WO2015190705A1 - 비수 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

비수 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015190705A1
WO2015190705A1 PCT/KR2015/004613 KR2015004613W WO2015190705A1 WO 2015190705 A1 WO2015190705 A1 WO 2015190705A1 KR 2015004613 W KR2015004613 W KR 2015004613W WO 2015190705 A1 WO2015190705 A1 WO 2015190705A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
group
carbonate
secondary battery
battery
Prior art date
Application number
PCT/KR2015/004613
Other languages
English (en)
French (fr)
Inventor
오정우
안경호
김민정
정이진
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/767,033 priority Critical patent/US9397367B2/en
Priority to JP2016527961A priority patent/JP6028957B2/ja
Priority to EP15741468.1A priority patent/EP2983234B1/en
Priority to CN201580000321.4A priority patent/CN105453327B/zh
Publication of WO2015190705A1 publication Critical patent/WO2015190705A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte and a lithium secondary battery comprising the same.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries using water-soluble electrolytes. It is attracting attention as an advantage.
  • a lithium secondary battery has safety problems such as ignition and explosion caused by using an organic electrolyte, and has a disadvantage in that manufacturing is difficult.
  • Lithium ion polymer battery has been developed to improve the weakness of the lithium secondary battery, but there is a relatively low problem compared to the lithium secondary battery in terms of battery capacity.
  • lithium ions generated from the positive electrode active material such as lithium metal oxide move to the negative electrode active material such as graphite and are inserted between the layers of the negative electrode active material.
  • the negative electrode active material such as graphite
  • lithium ions are highly reactive, lithium ions react with carbon constituting the electrolyte and the negative electrode active material on the surface of the negative electrode active material to generate compounds such as Li 2 CO 3 , Li 2 O, LiOH, and the like. And these compounds form a kind of stable film (Solid Electrolyte Interface, SEI) on the surface of the anode active material.
  • the film formed on the surface of the negative electrode active material acts as an ion tunnel to pass only lithium ions, and prevents the structure of the negative electrode from being destroyed by the insertion of organic solvent molecules having a large molecular weight moving together with the lithium ions in the electrolyte between the layers of the negative electrode active material. .
  • decomposition of the electrolyte solution does not occur, and the amount of lithium ions in the electrolyte solution is reversibly maintained, thereby maintaining stable charging and discharging.
  • the first technical problem to be solved by the present invention is to provide a non-aqueous electrolyte that can form a stable film on the electrode, thereby improving the initial capacity and output characteristics, as well as the life characteristics of the battery.
  • Another object of the present invention is to provide a lithium secondary battery, a battery module, and a battery pack including the nonaqueous electrolyte.
  • a non-aqueous electrolyte comprising an organic solvent, a lithium salt and a phosphorus compound of the formula (1).
  • X 1 and X 2 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms,
  • R is selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a hydroxy group and an alkoxy group having 1 to 20 carbon atoms,
  • n is an integer of 1 or 2.
  • a lithium secondary battery, a battery module, and a battery pack including the nonaqueous electrolyte are provided.
  • the nonaqueous electrolyte according to an embodiment of the present invention includes a phosphorus-based compound containing an acryloyloxy group as an electrolyte additive, thereby forming a stable film on the electrode during charging and discharging by applying to a battery, and as a result, Together, the initial capacity and output characteristics at room temperature and low temperature can be improved.
  • Example 1 is a graph showing the capacity ratio (dQ / dV) according to the voltage of the battery prepared in Example 1 and Comparative Example 1.
  • Example 2 is a graph showing the initial capacity of the battery prepared in Example 1 and Comparative Example 1.
  • Example 3 is a graph showing the output of the battery produced in Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing resistance values of the batteries prepared in Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing resistance values of the batteries prepared in Example 1 and Comparative Example 1.
  • Example 5 is a graph showing the discharge output of the battery prepared in Example 1 and Comparative Example 1.
  • Example 6 is a graph illustrating a change in potential with time when the resistance of the batteries prepared in Example 1 and Comparative Example 1 is reduced.
  • a nonaqueous electrolyte comprising an organic solvent, a lithium salt and a phosphorus-based compound of Formula 1 below.
  • X 1 and X 2 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be a linear or branched alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, or t-butyl group.
  • X may be a hydrogen atom or a methyl group.
  • R may be selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a hydroxy group (—OH), and an alkoxy group having 1 to 20 carbon atoms.
  • the alkyl group may be a straight chain or a minute having 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, hexyl group, heptyl group, octyl group, or decyl group.
  • the cycloalkyl group may be specifically cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantyl group, norbornyl group, etc.
  • the alkoxy group is specifically methoxy group, ethoxy It may be a time period, a propoxy group, butoxy group, t-butoxy group, etc.
  • R may be a linear or branched alkyl or hydroxy group having 1 to 6 carbon atoms, and more specifically, may be a hydroxy group.
  • m is an integer of 0-29, More specifically, it is an integer of 0-3, More specifically, it is an integer of 0 or 1.
  • n is an integer of 1 or 2.
  • the phosphorus-based compound of Formula 1, X 1 and X 2 are each independently a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and wherein R is a straight chain having 1 to 6 carbon atoms or It may be a compound which is a branched alkyl group or a hydroxy group. More specifically, the phosphorus compound of Chemical Formula 1 is wherein X 1 and X 2 are each independently a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, R is a hydroxy group, and m is an integer of 0 to 1. And n is a compound that is an integer of 1 or 2.
  • the phosphorus-based compound of Formula 1 may be more specifically a compound of Formula 1a or 1b:
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, more specifically a linear or branched alkyl group having 1 to 6 carbon atoms, and R 3 is a hydroxy group (-OH) Or a C1-C20 alkoxy group, More specifically, it is a hydroxyl group.
  • R 3 is a hydroxy group (-OH) Or a C1-C20 alkoxy group, More specifically, it is a hydroxyl group.
  • the alkyl group, cycloalkyl group and alkoxy group are as defined above.
  • the phosphorus-based compound of Formula 1 may be selected from the group consisting of compounds of Formulas 2a to 2f.
  • Phosphorus-based compound of Formula 1 forms a stable SEI (Solid electrolyte interface) in the electrode during charging and discharging of the battery, at room temperature (23 ⁇ 5 °C) and low temperature (-10 ⁇ 5 °C), especially at low temperatures
  • SEI Solid electrolyte interface
  • the lifespan characteristics can be improved along with the performance of the initial capacity and output characteristics of the battery.
  • the additive reduction and decomposition reaction is difficult due to the high potential, and the resistance of the SEI is high even though SEI is formed due to the catalytic properties of the lithium titanium oxide.
  • the P O group contained in the phosphorus-based compound stabilizes the catalytic properties of the lithium titanium oxide, and the acryloyloxy group increases the reduction reaction to SEI. Can reduce the resistance. As a result, the performance and lifespan characteristics of the battery can be further improved.
  • Phosphorus-based compound of Formula 1 as described above may be prepared and used according to a conventional method, or may be obtained commercially.
  • the phosphorus-based compound of Formula 1 may be included in 0.05 to 5.0% by weight relative to the total weight of the non-aqueous electrolyte.
  • the content of the phosphorus-based compound of Formula 1 is less than 0.05% by weight, it is difficult to form a stable film for the electrode, and thus the effect of the film formation may be insufficient.
  • the content of the phosphorus-based compound of Formula 1 exceeds 5.0% by weight, there is a fear that the formed film acts as a resistance to reduce the initial capacity and output of the battery.
  • the non-aqueous electrolyte according to an embodiment of the present invention may include an organic solvent and a lithium salt, together with the phosphorus compound of the formula (1).
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may include a carbonate solvent, an ester solvent, an ether solvent, a ketone solvent or an aromatic hydrocarbon solvent, and any one or a mixture of two or more thereof may be used.
  • the carbonate-based organic solvent may specifically include a cyclic carbonate, a linear carbonate, or a mixture thereof.
  • specific examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate (2,3).
  • specific examples of the halide may include fluoroethylene carbonate, but are not limited thereto.
