782423B (ja)
WO (1) WO2013038918A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059471A1 (ja) * 2018-09-21 2020-03-26 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
JP2020053386A (ja) * 2018-09-21 2020-04-02 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
JP2021536098A (ja) * 2018-09-14 2021-12-23 エルジー・ケム・リミテッド リチウム二次電池用正極材の製造方法、及びこれにより製造されたリチウム二次電池用正極材
WO2022045125A1 (ja) * 2020-08-25 2022-03-03 日亜化学工業株式会社 正極活物質及び非水電解質二次電池用正極
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134259A (ko) * 2014-05-21 2015-12-01 주식회사 에너세라믹 리튬복합금속산화물 및 이를 포함하는 리튬이차전지
WO2018061815A1 (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極
US10868299B2 (en) * 2016-10-31 2020-12-15 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
CN107359334B (zh) * 2017-07-11 2020-06-19 贵州振华新材料有限公司 球形或类球形锂离子电池正极材料及锂离子电池
KR102359103B1 (ko) * 2018-02-01 2022-02-08 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162466A (ja) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd リチウム二次電池用正極活物質の製造方法
JP2003173776A (ja) * 2001-12-06 2003-06-20 Sony Corp 正極活物質およびこれを用いた二次電池
JP2003203631A (ja) * 2002-01-08 2003-07-18 Sony Corp 正極活物質及びこれを用いた非水電解質二次電池
JP2007317585A (ja) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd リチウム二次電池用正極活物質及びこれを用いたリチウム二次電池
JP2008251532A (ja) * 2007-03-05 2008-10-16 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2010086693A (ja) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2010282967A (ja) * 2009-06-05 2010-12-16 Sb Limotive Co Ltd 正極活物質、リチウム2次電池用正極、及び前記正極を含むリチウム2次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543437B2 (ja) 1995-07-24 2004-07-14 ソニー株式会社 正極活物質及びこの正極活物質を用いた非水電解質二次電池
JP2003092108A (ja) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
KR101027764B1 (ko) 2002-01-08 2011-04-07 소니 주식회사 캐소드활성물질과 그것을 이용한 비수전해질 이차전지
WO2005124898A1 (ja) * 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. リチウム二次電池用正極活物質粉末
KR101562237B1 (ko) * 2007-09-04 2015-10-21 미쓰비시 가가꾸 가부시키가이샤 리튬 천이 금속계 화합물 분체
WO2011065464A1 (ja) * 2009-11-27 2011-06-03 戸田工業株式会社 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162466A (ja) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd リチウム二次電池用正極活物質の製造方法
JP2003173776A (ja) * 2001-12-06 2003-06-20 Sony Corp 正極活物質およびこれを用いた二次電池
JP2003203631A (ja) * 2002-01-08 2003-07-18 Sony Corp 正極活物質及びこれを用いた非水電解質二次電池
JP2007317585A (ja) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd リチウム二次電池用正極活物質及びこれを用いたリチウム二次電池
JP2008251532A (ja) * 2007-03-05 2008-10-16 Toda Kogyo Corp 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2010086693A (ja) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2010282967A (ja) * 2009-06-05 2010-12-16 Sb Limotive Co Ltd 正極活物質、リチウム2次電池用正極、及び前記正極を含むリチウム2次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP2021536098A (ja) * 2018-09-14 2021-12-23 エルジー・ケム・リミテッド リチウム二次電池用正極材の製造方法、及びこれにより製造されたリチウム二次電池用正極材
JP7416436B2 (ja) 2018-09-14 2024-01-17 エルジー・ケム・リミテッド リチウム二次電池用正極材の製造方法、及びこれにより製造されたリチウム二次電池用正極材
WO2020059471A1 (ja) * 2018-09-21 2020-03-26 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
JP2020053386A (ja) * 2018-09-21 2020-04-02 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
WO2022045125A1 (ja) * 2020-08-25 2022-03-03 日亜化学工業株式会社 正極活物質及び非水電解質二次電池用正極

Also Published As

Publication number Publication date
JP5991718B2 (ja) 2016-09-14
US9577247B2 (en) 2017-02-21
CN103782423B (zh) 2016-08-24
JPWO2013038918A1 (ja) 2015-03-26
CN103782423A (zh) 2014-05-07
US20140227599A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5991718B2 (ja) 非水電解質二次電池の正極活物質及び非水電解質二次電池
JP6072688B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP5430920B2 (ja) 非水電解質二次電池
JP5128018B1 (ja) 非水電解質二次電池
JP6117117B2 (ja) 非水電解質二次電池の正極及び非水電解質二次電池
WO2014049964A1 (ja) 非水電解質二次電池及び非水電解質二次電池用正極活物質
JP6399388B2 (ja) 非水電解質二次電池
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
KR20110093610A (ko) 비수 전해질 이차 전지
JP2011070789A (ja) 非水電解質二次電池
JP5494792B2 (ja) 電極活物質及び電極活物質の製造方法
JP2008300180A (ja) 非水電解質二次電池
JP6105556B2 (ja) 非水電解質二次電池
WO2014155988A1 (ja) 非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池
WO2011016553A1 (ja) 非水電解質二次電池
WO2011117992A1 (ja) 電池用活物質および電池
JP2014146473A (ja) 非水電解質二次電池、及び非水電解質二次電池用正極活物質
JP2014011023A (ja) 非水電解質二次電池
JP2009218112A (ja) 非水電解質二次電池及びその製造方法
WO2013035527A1 (ja) 非水電解質二次電池
WO2013061922A1 (ja) 非水電解質二次電池の正極活物質、その製造方法、及び非水電解質二次電池
JP7142301B2 (ja) 正極活物質およびそれを備えた電池
WO2013129376A1 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極、非水電解質二次電池、及び非水電解質二次電池用活物質の製造方法
JP2007087841A (ja) 非水電解質二次電池
WO2011125410A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533605

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14343825

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831635

Country of ref document: EP

Kind code of ref document: A1