WO2011125410A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2011125410A1
WO2011125410A1 PCT/JP2011/055657 JP2011055657W WO2011125410A1 WO 2011125410 A1 WO2011125410 A1 WO 2011125410A1 JP 2011055657 W JP2011055657 W JP 2011055657W WO 2011125410 A1 WO2011125410 A1 WO 2011125410A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
active material
lithium
Prior art date
Application number
PCT/JP2011/055657
Other languages
English (en)
French (fr)
Inventor
章弘 鈴木
史治 新名
晋吾 戸出
吉田 智一
喜田 佳典
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201180016878.9A priority Critical patent/CN102834954B/zh
Priority to US13/637,682 priority patent/US20130017448A1/en
Priority to JP2012509363A priority patent/JP5666561B2/ja
Priority to KR1020127025597A priority patent/KR20130042471A/ko
Priority to EP11765312A priority patent/EP2555283A1/en
Publication of WO2011125410A1 publication Critical patent/WO2011125410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent.
  • a lithium-containing transition metal composite oxide having a layered structure containing a large amount of nickel as a transition metal is used as a substance, the lithium-containing transition metal composite oxide is prevented from being deteriorated by exposure to the atmosphere, and the atmosphere It is characterized in that the output characteristics after exposure, in particular, the output characteristics at low temperatures are improved.
  • nickel-hydrogen storage batteries are widely used as power sources for such electric vehicles.
  • nonaqueous electrolyte secondary batteries as power sources with higher capacity and higher output is being studied. .
  • a lithium-containing transition metal composite oxide mainly composed of cobalt such as lithium cobalt oxide (LiCoO 2 ) is mainly used as the positive electrode active material of the positive electrode. It has been.
  • cobalt used in the above positive electrode active material is a scarce resource, and there are problems such as high cost and difficulty in stable supply.
  • it is used as a power source for hybrid electric vehicles and the like.
  • a large amount of cobalt is required, and the cost as a power source becomes very high.
  • lithium nickelate (LiNiO 2 ) having a layered structure is expected as a material capable of obtaining a large discharge capacity, but is inferior in thermal stability at a high temperature, increases in overvoltage, and is exposed to the atmosphere. As a result, the discharge capacity and output are reduced, which makes it difficult to handle in an atmospheric environment.
  • a lithium-containing transition metal composite oxide having a layered structure in which the main component of the transition metal is composed of two elements of nickel and manganese as a positive electrode active material that is low in cost and excellent in thermal stability. Is attracting attention.
  • the lithium-containing transition metal composite oxide having a layered structure in which the main component of the transition metal is composed of two elements of nickel and manganese is remarkably inferior to lithium cobaltate in high rate charge / discharge characteristics, and the atmosphere. There is a problem that handling in the environment is difficult.
  • Patent Document 1 proposes a single-phase cathode material in which a part of the nickel and manganese is substituted with cobalt in a lithium-containing transition metal composite oxide having a layered structure containing at least nickel and manganese.
  • Patent Document 2 a surface treatment layer with a coupling agent is provided on the surface of the positive electrode mixture layer.
  • Patent Document 2 when a surface treatment layer with a coupling agent is provided on the surface of the positive electrode mixture layer, the surface treatment layer inhibits lithium ions from entering and exiting the positive electrode, resulting in a large output characteristic. There is a problem of lowering.
  • the electroconductive coating layer using a carbon material etc. is formed in the surface of the primary particle of a positive electrode active material, the volume change of the positive electrode active material layer by charging / discharging is suppressed, and positive electrode active material particle It has been proposed to suppress the isolation from the conductive network in the positive electrode active material layer, and to increase the capacity and life of the nonaqueous electrolyte secondary battery.
  • Patent Document 3 even when a conductive coating layer using a carbon material or the like is formed on the surface of the primary particles of the positive electrode active material, the entry and exit of lithium ions into the positive electrode active material is inhibited. However, there is a problem that the output characteristics are greatly deteriorated.
  • the present invention solves the above problems in a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent.
  • the problem is to be solved.
  • the lithium-containing transition metal composite oxide when a lithium-containing transition metal composite oxide having a layered structure containing a large amount of nickel as a transition metal is used as the positive electrode active material, the lithium-containing transition metal composite oxide is exposed to the atmosphere. It is an object of the present invention to prevent the deterioration of the output characteristics after exposure to the atmosphere, and in particular, to prevent the output characteristics at low temperatures from deteriorating.
  • the present invention includes a positive electrode in which a positive electrode mixture layer including a mixture of a positive electrode active material and a conductive carbon material is formed on the surface, and a negative electrode active material.
  • a non-aqueous electrolyte secondary battery including a negative electrode and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent
  • a general formula Li a Ni x M (1-x) O 2 In the formula, M is one or more elements and satisfies the conditions of 0 ⁇ a ⁇ 1.2 and 0.4 ⁇ x ⁇ 1.0.
  • the ratio of carbon atoms to all atoms on the surface of the positive electrode was 80% or more.
  • the ratio of carbon atoms to all atoms on the surface of the positive electrode is a value measured from the surface of the positive electrode using an energy dispersive X-ray fluorescence spectrometer (EDX).
  • EDX energy dispersive X-ray fluorescence spectrometer
  • the lithium-containing transition metal composite oxide used for the positive electrode active material is one having a nickel Ni molar ratio x of 0.4 or more in order to increase the charge / discharge capacity of the positive electrode active material. is there.
  • the lithium-containing transition metal composite oxide having a large Ni ratio is used as the positive electrode active material, the positive electrode active material tends to absorb moisture and deteriorate when exposed to the atmosphere as described above.
  • the above M is not particularly limited as long as it can constitute a lithium-containing transition metal composite oxide having a layered structure.
  • Al, Mn, Cu, Mg, Ba, Ti, Zr, and Nb can be used.
  • the ratio of carbon atoms to all atoms is 80% or more.
  • the coupling agent provided on the surface of the positive electrode mixture layer as in the prior art.