  • linear carbonate compound examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, or methylpropyl carbonate.
  • ester organic solvent is specifically methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate. ), Methyl butyrate, ethyl butyrate, dimethyl sulfoxide, acetonitrile, dimethoxy ethane, diethoxy ethane, sulfolane ), Gamma-butyrolactone, propylene sulfide, or tetrahydrofurane, and any one or a mixture of two or more thereof may be used.
  • the ester organic solvent is methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, Linear ester compounds such as propyl propionate, methyl butyrate, and ethyl butyrate.
  • the ether solvent may be specifically dibutyl ether (dibutyl ether) or tetrahydrofuran (tetrahydrofuran) and the like
  • the ketone solvent may be specifically cyclohexanone (cyclohexanone) and the like
  • the aromatic hydrocarbon solvent Specifically, benzene or fluorobenzene may be used.
  • the organic solvent may include a mixture of the cyclic carbonate and the ester solvent, and more specifically, may include a mixture in which the ester solvent is mixed in a higher content than the cyclic carbonate. More specifically, the organic solvent may include a mixture of the cyclic carbonate solvent and the ester solvent in a volume ratio of 5: 5 to 2: 8.
  • the phosphorus-based compound of Formula 1 is used in combination with the cyclic carbonate and the ester-based solvent mixed in the above mixing volume ratio, it may exhibit more improved internal resistance reduction and battery characteristics.
  • the lithium salt is lithium chloride (LiCl), lithium bromide (LiBr), lithium iodine (LiI), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), Lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium methanesulfonate (CH 3 SO 3 Li), lithium tri Fluoromethanesulfonate (CF 3 SO 3 Li), lithium bis (trifluoromethyl) sulfonimide (LiN (SO 2 CF 3 ) 2 ), lithium
  • the lithium salt may be lithium hexafluorophosphate (LiPF 6 ). Since LiPF 6 has a high dissociation degree, the conductivity of the nonaqueous electrolyte solution can be increased, and further, the reduction decomposition reaction of the electrolyte solution on the negative electrode can be suppressed. Accordingly, when the phosphorus-based compound of Formula 1 is used together with LiPF 6 as a lithium salt, it may exhibit an improved effect in terms of room temperature and low temperature cycle characteristics, and low temperature capacity characteristics.
  • LiPF 6 lithium hexafluorophosphate
  • the lithium salt may be included in a concentration of 0.6 mol / l to 2 mol / l in the non-aqueous electrolyte.
  • concentration of the lithium salt is less than 0.6 mol / l, the conductivity of the non-aqueous electrolyte may be lowered because the conductivity of the non-aqueous electrolyte is lowered.
  • concentration of the lithium salt is higher than 2 mol / l, the viscosity of the non-aqueous electrolyte may increase, leading to a decrease in mobility of lithium ions. have.
  • the lithium salt may be more specifically included in the concentration of 0.7 mol / l to 1.6 mol / l in the electrolyte.
  • the nonaqueous electrolyte according to an embodiment of the present invention may optionally further include additives included in the nonaqueous electrolyte for the purpose of improving the life characteristics of the battery, reducing battery capacity, and improving the discharge capacity of the battery. have.
  • the additive is pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dinon, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride, and the like, any one or a mixture of two or more of which may be used.
  • the additive may be included in an amount of 0.1 to 1% by weight based on the total weight of the nonaqueous electrolyte.
  • a lithium secondary battery including the nonaqueous electrolyte is provided.
  • the lithium secondary battery includes a negative electrode, a positive electrode, a separator and the nonaqueous electrolyte.
  • the lithium secondary battery may be manufactured according to a conventional method known in the art, and may be prepared by inserting a porous separator between a negative electrode and a positive electrode and then introducing a nonaqueous electrolyte according to the present invention.
  • the negative electrode includes a negative electrode current collector, and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode active material layer may include a negative electrode active material, and may further include a conductive material and a binder.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the negative electrode active material.
  • a carbon material, a metal compound or a mixture thereof can be used.
  • the carbonaceous material both low crystalline carbon and high crystalline carbon may be used.
  • the low crystalline carbon soft carbon and hard carbon are representative
  • the high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon.
  • High-temperature calcined carbon such as mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes are typical. Any one commonly used in battery carbon materials can be used without limitation.
  • the metal compound is made of Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr and Ba, etc. It may be a compound containing any one or two or more metal elements selected from the group. These metal compounds can be used in any form, such as single, alloys, oxides (TiO 2 , SnO 2, etc.), nitrides, sulfides, borides, and alloys with lithium. Can be. Among them, one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
  • the negative electrode active material may include lithium titanium oxide (LTO).
  • the lithium titanium oxide may be Li 0.8 Ti 2.2 O 4 , Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1.33 Ti 1.67 O 4, or Li 1.14 Ti 1.71 O 4 , and any one or two or more thereof. Mixtures can be used.
  • the resistance of the SEI formed on the electrode surface may be reduced as described above.
  • the conductive material is used to impart conductivity to the negative electrode, and may be used without particular limitation as long as it has electronic conductivity without causing chemical change in the battery.
  • Specific examples include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black or carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum or silver; Needle or branched conductive whiskers such as zinc oxide whiskers and calcium carbonate whiskers; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and any one or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 to 30 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the binder serves to improve adhesion between the negative electrode active material particles and adhesion between the negative electrode active material and the current collector, and can be used without particular limitation as long as it is used in a composition for forming a negative electrode.
  • the binder may be polyvinylidene fluoride (PVDF), polytetrafluoroethylene, or polyhexafluoropropylene or vinylidene fluoride-hexafluoropropylene copolymer (PVDF).
  • fluorine-based polymers such as -co-HFP
  • Polyalkylene-based polymers such as polyethylene or polypropylene
  • Poly (meth) acrylate-based polymers such as polymethylmethacrylate or polyacrylate
  • Polyacrylonitrile Cellulose polymers such as carboxymethyl cellulose (CMC);
  • various rubbers such as styrene butadiene rubber or fluorine rubber, and any one or a mixture of two or more thereof may be used.
  • the binder may be a fluorine-based polymer containing a functional group capable of hydrogen bonding with a hydroxyl group on the surface of the negative electrode active material, such as a carboxyl group, a hydroxyl group, a sulfonic acid group, a glycidyl group, and the like in a molecule thereof.
  • the functional groups included in the binder may form a hydrogen bond with a hydroxyl group present on the surface of the current collector or the surface of the negative electrode active material to improve adhesion.
  • the binder may be included in an amount of 1 to 30 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer positioned on the positive electrode current collector.
  • the cathode active material layer may include a cathode active material, and may further include a conductive material and a binder.
  • the conductive material and the binder may be the same as those described above for the negative electrode.
  • the current collector used for the negative electrode and the positive electrode is a metal with high conductivity, a metal that can easily adhere to the composition for forming the active material layer in the negative electrode and the positive electrode can be used without limitation as long as it is not reactive in the voltage range of the battery Can be.
  • the positive electrode current collector may be a foil made of aluminum, nickel, or a combination thereof
  • the negative electrode current collector may be a foil made of copper, gold, nickel, or a copper alloy, or a combination thereof.
  • the current collector may be used by stacking two or more substrates made of the materials.
  • the negative electrode and the positive electrode are prepared by mixing and dispersing each active material with a conductive material and a binder in a solvent to prepare an electrode mixture, and then applying, drying, and rolling the electrode mixture on at least one surface of a current collector. Can be.
  • a heat treatment under vacuum at about 50 to 250 ° C. for about 2 hours may be further performed.
  • the thickness of the positive electrode active material layer manufactured by the manufacturing method as described above may be 30 to 120 ⁇ m, or 50 to 100 ⁇ m, and the thickness of the negative electrode active material layer is 1 to 100 ⁇ m, or 3 to 3 70 ⁇ m.
  • the positive electrode and the negative electrode satisfy this thickness range, the amount of active material in each electrode active material layer is sufficiently secured, thereby preventing the battery capacity from decreasing, and the cycle characteristics and the rate characteristics can be improved.
  • the positive electrode and the negative electrode are separated by a separator.
  • the separator is a porous polymer film commonly used in a lithium secondary battery separator, for example, an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, Porous polymer films made of polyolefin-based polymers such as ethylene / hexene copolymers and ethylene / methacrylate copolymers may be used alone or in a stack thereof, or conventional porous nonwoven fabrics such as high melting point glass fibers, Nonwoven fabrics made of polyethylene terephthalate fibers and the like may be used, but are not limited thereto.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be round, square, pouch type, or coin type using a can.
  • a circular battery may be used, more preferably the circular battery may have a CID.
  • the lithium secondary battery according to an embodiment of the present invention includes the phosphorus-based compound of Formula 1 as a non-aqueous electrolyte additive, with improved initial capacity and output characteristics at room temperature and low temperature, particularly at low temperature (-10 ⁇ 5 ° C.). Since stable life characteristics are exhibited, they are useful for portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicle fields such as hybrid electric vehicles.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack may be a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV). It can be used as a medium-to-large device power source such as an electric vehicle or a system for storing power.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • PVDF polyvinylidene fluoride
  • LTO Li 0.8 Ti 2.2 O 4
  • SBR styrene butadiene rubber
  • CMC Carboxymethyl cellulose
  • Coin cells were prepared in a conventional manner using an electrode assembly prepared by interposing a polyethylene porous membrane between the prepared anode and cathode and the prepared nonaqueous electrolyte.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the phosphorus compound of Formula 2a was used instead of methacrylate phosphate.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the phosphorous compound of Formula 2c was used instead of methacrylate phosphate.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the phosphorus compound of Formula 2f was used instead of methacrylate phosphate.
  • Example 1 A lithium secondary battery was prepared in the same manner as in Example 1 except that methacrylate phosphate was not added in the preparation of the nonaqueous electrolyte.
  • the battery performance of the batteries prepared in Example 1 and Comparative Example 1 was evaluated in the following manner. Each experiment was repeated three times and the results are shown as the average of three measurements, respectively.
  • Example 1 the lithium secondary batteries prepared in Example 1 and Comparative Example 1 were charged / discharged under the conditions of 0.3 C charge and 0.3 C discharge at room temperature (23 ° C.), and the initial capacity of the battery was measured. It was. The results are shown in FIG.
  • the battery of Example 1 comprising a non-aqueous electrolyte containing methacrylic acid phosphate exhibited an initial capacity of 540 mAh or more, in the cell of Comparative Example 1 in which the electrolyte solution does not contain methacrylic acid phosphate Compared to the initial capacity of (535 ⁇ 537mAh) showed about 0.9% more improved results.
  • Example 1 containing a non-aqueous electrolyte containing methacrylic acid phosphate has a resistance value of about 11% lower than that of Comparative Example 1, resulting in improved output characteristics It became. Specifically, the output of the battery manufactured in Example 1 was 11% more improved than in Comparative Example 1.
  • FIG. 5 is a graph showing discharge power of batteries manufactured in Example 1 and Comparative Example 1.
  • the battery of Example 1 comprising a non-aqueous electrolyte containing methacrylic acid phosphate is higher output than the battery prepared in Comparative Example 1, specifically about 25% even at a low temperature of -10 °C It showed an improved output, and the resistance characteristic was also improved by about 20%.
  • FIG. 6 is a graph showing a potential change per hour, that is, an output amount when the resistance of the batteries manufactured in Example 1 and Comparative Example 1 is reduced. As can be seen in Figure 6, it can be seen that the battery produced in Example 1 has a higher output per hour when the resistance is reduced than the battery prepared in Comparative Example 1. It can be seen that the battery manufactured in Example 1 further improved the output 0.7% even at low temperature (-10 ° C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명에서는 유기용매; 리튬염; 및 아크릴로일옥시기를 포함하는 인계 화합물을 포함하는 비수 전해액 및 이를 포함하는 리튬 이차전지를 제공한다. 상기 비수 전해액은 상기한 인계 화합물을 포함함으로써, 전지의 충방전시 전극에 안정적인 SEI를 형성하여, 전지의 수명특성과 함께 상온 및 저온에서의 초기용량 및 출력 특성을 향상시킬 수 있다.

Description

비수 전해액 및 이를 포함하는 리튬 이차전지
본 발명은 비수 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다.
이러한 전기화학소자 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있다. 최근에는 이차전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 개발로 연구가 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는, 수용성 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나, 이러한 리튬 이차전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 있고, 제조가 까다로운 단점이 있다. 이에 대해 리튬 이차전지의 약점을 개선한 리튬 이온 고분자 전지가 개발되었으나, 전지 용량 면에서 리튬 이차전지와 비교하여 상대적으로 낮은 문제점이 있다.
한편, 리튬 이차전지의 초기 충전시, 리튬 금속 산화물 등의 양극활물질로부터 발생된 리튬 이온은 그래파이트 등의 음극활물질로 이동하여, 음극활물질의 층간에 삽입된다. 이때, 리튬 이온은 반응성이 강하기 때문에, 음극활물질 표면에서 전해액 및 음극활물질을 구성하는 탄소와 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성한다. 그리고 이들 화합물은 음극활물질 표면에 일종의 안정적인 피막(Solid Electrolyte Interface, SEI)을 형성하게 된다. 음극활물질 표면에 형성된 피막은 이온 터널의 역할을 수행하여 리튬 이온만을 통과시키고, 전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기 용매 분자가 음극활물질의 층간에 삽입되어 음극 구조가 파괴되는 것을 막아준다. 또, 전해액과 음극활물질의 접촉을 방지함으로써 전해액의 분해가 발생하지 않고, 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지될 수 있다.
그러나, 리튬 이차전지는 충방전이 진행됨에 따라 탄소 격자상수의 변화 및 용매의 분해로 인한 가스발생 등에 의해 탄소 물질이 전자 이동 통로에서 탈리됨으로써 그 용량이 저하하게 된다. 따라서 이러한 문제를 해소하기 위해, 전지의 초기용량 및 출력을 개선하기 위한 방법의 개발이 계속 요구되고 있는 실정이다.
본 발명이 해결하고자 하는 제1 기술적 과제는, 전극에 안정적인 피막을 형성하여, 전지의 수명 특성과 함께 초기용량 및 출력 특성을 개선시킬 수 있는 비수 전해액을 제공하는 것이다.
또, 본 발명이 해결하고자 하는 제2 기술적 과제는, 상기 비수 전해액을 포함하는 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면 유기용매, 리튬염 및 하기 화학식 1의 인계 화합물을 포함하는 비수 전해액이 제공된다.
[화학식 1]
Figure PCTKR2015004613-appb-I000001
상기 화학식 1에서,
X1 및 X2는 각각 독립적으로 수소원자 또는 탄소수 1 내지 4의 알킬기이고,
R은 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 히드록시기 및 탄소수 1 내지 20의 알콕시기로 이루어진 군에서 선택되며,
m은 0 내지 29의 정수이고, 그리고 n은 1 또는 2의 정수이다.
본 발명의 다른 일 실시예에 따르면, 상기 비수전해액을 포함하는 리튬 이차전지, 전지모듈 및 전지팩이 제공된다.
본 발명의 일 실시예에 따른 비수 전해액은 아크릴로일옥시기를 포함하는 인계 화합물을 전해액 첨가제로서 포함함으로써, 전지에 적용하여 충방전시 전극에 안정적인 피막을 형성하며, 그 결과로서 전지의 수명 특성과 함께 상온 및 저온에서의 초기용량 및 출력 특성을 향상시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 실시예 1 및 비교예 1에서 제조된 전지의 전압에 따른 용량비(dQ/dV)를 나타낸 그래프이다.
도 2는 실시예 1 및 비교예 1에서 제조된 전지의 초기용량을 나타낸 그래프이다.
도 3은 실시예 1 및 비교예 1에서 제조된 전지의 출력량을 나타낸 그래프이다.
도 4는 실시예 1 및 비교예 1에서 제조된 전지의 저항값을 나타낸 그래프이다.
도 5는 실시예 1 및 비교예 1에서 제조된 전지의 방전출력량을 나타낸 그래프이다.
도 6은 실시예 1 및 비교예 1에서 제조된 전지의 저항을 감소시켰을 때 시간에 따른 전위 변화를 관찰한 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따르면, 유기용매, 리튬염 및 하기 화학식 1의 인계 화합물을 포함하는 비수 전해액이 제공된다.
[화학식 1]
Figure PCTKR2015004613-appb-I000002
상기 화학식 1에서, X1 및 X2는 각각 독립적으로 수소원자 또는 탄소수 1 내지 4의 알킬기이다. 이때, 상기 알킬기는 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, 또는 t-부틸기 등과 같은 탄소수 1 내지 4의 직쇄 또는 분지상의 알킬기일 수 있다. 보다 구체적으로 상기 X는 수소원자 또는 메틸기일 수 있다.
또, 상기 화학식 1에서, R은 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 히드록시기(-OH) 및 탄소수 1 내지 20의 알콕시기로 이루어진 군에서 선택되는 것일 수 있다. 이때, 상기 알킬기는 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, t-부틸기, 헥실기, 헵틸기, 옥틸기, 또는 데실기 등과 같은 탄소수 1 내지 20의 직쇄 또는 분지상의 알킬기일 수 있고, 상기 사이클로알킬기는 구체적으로 사이클로프로필기, 사이클로부틸기, 사이클로펜틸기, 사이클로헥실기, 아다만틸기, 또는 노르보닐기 등일 수 있으며, 상기 알콕시기는 구체적으로 메톡시기, 에톡시기, 프로폭시기, 부톡시기 또는 t-부톡시기 등일 수 있다. 보다 구체적으로는 상기 R은 탄소수 1 내지 6의 직쇄 또는 분지상의 알킬기 또는 히드록시기일 수 있으며, 보다 더 구체적으로는 히드록시기일 수 있다.
또, 상기 화학식 1에서, m은 0 내지 29의 정수이고, 보다 구체적으로는 0 내지 3의 정수이며, 보다 더 구체적으로는 0 또는 1의 정수이다.
또, 상기 화학식 1에서 n은 1 또는 2의 정수이다.
보다 구체적으로, 상기 화학식 1의 인계 화합물은, 화학식 1에서 X1 및 X2가 각각 독립적으로 수소원자 또는 탄소수 1 내지 4의 직쇄 또는 분지상 알킬기이고, 그리고 상기 R이 탄소수 1 내지 6의 직쇄 또는 분지상 알킬기 또는 히드록시기인 화합물일 수 있다. 보다 더 구체적으로는 상기 화학식 1의 인계 화합물은 상기 X1 및 X2가 각각 독립적으로 수소원자 또는 탄소수 1 내지 4의 직쇄 또는 분지상 알킬기이고, 상기 R은 히드록시기이고, m은 0 내지 1의 정수이고, 그리고 n은 1 또는 2의 정수인 화합물일 수 있다.
또, 상기 화학식 1의 인계 화합물은 보다 구체적으로 하기 화학식 1a 또는 1b의 화합물일 수 있다:
[화학식 1a]
Figure PCTKR2015004613-appb-I000003
[화학식 1b]
Figure PCTKR2015004613-appb-I000004
상기 화학식 1a 및 1b에 있어서, X1, X2 및 m은 앞서 정의한 바와 동일하고,
R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 알킬기 또는 탄소수 3 내지 20의 사이클로알킬기이고, 보다 구체적으로는 탄소수 1 내지 6의 직쇄 또는 분지상의 알킬기이며, R3은 히드록시기(-OH) 또는 탄소수 1 내지 20의 알콕시기이고, 보다 구체적으로는 히드록시기이다. 이때 상기 알킬기, 사이클로알킬기 및 알콕시기는 앞서 정의한 바와 같다.
보다 더 구체적으로, 상기 화학식 1의 인계 화합물은 하기 화학식 2a 내지 2f의 화합물로 이루어진 군에서 선택되는 것일 수 있다.
Figure PCTKR2015004613-appb-I000005
상기 화학식 1의 인계 화합물은 전지의 충방전시 전극에 안정적인 SEI(Solid electrolyte interface; 부동태 피막)를 형성함으로써, 상온(23±5℃) 및 저온(-10±5℃), 이중에서도 특히 저온에서의 전지의 초기용량 및 출력특성의 성능과 함께 수명 특성을 향상시킬 수 있다. 또, 리튬 이차전지에 있어서 리튬티타늄 산화물계 음극활물질의 경우, 높은 전위로 인해 첨가제 환원분해반응이 어렵고, 또 리튬티타늄 산화물의 촉매 특성으로 인해 SEI가 형성되더라도 SEI의 저항이 높다. 이에 대해 상기 화학식 1의 인계 화합물이 전해액 첨가제로서 사용될 경우, 인계 화합물내 포함된 P=O기가 리튬티타늄 산화물의 촉매 특성을 안정화시키고, 또 아크릴로일옥시기(acryloyloxy group)가 환원반응을 증가시켜 SEI의 저항을 감소시킬 수 있다. 그 결과 전지의 성능 및 수명특성을 더욱 향상시킬 수 있다.
상기와 같은 화학식 1의 인계 화합물은 통상의 방법에 따라 제조하여 사용될 수도 있고, 또 상업적으로 입수하여 사용될 수도 있다.
또, 상기 화학식 1의 인계 화합물은 비수 전해액 총 중량에 대해 0.05 내지 5.0 중량%로 포함될 수 있다. 상기 화학식 1의 인계 화합물의 함량이 0.05 중량% 미만일 경우, 전극에 대해 안정적인 피막을 형성하기에 어렵고, 이에 따라 피막형성에 따른 효과가 미흡할 수 있다. 또, 상기 화학식 1의 인계 화합물의 함량이 5.0 중량%를 초과할 경우, 형성된 피막이 저항으로 작용하여 오히려 전지의 초기용량 및 출력을 감소시킬 우려가 있다.
한편, 본 발명의 일 실시예에 따른 비수 전해액은 상기 화학식 1의 인계 화합물과 함께, 유기용매 및 리튬염을 포함할 수 있다.
상기 유기용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로, 상기 유기용매로는 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매 또는 방향족 탄화수소계 용매 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 카보네이트계 유기용매는 구체적으로 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물을 포함할 수 있다. 또, 상기 환형 카보네이트의 구체적인 예로는 에틸렌 카보네이트(Ethylene carbonate), 프로필렌 카보네이트(Propylene carbonate), 1,2-부틸렌 카보네이트(1,2-Butylene carbonate), 2,3-부틸렌 카보네이트(2,3-Butylene carbonate), 1,2-펜틸렌 카보네이트(1,2-Pentylene carbonate), 2,3-펜틸렌 카보네이트(2,3-Pentylene carbonate), 비닐렌 카보네이트(Vinylene carbonate), 비닐에틸렌 카보네이트(Vinylethylene carbonate), 또는 이들의 할로겐화물 등을 들 수 있다. 또 상기 할로겐화물의 구체적인 예로는 플루오로에틸렌 카보네이트(fluoroethylene carbonate) 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(Dimethyl carbonate), 디에틸 카보네이트(Diethyl carbonate), 디프로필 카보네이트(Dipropyl carbonate), 에틸메틸 카보네이트(Ethylmethyl carbonate), 메틸프로필 카보네이트(Methylpropyl carbonate), 또는 에틸프로필 카보네이트(Ethylpropyl carbonate) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
또, 상기 에스테르계 유기용매로는 구체적으로 메틸 아세테이트(Methyl acetate), 에틸 아세테이트(Ethyl acetate), 메틸 프로피오네이트(Methyl propionate), 에틸 프로피오네이트(Ethyl propionate), 프로필 프로피오네이트(Propyl propionate), 메틸 부티레이트(Methyl butyrate), 에틸 부티레이트(Ethyl butyrate), 디메틸설퍼옥사이드(Dimethyl sulfoxide), 아세토니트릴(Acetonitrile), 디메톡시에탄(Dimethoxy ethane), 디에톡시에탄(Diethoxy ethane), 설포란(Sulfolane), 감마-부티로락톤(γ-Butyrolactone), 프로필렌 설파이드(Propylene sulfide), 또는 테트라하이드로푸란(Tetrahydrofurane) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 저온 성능 향상 효과의 현저함을 고려할 때 상기 에스테르계 유기용매는 메틸 아세테이트(Methyl acetate), 에틸 아세테이트(Ethyl acetate), 메틸 프로피오네이트(Methyl propionate), 에틸 프로피오네이트(Ethyl propionate), 프로필 프로피오네이트(Propyl propionate), 메틸 부티레이트(Methyl butyrate), 및 에틸 부티레이트(Ethyl butyrate) 등의 선형 에스테르 화합물일 수 있다.
또, 상기 에테르계 용매는 구체적으로 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등일 수 있고, 상기 케톤계 용매는 구체적으로 시클로헥사논(cyclohexanone) 등일 수 있으며, 또 상기 방향족 탄화수소계 용매는 구체적으로 벤젠(benzene) 또는 플루오로벤젠(fluorobenzene) 등일 수 있다.
상기한 유기용매 중에서도 에틸렌 카보네이트(ethylene carbonate) 및 프로필렌 카보네이트(Propylene carbonate)와 같은 환형 카보네이트계 용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있다. 또 이러한 환형 카보네이트계 용매에 에스테르계 용매를 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 제조할 수 있다. 이에 따라 상기 유기용매는 상기한 환형 카보네이트와 에스테르계 용매의 혼합물을 포함하는 것일 수 있으며, 보다 구체적으로는 상기한 에스테르계 용매가 환형 카보네이트 보다 더 높은 함량으로 혼합된 혼합물을 포함할 수 있다. 보다 더 구체적으로 상기 유기용매는 상기한 환형 카보네이트계 용매와 에스테르계 용매가 5:5 내지 2:8의 부피비로 혼합된 혼합물을 포함할 수 있다. 상기 화학식 1의 인계 화합물이 상기한 혼합 부피비로 혼합된 환형 카보네이트와 에스테르계 용매가 함께 사용될 때, 보다 더 개선된 내부 저항 감소 및 전지 특성 향상 효과를 나타낼 수 있다.
또 상기 비수 전해액에 있어서 리튬염으로는 통상 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은 리튬 클로라이드(LiCl), 리튬 브로마이드(LiBr), 리튬 아이오딘(LiI), 리튬 퍼클로레이트(LiClO4), 리튬 테트라플루오로보레이트(LiBF4), 리튬 헥사플루오로포스페이트(LiPF6), 리튬 헥사플루오로아르세네이트(LiAsF6), 리튬 헥사플루오로안티모네이트(LiSbF6), 리튬 테트라클로로알루미네이트(LiAlCl4), 리튬 메탄설포네이트(CH3SO3Li), 리튬 트리플루오로메탄설포네이트(CF3SO3Li), 리튬 비스(트리플루오로메틸) 술폰이미드(LiN(SO2CF3)2), 리튬 비스(퍼플루오로에틸술포닐) 이미드(LiN(SO2C2F5)2), 클로로보란리튬, 저급지방족 카르본산리튬 및 테트라페닐붕산리튬으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.
보다 구체적으로, 상기 리튬염은 리튬 헥사플루오로포스페이트(LiPF6)일 수 있다. LiPF6는 해리도가 높기 때문에, 비수 전해액의 전도도를 높일 수 있고, 더 나아가 음극 위에서의 전해액의 환원분해반응을 억제할 수 있다. 이에 따라 상기한 화학식 1의 인계 화합물이 리튬염으로서 LiPF6과 함께 사용될 때, 상온 및 저온 사이클 특성, 그리고 저온 용량 특성 면에서 보다 개선된 효과를 나타낼 수 있다.
또, 상기 리튬염은 비수 전해액 내에 0.6mol/l 내지 2mol/l의 농도로 포함될 수 있다. 상기 리튬염의 농도가 0.6mol/l 미만일 경우 비수 전해액의 전도도가 낮아져 비수 전해액 성능이 저하될 우려가 있고, 2mol/l를 초과하는 경우 비수 전해액의 점도가 증가하여 리튬 이온의 이동성이 저하될 우려가 있다. 이와 같은 비수 전해액의 전도도 및 리튬 이온의 이동성을 고려할 때, 상기 리튬염은 보다 구체적으로 상기 전해질 내에서 0.7mol/l 내지 1.6mol/l의 농도로 포함될 수 있다.
본 발명에 일 실시예에 따른 비수 전해액에는, 상기한 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 비수 전해액에 포함되는 첨가제가 선택적으로 더 포함될 수 있다.
구체적으로, 상기 첨가제는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또 상기 첨가제는 비수 전해액 총 중량에 대하여 0.1 내지 1중량%의 함량으로 포함될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 비수 전해액을 포함하는 리튬 이차전지가 제공된다.
구체적으로, 상기 리튬 이차전지는 음극, 양극, 분리막 및 상기 비수 전해액을 포함한다.
상기 리튬 이차전지는, 당해 기술분야에 알려진 통상적인 방법에 따라 제조할 수 있으며, 음극과 양극 사이에 다공성의 분리막을 넣고 본 발명에 따른 비수 전해액을 투입함으로써 제조될 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체, 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다. 또, 상기 음극활물질층은 음극활물질을 포함하며, 선택적으로 도전재 및 바인더를 더 포함할 수 있다.
상기 음극활물질층에 있어서, 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 탄소재, 금속 화합물 또는 이들의 혼합물을 사용할 수 있다. 상기 탄소질 재료로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다.
상기 저결정성 탄소로는 연화탄소(soft carbon), 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시 흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이며, 리튬 이차전지용 탄소재에 통상적으로 사용되는 것이라면 제한 없이 사용될 수 있다.
또, 상기 금속 화합물은 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr 및 Ba 등으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속 원소를 함유하는 화합물일 수 있다. 이들 금속 화합물은 단체, 합금, 산화물(TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다. 그 중에서도, Si, Ge 및 Sn으로부터 선택되는 1종 이상의 원소를 함유할 수 있고, Si 및 Sn으로부터 선택되는 1종 이상의 원소를 포함하는 것이 전지를 더 고용량화할 수 있다.
보다 구체적으로 상기 음극활물질은 리튬 티타늄 산화물(Litium titanium oxide, LTO)을 포함할 수 있다. 상기 리튬 티타늄 산화물은 구체적으로 Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4 또는 Li1.14Ti1.71O4 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 리튬 티타늄 산화물을 포함하는 음극 하에서, 본 발명의 일 실시예에 따른 인계 화합물을 포함하는 비수 전해액을 리튬 이차전지에 주액하면 앞서 설명한 바와 같이 전극 표면에 형성되는 SEI의 저항을 감소시킬 수 있다.
또, 상기 음극에 있어서, 상기 도전재는 음극에 도전성을 부여하기 위해 사용되는 것으로서, 전지에서 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연, 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 또는 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄 또는 은 등의 금속 분말 또는 금속 섬유; 산화아연 휘스커, 탄산칼슘 휘스커 등의 침상 또는 가지상의 도전성 휘스커(Whisker); 산화티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 도전재는 음극활물질 100중량부에 대하여 1 내지 30중량부로 포함될 수 있다.
또, 상기 음극에 있어서, 상기 바인더는 음극활물질 입자들 간의 부착 및 음극활물질과 집전체와의 접착력을 향상시키는 역할을 하는 것으로, 통상 음극 형성용 조성물에 사용되는 것이라면 특별한 제한없이 사용가능하다. 구체적으로, 상기 바인더는 폴리비닐리덴플로라이드(polyvinylidene fluoride, PVDF), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 또는 폴리헥사플루오로프로필렌(polyhexafluoropropylene) 또는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP) 등의 불소계 고분자; 폴리에틸렌(polyethylene), 또는 폴리프로필렌(polypropylene) 등의 폴리알킬렌계 고분자; 폴리메틸메타크릴레이트(polymethylmethacrylate), 또는 폴리아크릴레이트(polyacrylate) 등의 폴리(메트)아크릴레이트계 고분자; 폴리아크릴로니트릴(polyacrylonitrile); 카르복시메틸 셀룰로스(CMC, carboxymethyl cellulose) 등의 셀룰로오스계 고분자; 또는 스티렌 부타디엔 고무(styrene butadiene rubber) 또는 불소 고무 등의 각종 고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 바인더는 분자 내에 카르복시기, 히드록시기, 술폰산기, 글리시딜기 등과 같이 음극활물질 표면의 히드록시기와 수소결합 가능한 관능기를 포함하는 불소계 고분자일 수도 있다. 이와 같이 바인더에 포함된 상기 관능기들은 집전체 표면이나 음극활물질 표면에 존재하는 히드록시기와 수소결합을 형성하여 접착성을 향상시킬 수 있다. 또, 상기 음극활물질 표면에 리튬 이온의 선택적 투과성 피막을 형성하여, 초기 방전시에 음극활물질 표면에서 전해질과 리튬이온의 반응으로 합성되는 리튬 화합물의 생성을 억제할 수 있다. 그 결과 단락 등에 의해 전지 내부의 온도가 상승하여도 열적으로 불안정한 리튬 화합물이 적기 때문에, 분해 발열이 억제되고 음극활물질 내의 리튬이온과 전해질의 반응이 억제될 수 있다. 상기 바인더는 음극활물질 100중량부에 대하여 1 내지 30중량부로 포함될 수 있다.
한편, 상기 리튬 이차전지에 있어서, 상기 양극은 양극집전체, 및 상기 양극집전체 상에 위치하는 양극활물질층을 포함한다. 또, 상기 양극활물질층은 양극활물질을 포함하며, 선택적으로 도전재 및 바인더를 더 포함할 수 있다.
상기 양극활물질층에 있어서, 양극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)이 사용될 수 있다. 구체적으로 상기 양극활물질은 코발트, 망간, 니켈 또는 알루미늄과 같은 전이금속과 리튬을 포함하는 리튬전이금속 산화물일 수 있으며, 보다 구체적으로는 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2) 및 LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 양극에 있어서, 상기 도전재 및 바인더는 앞서 음극에서 설명한 것과 동일한 것일 수 있다.
한편, 상기 음극 및 양극에 사용되는 집전체는 전도성이 높은 금속으로, 상기 음극 및 양극에서의 활물질층 형성용 조성물이 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이라면 제한 없이 사용할 수 있다. 구체적으로 양극집전체로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극집전체로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 집전체는 상기 물질들로 이루어진 기재들을 2층 이상 적층하여 사용할 수도 있다.
또, 상기 음극 및 상기 양극은 각각의 활물질을 선택적으로 도전재 및 바인더와 함께 용제 중에서 혼합 및 분산시켜 전극 합제를 제조한 후, 상기 전극 합제를 집전체의 적어도 일면에 도포, 건조 및 압연함으로써 제조될 수 있다. 또 상기 압연 공정 후 50 내지 250℃ 정도의 온도로 2시간 정도 진공 하에서의 가열처리가 더 실시될 수도 있다.
상기와 같은 제조방법에 의해 제조되는 양극활물질층의 두께(집전체 한 면당)는 30 내지 120㎛, 또는 50 내지 100㎛일 수 있고, 상기 음극활물질층의 두께는 1 내지 100㎛, 또는 3 내지 70㎛일 수 있다. 상기 양극 및 상기 음극이 이러한 두께 범위를 만족하는 경우, 각 전극 활물질층에서의 활물질량이 충분히 확보되어, 전지 용량이 작아지는 것을 방지할 수 있고, 사이클 특성이나 레이트 특성이 개선될 수 있다.
또, 상기 리튬 이차전지에 있어서 양극과 음극은 분리막으로 격리가 되는데, 분리막은 리튬 이차전지 분리막에 통상적으로 사용하는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다. 바람직하게는 원형 전지가 사용될 수 있으며, 보다 바람직하게는 원형 전지는 CID를 구비할 수 있다.
본 발명의 일 실시예에 따른 상기 리튬 이차전지는 상기 화학식 1의 인계 화합물을 비수 전해액 첨가제로서 포함함으로써, 상온 및 저온, 특히 저온(-10±5℃)에서 개선된 초기용량 및 출력특성과 함께 향상된 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 또 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool)이나, 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV) 또는 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)와 같은 전기차, 또는 전력 저장용 시스템과 같은 중대형 디바이스 전원으로 이용될 수 있다.
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.
[실시예 1]
(1) 비수 전해액의 제조
에틸렌 카보네이트(EC) : 프로필 프로피오네이트(PP) = 3 : 7의 중량비로 혼합된 혼합 용매를 제조한 후, 리튬염으로서 LiPF6를 1M이 되도록 상기 혼합 용매에 첨가하여 용액을 제조하였다. 그 후, 하기 화학식 2b의 메타크릴산 포스페이트(Methacrylic acid phosphate)를 상기 용액에 첨가하여 비수 전해액을 제조하였다. 여기서 상기 메타크릴산 포스페이트는 비수 전해액 총 중량에 대하여 0.5중량%가 되도록 하였다.
Figure PCTKR2015004613-appb-I000006
(2) 양극의 제조
LiCoO2 : LiNi0.56Co0.2Mn0.27O2 = 2 : 1의 중량비로 혼합하여 양극활물질을 제조하였다. 그 후, 상기 양극활물질 : 도전재로서 카본블랙 : 바인더로서 폴리비닐리덴플루오라이드(PVDF)를 96 : 2 : 2의 중량비로 혼합하여 양극 합제를 제조한 후, 알루미늄(Al) 호일 집전체에 코팅하고, 건조하여 양극을 제조하였다.
(3) 음극의 제조
음극활물질로서 LTO(Li0.8Ti2.2O4) : 스티렌부타디엔 고무(SBR) 바인더 : 증점제로서 카르복시메틸셀룰로오스(CMC)를 98 : 1 : 1의 중량비로 혼합하여 음극합제를 제조한 후, 구리(Cu) 호일 집전체에 코팅하여, 건조하여 음극을 제조하였다.
(4) 리튬 이차전지의 제조
상기 제조된 양극 및 음극의 사이에 폴리에틸렌 다공성 막을 개재시켜 제조한 전극 조립체 및 상기 제조된 비수 전해액을 이용하여 통상적인 방법으로 코인셀을 제조하였다.
[실시예 2]
메타크릴산 포스페이트 대신에 하기 화학식 2a의 인계 화합물을 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 리튬 이차전지를 제조하였다.
Figure PCTKR2015004613-appb-I000007
[실시예 3]
메타크릴산 포스페이트 대신에 하기 화학식 2c의 인계 화합물을 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 리튬 이차전지를 제조하였다.
Figure PCTKR2015004613-appb-I000008
[실시예 4]
메타크릴산 포스페이트 대신에 하기 화학식 2f의 인계 화합물을 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 리튬 이차전지를 제조하였다.
Figure PCTKR2015004613-appb-I000009
[비교예 1]
실시예 1의 (1) 비수 전해액의 제조에서 메타크릴산 포스페이트를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하여 리튬 이차전지를 제조하였다.
[실험예 1: 상온에서의 전지성능 평가]
상기 실시예 1 및 비교예 1에서 제조한 전지들에 대해 하기와 같은 방법으로 전지성능을 평가하였다. 각각의 실험은 3회 반복 실시되었으며, 그 결과를 3회 측정값의 평균값으로 각각 나타내었다.
상기 실시예 1 및 비교예 1에서 제조된 전지들에 대해 상온(23℃)의 조건에서, 1.2 내지 2.0V 구동전압 범위내에서 0.1C의 충전 조건으로 SOC(state of charge, 충전심도) 20%까지 충전을 실시하고, 전압(voltage)에 따른 용량비 변화를 관찰하였다. 그 결과를 도 1에 나타내었다.
도 1에서 알 수 있는 바와 같이, 메타크릴산 포스페이트가 포함된 비수전해액을 포함하는 실시예 1의 전지는, 1.5V 내지 1.8V의 전압구간에서 환원반응에 해당하는 피크가 관찰되었다(점선원 참조). 이 같은 결과는 실시예 1의 전지에 포함된 메타크릴산 포스페이트가 LTO 음극 표면에서 반응하여 안정적인 SEI를 형성하였기 때문이다.
또, 상기 실시예 1 및 비교예 1에서 제조한 리튬 이차전지에 대해 상온(23℃)에서 충전 0.3C 및 방전 0.3C의 조건으로 충/방전을 실시하고, 전지의 초기 용량(capacity)을 측정하였다. 그 결과를 도 2에 나타내었다.
도 2에서 알 수 있는 바와 같이, 메타크릴산 포스페이트가 포함된 비수전해액을 포함하는 실시예 1의 전지는 540mAh 이상의 초기 용량을 나타내어, 전해액에 메타크릴산 포스페이트가 포함되지 않은 비교예 1의 전지에서의 초기용량(535~537mAh)에 비해 약 0.9% 더 향상된 결과를 나타내었다.
또, 상기 실시예 1 및 비교예 1에서 제조한 리튬 이차전지에 대해 출력 특성을 평가하기 위하여 23℃에서 충방전한 전지에 대해 SOC 50%에서 5C 출력(Power) 및 저항(resistance)을 각각 측정하였다. 그 결과를 도 3 및 도 4에 나타내었다.
도 3 및 4에서 알 수 있는 바와 같이, 메타크릴산 포스페이트가 포함된 비수전해액을 포함하는 실시예 1의 전지는 비교예 1에 비해 저항값이 11% 정도 낮아졌으며, 그 결과로서 출력 특성이 향상되었다. 구체적으로 실시예 1에서 제조된 전지의 출력량은 비교예 1에 비하여 11% 더 향상되었다.
[실험예 2: 저온에서의 전지성능 평가]
상기 실시예 1 및 비교예 1에서 제조된 전지들에 대해 저온(-10℃)의 조건에서, 1.2 내지 2.0V 구동전압 범위내에서 SOC별 5C 방전출력 및 저항의 감소에 따른 시간당 출력량(펄스: 0.5초)을 각각 3회 반복하여 측정하였다. 그 결과를 도 5 및 도 6에 나타내었다.
도 5는 실시예 1 및 비교예 1에서 제조된 전지들의 방전출력(discharge power)을 나타낸 그래프이다. 도 5에서 알 수 있는 바와 같이, 메타크릴산 포스페이트가 포함된 비수전해액을 포함하는 실시예 1의 전지는 -10℃의 저온에서도 비교예 1에서 제조된 전지보다 높은 출력량, 구체적으로는 약 25% 향상된 출력량을 나타내었으며, 또, 저항특성 역시 약 20% 향상되었다.
도 6는 실시예 1 및 비교예 1에서 제조된 전지들의 저항을 감소시켰을 때 시간당 전위(potential) 변화, 즉 출력량을 나타낸 그래프이다. 도 6에서 알 수 있는 바와 같이, 실시예 1에서 제조된 전지가 비교예 1에서 제조된 전지보다 저항 감소시 시간당 출력량이 더 높은 것을 확인할 수 있다. 실시예 1에서 제조된 전지가 저온(-10℃)에서도 출력이 0.7% 더 향상되었음을 알 수 있다.

Claims (22)

  1. 유기용매;
    리튬염; 및
    하기 화학식 1의 인계 화합물
    을 포함하는 비수 전해액:
    [화학식 1]
    Figure PCTKR2015004613-appb-I000010
    상기 화학식 1에서,
    X1 및 X2는 각각 독립적으로 수소원자 또는 탄소수 1 내지 4의 알킬기이고,
    R은 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 히드록시기 및 탄소수 1 내지 20의 알콕시기로 이루어진 군에서 선택되며,
    m은 0 내지 29의 정수이고, 그리고 n은 1 또는 2의 정수이다.
  2. 제1항에 있어서,
    상기 X1 및 X2는 각각 독립적으로 수소원자 또는 탄소수 1 내지 4의 알킬기이고, 그리고
    상기 R은 탄소수 1 내지 6의 알킬기 또는 히드록시기인 것인 비수 전해액.
  3. 제1항에 있어서,
    상기 X1 및 X2는 각각 독립적으로 수소원자 또는 탄소수 1 내지 4의 알킬기이고,
    상기 R은 히드록시기이며,
    m은 0 내지 1의 정수이고, 그리고
    n은 1 또는 2의 정수인 것인 비수 전해액.
  4. 제1항에 있어서,
    상기 인계 화합물은 상기 비수 전해액 총 중량에 대하여 0.05 내지 5.0 중량%로 포함되는 것인 비수 전해액.
  5. 제1항에 있어서,
    상기 유기용매는 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매 및 방향족 탄화수소계 용매로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 비수 전해액.
  6. 제1항에 있어서,
    상기 유기용매는 환형 카보네이트계 용매 및 에스테르계 용매가 5:5 내지 2:8의 부피비로 혼합된 혼합물을 포함하는 것인 비수 전해액.
  7. 제6항에 있어서,
    상기 환형 카보네이트계 용매는 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 플루오로에틸렌 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 비수 전해액.
  8. 제6항에 있어서,
    상기 에스테르계 용매는 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 설포란, 감마-부티로락톤, 프로필렌 설파이드, 테트라하이드로푸란, 메틸 아세테이트, 에틸 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 메틸 부티레이트, 및 에틸 부티레이트로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 비수 전해액.
  9. 제1항에 있어서,
    상기 리튬염은 리튬클로라이드(LiCl), 리튬브로마이드(LiBr), 리튬아이오딘(LiI), 리튬 퍼클로레이트(LiClO4), 리튬 테트라플루오로보레이트(LiBF4), 리튬 헥사플루오로포스페이트(LiPF6), 리튬 헥사플루오로아르세네이트(LiAsF6), 리튬 헥사플루오로안티모네이트(LiSbF6), 리튬 테트라클로로알루미네이트(LiAlCl4), 리튬메탄설포네이트(CH3SO3Li), 리튬 트리플루오로메탄설포네이트(CF3SO3Li), 리튬 비스(트리플루오로메틸) 술폰이미드(LiN(SO2CF3)2), 리튬 비스(퍼플루오로에틸술포닐) 이미드(LiN(SO2C2F5)2), 클로로보란리튬, 지방족 카르본산리튬 및 테트라페닐붕산리튬으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 비수 전해액.
  10. 음극; 양극; 분리막; 및 제1항 내지 제9항 중 어느 한 항에 따른 비수 전해액을 포함하는 리튬 이차전지.
  11. 제10항에 있어서,
    상기 음극은 탄소재, 금속 화합물 및 이들의 혼합물로 이루어진 군에서 선택되는 음극활물질을 포함하는 것인 리튬 이차전지.
  12. 제11항에 있어서,
    상기 탄소재는 연화탄소, 경화탄소, 천연 흑연, 키시 흑연, 열분해 탄소, 액정 피치계 탄소섬유, 탄소 미소구체, 액정피치 및 석유와 석탄계 코크스로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 리튬 이차전지.
  13. 제11항에 있어서,
    상기 금속 화합물은 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, 및 Ba으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속 원소를 함유하는 화합물 또는 이들의 혼합물인 것인 리튬 이차전지.
  14. 제10항에 있어서,
    상기 음극은 리튬 티타늄 산화물계 음극활물질을 포함하는 것인 리튬 이차전지.
  15. 제14항에 있어서,
    상기 리튬 티타늄 산화물계 음극활물질은 Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4 및 Li1.14Ti1.71O4로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을을 포함하는 것인 리튬 이차전지.
  16. 제10항에 있어서,
    상기 양극은 리튬 함유 전이금속 산화물을 포함하는 양극 활물질층을 포함하는 것인 리튬 이차전지.
  17. 제16항에 있어서,
    상기 리튬 함유 전이금속 산화물은, LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 리튬 이차전지.
  18. 제10항에 있어서,
    상기 분리막은 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체, 에틸렌/메타크릴레이트 공중합체 및 다공성 부직포로 이루어진 군에서 선택되는 어느 하나 또는 이들의 2층 이상의 적층체인 것인 리튬 이차전지.
  19. 제10항에 따른 리튬 이차전지를 단위셀로 포함하는 전지모듈.
  20. 제19항에 따른 전지모듈을 포함하는 전지팩.
  21. 제20항에 있어서,
    중대형 디바이스의 전원으로 사용되는 것인 전지팩.
  22. 제21항에 있어서,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지팩.
PCT/KR2015/004613 2014-06-13 2015-05-08 비수 전해액 및 이를 포함하는 리튬 이차전지 WO2015190705A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/767,033 US9397367B2 (en) 2014-06-13 2015-05-08 Non-aqueous electrolyte and lithium secondary battery comprising the same
JP2016527961A JP6028957B2 (ja) 2014-06-13 2015-05-08 非水電解液及びこれを含むリチウム二次電池
EP15741468.1A EP2983234B1 (en) 2014-06-13 2015-05-08 Non-aqueous electrolyte and lithium secondary battery comprising same
CN201580000321.4A CN105453327B (zh) 2014-06-13 2015-05-08 非水电解液和包含其的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0071891 2014-06-13
KR20140071891 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190705A1 true WO2015190705A1 (ko) 2015-12-17

Family

ID=54833758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004613 WO2015190705A1 (ko) 2014-06-13 2015-05-08 비수 전해액 및 이를 포함하는 리튬 이차전지

Country Status (7)

Country Link
US (1) US9397367B2 (ko)
EP (1) EP2983234B1 (ko)
JP (1) JP6028957B2 (ko)
KR (1) KR101630127B1 (ko)
CN (1) CN105453327B (ko)
TW (1) TWI565121B (ko)
WO (1) WO2015190705A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180248227A1 (en) * 2016-02-03 2018-08-30 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
US20180316068A1 (en) * 2016-03-03 2018-11-01 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851841B (zh) * 2015-07-30 2020-12-11 富士胶片株式会社 固体电解质组合物、全固态二次电池及其电极片以及全固态二次电池及其电极片的制造方法
CN106374141A (zh) * 2016-09-04 2017-02-01 复旦大学 一种基于酮基溶剂的低温电解液
CN106169611A (zh) * 2016-09-17 2016-11-30 复旦大学 一种以乙酸乙酯为溶剂的低温电解液
CN106876778B (zh) * 2017-02-21 2019-04-02 张家港金盛莲能源科技有限公司 一种锂离子二次电池
KR102457427B1 (ko) 2017-03-17 2022-10-24 아사히 가세이 가부시키가이샤 비수계 전해액, 비수계 이차 전지, 셀 팩, 및 하이브리드 시스템
WO2018169028A1 (ja) * 2017-03-17 2018-09-20 旭化成株式会社 非水系電解液、非水系二次電池、セルパック、及び、ハイブリッドシステム
KR102140127B1 (ko) * 2017-04-25 2020-07-31 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이것을 포함하는 리튬 이차전지
JP7122858B2 (ja) * 2017-05-24 2022-08-22 昭和電工株式会社 水系バインダー樹脂組成物、非水系電池用スラリー、非水系電池電極、非水系電池セパレータ、及び非水系電池
PL3648233T3 (pl) * 2018-02-12 2024-06-10 Lg Energy Solution, Ltd. Niewodny roztwór elektrolitu dla litowej baterii akumulatorowej i zawierająca go litowa bateria akumulatorowa
CN112074983B (zh) * 2018-05-29 2024-06-04 株式会社村田制作所 锂离子二次电池用电解液以及锂离子二次电池
GB201916352D0 (en) * 2019-10-21 2019-12-25 Mexichem Fluor Sa De Cv Composition
WO2022059634A1 (ja) * 2020-09-17 2022-03-24 株式会社村田製作所 二次電池
KR20230069427A (ko) * 2021-11-12 2023-05-19 주식회사 엘지에너지솔루션 고온 안전성이 향상된 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006429A (ko) * 2002-07-12 2004-01-24 삼성에스디아이 주식회사 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20040099606A (ko) * 2003-05-19 2004-12-02 주식회사 코캄엔지니어링 리튬 2차 전지의 겔화 전해질 조성물 및 이를 이용하여제조된 리튬 2차 전지와 그 제조방법
KR20050113990A (ko) * 2004-05-31 2005-12-05 삼성에스디아이 주식회사 리튬이온 이차전지용 전해액 및 이를 포함하는 리튬이온이차전지
JP2009224258A (ja) * 2008-03-18 2009-10-01 Sony Corp 電解液および二次電池
US20130034759A1 (en) * 2011-08-05 2013-02-07 Sony Corporation Nonaqueous electrolytic solution, nonaqueous electrolytic secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919141B2 (en) * 1998-10-22 2005-07-19 Wilson Greatbatch Technologies, Inc. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
KR100463189B1 (ko) * 2002-07-15 2004-12-23 삼성에스디아이 주식회사 리튬 이차 전지 및 그 제조방법
CN101079504B (zh) * 2007-05-10 2010-05-26 武汉大学 一种高效低毒阻燃的锂电池电解液及其锂电池
US8604942B2 (en) 2011-11-08 2013-12-10 Honeywell International Inc. System and method for displaying a velocity rate-of-change indicator
KR101675610B1 (ko) 2012-03-13 2016-11-11 삼성에스디아이 주식회사 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006429A (ko) * 2002-07-12 2004-01-24 삼성에스디아이 주식회사 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20040099606A (ko) * 2003-05-19 2004-12-02 주식회사 코캄엔지니어링 리튬 2차 전지의 겔화 전해질 조성물 및 이를 이용하여제조된 리튬 2차 전지와 그 제조방법
KR20050113990A (ko) * 2004-05-31 2005-12-05 삼성에스디아이 주식회사 리튬이온 이차전지용 전해액 및 이를 포함하는 리튬이온이차전지
JP2009224258A (ja) * 2008-03-18 2009-10-01 Sony Corp 電解液および二次電池
US20130034759A1 (en) * 2011-08-05 2013-02-07 Sony Corporation Nonaqueous electrolytic solution, nonaqueous electrolytic secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2983234A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180248227A1 (en) * 2016-02-03 2018-08-30 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
US10770754B2 (en) * 2016-02-03 2020-09-08 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
US20180316068A1 (en) * 2016-03-03 2018-11-01 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
US10804576B2 (en) * 2016-03-03 2020-10-13 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same

Also Published As

Publication number Publication date
EP2983234A4 (en) 2016-05-25
KR20150143295A (ko) 2015-12-23
KR101630127B1 (ko) 2016-06-13
CN105453327B (zh) 2017-10-20
US20160172707A1 (en) 2016-06-16
TW201618366A (zh) 2016-05-16
JP2016531388A (ja) 2016-10-06
CN105453327A (zh) 2016-03-30
JP6028957B2 (ja) 2016-11-24
TWI565121B (zh) 2017-01-01
EP2983234B1 (en) 2016-10-26
US9397367B2 (en) 2016-07-19
EP2983234A1 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2015190705A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2016089099A1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015065102A1 (ko) 리튬 이차전지
WO2009116740A2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
WO2010058993A2 (ko) 전지특성이 향상된 리튬 이차전지
WO2014193148A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2014185750A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2014204185A1 (ko) 수명 특성이 향상된 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017217646A1 (ko) 수명 특성이 향상된 전지시스템 및 전지시스템의 가동 방법
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2013137596A1 (ko) 리튬 이차전지용 비수 전해액 및 그를 포함하는 리튬 이차전지
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2016053040A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2014116084A1 (ko) 고전압 리튬 이차 전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2017030416A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000321.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2016527961

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015741468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015741468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14767033

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE