WO2016159702A1 - 비수 전해액 및 이를 구비한 리튬 이차전지 - Google Patents

비수 전해액 및 이를 구비한 리튬 이차전지 Download PDF

Info

Publication number
WO2016159702A1
WO2016159702A1 PCT/KR2016/003369 KR2016003369W WO2016159702A1 WO 2016159702 A1 WO2016159702 A1 WO 2016159702A1 KR 2016003369 W KR2016003369 W KR 2016003369W WO 2016159702 A1 WO2016159702 A1 WO 2016159702A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
carbonate
group
lithium
secondary battery
Prior art date
Application number
PCT/KR2016/003369
Other languages
English (en)
French (fr)
Inventor
유성훈
양두경
조민정
강유선
김유석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/544,372 priority Critical patent/US10193182B2/en
Priority to EP16773483.9A priority patent/EP3279998B8/en
Priority to PL16773483T priority patent/PL3279998T3/pl
Priority to CN201680008661.6A priority patent/CN107431197B/zh
Publication of WO2016159702A1 publication Critical patent/WO2016159702A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/30Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for lithium secondary batteries and a lithium secondary battery having the same, and more particularly, to a non-aqueous electrolyte for lithium secondary batteries with improved temperature and high temperature cycles and a lithium secondary battery having the same.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • lithium secondary batteries developed in the early 1990s are nonaqueous materials in which lithium salts are dissolved in an appropriate amount of lithium salt in an anode made of carbon material, a cathode containing lithium containing oxide, and a mixed organic solvent capable of occluding and releasing lithium ions. It consists of electrolyte solution.
  • the average discharge voltage of the lithium secondary battery is about 3.6 ⁇ 3.7V, one of the advantages is that the discharge voltage is higher than other alkaline batteries, nickel-cadmium batteries and the like.
  • an electrochemically stable electrolyte composition is required in the charge and discharge voltage range of 0 to 4.2 V.
  • a mixed solvent in which cyclic carbonate compounds such as ethylene carbonate and propylene carbonate and linear carbonate compounds such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate are appropriately mixed is used as a solvent of the electrolyte solution.
  • LiPF 6 , LiBF 4 , LiClO 4 , and the like are commonly used as lithium salts as electrolytes, which act as a source of lithium ions in the battery to enable operation of the lithium battery.
  • lithium ions derived from a cathode active material such as lithium metal oxide move to an anode active material such as graphite and are inserted between the layers of the anode active material.
  • anode active material such as graphite
  • the electrolyte and the carbon constituting the anode active material react on the surface of the anode active material such as graphite to generate compounds such as Li 2 CO 3 , Li 2 O, and LiOH.
  • SEI Solid Electrolyte Interface
  • the SEI layer acts as an ion tunnel and passes only lithium ions.
  • the SEI layer is an effect of this ion tunnel, and prevents the structure of the anode from being destroyed by inserting an organic solvent molecule having a large molecular weight that moves with lithium ions in the electrolyte between the layers of the anode active material. Therefore, by preventing contact between the electrolyte solution and the anode active material, decomposition of the electrolyte solution does not occur, and the amount of lithium ions in the electrolyte solution is reversibly maintained to maintain stable charge and discharge.
  • the SEI layer is unstable, so the problem of increasing the internal pressure of the battery is more prominent.
  • ethylene carbonate has a high freezing point of 37 to 39 ° C. and a solid state at room temperature, the ionic conductivity at low temperature is low, so that a lithium battery using a non-aqueous solvent containing a large amount of ethylene carbonate has a low low temperature conductivity.
  • the problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, to provide a non-aqueous electrolyte lithium secondary battery and a lithium secondary battery having the same improved the normal temperature and high temperature cycle.
  • the nonaqueous electrolyte further comprises a cyano group-containing pyrimidine compound represented by Formula 1 below, wherein the content of the cyano group-containing pyrimidine compound is 1 to 20 parts by weight based on 100 parts by weight of the organic solvent.
  • a cyano group-containing pyrimidine compound represented by Formula 1 below wherein the content of the cyano group-containing pyrimidine compound is 1 to 20 parts by weight based on 100 parts by weight of the organic solvent.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen, cyano group, halogen, substituted or unsubstituted C1-10 alkyl group, or substituted or unsubstituted C1-10 It is an alkoxy group, At least 1 or more of R ⁇ 1> , R ⁇ 2> , R ⁇ 3> and R ⁇ 4> is a cyano group.
  • Another aspect of the present invention is a lithium secondary battery having an anode, a cathode, and an electrode assembly composed of a separator interposed between the cathode and the anode and a nonaqueous electrolyte injected into the electrode assembly, wherein the nonaqueous electrolyte is the lithium secondary battery described above. It is to provide a lithium secondary battery which is a nonaqueous electrolyte solution for batteries.
  • the ability of complex formation on the cathode surface of the cyano group and the anode of the pyrimidine-based compound It can have both the ability to form a film on the surface and the ability to trap metal ions, so that even after repeated several tens to hundreds of charge and discharge cycles at room temperature and high temperature, the reduction in battery capacity is significantly reduced, resulting in improved life characteristics and stability of the secondary battery. Can be.
  • Example 1 is a graph showing the high temperature life characteristics of the lithium secondary batteries prepared in Examples 2-1 to 2-4, and Comparative Example 2-1.
  • Figure 2 is a graph showing the voltage (V) and dQ / dV curve at the time of initial charging of the lithium secondary battery prepared in Examples 2-4 and 2-5, and Comparative Example 2-2.
  • Figure 3 is a graph showing the high temperature life characteristics of the lithium secondary battery prepared in Examples 2-4 and 2-5, and Comparative Example 2-2.
  • the nonaqueous electrolyte solution for a lithium secondary battery including an electrolyte salt and an organic solvent further includes a cyano group-containing pyrimidine compound represented by Formula 1 below, and the content of the cyano group-containing pyrimidine compound 1 to 20 parts by weight based on 100 parts by weight of this organic solvent:
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen, cyano group, halogen, substituted or unsubstituted C1-10 alkyl group, or substituted or unsubstituted C1-10 It is an alkoxy group, At least 1 or more of R ⁇ 1> , R ⁇ 2> , R ⁇ 3> and R ⁇ 4> is a cyano group.
  • alkyl group is meant a straight or branched saturated monovalent hydrocarbon moiety of 1 to 10, or 1 to 8, or 1 to 4 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, hexyl group and the like.
  • One or more hydrogen atoms included in the alkyl group include a halogen atom, a hydroxyl group, -SH, a nitro group, a cyano group, a substituted or unsubstituted amino group (-NH 2 , -NH (R), -N (R ') (R ''), R 'and R “are independently of each other an alkyl group having 1 to 10 carbon atoms), amidino group, hydrazine, or hydrazone group carboxyl group, sulfonic acid group, phosphoric acid group, C1-C20 alkyl group, C1-C20 halogenated Alkyl group, C1-C20 alkenyl group, C1-C20 alkynyl group, C1-C20 heteroalkyl group, C6-C20 aryl group, C6-C20 arylalkyl group, C6-C20 heteroaryl group, or C6-C20 It may be substituted with a heteroary
  • alkoxy group is meant an oxygen-containing, straight or branched, saturated monovalent hydrocarbon moiety having 1 to 10, or 1 to 8, or 1 to 4 carbon atoms.
  • unsubstituted alkoxy groups include methoxy, ethoxy, propoxy, butoxy, and t-butoxy.
  • the alkoxy group may be further substituted with one or more halo atoms such as fluoro, chloro or bromo to provide a haloalkoxy group. Examples thereof include fluoromethoxy, chloromethoxy, trifluoromethoxy, trifluoroethoxy, fluoroethoxy, fluoropropoxy and the like.
  • At least one hydrogen atom of the alkoxy group may be substituted with the same substituent as in the alkyl group.
  • Halogen means fluorine, chlorine or bromine.
  • the anode In general, as the charging and discharging cycles of the secondary battery in which the nonaqueous electrolyte is injected are repeated, the anode also has a rapid shrinkage expansion, and when the SEI layer formed on the anode collapses due to the expansion of the anode during charging, the electrolyte is decomposed by decomposition of the electrolyte. An SEI layer is created. As a result, the organic solvent of the nonaqueous electrolyte is gradually depleted, and as a result, the capacity of the battery is gradually reduced as lithium ions present in the electrolyte are consumed and the cycle proceeds.