  • the surface treatment layer prevents the lithium ions from entering and exiting the positive electrode, and the conductive coating layer formed on the surface of the primary particles of the positive electrode active material inhibits the lithium ions from entering and leaving the positive electrode active material.
  • the lithium ions enter and exit the positive electrode appropriately.
  • the carbon material the smaller the particle size, the lighter the carbon material becomes and the more easily appears on the surface of the positive electrode mixture layer, and the ratio of carbon atoms to all atoms on the surface of the positive electrode increases.
  • the ratio of carbon atoms to all atoms on the surface of the positive electrode can be easily set to 80% or more.
  • the proportion of carbon atoms increases from the surface of the positive electrode to a certain depth. It is preferable. For this reason, it is preferable that the ratio of the carbon atom with respect to all the atoms in the area
  • disconnected the positive electrode in the thickness direction of the positive mix layer is an energy dispersive X-ray fluorescence spectrometer (EDX). It is the value measured using.
  • the above positive electrode active material and other positive electrode active materials can be mixed and used.
  • the other positive electrode active material to be mixed is not particularly limited as long as it is a compound that can reversibly insert and desorb lithium.
  • lithium can be inserted and desorbed while maintaining a stable crystal structure. It is preferable to use a layered structure, a spinel structure, or an olivine structure.
  • the negative electrode active material used for the negative electrode is not particularly limited as long as it can reversibly occlude and release lithium.
  • a carbon material or an alloy with lithium is formed.
  • a metal or alloy material, a metal oxide, or the like can be used.
  • a carbon material for the negative electrode active material For example, natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, hard carbon Fullerenes, carbon nanotubes, and the like can be used.
  • a carbon material obtained by coating a graphite material with low crystalline carbon is preferable to use.
  • nonaqueous solvent used in the nonaqueous electrolyte a known nonaqueous solvent that has been conventionally used in nonaqueous electrolyte secondary batteries can be used,
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate
  • chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate can be used.
  • a mixed solvent of a cyclic carbonate and a chain carbonate as a non-aqueous solvent having a low viscosity, a low melting point and a high lithium ion conductivity, and the volume ratio of the cyclic carbonate and the chain carbonate in the mixed solvent is A range of 2: 8 to 5: 5 is preferred.
  • an ionic liquid can also be used as the non-aqueous solvent for the non-aqueous electrolyte.
  • the cation species and the anion species are not particularly limited, but low viscosity, electrochemical stability, hydrophobicity
  • a combination using a pyridinium cation, an imidazolium cation, or a quaternary ammonium cation as the cation and a fluorine-containing imide anion as the anion is particularly preferable.
  • a solute used for the non-aqueous electrolyte a known lithium salt that is conventionally used in a non-aqueous electrolyte secondary battery can be used.
  • a lithium salt a lithium salt containing one or more elements among P, B, F, O, S, N, and Cl can be used.
  • LiPF 6 LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), Lithium salts such as LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 and mixtures thereof can be used.
  • LiPF 6 is preferably used in order to enhance the high rate charge / discharge characteristics and durability of the nonaqueous electrolyte secondary battery.
  • the separator interposed between the positive electrode and the negative electrode prevents a short circuit due to contact between the positive electrode and the negative electrode and impregnates the non-aqueous electrolyte
  • the material is not particularly limited as long as the material can obtain ion conductivity.
  • a polypropylene or polyethylene separator, a polypropylene-polyethylene multilayer separator, or the like can be used.
  • the general formula Li a Ni x M (1-x) O 2 (wherein M is one or more elements and 0 ⁇ a ⁇ 1 .2., A condition in which 0.4 ⁇ x ⁇ 1.0 is satisfied.)
  • the ratio of carbon atoms to all atoms on the surface of the positive electrode is 80% or more, so that the positive electrode active material comprising the above lithium-containing transition metal composite oxide is exposed to the atmosphere. As a result, it is possible to prevent the lithium ions from entering and exiting from the positive electrode.
  • the output characteristics after exposure to the atmosphere are prevented from being deteriorated, and excellent output characteristics can be obtained even at low temperatures.
  • nonaqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and in the nonaqueous electrolyte secondary battery according to this example, the output characteristics at low temperature decreased after exposure to the atmosphere. It will be clarified by giving a comparative example that this is suppressed.
  • the nonaqueous electrolyte secondary battery of the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof.
  • Example 1 in preparing the positive electrode active material composed of the lithium-containing transition metal composite oxide represented by the above general formula, nickel sulfate, cobalt sulfate, and manganese sulfate were used. An aqueous solution containing ions and manganese ions was prepared, and the molar ratio of nickel, cobalt, and manganese in the aqueous solution was adjusted to 5: 2: 3.
  • the temperature of the aqueous solution was set to 50 ° C., and an aqueous sodium hydroxide solution was added dropwise to the aqueous solution to adjust the pH of the aqueous solution to 9 to 12 to obtain a precipitate containing nickel, cobalt, and manganese.
  • the precipitate is filtered and washed with water, and then the precipitate is heat-treated at 300 ° C. in an air stream containing oxygen to obtain a composite oxide of nickel, cobalt, and manganese (Ni 0.5 Co 0.2 was obtained Mn 0.3) 3 O 4.
  • lithium carbonate is added to the composite oxide of nickel, cobalt, and manganese so that the molar ratio with respect to the total sum of nickel, cobalt, and manganese is 1.15. Firing was performed at 980 ° C. for 15 hours.
  • the fired product was pulverized and sieved to obtain a positive electrode active material composed of Li 1.15 Ni 0.5 Co 0.2 Mn 0.3 O 2 .
  • the average particle diameter of this positive electrode active material was about 6 ⁇ m.
  • the above positive electrode active material Li 1.15 Ni 0.5 Co 0.2 Mn 0.3 O 2 , furnace black as a conductive agent having an average particle size of 230 nm, and polyvinylidene fluoride as a binder are dissolved.
  • the prepared N-methyl-2-pyrrolidone solution was adjusted so that the mass ratio of the positive electrode active material, the conductive agent and the binder was 92: 5: 3, and mixed to obtain a slurry of the positive electrode mixture was made.
  • this slurry was applied onto a positive electrode current collector made of aluminum foil at a coating speed of 1.0 m / min, and this was dried under drying conditions of a drying temperature of 90 ° C. and an air volume of 5 m / sec. After rolling with a rolling roller, an aluminum current collecting tab was attached to produce a positive electrode.
  • the ratio of carbon atoms to the total atoms on the surface of the positive electrode (atomic concentration) is It was 83%.
  • the atomic concentration of carbon atoms calculated from the mass ratio of the positive electrode active material, the conductive agent, and the binder is about 42%, and the atomic concentration of carbon atoms on the surface of the positive electrode is high. I understand.
  • the positive electrode was cut in the thickness direction of the positive electrode mixture layer, and the cross section was measured by the energy dispersive X-ray fluorescence analyzer.
  • the atomic concentration of carbon atoms relative to all atoms in the region is 54%
  • the atomic concentration of carbon atoms relative to all atoms in the region from the surface of the positive electrode to 30% to 60% in the thickness direction of the positive electrode mixture layer is 48%.
  • the atomic number concentration of carbon atoms decreased as the depth increased from the surface of the positive electrode in the thickness direction of the positive electrode mixture layer.
  • the positive electrode produced as described above is used as the working electrode 11, while metallic lithium is used for the counter electrode 12 and the reference electrode 13 serving as the negative electrode, and ethylene is used as the non-aqueous electrolyte 14.
  • LiPF 6 was dissolved to a concentration of 1 mol / l in a mixed solvent in which carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 3: 3: 4, and 1% by mass of vinylene carbonate was further dissolved. Using this, a three-electrode test cell of Example 1 was produced.
  • the positive electrode produced as described above was kept in a constant temperature and humidity chamber at a temperature of 30 ° C. and a humidity of 60% for 5 days to be exposed to the atmosphere, and the positive electrode after exposure to the atmosphere was used as the working electrode 11 as described above.
  • a three-electrode test cell after exposure to the atmosphere was obtained.
  • Comparative Example 1 a positive electrode mixture slurry was prepared by using vapor grown carbon fiber (VGCF) instead of the above furnace black as the conductive agent in the production of the positive electrode in Example 1, and this slurry was used as the positive electrode.
  • the coating speed applied on the current collector was changed to 0.5 m / min, and the drying conditions for drying this were changed to a drying temperature of 120 ° C. and an air volume of 10 m / sec.
  • a positive electrode was produced in the same manner as in 1. Then, using the positive electrode produced in this way as the working electrode 11, a three-electrode test cell of Comparative Example 1 was produced in the same manner as in Example 1 above.
  • the ratio of carbon atoms to the total atoms on the surface of the positive electrode (atomic concentration) was 74%.
  • the surface from the positive electrode to the thickness direction of the positive electrode mixture layer is 30%.
  • the atomic concentration of carbon atoms with respect to all atoms in the region is 32%, and the atomic concentration of carbon atoms with respect to all atoms in the region from the surface of the positive electrode to 30% to 60% in the thickness direction of the positive electrode mixture layer is 60%.
  • the atomic number concentration of carbon atoms increased from the surface of the positive electrode in the thickness direction of the positive electrode mixture layer.
  • Example 1 the positive electrode produced as described above was kept in a constant temperature and humidity chamber at a temperature of 30 ° C. and a humidity of 60% for 5 days to be exposed to the atmosphere. Using the positive electrode thus exposed to the atmosphere as the working electrode 11, a three-electrode test cell after exposure to the atmosphere was produced.
  • Comparative Example 2 In Comparative Example 2, in the production of the positive electrode in Example 1, the same slurry as in Example 1 was applied onto the positive electrode current collector made of aluminum foil at a coating speed of 2.0 m / min, and this was dried at a drying temperature. A positive electrode was produced in the same manner as in Example 1 except that drying was performed under the drying conditions of 120 ° C. and an air volume of 8 m / sec. Then, using the positive electrode produced in this way as the working electrode 11, a three-electrode test cell of Comparative Example 1 was produced in the same manner as in Example 1 above.
  • Example 2 the positive electrode produced as described above was kept in a constant temperature and humidity chamber at a temperature of 30 ° C. and a humidity of 60% for 5 days to be exposed to the atmosphere. Using the positive electrode thus exposed to the atmosphere as the working electrode 11, a three-electrode test cell after exposure to the atmosphere was produced.
  • each of the above three-electrode test cells is charged to 50% of the rated capacity, that is, when the depth of charge (SOC) reaches 50%
  • each of the three-electrode test cells is placed in a low temperature environment of ⁇ 30 ° C., respectively.
  • the cell voltage after 10 seconds in each case was plotted against the current value, the current value (Ip value) at the cut voltage was determined, and the output of each three-electrode test cell in a low temperature environment of ⁇ 30 ° C. was calculated.
  • a mixture of a positive electrode active material composed of a lithium-containing transition metal composite oxide having a layered structure containing a large amount of Ni represented by the above general formula and a conductive carbon material In the case of using a positive electrode in which a positive electrode material mixture layer containing a positive electrode material layer is used, the three-electrode test cell of Example 1 in which the number concentration of carbon atoms with respect to all atoms on the positive electrode surface is 80% or more is the surface of the positive electrode.
  • the furnace black used as the conductive carbon material in Example 1 and Comparative Example 2 has an average particle size of 230 nm, and the average particle size compared to the vapor growth carbon fiber (VGCF) used in Comparative Example 1. Is small, and it is easy to increase the atomic concentration of carbon atoms with respect to all atoms on the surface of the positive electrode.
  • VGCF vapor growth carbon fiber
  • Example 1 in which the number concentration of carbon atoms with respect to all atoms on the surface of the positive electrode is higher than that in Comparative Example 2 is exposed to the atmosphere.
  • the output drop under the low temperature environment was greatly reduced.
  • increasing the number concentration of carbon atoms with respect to all atoms on the surface of the positive electrode can improve the output characteristics in a low-temperature environment after exposure to the atmosphere. I understand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 一般式LiNi(1-x)2(式中、Mは1種類以上の元素であり、0<a≦1.2、0.4≦x≦1.0の条件を満たす。)で表される層状構造を有するリチウム含有遷移金属複合酸化物からなる正極活物質と導電性の炭素材料とが混合されたものを含む正極合剤層が表面に形成された正極11を用いた非水電解質二次電池において、正極の表面における全原子に対する炭素原子の割合が80%以上である。

Description

非水電解質二次電池
 本発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池に係り、特に、正極活物質に、遷移金属としてニッケルを多く含む層状構造を有するリチウム含有遷移金属複合酸化物を用いた場合において、このリチウム含有遷移金属複合酸化物が大気に晒されることによって劣化するのを抑制し、大気曝露後における出力特性、特に低温での出力特性が低下するのを改善した点に特徴を有するものである。
 近年、携帯電話、ノートパソコン、PDA等のモバイル機器の小型化・軽量化が著しく進行しており、また多機能化に伴って消費電力も増加しており、これらの電源として使用される非水電解質二次電池においても、軽量化及び高容量化の要望が高まっている。
 また、近年においては、車両からの排ガスによる環境問題を解決するため、自動車のガソリンエンジンと電気モーターを併用したハイブリッド型電気自動車の開発が進められている。
 そして、このような電気自動車の電源としては、一般にニッケル・水素蓄電池が広く用いられているが、より高容量かつ高出力な電源として、非水電解質二次電池を利用することが検討されている。
 ここで、上記のような非水電解質二次電池においては、その正極の正極活物質として、コバルト酸リチウム(LiCoO2)等のコバルトを主成分とするリチウム含有遷移金属複合酸化物が主に用いられている。
 しかし、上記の正極活物質に使用されるコバルトは稀少な資源であり、コストが高くつくと共に、安定した供給が困難になる等の問題があり、特に、ハイブリッド型電気自動車等の電源として使用する場合には、多くの量のコバルトが必要になって、電源としてのコストが非常に高くなるという問題がある。
 このため、近年においては、安価で安定した供給が行える正極活物質として、コバルトに代えてニッケルを主原料とする正極活物質の検討が行われている。
 例えば、層状構造を有するニッケル酸リチウム(LiNiO2)は、大きな放電容量が得られる材料として期待されているが、高温での熱安定性に劣ると共に、過電圧が大きくなり、また、大気に晒されることにより劣化して、放電容量や出力が減少し、大気環境下での取り扱いが難しいという問題もある。
 そして、近年においては、コストが低く、かつ熱安定性に優れた正極活物質として、遷移金属の主成分がニッケルとマンガンとの2元素から構成されて層状構造を有するリチウム含有遷移金属複合酸化物が注目されている。
 しかし、遷移金属の主成分がニッケルとマンガンとの2元素から構成されて層状構造を有するリチウム含有遷移金属複合酸化物は、コバルト酸リチウムに比べて、高率充放電特性が著しく劣り、かつ大気環境下での取り扱いも難しいという問題がある。
 そして、特許文献1においては、少なくともニッケル及びマンガンを含有する層状構造を有するリチウム含有遷移金属複合酸化物において、上記のニッケル及びマンガンの一部をコバルトで置換した単相カソード材料が提案されている。
 しかし、この特許文献1に示される単相カソード材料の場合でも、ニッケルの含有量の多い領域では、大気に晒されると放電容量や出力が低下するという問題がある。
 また、このように大気環境下での取り扱いが難しいニッケル含有量の多いリチウム含有遷移金属酸化物において、特許文献2においては、正極合剤層の表面にカップリング剤による表面処理層を設け、これにより正極合剤層表面の耐吸湿性を高めて、吸湿による正極合剤層表面の変質を抑制し、サイクル特性を改善すると共に、電池厚みの増加を抑制することが提案されている。
 しかし、この特許文献2に示されるように、正極合剤層の表面にカップリング剤による表面処理層を設けた場合、この表面処理層により正極におけるリチウムイオンの出入りが阻害され、出力特性が大きく低下するという問題がある。
 また、特許文献3においては、正極活物質の一次粒子の表面に炭素材料等を用いた導電性被覆層を形成し、充放電による正極活物質層の体積変化を抑制して、正極活物質粒子が正極活物質層内の導電ネットワークから孤立するのを抑制し、非水電解質二次電池の高容量化及び長寿命化を図ることが提案されている。
 しかし、この特許文献3に示されるように、正極活物質の一次粒子の表面に炭素材料等を用いた導電性被覆層を形成した場合においても、この正極活物質へのリチウムイオンの出入りが阻害され、出力特性が大きく低下するという問題がある。
特許第3571671号公報 特開2008-235090号公報 特開2008-270175号公報
 本発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池における上記のような問題を解決することを課題とするものである。
 すなわち、本発明においては、正極活物質に、遷移金属としてニッケルを多く含む層状構造を有するリチウム含有遷移金属複合酸化物を用いた場合において、このリチウム含有遷移金属複合酸化物が大気に晒されることによって劣化するのを抑制し、大気曝露後における出力特性、特に低温での出力特性が低下するのを防止することを課題とするものである。
 本発明においては、上記のような課題を解決するため、正極活物質と導電性の炭素材料とが混合されたものを含む正極合剤層が表面に形成された正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、上記の正極活物質として、一般式LiNi(1-x)2(式中、Mは1種類以上の元素であり、0<a≦1.2、0.4≦x≦1.0の条件を満たす。)で表される層状構造を有するリチウム含有遷移金属複合酸化物を用い、上記の正極の表面における全原子に対する炭素原子の割合が80%以上であるようにした。
 ここで、正極の表面における全原子に対する炭素原子の割合は、正極の表面からエネルギー分散型蛍光X線分析装置(EDX)を用いて測定した値である。
 また、正極活物質に用いる上記のリチウム含有遷移金属複合酸化物として、ニッケルNiのモル比xが0.4以上のものを用いるようにしたのは、正極活物質における充放電容量を高めるためである。なお、このようにNiの割合が大きいリチウム含有遷移金属複合酸化物を正極活物質に用いた場合、前記のように大気に晒されることにより、この正極活物質が吸湿して劣化しやすくなる。
 また、上記の一般式に示されるリチウム含有遷移金属複合酸化物において、上記のMは特に限定されず、層状構造を有するリチウム含有遷移金属複合酸化物を構成できるものであればよく、例えば、Co,Al,Mn,Cu,Mg,Ba,Ti,Zr,Nbから選択される少なくとも1つの元素を用いることができ、特に、Co,Al,Mnから選択される少なくとも1つの元素を用いることが好ましい。
 そして、上記のリチウム含有遷移金属複合酸化物と導電性の炭素材料とが混合されたものを含む正極合剤層が形成された正極の表面において、全原子に対する炭素原子の割合が80%以上になるようにすると、Niの割合が大きい上記のリチウム含有遷移金属複合酸化物からなる正極活物質が大気に晒されて劣化するのが抑制される。
 また、本発明においては、上記のリチウム含有遷移金属複合酸化物と導電性の炭素材料とを混合させているだけであるため、従来のように、正極合剤層の表面に設けたカップリング剤による表面処理層によって正極におけるリチウムイオンの出入りが阻害されたり、また正極活物質の一次粒子の表面に形成された導電性被覆層によって正極活物質へのリチウムイオンの出入りが阻害されたりするということがなく、正極におけるリチウムイオンの出入りが適切に行われるようになる。
 ここで、上記の炭素材料としては、その粒径が小さくなるほど、この炭素材料が軽くなって正極合剤層の表面に出現しやすくなり、正極の表面における全原子に対する炭素原子の割合が多くなって、正極の表面における全原子に対する炭素原子の割合を80%以上にすることが容易に行えるようになる。このため、上記の炭素材料としては、平均粒径が230nm以下のものを用いることが好ましい。
 また、上記のリチウム含有遷移金属複合酸化物からなる正極活物質が大気に晒されて劣化するのをより抑制するためには、上記の正極の表面からある程度の深さまで炭素原子の割合が多くなっていることが好ましい。このため、正極の表面から正極合剤層の厚み方向30%までの領域における全原子に対する炭素原子の割合が50%以上であることが好ましい。なお、正極合剤層の厚み方向30%までの領域における全原子に対する炭素原子の割合は、正極を正極合剤層の厚み方向に切断した断面を、エネルギー分散型蛍光X線分析装置(EDX)を用いて測定した値である。
 また、本発明の非水電解質二次電池においては、上記の正極活物質と他の正極活物質とを混合して使用することも可能である。ここで、混合させる他の正極活物質は、可逆的にリチウムを挿入・脱離可能な化合物であれば特に限定されず、例えば、安定した結晶構造を維持したままリチウムの挿入脱離が可能である層状構造や、スピネル型構造や、オリビン型構造を有するものを用いることが好ましい。
 また、本発明の非水電解質二次電池において、その負極に用いる負極活物質は、リチウムを可逆的に吸蔵・放出できるものでれば特に限定されず、例えば、炭素材料や、リチウムと合金化する金属或いは合金材料や、金属酸化物等を用いることができる。なお、材料コストの観点からは、負極活物質に炭素材料を用いることが好ましく、例えば、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブ等を用いることができる。特に、高率充放電特性を向上させる観点からは、黒鉛材料を低結晶性炭素で被覆した炭素材料を用いることが好ましい。
 また、本発明の非水電解質二次電池において、非水電解液に用いる非水系溶媒としては、従来から非水電解質二次電池において一般に使用されている公知の非水系溶媒を用いることができ、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、低粘度、低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましく、この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比を2:8~5:5の範囲にすることが好ましい。
 また、非水電解液の非水系溶媒としてイオン性液体を用いることもでき、この場合、カチオン種、アニオン種については特に限定されるものではないが、低粘度、電気化学的安定性、疎水性の観点から、カチオンとしては、ピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンを、アニオンとしては、フッ素含有イミド系アニオンを用いた組合せが特に好ましい。
 また、上記の非水電解液に用いる溶質としても、従来から非水電解質二次電池において一般に使用されている公知のリチウム塩を用いることができる。そして、このようなリチウム塩としては、P、B、F、O、S、N、Clの中の一種類以上の元素を含むリチウム塩を用いることができ、具体的には、LiPF6、LiBF4、LiCF3SO3、LiN(FSO22、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(C25SO23、LiAsF6、LiClO4等のリチウム塩及びこれらの混合物を用いることができる。特に、非水電解質二次電池における高率充放電特性や耐久性を高めるためには、LiPF6を用いることが好ましい。
 また、本発明の非水電解質二次電池において、上記の正極と負極との間に介在させるセパレータとしては、正極と負極との接触による短絡を防ぎ、かつ非水電解液を含浸して、リチウムイオン伝導性が得られる材料であれば特に限定されるものではなく、例えば、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン-ポリエチレンの多層セパレータ等を用いることができる。
 本発明の非水電解質二次電池においては、正極の表面に、一般式LiNi(1-x)2(式中、Mは1種類以上の元素であり、0<a≦1.2、0.4≦x≦1.0の条件を満たす。)で表される層状構造を有するリチウム含有遷移金属複合酸化物からなる正極活物質と導電性の炭素材料とが混合されたものを含む正極合剤層を形成し、この正極の表面における全原子に対する炭素原子の割合が80%以上になるようにしたため、上記のリチウム含有遷移金属複合酸化物からなる正極活物質が大気に晒されて劣化するのが抑制されると共に、正極におけるリチウムイオンの出入りが適切に行われるようになる。
 この結果、本発明の非水電解質二次電池においては、大気曝露後における出力特性が低下するのが防止され、特に低温でも優れた出力特性が得られるようになる。
本発明の実施例及び比較例において作製した正極を作用極に用いた三電極式試験セルの概略説明図である。
 以下、この発明に係る非水電解質二次電池について実施例を挙げて具体的に説明すると共に、この実施例における非水電解質二次電池においては、大気曝露後において、低温での出力特性が低下するのが抑制されることを、比較例を挙げて明らかにする。なお、本発明の非水電解質二次電池は下記の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
 (実施例1)
 実施例1においては、前記の一般式に示すリチウム含有遷移金属複合酸化物からなる正極活物質を作製するにあたり、硫酸ニッケル、硫酸コバルト、硫酸マンガンを用いて、反応槽内に、ニッケルイオン、コバルトイオン、マンガンイオンを含有する水溶液を準備し、この水溶液中のニッケルとコバルトとマンガンとが5:2:3のモル比になるように調整した。
 次いで、この水溶液の温度を50℃にし、この水溶液に水酸化ナトリウム水溶液を滴下し、水溶液のpHが9~12になるように調整して、ニッケルとコバルトとマンガンを含む沈殿物を得た。そして、この沈殿物をろ過し、水洗した後、この沈殿物を、酸素を含有する気流中において300℃で熱処理し、ニッケルとコバルトとマンガンとの複合酸化物(Ni0.5Co0.2Mn0.3を得た。
 そして、このニッケルとコバルトとマンガンとの複合酸化物に対して、炭酸リチウムをニッケルとコバルトとマンガンのモル総和に対するモル比が1.15となるように加え、これを混合した後、大気中において980℃で15時間焼成した。
 次いで、この焼成物を粉砕し、篩にかけて、Li1.15Ni0.5Co0.2Mn0.3からなる正極活物質を得た。なお、この正極活物質の平均粒径は約6μmであった。
 そして、上記の正極活物質Li1.15Ni0.5Co0.2Mn0.3と、平均粒径が230nmである導電剤のファーネスブラックと、結着剤のポリフッ化ビニリデンを溶解させたN-メチル-2-ピロリドン溶液とを、正極活物質と導電剤と結着剤との質量比が92:5:3となるように調整し、これを混合させて正極合剤のスラリーを作製した。
 次いで、このスラリーをアルミニウム箔からなる正極集電体の上に1.0m/分の塗布速度で塗布し、これを乾燥温度90℃、風量5m/秒の乾燥条件で乾燥させた後、これを圧延ローラーにより圧延し、その後、アルミニウムの集電タブを取りつけて正極を作製した。
 ここで、このように作製した正極の表面を、エネルギー分散型蛍光X線分析装置(JEOL DATUM LTD.製)によって測定した結果、正極の表面における全原子に対する炭素原子の割合(原子数濃度)が83%になっていた。なお、上記の正極活物質と導電剤と結着剤の質量比から計算される炭素原子の原子数濃度は42%程度であり、正極の表面における炭素原子の原子数濃度が高くなっていることが分かる。
 また、上記の正極を正極合剤層の厚み方向に切断させて、その断面を上記のエネルギー分散型蛍光X線分析装置によって測定した結果、正極の表面から正極合剤層の厚み方向30%までの領域における全原子に対する炭素原子の原子数濃度は54%であり、また正極の表面から正極合剤層の厚み方向30%から60%までの領域における全原子に対する炭素原子の原子数濃度は48%であり、正極の表面から正極合剤層の厚み方向に深くなるにつれて炭素原子の原子数濃度が減少していた。
 そして、図1に示すように、上記のようにして作製した正極を作用極11として用いる一方、負極となる対極12及び参照極13にそれぞれ金属リチウムを用い、また非水電解液14として、エチレンカーボネートとメチルエチルカーボネートとジメチルカーボネートとを3:3:4の体積比で混合させた混合溶媒にLiPF6を1mol/lの濃度になるように溶解させ、さらにビニレンカーボネートを1質量%溶解させたものを用いて、実施例1の三電極式試験セルを作製した。
 また、上記のようにして作製した正極を、恒温恒湿槽内において温度30℃、湿度60%で5日間保持させて大気曝露させ、大気曝露後の正極を作用極11に用い、上記のようにして大気曝露後の三電極式試験セルとした。
 (比較例1)
 比較例1においては、実施例1における正極の作製において、導電剤として、上記のファーネスブラックに代えて気相成長炭素繊維(VGCF)を用いて正極合剤のスラリーを作製し、このスラリーを正極集電体の上に塗布する塗布速度を0.5m/分に変更し、さらにこれを乾燥させる乾燥条件を、乾燥温度120℃、風量10m/秒に変更させ、それ以外は、上記の実施例1の場合と同様にして正極を作製した。そして、このように作製した正極を作用極11に用い、上記の実施例1と同様にして、比較例1の三電極式試験セルを作製した。
 また、このように作製した正極の表面を、実施例1の場合と同様に、エネルギー分散型蛍光X線分析装置によって測定した結果、正極の表面における全原子に対する炭素原子の割合(原子数濃度)が74%になっていた。また、上記の正極を正極合剤層の厚み方向に切断させた断面を、上記のエネルギー分散型蛍光X線分析装置によって測定した結果、正極の表面から正極合剤層の厚み方向30%までの領域における全原子に対する炭素原子の原子数濃度は32%であり、また正極の表面から正極合剤層の厚み方向30%から60%までの領域における全原子に対する炭素原子の原子数濃度は60%であり、正極の表面から正極合剤層の厚み方向に深くなるにつれて炭素原子の原子数濃度が増加していた。
 また、この比較例1においても、上記の実施例1と同様に、上記のようにして作製した正極を、恒温恒湿槽内において温度30℃、湿度60%で5日間保持させて大気曝露させ、このように大気曝露させた正極を作用極11に用いて、大気曝露後の三電極式試験セルを作製した。
 (比較例2)
 比較例2においては、実施例1における正極の作製において、実施例1と同じスラリーをアルミニウム箔からなる正極集電体の上に、2.0m/分の塗布速度で塗布し、これを乾燥温度120℃、風量8m/秒の乾燥条件で乾燥させるようにし、それ以外は、上記の実施例1の場合と同様にして正極を作製した。そして、このように作製した正極を作用極11に用い、上記の実施例1と同様にして、比較例1の三電極式試験セルを作製した。
 なお、このように作製した正極の表面を、実施例1の場合と同様に、エネルギー分散型蛍光X線分析装置によって測定した結果、正極の表面における全原子に対する炭素原子の割合(原子数濃度)が74%になっていた。
 また、この比較例2においても、上記の実施例1と同様に、上記のようにして作製した正極を、恒温恒湿槽内において温度30℃、湿度60%で5日間保持させて大気曝露させ、このように大気曝露させた正極を作用極11に用いて、大気曝露後の三電極式試験セルを作製した。
 そして、上記のように作製した実施例1、比較例1及び比較例2における大気曝露前、大気曝露後の各三電極式試験セルを用い、それぞれ25℃の温度条件下において、0.2mA/cm2の電流密度で4.3V(vs.Li/Li+)まで定電流充電を行い、4.3V(vs.Li/Li+)の定電圧で電流密度が0.04mA/cm2になるまで定電圧充電を行った後、0.2mA/cm2の電流密度で2.5V(vs.Li/Li+)まで定電流放電を行った。
 次に、上記の各三電極式試験セルを、定格容量の50%まで充電させた時点、すなわち充電深度(SOC)が50%になった時点において、それぞれ-30℃の低温環境下において、各開回路電圧から0.08mA/cm、0.4mA/cm、0.8mA/cm、1.6mA/cmで10秒間充電および放電を行い、それぞれの場合における10秒後の電池電圧を電流値に対してプロットし、カット電圧での電流値(Ip値)を求め、-30℃の低温環境下における各三電極式試験セルの出力を算出した。そして、大気曝露前における実施例1、比較例1及び比較例2の各三電極式試験セルにおける出力をそれぞれ100%として、大気曝露後における実施例1、比較例1及び比較例2の三電極式試験セルの出力比率を求め、その結果を下記の表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、上記の一般式で表されるNiが多く含有された層状構造を有するリチウム含有遷移金属複合酸化物からなる正極活物質と導電性の炭素材料とが混合されたものを含む正極合剤層を形成した正極を用いる場合において、この正極の表面における全原子に対する炭素原子の原子数濃度が80%以上になった実施例1の三電極式試験セルは、正極の表面における全原子に対する炭素原子の原子数濃度が80%未満である比較例1及び比較例2の各三電極式試験セルに比べて、大気曝露後における低温環境下での出力低下が大きく低減されており、大気曝露後の低温出力特性が改善されていた。
 ここで、実施例1や比較例2において導電性の炭素材料として用いたファーネスブラックは平均粒径が230nmmであり、比較例1において用いた気相成長炭素繊維(VGCF)に比べて平均粒径が小さく、正極の表面における全原子に対する炭素原子の原子数濃度を高くしやすいという特徴を有している。
 また、導電性の炭素材料として同じファーネスブラックを用いた場合においても、正極の表面における全原子に対する炭素原子の原子数濃度を高い実施例1のものは、比較例2のものに比べて大気曝露後における低温環境下での出力低下が大きく低減されていた。このため、導電性の炭素材料の種類に関わらず、正極の表面における全原子に対する炭素原子の原子数濃度が高くなることにより、大気曝露後における低温環境下での出力特性が向上されることが分かる。
 11 作用極(正極)
 12 対極(負極)
 13 参照極
 14 非水電解液

Claims (4)

  1.  正極活物質と導電性の炭素材料とが混合されたものを含む正極合剤層が表面に形成された正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、上記の正極活物質に、一般式LiNi(1-x)2(式中、Mは1種類以上の元素であり、0<a≦1.2、0.4≦x≦1.0の条件を満たす。)で表される層状構造を有するリチウム含有遷移金属複合酸化物が用いられると共に、上記の正極の表面における全原子に対する炭素原子の割合が80%以上であることを特徴とする非水電解質二次電池。
  2.  請求項1に記載の非水電解質二次電池において、上記の正極の表面から正極合剤層の厚み方向30%までの領域における全原子に対する炭素原子の割合が50%以上である非水電解質二次電池。
  3.  請求項1に記載の非水電解質二次電池において、上記の導電性の炭素材料の平均粒径が230nm以下である非水電解質二次電池。
  4.  請求項2に記載の非水電解質二次電池において、上記の導電性の炭素材料の平均粒径が230nm以下である非水電解質二次電池。
     
PCT/JP2011/055657 2010-04-01 2011-03-10 非水電解質二次電池 WO2011125410A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180016878.9A CN102834954B (zh) 2010-04-01 2011-03-10 非水电解质二次电池
US13/637,682 US20130017448A1 (en) 2010-04-01 2011-03-10 Nonaqueous electrolyte secondary battery
JP2012509363A JP5666561B2 (ja) 2010-04-01 2011-03-10 非水電解質二次電池
KR1020127025597A KR20130042471A (ko) 2010-04-01 2011-03-10 비수 전해질 이차 전지
EP11765312A EP2555283A1 (en) 2010-04-01 2011-03-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-084730 2010-04-01
JP2010084730 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011125410A1 true WO2011125410A1 (ja) 2011-10-13

Family

ID=44762371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055657 WO2011125410A1 (ja) 2010-04-01 2011-03-10 非水電解質二次電池

Country Status (6)

Country Link
US (1) US20130017448A1 (ja)
EP (1) EP2555283A1 (ja)
JP (1) JP5666561B2 (ja)
KR (1) KR20130042471A (ja)
CN (1) CN102834954B (ja)
WO (1) WO2011125410A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011016553A1 (ja) * 2009-08-07 2013-01-17 三洋電機株式会社 非水電解質二次電池
KR101675970B1 (ko) * 2014-05-08 2016-11-14 주식회사 엘지화학 베어 셀의 성능을 평가하기 위한 비이커 셀 및 그것을 포함하고 있는 3전극 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224664A (ja) * 1998-02-06 1999-08-17 Nikki Chemcal Co Ltd 高耐湿性、高安全性リチウムイオン二次電池
JP3571671B2 (ja) 2000-09-14 2004-09-29 イリオン テクノロジー コーポレイション リチオ化酸化物材料およびその製造方法
JP2005251684A (ja) * 2004-03-08 2005-09-15 Toshiba Corp 非水電解質二次電池
JP2008235090A (ja) 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
JP2008270175A (ja) 2007-03-29 2008-11-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極および非水電解質二次電池
JP2009135045A (ja) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359724C (zh) * 2002-01-08 2008-01-02 索尼株式会社 正极活性材料和利用这种正极活性材料的非水电解质二次电池
JP5116329B2 (ja) * 2007-03-23 2013-01-09 三洋電機株式会社 非水電解質二次電池
JP2009064714A (ja) * 2007-09-07 2009-03-26 Toyota Motor Corp 電極体およびそれを用いたリチウム二次電池
JP5488899B2 (ja) * 2010-03-15 2014-05-14 トヨタ自動車株式会社 リチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224664A (ja) * 1998-02-06 1999-08-17 Nikki Chemcal Co Ltd 高耐湿性、高安全性リチウムイオン二次電池
JP3571671B2 (ja) 2000-09-14 2004-09-29 イリオン テクノロジー コーポレイション リチオ化酸化物材料およびその製造方法
JP2005251684A (ja) * 2004-03-08 2005-09-15 Toshiba Corp 非水電解質二次電池
JP2008235090A (ja) 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
JP2008270175A (ja) 2007-03-29 2008-11-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極および非水電解質二次電池
JP2009135045A (ja) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd 非水電解質二次電池

Also Published As

Publication number Publication date
EP2555283A1 (en) 2013-02-06
CN102834954B (zh) 2015-03-18
JPWO2011125410A1 (ja) 2013-07-08
US20130017448A1 (en) 2013-01-17
KR20130042471A (ko) 2013-04-26
CN102834954A (zh) 2012-12-19
JP5666561B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
WO2020057398A1 (zh) 锂离子二次电池
JP4837614B2 (ja) リチウム二次電池
EP2991138B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
WO2010137571A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
KR102164001B1 (ko) 리튬 이차 전지
JP2011187435A (ja) 非水電解質二次電池
US20070072081A1 (en) Non-aqueous electrolyte secondary battery
JP2007200865A (ja) 非水電解質二次電池
WO2010035681A1 (ja) 非水電解質二次電池
JP2008300180A (ja) 非水電解質二次電池
CN111048831B (zh) 用于二次电池的电解液以及包含电解液的锂二次电池
KR102211528B1 (ko) 리튬 이차 전지용 음극, 및 이를 포함하는 리튬 이차 전지
JP7176821B2 (ja) リチウム二次電池用非水電解液添加剤、これを含むリチウム二次電池用非水電解液及びリチウム二次電池
JP2009277395A (ja) 非水二次電池および非水二次電池システム
JP2009218112A (ja) 非水電解質二次電池及びその製造方法
JP5216973B2 (ja) 非水二次電池および非水二次電池システム
KR20200104650A (ko) 화합물, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
KR101535865B1 (ko) 보론계 리튬염을 포함하는 이차전지 전해액 및 이를 함유하는 이차전지
WO2013061922A1 (ja) 非水電解質二次電池の正極活物質、その製造方法、及び非水電解質二次電池
JP2002151144A (ja) リチウム二次電池
JP2014067490A (ja) 非水電解質二次電池
KR20200126781A (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
JP5666561B2 (ja) 非水電解質二次電池
JP5933252B2 (ja) 非水二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016878.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509363

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13637682

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127025597

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011765312

Country of ref document: EP