  • the cyano group-containing pyrimidine-based compound when introduced into the nonaqueous electrolyte, it reacts with the anode before the usual carbonate-based solvent used as an electrolyte component and is stable on the surface of the anode.
  • the carbonate solvent inhibits the reaction that is continuously decomposed with the anode, thereby minimizing the decrease in battery capacity and further improving the lifespan characteristics than when the carbonate solvent is used alone.
  • the pyrimidine-based compound forms a polymeric film on the surface of the anode, and the nitrogen atom in the polymeric film has a high electron density, and the polymeric film has an excellent trapping effect of the metal cation.
  • the metal cation with low electron density can be trapped between the film and the film on the electrode in contact with it.
  • the metal cation eluted from the cathode active material layer can function to inhibit precipitation as a metal on the surface of the anode.
  • the discharge rate characteristic can be maintained even after high temperature storage, and the high temperature storage property of the secondary battery can be improved.
  • cyano group-containing pyrimidine-based compound Since the cyano group-containing pyrimidine-based compound is delocalized in the nitrogen atoms and the abundant electrons present in the pyrimidine ring, radicals generated during the electrochemical reaction can be stabilized, so that a film can be easily formed.
  • the cyano group bonded to the pyrimidine-based compound may be strongly bonded to the cathode surface at a high temperature to form a complex, the complex thus formed is a protective film that blocks the active site of the cathode surface
  • a part of the transition metal may be prevented from being eluted and deposited on the anode, and the high temperature performance characteristics may be improved by suppressing side reactions and gas generation between the electrolyte and the cathode.
  • the content of the cyano group-containing pyrimidine compound may be 1 to 20 parts by weight, specifically 1 to 10 parts by weight, and more specifically 1 to 5 parts by weight based on 100 parts by weight of the organic solvent.
  • R 4 is a cyano group
  • R 1 , R 2 , and R 3 are each independently hydrogen, cyano group, halogen, substituted or unsubstituted carbon of 1 to 10 carbon atoms. It may be an alkyl group or a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms.
  • the metal complex may be coordinated with the nitrogen atom of the pyrimidine ring. The effect can be more excellent.
  • R 4 is a cyano group
  • R 1 , R 2 , and R 3 may serve to coordinate the metal complex with the nitrogen atom. It may be.
  • the cyano group-containing pyrimidine-based compound is, for example, 2,4-pyrimidine dicarbonitrile, 2-cyano-5-fluoropyrimidine, 2-cyano-4,6-dimethylpyrimidine, 2-pyri Midinecarbonitrile, 4-cyano-pyrimidine, 2-cyano-4,6-dimethoxypyrimidine, 2,4-dichloro-5-cyano-pyrimidine, and 5-cyano-2,4 It may be any one selected from -dihydroxypyrimidine or a mixture of two or more thereof, but is not limited thereto.
  • the electrolyte salt contained in the nonaqueous electrolyte solution according to one aspect of the present invention is a lithium salt.
  • the lithium salt may be used without limitation those conventionally used in the lithium secondary battery electrolyte.
  • For example is the above lithium salt anion F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 - , (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, ( CF 3 SO 2) 3 C - , CF
  • organic solvent included in the non-aqueous electrolyte solution those conventionally used in a lithium secondary battery electrolyte solution can be used without limitation, and examples thereof include linear carbonate compounds, cyclic carbonate compounds, ether compounds, ester compounds, and amide compounds, respectively. It can be used individually or in mixture of 2 or more types.
  • organic solvent examples include carbonate compounds which are cyclic carbonate compounds, linear carbonate compounds, or mixtures thereof.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate and any one selected from the group consisting of halides thereof or mixtures of two or more thereof.
  • halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
  • the content of fluoroethylene carbonate is 0.1 to 50% by volume, or 1 to 40% by volume relative to the total volume of the organic solvent. %, Or 3 to 30% by volume.
  • the content range of the fluoroethylene carbonate is satisfied, it is possible to maintain a certain amount without being exhausted even during a prolonged cycle, to control the cost increase of the battery, and the resistance of the cathode is excessively increased so that high rate discharge Deterioration of the battery performance at the time can be prevented, and the electrolyte solution after the injection can evenly penetrate the electrode.
  • linear carbonate compound may be any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Mixtures of two or more of them may be representatively used, but are not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonate compounds in the carbonate compound, have a high dielectric constant and can dissociate lithium salts in the electrolyte more efficiently.
  • an electrolyte solution having a higher electrical conductivity can be made.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether or a mixture of two or more thereof may be used.
  • the present invention is not limited thereto.
  • ester compounds in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone,
  • One or a mixture of two or more selected from the group consisting of ⁇ -caprolactone, ⁇ -valerolactone and ⁇ -caprolactone may be used, but is not limited thereto.
  • the non-aqueous electrolyte solution for lithium secondary batteries of the present invention may further include a conventionally known additive for forming an SEI layer within the scope of the present invention.
  • a conventionally known additive for forming an SEI layer within the scope of the present invention.
  • the additive for forming the SEI layer usable in the present invention cyclic sulfite, saturated sultone, unsaturated sultone, and acyclic sulfone may be used alone or in combination of two or more thereof, but is not limited thereto.
  • vinylene carbonate, vinylethylene carbonate, and fluoroethylene carbonate may also be used as additives for forming an SEI layer for improving battery life.
  • the cyclic sulfites include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5-dimethyl propylene sulfide Pite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, 1,3-butylene glycol sulfite, and the like.
  • 1,3-propane sultone, 1,4-butane sultone, and the like, and unsaturated sultone include ethene sultone, 1,3-propene sultone, 1,4-butene sultone, 1-methyl-1,3-prop Pen sulfone etc. are mentioned, As acyclic sulfone, divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, methyl vinyl sulfone, etc. are mentioned.
  • the additive for forming the SEI layer may be included in an appropriate content according to the specific type of the additive, for example, may be included in 0.01 to 10 parts by weight relative to 100 parts by weight of the nonaqueous electrolyte.
  • the nonaqueous electrolyte may be used as an electrolyte of a lithium secondary battery in the form of a gel polymer electrolyte impregnated with a liquid electrolyte or a polymer per se.
  • the nonaqueous electrolyte according to one aspect of the present invention can be obtained by mixing the electrolyte salt with the nonaqueous solvent and fluoroethylene carbonate, and further dissolving by adding a pyrimidine compound represented by the formula (1).
  • the compound added to the nonaqueous solvent used and electrolyte solution can be refine
  • air or carbon dioxide in the nonaqueous electrolyte for example, it is possible to further improve battery characteristics such as suppression of gas generation due to decomposition of the electrolyte and long-term cycle characteristics and charge storage characteristics.
  • an electrolyte solution in which carbon dioxide is dissolved in a nonaqueous electrolyte solution can be used.
  • the amount of carbon dioxide dissolved may be at least 0.001% by weight, or at least 0.05% by weight, or at least 0.2% by weight relative to the weight of the nonaqueous electrolyte, and may be dissolved in the nonaqueous electrolyte until the carbon dioxide is saturated.
  • the nonaqueous electrolyte is A lithium secondary battery, which is a nonaqueous electrolyte for lithium secondary batteries described above, is provided:
  • Cathode, anode, and separator constituting the electrode assembly may be used all those conventionally used in the manufacture of a lithium secondary battery.
  • the cathode has a structure in which a cathode layer including a cathode active material, a conductive material, and a binder is supported on one or both surfaces of a current collector.
  • the lithium-containing transition metal oxide may be coated with a metal or metal oxide such as aluminum (Al).
  • a metal or metal oxide such as aluminum (Al).
  • sulfides, selenides, and halides may also be used.
  • the conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical change in the electrochemical device.
  • carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM).
  • acetylene black, carbon black, graphite, etc. are mentioned.
  • the anode has a structure in which an anode layer including an anode active material and a binder is supported on one side or both sides of a current collector.
  • anode active material a carbon material, a lithium metal, a metal compound, and a mixture thereof, which may normally occlude and release lithium ions, may be used.
  • both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon
  • high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the metal compound is any one selected from Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba, etc. Or a compound containing two or more of these metal elements, or a mixture of two or more of these compounds.
  • These metal compounds are simple, alloys, oxides (TiO 2 , SnO 2 Etc.), nitrides, sulfides, borides, alloys with lithium, and the like, but can be used in any form, but alloys, alloys, oxides, and alloys with lithium can be increased in capacity.
  • one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
  • the binders used for the cathode and the anode have a function of retaining the cathode active material and the anode active material in the current collector and connecting the active materials, and a binder commonly used may be used without limitation.
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • polyacrylonitrile polyacrylonitrile
  • polymethylmethacrylate polymethylmethacrylate
  • binders such as butadiene rubber (SBR) and carboxymethyl cellulose (CMC).
  • the current collectors used for the cathode and the anode are metals of high conductivity, and metals to which the slurry of the active material can easily adhere can be used as long as they are not reactive in the voltage range of the battery.
  • a non-limiting example of a cathode current collector is a foil prepared by aluminum, nickel or a combination thereof
  • a non-limiting example of an anode current collector is copper, gold, nickel or a copper alloy or a combination thereof.
  • the current collector may be used by stacking substrates made of the materials.
  • the cathode and the anode are kneaded using an active material, a conductive agent, a binder, and a solvent to obtain an electrode mixture
  • the electrode mixture is applied to a current collector, dried and press-molded, and then subjected to a temperature of about 50 ° C to 250 ° C.
  • Each furnace may be prepared by heating under vacuum for about 2 hours.
  • the thickness of the electrode layer of the cathode may be 30 to 120 ⁇ m, or 50 to 100 ⁇ m per one surface of the current collector, the thickness of the electrode layer of the anode is 1 to 100 ⁇ m, or 3 to 70 ⁇ m per one surface of the current collector Can be.
  • the electrode layers of the cathode and the anode satisfy such a thickness range, the content of the active material in the electrode layer is sufficiently secured to prevent the battery capacity from decreasing, and the cycle characteristics and the rate characteristics can be improved.
  • the separator may be a conventional porous polymer film conventionally used as a separator, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer.
  • the porous polymer film made of the polyolefin-based polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting glass fiber, polyethylene terephthalate fiber, or the like may be used. It doesn't happen.
  • the separator may have a porous substrate such as the porous polymer film and the porous nonwoven fabric, and a porous coating layer formed on at least one surface of the porous substrate and including inorganic particles and a binder.
  • the lithium secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch type, or coin type using a can.
  • An organic solvent mixture was prepared by mixing fluoroethylene carbonate (FEC), propylene carbonate (PC), and ethylmethyl carbonate (EMC) at a ratio of 30% by volume, 10% by volume, and 60% by volume, respectively. Thereafter, 1 part by weight of 2,4-pyrimidinedicarbonitrile and 2 parts by weight of 1,3-propane sultone are further added based on 100 parts by weight of the prepared organic solvent mixture, and the LiPF 6 is dissolved to a concentration of 1 M to prepare a nonaqueous electrolyte Prepared.
  • FEC fluoroethylene carbonate
  • PC propylene carbonate
  • EMC ethylmethyl carbonate
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1-1, except that 2-cyano-5-fluoropyrimidine was used instead of 2,4-pyrimidinedicarbonitrile.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1-1 except for using 2-cyano-4,6-dimethylpyrimidine instead of 2,4-pyrimidinedicarbonitrile.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1-1, except that 2-pyrimidinecarbonitrile was used instead of 2,4-pyrimidinedicarbonitrile.
  • a nonaqueous electrolyte solution was prepared in the same manner as in Example 1-1, except that 2 parts by weight of 2-pyrimidinecarbonitrile was used instead of 1 part by weight of 2,4-pyrimidinedicarbonitrile.
  • a nonaqueous electrolyte was prepared in the same manner as in Example 1-1, except that 2,4-pyrimidinedicarbonitrile was not used.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1-1, except that 0.5 parts by weight of 2-pyrimidinecarbonitrile was used instead of 1 part by weight of 2,4-pyrimidinedicarbonitrile.
  • cathode active material slurry 90 parts by weight of lithium cobalt composite oxide as the cathode active material particles, 5 parts by weight of carbon black as the conductive material, and 5 parts by weight of polyvinylidene fluoride (PVdF) as the binder, N-methyl-2 pyrrolidone (NMP) )
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2 pyrrolidone
  • An anode active material slurry was prepared by adding 100 parts by weight of ton (NMP). The anode active material slurry was applied to a copper (Cu) thin film, which is an anode current collector having a thickness of 90 ⁇ m, dried, and roll pressed to prepare an anode.
  • NMP ton
  • Cu copper
  • the cathode and the anode prepared by the above-described method were manufactured together with a polyethylene porous film by a conventional method, and then a lithium secondary battery was prepared by pouring the nonaqueous electrolyte of Example 1-1.
  • a lithium secondary battery was manufactured in the same manner as in Example 2-1 except for using the nonaqueous electrolyte prepared in Example 1-2.
  • a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Example 1-3.
  • a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Example 1-4.
  • a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Example 1-5.
  • a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Comparative Example 1-1.
  • a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Comparative Example 1-2.
  • the lithium secondary batteries (battery capacity (5.5 mAh)) prepared in Examples 2-1 to 2-4 and Comparative Example 2-1 were charged at 60 ° C. with a constant current of 0.7 C until they reached 4.35 V, and then the 4.35 V Charging was terminated when the battery was charged at a constant voltage and the charging current reached 0.275 mA, after which the battery was left for 10 minutes and discharged until a constant current of 0.5 C was reached at 3.0 V. After 100 cycles of charging and discharging, the battery capacity was measured. 1, where C is the charge / discharge current rate, C-rate, of a battery represented by ampere (A), and is usually expressed as a percentage of the battery capacity, that is, 1C of the batteries manufactured previously is a current of 5.5 mA. Means.
  • the lithium secondary batteries of Examples 2-1 to 2-4 provided with an electrolyte solution containing a cyano group-containing pyrimidine compound were provided with an electrolyte solution containing no cyano group-containing pyrimidine compound. It can be seen that all of them exhibit superior life characteristics at a higher temperature than the lithium secondary battery of Example 2-1.
  • the dQ / dV peak near 2.4V indicates the degree to which 2-pyrimidinecarbonitrile forms a film on the anode surface, where the magnitude of the dQ / dV peak near 2.4V and the film forming reaction are proportional to each other.
  • the peak around 2.4V corresponds to the peak generated when the 2-pyrimidinecarbonitrile is decomposed, and the larger the reaction, the more the peak is consumed by electrons. Therefore, the film formation reaction degree can be evaluated from the magnitude
  • A ampere
  • the lithium secondary battery of Examples 2-4 to 2-5 having an electrolyte solution containing 1 part by weight or more of the cyano group-containing pyrimidine-based compound, 0.5 part by weight of the cyano group-containing pyrimidine-based compound It can be seen that all of the lithium secondary batteries of Comparative Example 2-2 having an electrolyte solution contained therein exhibit very excellent life characteristics at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

시아노기 함유 피리미딘계 화합물을 유기용매 100 중량부에 대하여 1 내지 20 중량부 포함하는 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지가 제시된다.

Description

비수 전해액 및 이를 구비한 리튬 이차전지
본 발명은 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지에 관한 것이고, 구체적으로는 상온 및 고온 사이클이 개선된 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지에 관한 것이다.
본 출원은 2015년 3월 31일에 출원된 한국출원 제10-2015-0045346호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재로 된 애노드, 리튬 함유 산화물로 된 캐소드 및 혼합 유기용매에 리튬염이 적당량 용해된 비수 전해액으로 구성되어 있다.
리튬 이차전지의 평균 방전 전압은 약 3.6~3.7V로서, 다른 알칼리 전지, 니켈-카드뮴 전지 등에 비하여 방전 전압이 높은 것이 장점 중의 하나이다. 이러한 높은 구동 전압을 내기 위해서는 충방전 전압 영역인 0~4.2V에서 전기화학적으로 안정한 전해액 조성이 필요하다. 이를 위하여, 에틸렌 카보네이트, 프로필렌 카보네이트 등의 환형 카보네이트 화합물 및 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트 등의 선형 카보네이트 화합물이 적절히 혼합된 혼합 용매를 전해액의 용매로 이용한다. 전해액의 용질인 리튬염으로는 통상 LiPF6, LiBF4, LiClO4 등을 사용하는데, 이들은 전지 내에서 리튬 이온의 공급원으로 작용하여 리튬 전지의 작동이 가능하게 한다.
리튬 이차전지의 초기 충전시 리튬 금속 산화물 등의 캐소드 활물질로부터 나온 리튬 이온은 그래파이트 등의 애노드 활물질로 이동하여, 애노드 활물질의 층간에 삽입된다. 이때, 리튬은 반응성이 강하므로 그래파이트 등의 애노드 활물질 표면에서 전해액과 애노드 활물질을 구성하는 탄소가 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성한다. 이들 화합물은 그래파이트 등의 애노드 활물질의 표면에 일종의 SEI(Solid Electrolyte Interface)층을 형성하게 된다.
SEI층은 이온 터널의 역할을 수행하여 리튬 이온 만을 통과시킨다. SEI층은 이러한 이온 터널의 효과로서, 전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기용매 분자가 애노드 활물질의 층간에 삽입되어 애노드 구조가 파괴되는 것을 막아준다. 따라서, 전해액과 애노드 활물질의 접촉을 방지함으로써 전해액의 분해가 발생하지 않고, 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다.
그러나, 상술한 SEI층 형성 반응 중에 카보네이트계 용매의 분해로부터 발생되는 CO, CO2, CH4, C2H6 등의 기체로 인하여 충전시 전지 두께가 팽창하는 문제가 발생한다. 또한, 만충전 상태에서 고온 방치시 시간이 경과함에 따라서, SEI층이 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되어, 노출된 애노드 표면과 주위의 전해액이 반응하는 부반응이 지속적으로 일어나게 된다. 이때의 계속적인 기체 발생으로 인하여 전지의 내압이 상승하게 되며, 그 결과 전지의 두께가 증가하여 이러한 전지가 적용된 핸드폰 및 노트북 등의 셋트에서 문제를 유발한다. 즉, 고온 방치 안전성이 불량하다. 또한, 에틸렌 카보네이트를 다량 포함하는 통상의 리튬 이차전지는 SEI층이 불안정하여 상기한 전지의 내압 상승 문제가 더 두드러진다. 더불어, 에틸렌 카보네이트는 어는점이 37~39℃로 높아서 실온에서 고체 상태이기 때문에 저온에서의 이온 전도도가 낮아서 에틸렌 카보네이트를 다량 함유하는 비수계 용매를 사용하는 리튬 전지는 저온 도전율이 불량한 문제점이 있다.
이와 같은 문제점을 해결하기 위하여, 카보네이트 유기용매의 용매 성분의 조성을 다양하게 변화시키거나 특정 첨가제를 혼합하여 SEI층 형성 반응의 양상을 변화시키려는 연구가 진행되어 왔다. 그러나, 지금까지 알려진 바로는 전지 성능 향상을 위하여 용매 성분을 변화시키거나 특정 화합물을 전해액에 첨가할 경우, 일부 항목의 성능은 향상 되지만, 다른 항목의 성능은 감소되는 경우가 많았다.
따라서, 고율 충방전 특성이 우수하면서도 사이클 수명, 저온 방전 특성, 고온 방전 특성이 모두 양호한 리튬 이차전지를 제공할 수 있는 비수 전해액 조성의 개발이 시급하다.
본 발명이 해결하고자 하는 과제는 전술한 종래기술의 문제점을 해결하여, 상온 및 고온 사이클이 개선된 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지를 제공하는데 있다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 측면은
전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액에 있어서,
상기 비수 전해액이 하기 화학식 1로 표시되는 시아노기 함유 피리미딘계 화합물을 더 포함하고, 상기 시아노기 함유 피리미딘계 화합물의 함량이 상기 유기용매 100 중량부에 대하여 1 내지 20 중량부인 리튬 이차전지용 비수 전해액을 제공하는 것이다:
[화학식 1]
Figure PCTKR2016003369-appb-I000001
상기 화학식 1에서, R1, R2, R3 및 R4는 각각 독립적으로 수소, 시아노기, 할로겐, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알콕시기이고, R1, R2, R3 및 R4 중 적어도 하나 이상은 시아노기이다.
본 발명의 다른 측면은 애노드, 캐소드, 및 상기 캐소드와 애노드 사이에 개재된 세퍼레이터로 이루어진 전극조립체 및 상기 전극 조립체에 주입된 비수 전해액을 구비하는 리튬 이차전지에 있어서, 상기 비수 전해액이 전술한 리튬 이차전지용 비수 전해액인 리튬 이차전지를 제공하는 것이다.
본 발명의 일 측면에 따르면, 시아노기 함유 피리미딘계 화합물을 포함하는 비수 전해액을 구비한 리튬 이차전지를 사용함으로써, 시아노기가 갖는 캐소드 표면에서의 착물 형성 능력과, 피리미딘계 화합물이 갖는 애노드 표면 상의 피막 형성 능력 및 금속 이온 트랩 능력을 모두 가질 수 있어, 상온 및 고온에서 수십 내지 수백 회의 충방전 사이클을 반복하여도 전지 용량의 감소가 현저히 작아져서 개선된 이차전지의 수명 특성 및 안정성을 구현할 수 있다.
도 1은 실시예 2-1 내지 2-4, 및 비교예 2-1에서 제조된 리튬 이차전지의 고온 수명 특성을 나타낸 그래프이다.
도 2는 실시예 2-4와 2-5, 및 비교예 2-2에서 제조된 리튬 이차전지의 초기 충전시 전압(V)과 dQ/dV 곡선을 나타낸 그래프이다.
도 3은 실시예 2-4와 2-5, 및 비교예 2-2에서 제조된 리튬 이차전지의 고온 수명 특성을 나타낸 그래프이다.
이하, 본 발명에 대해 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 측면에 따른 전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액은, 하기 화학식 1로 표시되는 시아노기 함유 피리미딘계 화합물을 더 포함하고, 상기 시아노기 함유 피리미딘계 화합물의 함량이 상기 유기용매 100 중량부에 대하여 1 내지 20 중량부이다:
[화학식 1]
Figure PCTKR2016003369-appb-I000002
상기 화학식 1에서, R1, R2, R3 및 R4는 각각 독립적으로 수소, 시아노기, 할로겐, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알콕시기이고, R1, R2, R3 및 R4 중 적어도 하나 이상은 시아노기이다.
전술한 치환기의 정의를 구체적으로 살펴보면 다움과 같다.
알킬기는 탄소수 1 내지 10, 또는 1 내지 8, 또는 1 내지 4의 탄소 원자의 직쇄형 또는 분지형의 포화된 1가 탄화수소 부위를 의미한다. 이와 같은 비치환된 알킬기의 예로서 메틸기, 에틸기, 프로필기, 부틸기, 헥실기 등을 들 수 있다. 상기 알킬기에 포함되어 있는 하나 이상의 수소 원자는 할로겐 원자, 히드록시기, -SH, 니트로기, 시아노기, 치환 또는 비치환된 아미노기(-NH2, -NH(R), -N(R')(R''), R'과 R"은 서로 독립적으로 탄소수 1 내지 10의 알킬기임), 아미디노기, 히드라진, 또는 히드라존기 카르복실기, 술폰산기, 인산기, C1-C20의 알킬기, C1-C20의 할로겐화된 알킬기, C1-C20의 알케닐기, C1-C20의 알키닐기, C1-C20의 헤테로알킬기, C6-C20의 아릴기, C6-C20의 아릴알킬기, C6-C20의 헤테로아릴기, 또는 C6-C20의 헤테로아릴알킬기로 치환될 수 있다.
알콕시기는 탄소수 1 내지 10, 또는 1 내지 8, 또는 1 내지 4의 산소-함유 직쇄형 또는 분지형의 포화된 1가 탄화수소 부위를 의미한다. 이와 같은 비치환된 알콕시기의 예로는 메톡시, 에톡시, 프로폭시, 부톡시, 및 t-부톡시를 들 수 있다. 상기 알콕시기는 플루오로, 클로로 또는 브로모와 같은 하나 이상의 할로 원자로 더 치환되어 할로알콕시기를 제공할 수도 있다. 이와 같은 예로는 플루오로메톡시, 클로로메톡시, 트리플루오로메톡시, 트리플루오로에톡시, 플로오로에톡시 및 플루오로프로폭시 등을 들 수 있다. 상기 알콕시기중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
할로겐은 불소, 염소, 또는 브롬을 의미한다.
일반적으로, 비수 전해액이 주입된 이차전지의 충전 및 방전 사이클이 반복함에 따라, 애노드도 급격한 수축팽창을 동반하게 되고, 충전시 애노드의 팽창으로 애노드 상에 형성된 SEI층이 붕괴되면 전해액 분해에 의하여 새로운 SEI층이 생성된다. 이로인해 비수 전해액의 유기용매가 점차 고갈되고, 그 결과, 전해액 내에 존재하는 리튬 이온이 소모되어 사이클이 진행됨에 따라 전지의 용량이 점차 감소하게 된다.
하지만, 본 발명의 일 실시예에 따라서, 상기 시아노기 함유 피리미딘계 화합물을 비수 전해액에 도입하게 되면, 전해액 구성 성분으로서 사용되는 통상의 카보네이트계 용매 보다 먼저 애노드와 반응하여 애노드의 표면상에 안정하고 조밀한 피막을 형성함으로써, 카보네이트계 용매가 애노드와 지속적으로 분해하는 반응을 억제하기 때문에 카보네이트계 용매를 단독으로 사용한 경우보다 전지의 용량 저하를 최소화하고, 수명 특성을 더욱 향상시킬 수 있게 되는 것이다.
즉, 상기 피리미딘계 화합물은 애노드의 표면 상에서 폴리머성 피막을 형성하게 되고, 이 폴리머성 피막 중의 질소 원자는 전자밀도가 높아, 상기 폴리머성 피막은 금속 양이온의 트랩효과가 우수하므로, 폴리머성 피막과 이것에 접촉하는 전극 상의 피막 사이에, 전자밀도가 낮은 금속 양이온이 포착될 수 있다. 그 결과, 캐소드 활물질층으로부터 용출된 금속 양이온이 애노드의 표면에서 금속으로서 석출하는 것을 억제하는 기능을 할 수 있게 된다.
이러한 피리미딘계 화합물의 금속 양이온의 트랩효과에 의해서, 고온 보존후에도 방전 레이트 특성을 유지할 수 있어, 이차 전지의 고온 보존성을 개선할 수 있게 된다.
또한, 전해액이 제조된 후 시간이 경과하면 수분과 HF의 함량이 증가하게 되고, 이에 따라 방전 용량이 감소하게 된다. 하지만, 여기에 시아노기 함유 피리미딘계 화합물을 사용하게 되면, 시아노기 함유 피리미딘계 화합물의 질소 원자와 HF와의 반응으로 수분과 HF의 함량을 줄이거나 증가을 억제할 수 있게 되어, 이차 전지의 방전 용량의 감소 현상을 억제할 수 있게 된다.
상기 시아노기 함유 피리미딘계 화합물에는 질소 원자들과 피리미딘 고리에 존재하는 풍부한 전자들이 비편재화 되어 있기 때문에 전기 화학 반응시 생성되는 라디칼들이 안정화 될 수 있으므로 피막이 쉽게 형성될 수 있다.
게다가, 본 발명의 일 실시예에 있어서, 상기 피리미딘계 화합물에 결합된 시아노기는 고온에서 캐소드 표면과 강하게 결합하여 착물을 형성할 수 있고, 이렇게 형성된 착물은 캐소드 표면의 활성 부위를 차단시키는 보호막으로 작용하여 충방전 진행시 전이금속의 일부가 용출되어 애노드에 석출되는 것을 막을 수 있고, 전해액과 캐소드 사이에서 발생하는 부반응 및 가스 발생을 억제하여 고온 성능 특성 개선할 수 있다.
상기 시아노기 함유 피리미딘계 화합물의 함량은 상기 유기용매 100 중량부에 대하여 1 내지 20 중량부이고, 구체적으로는 1 내지 10 중량부일 수 있고, 더 구체적으로는 1 내지 5 중량부일 수 있다.
상기 시아노기 함유 피리미딘계 화합물의 함량이 상기 범위를 만족하는 경우, 고온 성능 개선 효과가 충분히 발휘되고, 전해액의 점도의 과도한 증가를 방지하여 상온 특성 및 저온 특성의 개선을 도모할 수 있고, 캐소드의 저항이 과도하게 증가되어 고율 방전시 전지 성능 저하가 발생하는 것을 방지할 수 있고, 금속 이온의 용출을 억제하여 저전압 현상을 억제할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서 R4가 시아노기이고, R1, R2, 및 R3가 각각 독립적으로 수소, 시아노기, 할로겐, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알콕시기일 수 있다. 피리미딘계 화합물에서 2개의 질소 원자를 연결하는 탄소에 시아노기가 치환된 경우, 즉 상기 화학식 1에서 R4가 시아노기인 경우에는, 피리미딘 고리의 질소원자와 함께 금속 착물을 배위할 수 있으므로, 보다 탁월한 효과를 발휘할 수 있다.
또한, 금속 이온의 크기나 형태에 따라서, R4가 시아노기인 경우 외에, R1, R2, 및 R3 중 적어도 하나가 시아노기인 경우에도 질소원자와 함께 금속 착물을 배위하는 역할을 할 수도 있다.
상기 시아노기 함유 피리미딘계 화합물은 예를 들어 2,4-피리미딘디카르보니트릴, 2-시아노-5-플루오로피리미딘, 2-시아노-4,6-디메틸피리미딘, 2-피리미딘카르보니트릴, 4-시아노-피리미딘, 2-시아노-4,6-디메톡시피리미딘, 2,4-디클로로-5-시아노-피리미딘, 및 5-시아노-2,4-디히드록시피리미딘으로 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있으나, 여기에 제한되지는 않는다.
본 발명의 일 측면에 따른 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
전술한 비수 전해액에 포함되는 유기용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 선형 카보네이트 화합물, 환형 카보네이트 화합물, 에테르 화합물, 에스테르 화합물, 및 아미드 화합물 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 유기용매 중에서 대표적으로는 환형 카보네이트 화하물, 선형 카보네이트 화합물, 또는 이들의 혼합물인 카보네이트 화합물을 들 수 있다.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따라서, 특히 상기 유기용매가 플루오로에틸렌 카보네이트를 포함하는 경우, 상기 플루오로에틸렌 카보네이트의 함량은 상기 유기용매의 총부피에 대하여 0.1 내지 50 부피%, 또는 1 내지 40 부피%, 또는 3 내지 30 부피%일 수 있다. 상기 플루오로에틸렌 카보네이트의 함량 범위를 만족하는 경우, 장기간의 사이클 진행 동안에도 소진되지 않고 일정 양이 유지될 수 있고, 전지의 원가 상승을 제어할 수 있으며, 캐소드의 저항이 과도하게 증가되어 고율 방전시의 전지 성능 저하가 발생하는 것을 방지할 수 있고, 주액 후 전해액이 전극에 골고루 침투할 수 있다.
또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트 화함물 중 환형 카보네이트 화합물인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트 화합물에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트 화합물을 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.
또한, 상기 유기용매 중 에테르 화합물로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 유기용매 중 에스테르 화합물로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 부틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지용 비수 전해액은 종래 알려진 SEI층 형성용 첨가제를 본 발명의 목적을 벗어나지 않는 범위에서 더 포함할 수 있다. 본 발명에서 사용가능한 SEI층 형성용 첨가제로는 환형 설파이트, 포화 설톤, 불포화 설톤, 및 비환형 설폰 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 전술한 환형 카보네이트 중에서 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트도 전지의 수명 향상을 위한 SEI층 형성용 첨가제로서 사용될 수 있다.
상기 환형 설파이트로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌 설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 포화 설톤으로는 1,3-프로판 설톤, 1,4-부탄 설톤 등을 들 수 있으며, 불포화 설톤으로는 에텐 설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 등을 들 수 있으며, 비환형 설폰으로는 디비닐 설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 메틸비닐 설폰 등을 들 수 있다.
상기 SEI층 형성용 첨가제는 첨가제의 구체적인 종류에 따라 적절한 함량으로 포함될 수 있으며, 예를 들면 비수 전해액 100 중량부 대비 0.01 중량부 내지 10 중량부로 포함될 수 있다.
상기 시아노기 함유 피리미딘계 화합물에 의하여 애노드에 안정한 피막이 형성되는 경우에도, 혼용하는 첨가제에 의해 고형분이 생성될 수 있고, 이 경우에는 피막 형성에 의한 성능 개선 효과가 감소될 가능성도 있다.
이러한 점에서, 전술한 첨가제 중에서 환형 설파이트나 불포화 설톤, 특히 에틸렌 설파이트, 1,3-프로펜 설톤 등과 혼용하는 경우에는 시아노기 함유 피리미딘계 화합물과의 반응성이 낮으므로, 고형분이 일절 생성되지 않는다.
상기 비수 전해액은 그 자체로 액체 전해질 또는 고분자에 함침된 겔 폴리머 전해질의 형태로 리튬 이차전지의 전해질로 사용될 수 있다.
본 발명의 일 측면에 따른 비수 전해액은, 상기 비수 용매 및 플루오로에틸렌 카보네이트에 상기 전해질염을 혼합시키고, 또한, 상기 화학식 1로 표시되는 피리미딘계 화합물 첨가하여 용해시킴으로써 얻을 수 있다.
이 때, 이용하는 비수 용매 및 전해액에 첨가하는 화합물은 생산성을 현저히 저하시키지 않는 범위 내에서 미리 정제하여, 불순물이 매우 적은 것을 이용할 수 있다.
상기 비수 전해액에는, 예컨대 공기나 이산화탄소를 포함하게 함으로써, 전해액의 분해에 의한 가스 발생의 억제나, 장기에 걸친 사이클 특성이나 충전 보존 특성 등의 전지 특성을 더욱 향상시킬 수 있다.
고온에서의 충방전 특성 향상의 관점에서, 비수 전해액 중에 이산화탄소를 용해시킨 전해액을 이용할 수 있다. 이산화탄소의 용해량은 비수 전해액의 중량에 대하여 0.001중량% 이상, 또는 0.05중량% 이상, 또는 0.2중량% 이상일 수 있고, 비수 전해액에 이산화탄소가 포화 상태로 될 때까지 용해시킬 수 있다.
또한, 본 발명의 일 측면에 따르면, 애노드, 캐소드, 및 상기 캐소드와 애노드 사이에 개재된 세퍼레이터로 이루어진 전극조립체 및 상기 전극 조립체에 주입된 비수 전해액을 구비하는 리튬 이차전지에 있어서, 상기 비수 전해액이 전술한 리튬 이차전지용 비수 전해액인 리튬 이차전지가 제공된다:
상기 전극조립체를 이루는 캐소드, 애노드 및 세퍼레이터는 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
상기 캐소드는 캐소드 활물질, 도전재 및 바인더를 포함하는 캐소드층이 집전체의 일면 또는 양면에 담지된 구조를 갖는다.
상기 캐소드 활물질로는 리튬함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1 - yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1 -yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2 - zNizO4(0.5<x<1.3, 0<z<2), LixMn2 - zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며,
상기 리튬 함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬 함유 전이금속 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
상기 도전재로서는 전기화학소자에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일반적으로 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다. 예를 들면 아세틸렌블랙, 카본블랙, 흑연 등을 들 수 있다.
상기 애노드는 애노드 활물질 및 바인더를 포함하는 애노드층이 집전체의 일면 또는 양면에 담지된 구조를 갖는다.
상기 애노드 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬금속, 금속 화합물 및 이들의 혼합물을 사용할 수 있다.
구체적으로는 상기 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 금속 화합물로는 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba 등에서 선택된 어느 하나 또는 이들 중 2종 이상의 금속 원소를 함유하는 화합물일 수 있고, 또는 이들 화합물 들 중 2종 이상의 혼합물일 수도 있다. 이러한 금속 화합물은 단체, 합금, 산화물(TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등, 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다. 그 중에서도, Si, Ge 및 Sn으로부터 선택되는 1종 이상의 원소를 함유할 수 있고, Si 및 Sn으로부터 선택되는 1종 이상의 원소를 포함하는 것이 전지를 더 고용량화할 수 있다.
상기 캐소드 및 애노드에 사용되는 바인더는 캐소드 활물질 및 애노드 활물질을 집전체에 유지시키고, 또 이러한 활물질들 사이를 이어주는 기능을 갖는 것으로서, 통상적으로 사용되는 바인더가 제한없이 사용될 수 있다.
예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 스티렌-부타디엔 고무 (SBR, styrene butadiene rubber), 카르복시메틸 셀룰로스(CMC, carboxymethyl cellulose) 등의 다양한 종류의 바인더가 사용될 수 있다.
상기 캐소드 및 애노드에 사용되는 집전체는 전도성이 높은 금속으로, 상기 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 구체적으로 캐소드용 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 애노드용 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다.
상기 캐소드 및 애노드는, 활물질, 도전제, 바인더, 및 용제를 이용해 혼련하여 전극 합제를 얻은 후, 이러한 전극 합제를 집전체에 도포하여, 건조 및 가압 성형한 후, 50℃ 내지 250℃ 정도의 온도로 2시간 정도 진공 하에서 가열 처리함으로써 각각 제조될 수 있다.
또한, 상기 캐소드의 전극층의 두께는 집전체의 일 면당 30 내지 120㎛, 또는 50 내지 100㎛일 수 있고, 상기 애노드의 전극층의 두께는 집전체의 일 면당 1 내지 100㎛, 또는 3 내지 70㎛일 수 있다. 상기 캐소드 및 애노드의 전극층이 이러한 두께 범위를 만족하는 경우, 전극층에서의 활물질의 함량이 충분히 확보되어, 전지 용량이 작아지는 것을 방지할 수 있고, 사이클 특성이나 레이트 특성이 개선될 수 있다.
또한, 상기 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 세퍼레이터는 상기 다공성 고분자 필름 및 다공성 부직포와 같은 다공성 기재, 및 상기 다공성 기재의 적어도 일면 상에 형성되고, 무기물 입자 및 바인더를 포함하는 다공성 코팅층을 구비한 형태일 수도 있다.
본 발명의 리튬 이차전지는 그 외형에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
비수 전해액의 제조
실시예 1-1
플루오로에틸렌 카보네이트(FEC), 프로필렌 카보네이트(PC), 및 에틸메틸 카보네이트(EMC)를 각각 30부피%, 10부피%, 및 60부피%의 비율로 혼합하여 유기용매 혼합액을 제조하였다. 이후, 제조된 유기용매 혼합액 100 중량부 기준으로 2,4-피리미딘디카르보니트릴 1 중량부 및 1,3-프로판 설톤 2 중량부를 더 첨가하고, LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
실시예 1-2
2,4-피리미딘디카르보니트릴 대신에 2-시아노-5-플루오로피리미딘을 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
실시예 1-3
2,4-피리미딘디카르보니트릴 대신에 2-시아노-4,6-디메틸피리미딘을 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
실시예 1-4
2,4-피리미딘디카르보니트릴 대신에 2-피리미딘카르보니트릴을 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
실시예 1-5
2,4-피리미딘디카르보니트릴 1 중량부 대신에 2-피리미딘카르보니트릴 2 중량부를 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-1
2,4-피리미딘디카르보니트릴을 사용하지 않은 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-2
2,4-피리미딘디카르보니트릴 1 중량부 대신에 2-피리미딘카르보니트릴 0.5 중량부를 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
리튬 이차전지의 제조
실시예 2-1
(1) 캐소드의 제조
캐소드 활물질 입자로 리튬 코발트 복합산화물 90 중량부, 도전재로 카본 블랙 (carbon black) 5 중량부, 바인더로 폴리비닐리덴플로라이드(PVdF) 5 중량부를 용제인 N-메틸-2 피롤리돈(NMP) 40 중량부에 첨가하여 캐소드 활물질 슬러리를 준비하였다. 상기 캐소드 활물질 슬러리를 두께가 100 ㎛인 캐소드 집전체의 알루미늄(Al) 박막에 도포, 건조하고, 롤 프레스(roll press)를 실시하여, 캐소드를 제조하였다.
(2) 애노드의 제조
애노드 활물질로 천역흑연, 결합재로 폴리비닐리덴플로라이드(PVdF), 도전재로 카본 블랙 (carbon black)을 각각 95 중량부, 2 중량부, 3 중량부로 하고, 용제인 N-메틸-2 피롤리돈(NMP) 100 중량부에 첨가하여 애노드 활물질 슬러리를 준비하였다. 상기 애노드 활물질 슬러리를 두께가 90㎛인 애노드 집전체인 구리(Cu) 박막에 도포, 건조하고, 롤 프레스(roll press)를 실시하여, 애노드를 제조하였다.
(3) 리튬 이차전지의 제조
전술한 방법으로 제조한 캐소드와 애노드를 폴리에틸렌 다공성 필름과 함께 통상적인 방법으로 파우치형 전지를 제작 후, 앞서 제조된 실시예 1-1의 비수 전해액을 주액하여 리튬 이차전지를 제조하였다.
실시예 2-2
실시예 1-2에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 2-3
실시예 1-3에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 2-4
실시예 1-4에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 2-5
실시예 1-5에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-1
비교예 1-1에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-2
비교예 1-2에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
리튬 이차전지의 특성 평가
고온 수명 특성
실시예 2-1 내지 2-4, 및 비교예 2-1에서 제조된 리튬 이차전지(전지용량 (5.5mAh)를 60℃에서 0.7C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 0.275mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 3.0V가 될 때까지 방전하였다. 상기 충방전을 100 사이클 행한 후 전지 용량을 측정하여, 도 1에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 5.5mA의 전류를 의미한다.
도 1을 참조하면, 시아노기 함유 피리미딘계 화합물을 포함하는 전해액을 구비한 실시예 2-1 내지 2-4의 리튬 이차전지가 시아노기 함유 피리미딘계 화합물을 포함하지 않는 전해액을 구비한 비교예 2-1의 리튬 이차전지 보다 고온에서 모두 뛰어난 수명 특성을 나타내고 있음을 알 수 있다.
애노드 표면에의 피막 형성 능력
실시예 2-4 내지 2-5, 및 비교예 2-2에서 제조된 리튬 이차전지(전지용량 (5.5mAh)를 0.1C CC/CV 조건으로 첫 충전시에 얻어지는 전압(V)과 용량의 변화(dQ/dV)를 도 2에 나타내었다.
도 2에서 2.4V 부근의 dQ/dV 피크는 2-피리미딘카르보니트릴이 애노드 표면에서 피막을 형성하는 정도를 나타내며 이때 2.4V 부근의 dQ/dV 피크의 크기와 피막 형성 반응 정도가 비례한다.
동일한 조성의 전해액에서 2-피리미딘카르보니트릴, 및 그 외 다른 첨가제를 변화시키면서 전압(V)과 용량의 변화(dQ/dV)를 도시해 본 결과, 2-피리미딘카르보니트릴의 고유의 반응 전압이 2.4V 부근임을 확인하였다.
이러한 2.4V 부근의 피크를 2-피리미딘카르보니트릴이 분해가 될 때 생기는 피크에 해당되며, 반응이 클수록 전자를 소모하여 피크가 커지게 된다. 따라서, 이러한 dQ/dV 피크의 크기로부터 피막 형성 반응 정도를 평가할 수 있게 된다.
도 2를 참조하면, 2-피리미딘카르보니트릴의 함량이 1 중량부 및 2 중량부로 사용된 실시예 2-4 및 2-5가 2-피리미딘카르보니트릴의 함량이 0.5 중량부 사용된 비교예 2-2에 비교하여 애노드 표면에서 피막 형성 능력이 현저하게 증가된 것을 알 수 있다.
고온 수명 특성
실시예 2-4 내지 2-5, 및 비교예 2-2에서 제조된 리튬 이차전지(전지용량 (5.5mAh)를 65℃에서 1.0C의 정전류로 4.35V가 될 때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 0.275mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 3.0V가 될 때까지 방전하였다. 상기 충방전을 50 사이클 행한 후 전지 용량을 측정하여, 도 3에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 5.5mA의 전류를 의미한다.
도 3을 참조하면, 시아노기 함유 피리미딘계 화합물을 1 중량부 이상 포함하는 전해액을 구비한 실시예 2-4 내지 2-5의 리튬 이차전지가, 시아노기 함유 피리미딘계 화합물을 0.5 중량부 포함하는 전해액을 구비한 비교예 2-2의 리튬 이차전지 보다 고온에서 모두 매우 탁월한 수명 특성을 나타내고 있음을 알 수 있다.

Claims (17)

  1. 전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액에 있어서,
    상기 비수 전해액이 하기 화학식 1로 표시되는 시아노기 함유 피리미딘계 화합물을 더 포함하고,
    상기 시아노기 함유 피리미딘계 화합물의 함량이 상기 유기용매 100 중량부에 대하여 1 내지 20 중량부인 리튬 이차전지용 비수 전해액:
    [화학식 1]
    Figure PCTKR2016003369-appb-I000003
    상기 화학식 1에서, R1, R2, R3 및 R4는 각각 독립적으로 수소, 시아노기, 할로겐, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알콕시기이고, R1, R2, R3 및 R4 중 적어도 하나 이상은 시아노기이다.
  2. 제1항에 있어서,
    상기 화학식 1에서 R4가 시아노기이고, R1, R2, 및 R3가 각각 독립적으로 수소, 시아노기, 할로겐, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알콕시기인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  3. 제1항에 있어서,
    상기 시아노기 함유 피리미딘계 화합물이 2,4-피리미딘디카르보니트릴, 2-시아노-5-플루오로피리미딘, 2-시아노-4,6-디메틸피리미딘, 2-피리미딘카르보니트릴, 4-시아노-피리미딘, 2-시아노-4,6-디메톡시피리미딘, 2,4-디클로로-5-시아노-피리미딘, 및 5-시아노-2,4-디히드록시피리미딘으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  4. 제1항에 있어서,
    상기 전해질 염이 리튬염인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  5. 제4항에 있어서,
    상기 리튬염의 음이온이 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  6. 제1항에 있어서,
    상기 유기용매가 선형 카보네이트 화합물, 환형 카보네이트 화합물, 에테르 화합물, 에스테르 화합물, 및 아미드 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  7. 제6항에 있어서,
    상기 선형 카보네이트 화합물이 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 및 에틸프로필카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  8. 제6항에 있어서,
    상기 환형 카보네이트 화합물이 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  9. 제8항에 있어서,
    상기 할로겐화물이 플루오로에틸렌 카보네이트인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  10. 제6항에 있어서,
    상기 에테르 화합물이 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  11. 제1항에 있어서,
    상기 비수 전해액이 환형 설파이트, 포화 설톤, 불포화 설톤, 및 비환형 설폰으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  12. 애노드, 캐소드, 및 상기 캐소드와 애노드 사이에 개재된 세퍼레이터로 이루어진 전극조립체 및 상기 전극 조립체에 주입된 비수 전해액을 구비하는 리튬 이차전지에 있어서, 상기 비수 전해액이 제1항 내지 제11항 중 어느 한 항의 리튬 이차전지용 비수 전해액인 리튬 이차전지.
  13. 제12항에 있어서,
    상기 애노드가 리튬 금속, 탄소재, 금속 화합물, 또는 이들의 혼합물을 포함하는 애노드 활물질층을 구비한 것을 특징으로 하는 리튬 이차전지.
  14. 제13항에 있어서,
    상기 금속 화합물이 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, 및 Ba로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 금속 원소를 함유하는 화합물이거나, 또는 이들 화합물 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지.
  15. 제12항에 있어서,
    상기 캐소드가 리튬 함유 산화물을 포함하는 캐소드층을 구비하는 것을 특징으로 하는 리튬 이차전지.
  16. 제15항에 있어서,
    상기 리튬 함유 산화물이 리튬 함유 전이금속 산화물인 것을 특징으로 하는 리튬 이차전지.
  17. 제16항에 있어서,
    상기 리튬 함유 전이금속 산화물이 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1 - yCoyO2, LiCo1 - yMnyO2, LiNi1 -yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2 - zNizO4, LiMn2 -zCozO4(0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2016/003369 2015-03-31 2016-03-31 비수 전해액 및 이를 구비한 리튬 이차전지 WO2016159702A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/544,372 US10193182B2 (en) 2015-03-31 2016-03-31 Non-aqueous electrolyte and lithium secondary battery comprising same
EP16773483.9A EP3279998B8 (en) 2015-03-31 2016-03-31 Non-aqueous electrolyte and lithium secondary battery comprising same
PL16773483T PL3279998T3 (pl) 2015-03-31 2016-03-31 Niewodny elektrolit i zawierający go akumulator litowy
CN201680008661.6A CN107431197B (zh) 2015-03-31 2016-03-31 非水电解质及包含该非水电解质的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0045346 2015-03-31
KR20150045346 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159702A1 true WO2016159702A1 (ko) 2016-10-06

Family

ID=57006235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003369 WO2016159702A1 (ko) 2015-03-31 2016-03-31 비수 전해액 및 이를 구비한 리튬 이차전지

Country Status (6)

Country Link
US (1) US10193182B2 (ko)
EP (1) EP3279998B8 (ko)
KR (1) KR101822064B1 (ko)
CN (1) CN107431197B (ko)
PL (1) PL3279998T3 (ko)
WO (1) WO2016159702A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148950A (zh) * 2017-06-15 2019-01-04 宁德时代新能源科技股份有限公司 一种电解液及电池
CN109256585A (zh) * 2017-07-14 2019-01-22 宁德时代新能源科技股份有限公司 一种电解液及电化学装置
CN109256586A (zh) * 2017-07-14 2019-01-22 宁德时代新能源科技股份有限公司 一种电解液及电化学装置
EP3514880A4 (en) * 2017-07-05 2019-11-06 Contemporary Amperex Technology Co., Limited ELECTROLYTE AND ELECTROCHEMICAL DEVICE

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102472907B1 (ko) * 2017-08-16 2022-12-02 삼성에스디아이 주식회사 술폰계 첨가제를 포함하는 리튬이차전지
JP7455498B2 (ja) * 2017-11-29 2024-03-26 株式会社Gsユアサ 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
CN110391458B (zh) 2018-04-20 2021-01-15 宁德时代新能源科技股份有限公司 电解液及电化学装置
CN110391459B (zh) 2018-04-20 2021-01-15 宁德时代新能源科技股份有限公司 电解液及电化学装置
CN110391461B (zh) * 2018-04-20 2021-01-15 宁德时代新能源科技股份有限公司 电解液及电化学装置
CN109546222B (zh) * 2018-11-28 2020-12-18 深圳中科瑞能实业有限公司 铝负极储能器件电解液、铝负极储能器件及其制备方法
CN111326783B (zh) 2018-12-14 2021-07-13 宁德时代新能源科技股份有限公司 锂离子电池
CN111326732B (zh) 2018-12-14 2021-07-09 宁德时代新能源科技股份有限公司 锂离子电池
CN111326792B (zh) * 2018-12-14 2021-02-23 宁德时代新能源科技股份有限公司 电解液及电池
CN111326719B (zh) 2018-12-14 2021-08-06 宁德时代新能源科技股份有限公司 锂离子电池
CN111326734B (zh) 2018-12-14 2021-11-02 宁德时代新能源科技股份有限公司 锂离子电池
CN111326733B (zh) * 2018-12-14 2021-05-04 宁德时代新能源科技股份有限公司 锂离子电池
CN111326718B (zh) * 2018-12-14 2021-10-01 宁德时代新能源科技股份有限公司 锂离子电池
CN111326791B (zh) * 2018-12-14 2021-01-15 宁德时代新能源科技股份有限公司 电解液及电池
CN111326793B (zh) * 2018-12-14 2021-07-13 宁德时代新能源科技股份有限公司 锂离子电池
CN111326728B (zh) * 2018-12-14 2021-09-21 宁德时代新能源科技股份有限公司 锂离子电池
CN111477961B (zh) * 2020-05-29 2022-10-28 珠海市赛纬电子材料股份有限公司 一种锂离子电池非水电解液及含该非水电解液的锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080077570A (ko) * 2007-02-20 2008-08-25 마츠시타 덴끼 산교 가부시키가이샤 비수 전해질 2차 전지
KR101225893B1 (ko) * 2006-07-24 2013-01-24 주식회사 엘지화학 높은 안전성을 가진 전기화학소자
KR101301082B1 (ko) * 2011-07-18 2013-08-27 주식회사 엘지화학 비수 전해액 및 이를 이용한 리튬 이차전지
KR20130143083A (ko) * 2010-11-16 2013-12-30 히다치 막셀 가부시키가이샤 비수 이차 전지
KR20140037622A (ko) * 2012-09-19 2014-03-27 에스케이케미칼주식회사 이차 전지용 전해액 조성물 및 그 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967233B1 (fr) * 1998-06-25 2006-03-01 Hydro-Quebec Matériau à conduction ionique
KR100814827B1 (ko) * 2007-04-05 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP2010044883A (ja) * 2008-08-08 2010-02-25 Mitsui Chemicals Inc 非水電解液及びリチウム二次電池
JP2011119097A (ja) 2009-12-02 2011-06-16 Sony Corp 非水電解質電池
JP5687804B2 (ja) * 2011-07-14 2015-03-25 エルジー・ケム・リミテッド 非水電解液及びそれを用いたリチウム二次電池
JP5902047B2 (ja) * 2012-06-20 2016-04-13 富士フイルム株式会社 非水二次電池用電解液および非水電解液二次電池
CN103022556B (zh) 2013-01-05 2015-06-03 宁德新能源科技有限公司 锂离子电池及其电解液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225893B1 (ko) * 2006-07-24 2013-01-24 주식회사 엘지화학 높은 안전성을 가진 전기화학소자
KR20080077570A (ko) * 2007-02-20 2008-08-25 마츠시타 덴끼 산교 가부시키가이샤 비수 전해질 2차 전지
KR20130143083A (ko) * 2010-11-16 2013-12-30 히다치 막셀 가부시키가이샤 비수 이차 전지
KR101301082B1 (ko) * 2011-07-18 2013-08-27 주식회사 엘지화학 비수 전해액 및 이를 이용한 리튬 이차전지
KR20140037622A (ko) * 2012-09-19 2014-03-27 에스케이케미칼주식회사 이차 전지용 전해액 조성물 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279998A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148950A (zh) * 2017-06-15 2019-01-04 宁德时代新能源科技股份有限公司 一种电解液及电池
US10862170B2 (en) 2017-06-15 2020-12-08 Contemporary Amperex Technology Co., Limited Electrolyte and battery
EP3514879A4 (en) * 2017-06-15 2019-11-06 Contemporary Amperex Technology Co., Limited ELECTROLYTE SOLUTION AND BATTERY
US11264646B2 (en) 2017-07-05 2022-03-01 Contemporary Amperex Technology Co., Limited Electrolyte and electrochemical device
EP3514880A4 (en) * 2017-07-05 2019-11-06 Contemporary Amperex Technology Co., Limited ELECTROLYTE AND ELECTROCHEMICAL DEVICE
EP3528331A4 (en) * 2017-07-14 2020-06-03 Contemporary Amperex Technology Co., Limited ELECTROLYTE AND ELECTROCHEMICAL DEVICE
EP3514882A4 (en) * 2017-07-14 2020-06-03 Contemporary Amperex Technology Co., Limited ELECTROLYTE SOLUTION FOR ELECTROCHEMICAL DEVICE
US10826124B2 (en) 2017-07-14 2020-11-03 Contemporary Amperex Technology Co., Ltd. Electrolyte and electrochemical device
CN109256586A (zh) * 2017-07-14 2019-01-22 宁德时代新能源科技股份有限公司 一种电解液及电化学装置
CN109256585B (zh) * 2017-07-14 2021-01-08 宁德时代新能源科技股份有限公司 一种电解液及电化学装置
CN109256586B (zh) * 2017-07-14 2021-01-12 宁德时代新能源科技股份有限公司 一种电解液及电化学装置
CN109256585A (zh) * 2017-07-14 2019-01-22 宁德时代新能源科技股份有限公司 一种电解液及电化学装置
US11316195B2 (en) 2017-07-14 2022-04-26 Contemporary Amperex Technology Co., Limited Electrolyte and electrochemical device

Also Published As

Publication number Publication date
KR20160117370A (ko) 2016-10-10
EP3279998B8 (en) 2022-02-16
KR101822064B1 (ko) 2018-01-25
PL3279998T3 (pl) 2022-05-09
EP3279998A4 (en) 2018-09-19
EP3279998B1 (en) 2022-01-12
US10193182B2 (en) 2019-01-29
US20180013168A1 (en) 2018-01-11
EP3279998A1 (en) 2018-02-07
CN107431197B (zh) 2020-08-21
CN107431197A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2013012248A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2013012250A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2017086672A1 (ko) 비수전해액 및 이를 포함하는 리튬 이차전지
WO2015190705A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20130003865A (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2015060697A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2012021029A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2013073901A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2018212429A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020153822A1 (ko) 리튬 이차 전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019083330A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2014116082A1 (ko) 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차 전지
WO2020076091A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2019216695A1 (ko) 리튬 이차 전지
WO2013009155A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2013180522A1 (ko) 리튬 이차전지
WO2015047045A1 (ko) 리튬 이차전지
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지
WO2023121028A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2024038942A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액, 및 이를 포함하는 리튬 이차전지
WO2021133125A1 (ko) 비수계 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544372

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016773483

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE