WO2014193148A1 - 비수성 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents
비수성 전해액 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- WO2014193148A1 WO2014193148A1 PCT/KR2014/004731 KR2014004731W WO2014193148A1 WO 2014193148 A1 WO2014193148 A1 WO 2014193148A1 KR 2014004731 W KR2014004731 W KR 2014004731W WO 2014193148 A1 WO2014193148 A1 WO 2014193148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aqueous electrolyte
- lithium
- carbonate
- electrolyte solution
- lithium secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention is a non-aqueous organic solvent including propylene carbonate (PC) and ester solvent; And it relates to a non-aqueous electrolyte containing lithium bis (fluorosulfonyl) imide (LiFSI), and a lithium secondary battery comprising the same.
- PC propylene carbonate
- ester solvent a non-aqueous organic solvent including propylene carbonate (PC) and ester solvent
- LiFSI lithium bis (fluorosulfonyl) imide
- Lithium metal oxide is used as a positive electrode active material of a lithium secondary battery, and lithium metal, a lithium alloy, crystalline or amorphous carbon or a carbon composite material is used as a negative electrode active material.
- the active material is applied to a current collector with a suitable thickness and length, or the active material itself is coated in a film shape to be wound or laminated with a separator, which is an insulator, to form an electrode group, and then placed in a can or a similar container, and then injected with an electrolyte solution.
- a secondary battery is manufactured.
- charging and discharging proceed while repeating a process of intercalating and deintercalating lithium ions from a lithium metal oxide of a positive electrode to a graphite electrode of a negative electrode.
- lithium is highly reactive and reacts with the carbon electrode to generate Li 2 CO 3 , LiO, LiOH and the like to form a film on the surface of the negative electrode.
- a film is called a solid electrolyte interface (SEI) film, and the SEI film formed at the beginning of charging prevents the reaction between lithium ions and a carbon anode or other material during charging and discharging. It also acts as an ion tunnel, allowing only lithium ions to pass through. The ion tunnel serves to prevent the organic solvents of a large molecular weight electrolyte which solvates lithium ions and move together and are co-intercalated with the carbon anode to decay the structure of the carbon anode.
- SEI solid electrolyte interface
- a solid SEI film must be formed on the negative electrode of the lithium secondary battery. Once formed, the SEI membrane prevents the reaction between lithium ions and the negative electrode or other materials during repeated charge and discharge cycles by using a battery, and serves as an ion tunnel that passes only lithium ions between the electrolyte and the negative electrode. .
- the problem to be solved of the present invention is to provide a non-aqueous electrolyte and a lithium secondary battery comprising the same, which can improve the low temperature, room temperature and high temperature output characteristics, as well as the high temperature cycle characteristics and capacity characteristics after high temperature storage will be.
- the present invention is i) a non-aqueous organic solvent including propylene carbonate (PC) and ester solvent; And ii) Lithium bis (fluorosulfonyl) imide (LiFSI) provides a non-aqueous electrolyte solution.
- the present invention also provides a lithium secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte.
- non-aqueous electrolyte of the present invention by forming a solid SEI film at the negative electrode during the initial charging of the lithium secondary battery including the same, it is possible to improve low temperature, room temperature and high temperature output characteristics, as well as high temperature cycle characteristics and high temperature storage capacity characteristics. Can be improved at the same time.
- FIG. 1 is a graph showing the results of measuring low-temperature (-30 ° C) output characteristics of the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1, 3, and 4 according to Experimental Example 1.
- FIG. 1 is a graph showing the results of measuring low-temperature (-30 ° C) output characteristics of the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1, 3, and 4 according to Experimental Example 1.
- FIG. 2 is a graph showing results of measuring high temperature (45 ° C.) cycle characteristics of the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1, 3, and 4 according to Experimental Example 2.
- FIG. 2 is a graph showing results of measuring high temperature (45 ° C.) cycle characteristics of the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1, 3, and 4 according to Experimental Example 2.
- FIG. 3 is a graph showing results of measuring output characteristics after high temperature storage (60 ° C.) of the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1, 3, and 4 according to Experimental Example 3.
- FIG. 3 is a graph showing results of measuring output characteristics after high temperature storage (60 ° C.) of the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1, 3, and 4 according to Experimental Example 3.
- FIG. 4A and 4B show initial discharge output characteristics (FIG. 4A) and initial charge output characteristics (FIG. 4B) according to SOC (charge depth) of Example 1 and the lithium secondary batteries of Comparative Examples 1 and 2, according to Experimental Example 4. Is a graph showing the results of the measurement.
- FIG. 5 is a graph illustrating a result of measuring a capacity retention rate (%) according to storage periods after high temperature storage of the lithium secondary batteries of Example 1 and Comparative Examples 1 and 2 according to Experimental Example 5.
- FIG. 5 is a graph illustrating a result of measuring a capacity retention rate (%) according to storage periods after high temperature storage of the lithium secondary batteries of Example 1 and Comparative Examples 1 and 2 according to Experimental Example 5.
- a non-aqueous electrolyte according to an embodiment of the present invention is a non-aqueous organic solvent including propylene carbonate (PC) and ester solvent; And lithium bisfluorosulfonylimide (Lithium bis (fluorosulfonyl) imide; LiFSI).
- PC propylene carbonate
- ester solvent and lithium bisfluorosulfonylimide (Lithium bis (fluorosulfonyl) imide; LiFSI).
- the capacity characteristics of the secondary battery when using a combination of lithium bisfluorosulfonylimide in a non-aqueous organic solvent containing a propylene carbonate (PC) and an ester solvent, by forming a solid SEI film at the negative electrode during the initial charge
- the capacity characteristics of the secondary battery can be simultaneously improved by suppressing decomposition of the surface of the anode which may occur during high temperature cycle operation of 45 ° C. or higher and preventing oxidation reaction of the electrolyte. .
- ester solvents have a lower freezing point than other carbonate solvents, and have excellent viscosity and dielectric constant at low temperatures, so that not only the initial room temperature output characteristics when applied to a lithium secondary battery, but also lower the battery resistance and improve output characteristics at low temperatures.
- the freezing point is low, battery characteristics at high temperatures may be difficult to maintain as conventional lithium secondary batteries.
- propylene carbonate has an advantage that it can play an excellent role as an electrolyte having a wide temperature range compared to other carbonate-based solvents.
- propylene carbonate is a process of forming an SEI film in a lithium ion battery using a carbon electrode, and lithium ions solvated by propylene carbonate between carbon layers. Enormous capacity of irreversible reactions can occur in the process of insertion into the. This may cause a problem that the performance of the battery, such as high temperature cycle characteristics are degraded.
- the above problems when using a propylene carbonate and a lithium salt such as LiPF 6 can be solved by combining them using lithium bisfluorosulfonylimide.
- the lithium bisfluorosulfonylimide is added to the non-aqueous electrolyte as a lithium salt to form a stable and stable SEI film on the negative electrode, thereby improving low temperature output characteristics and suppressing decomposition of the positive electrode surface that may occur during high temperature cycle operation. And oxidation reaction of electrolyte solution can be prevented.
- the mixing ratio of the propylene carbonate and the ester solvent as the non-aqueous organic solvent may have an important effect in improving both the initial room temperature output, the low temperature output, the high temperature output, and the capacity characteristics after high temperature storage.
- the mixing ratio of the propylene carbonate and the ester solvent is, for example, 1: 0.5 to 4 weight ratio, preferably 1: 1 to 3.5, more preferably 1: 1 to 2.5, and satisfies the range of the mixing ratio
- the synergistic effect of the mixing of two nonaqueous organic solvents can be expressed.
- the content of the propylene carbonate is less than the above range, a swelling phenomenon may occur in which the gas is continuously generated due to decomposition of the surface of the anode during the high temperature cycle, thereby increasing the thickness of the battery, and exceeding the above range. It is likely that it will be difficult to form a solid SEI film at the initial rechargeable cathode.
- the ester solvent may be included in an amount of 10 parts by weight to 70 parts by weight, preferably 20 parts by weight to 50 parts by weight, based on 100 parts by weight of the non-aqueous organic solvent.
- ester solvent is added in excess of 70 parts by weight, high temperature performance may be lowered. If the ester solvent is added in an amount less than 10 parts by weight, it is difficult to sufficiently exhibit the effects of desired initial room temperature output and low temperature output characteristics. not.
- the room temperature, low temperature and high temperature output characteristics of the lithium secondary battery of the present invention by adjusting the propylene carbonate in the amount of the ester solvent in the range of the mixing ratio, the room temperature, low temperature and high temperature output characteristics of the lithium secondary battery of the present invention, as well as capacity after high temperature storage Optimal effects can be achieved in characteristics and the like.
- examples of the ester solvent include methyl formate, methyl acetate, ethyl acetate, isopropyl acetate. acetate, isoamyl acetate, methyl propionate, ethyl propionate, methyl butylate and ethyl butylate And mixtures of two or more thereof. Among them, methyl propionate, ethyl propionate or a mixed solvent thereof, and most preferably ethyl propionate may be included.
- non-aqueous organic solvent which may be further included in the non-aqueous electrolyte solution in addition to the ester solvent and propylene carbonate, decomposition by an oxidation reaction or the like during the charge and discharge of the battery may be minimized, and may exhibit desired properties with additives. There is no limit as long as it can.
- the non-aqueous organic solvent which may be further included in the non-aqueous electrolyte according to an embodiment of the present invention, for example, butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC ), Ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC) may further include any one selected from the group consisting of, or a mixture of two or more thereof.
- BC butylene carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- DPC dipropyl carbonate
- EMC Ethyl methyl carbonate
- MPC methyl propyl carbonate
- EPC ethyl propyl carbonate
- EPC ethyl propyl carbonate
- the lithium bisfluorosulfonylimide has a concentration in the non-aqueous electrolyte solution is preferably 0.1 mole / L to 2 mole / L, 0.5 mole / L to 1.5 mole / L More preferred.
- concentration of the lithium bisfluorosulfonylimide is less than 0.1 mole / l, the effect of improving the low temperature output and the high temperature cycle characteristics of the battery may be insignificant, and the concentration of the lithium bisfluorosulfonyl imide is 2 If the mole / L exceeds, the side reaction in the electrolyte is excessively generated during charging and discharging of the battery may cause a swelling phenomenon.
- the non-aqueous electrolyte solution of the present invention may further include a lithium salt.
- the lithium salt may be used a lithium salt commonly used in the art, for example LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 And LiC 4 BO 8 It may be any one selected from the group consisting of or a mixture of two or more thereof.
- the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is preferably 1 to 9 as the molar ratio.
- the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is out of the range of the molar ratio, side reactions in the electrolyte may be excessively generated during charging and discharging of the battery, and a swelling phenomenon may occur.
- the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is preferably 1: 6 to 9 as molar ratio.
- the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is less than 1: 6 as a molar ratio, a process of forming an SEI film in a lithium ion battery, and solvated by propylene carbonate and ester solvent
- the negative electrode surface layer for example, the carbon surface layer
- the effect of improvement of cycle characteristics and capacity characteristics may be insignificant.
- the non-aqueous electrolyte according to an embodiment of the present invention is an additive, LiBF 4 , lithium oxalyldifluoroborate (Lithium oxalyldifluoroborate, LiODFB) and ethylene sulfate (Ethylene sulfate, ESa) selected from the group consisting of It may further comprise a compound.
- LiBF 4 lithium oxalyldifluoroborate
- LiODFB lithium oxalyldifluoroborate
- ESa ethylene sulfate
- two or more compounds selected from the group consisting of LiBF 4 , lithium oxalyldifluoroborate (LiODFB), and ethylene sulfate (Ethylene sulfate, ESa) may be included.
- the additive may suppress side reactions in the electrolyte during battery charging and discharging at room temperature of the lithium secondary battery including an excess of lithium bisfluorosulfonylimide. Accordingly, the additive is effective for improving cycle characteristics at room temperature of the battery.
- the content of the additive may be 0.01 to 5% by weight, respectively, based on the total amount of the electrolyte.
- a lithium secondary battery is a positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; A separator interposed between the positive electrode and the negative electrode; And it may include the non-aqueous electrolyte.
- the cathode active material may include a manganese-spinel-based active material, lithium metal oxide or a mixture thereof.
- the lithium metal oxide may be selected from the group consisting of lithium-nickel-manganese cobalt oxide, lithium-manganese oxide, lithium-nickel-manganese oxide, and lithium-manganese-cobalt oxide.
- a carbon-based negative electrode active material such as crystalline carbon, amorphous carbon, or a carbon composite may be used alone or in combination of two or more thereof.
- the crystalline carbon is graphite such as natural graphite and artificial graphite. (graphite) carbon.
- the positive electrode or the negative electrode for example, on the positive electrode or negative electrode current collector to prepare a slurry by mixing a mixture of a positive electrode or negative electrode active material, a conductive agent and a binder with a predetermined solvent, This slurry can be prepared by applying it onto a current collector and then drying it.
- the positive electrode current collector is generally made of a thickness of 3 ⁇ m to 500 ⁇ m.
- a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
- the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver or the like can be used.
- the positive electrode current collector may increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the negative electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
- a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
- fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the conductive agent used in the positive electrode or negative electrode slurry is typically added in an amount of 1 to 20 wt% based on the total weight of the mixture including the positive electrode or the negative electrode active material.
- a conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- graphite such as natural graphite and artificial graphite
- Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
- Conductive fibers such as carbon fibers and metal fibers
- Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
- Conductive whiskers such as zinc oxide and potassium titanate
- Conductive oxides such as titanium oxide
- Conductive materials such as polyphenylene derivatives and the like can be used
- the binder is a component that assists in bonding the positive electrode or the negative electrode active material and the conductive agent to the current collector, and is generally added in an amount of 1 to 20 wt% based on the total weight of the mixture including the positive electrode or the negative electrode active material.
- binders include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, and polymethylmethacrylate.
- Polyvinyl alcohol Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM ), Various types of binder polymers such as sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, and various copolymers may be used.
- CMC carboxymethyl cellulose
- SBR styrene butadiene rubber
- fluorine rubber various copolymers
- DMSO dimethyl sulfoxide
- NMP N-methylpyrrolidone
- acetone or water and the like, and are removed in a drying process.
- the separator may be a conventional porous polymer film conventionally used as a separator, for example, a polyolefin type such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
- a polyolefin type such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
- the porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. no.
- the battery case used in the present invention may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch type or coin using a can (coin) type, etc.
- the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
- Preferred examples of the medium and large devices include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.
- PC Propylene carbonate
- EP ethyl propionate
- DMC dimethyl carbonate
- N- A positive electrode mixture slurry was prepared by adding to methyl-2-pyrrolidone (NMP). The positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
- Al aluminum
- a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 97 wt%, 2 wt%, and 1 wt%, respectively, to NMP as a solvent.
- the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
- Cu copper
- the positive electrode and the negative electrode prepared as described above were manufactured together with the polyolefin separator by a conventional method, and then the non-aqueous electrolyte was prepared to inject the prepared lithium secondary battery.
- the lithium salt was the same as Example 1 except that 0.14 mole / L of LiPF 6 and 0.86 mole / L of lithium bisfluorosulfonylimide (about 1: 6 molar ratio) were used based on the total amount of the non-aqueous electrolyte.
- a nonaqueous electrolyte solution and a lithium secondary battery were prepared.
- a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1, except that LiPF 6 0.17 mole / L and lithium bisfluorosulfonylimide 0.83 mole / L (molar ratio of about 1: 5) were used. Prepared.
- PC Propylene carbonate
- EMC Ethylmethyl carbonate
- DMC Dimethyl carbonate
- Ethylene carbonate (EC): ethylmethyl carbonate (EMC): dimethyl carbonate (DMC) Non-aqueous electrolyte solution in the same manner as in Example 1 except that a non-aqueous organic solvent having a composition of 3: 3: 4 (weight ratio) was used. And a lithium secondary battery.
- a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1 except that LiPF 6 was used alone as a lithium salt.
- a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1 except that LiPF 6 and lithium bisfluorosulfonylimide were used at a molar ratio of about 1: 0.5.
- the low-temperature output was calculated by the voltage difference generated by discharging the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1, 3 and 4 at 0.5C for 10 seconds for each SOC (depth of charge) at -30 ° C. The result is shown in FIG.
- LiFSI lithium bisfluorosulfonylimide
- Example 1 in which the molar ratio of LiPF 6 and LiFSI is 1: 9, when the SOC is 100% compared to Comparative Example 4 having a molar ratio of 1: 0.5, Example 1 is about compared to Comparative Example 4 It can be seen that the low-temperature output characteristics are improved by 40% or more, and 60% or more compared with Comparative Example 3. Similarly, even when the SOC was 20, 40, 60 and 80%, excellent results were obtained as in the case where the SOC was 100%.
- Example 2 with a molar ratio of LiPF 6 and LiFSI of 1: 6 is significantly different from the increase rate of LiFSI in Example 2 in Example 2, despite a 1 molar ratio difference compared to Example 3 having a molar ratio of 1: 5. It can be seen that.
- the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1, 3 and 4 were charged at 1 C to 4.2 V / 38 mA at constant current / constant voltage (CC / CV) conditions at 45 ° C., followed by 3.03 under constant current (CC) conditions. It discharged at 3 C to V, and the discharge capacity was measured. This was repeated 1 to 1000 cycles, the measured discharge capacity is shown in FIG.
- Examples 1 and 2 have an improved capacity retention rate of about 40% or more compared to Comparative Example 1, about 35% or more compared to Comparative Example 4, and about 100% or more compared to Comparative Example 3. .
- Example 2 with a molar ratio of LiPF 6 and LiFSI of 1: 6 is significantly different from the increase rate of LiFSI in Example 2 in Example 2, despite a 1 molar ratio difference compared to Example 3 having a molar ratio of 1: 5. It can be seen that.
- the lithium secondary batteries of Examples 1 to 3 of the present invention have a significantly higher capacity retention rate than the lithium secondary batteries of Comparative Examples 1, 3, and 4 until the storage period of 16 weeks.
- the lithium secondary battery of Example 1 has excellent output characteristics from SOC 30% compared to the lithium secondary batteries of Comparative Examples 1 and 2, and the output characteristics of the lithium secondary battery of Comparative Examples 1 and 2 after 50%. I began to see more significant differences.
- the SOC is 90%
- the lithium secondary battery of Example 1 has an improved room temperature discharge output characteristic by about 1.2 to 1.4 times or more as compared to the lithium secondary batteries of Comparative Examples 1 and 2.
- the charging power (W) result at 23 ° C. according to SOC (%) of FIG. 4B showed a difference of about 1.2 times or more in SOC 30 (%).
- the initial room temperature output characteristics can be remarkably improved by using lithium bisfluorosulfonylimide in combination under a non-aqueous organic solvent containing propylene carbonate and ester-based ethyl propionate.
- Example 1 and Comparative Examples 1 and 2 were charged at 1 C up to 4.2 V / 38 mA under constant current / constant voltage (CC / CV) conditions, and then discharged at 1 C up to 3.0 V under constant current (CC) conditions, The discharge capacity was measured. The result is shown in FIG.
- the storage capacity (%) of Comparative Examples 1 and 2 and Example 1 did not differ until the storage period of 8 weeks, but the storage period of the lithium secondary batteries of Comparative Examples 1 and 2 after 3 weeks of storage period was increased. As the capacity retention rate sharply decreases with increasing, the difference in capacity retention rates of the lithium secondary batteries of Comparative Examples 1 and 2 gradually increases after 5 weeks of storage.
- the lithium secondary battery of Example 1 has an effect of improving capacity characteristics after high temperature storage as compared with the lithium secondary batteries of Comparative Examples 1 and 2.
- the lithium secondary battery of Example 1 using a combination of lithium bisfluorosulfonyl imide under a non-aqueous organic solvent containing propylene carbonate and ester-based ethyl propionate has different compositions from Comparative Examples 1 and 2. Compared with the lithium secondary battery, it can be seen that the capacity characteristics are improved after high temperature storage.
- non-aqueous electrolyte of the present invention by forming a solid SEI film at the negative electrode during the initial charging of the lithium secondary battery including the same, it is possible to improve low temperature, room temperature and high temperature output characteristics, as well as high temperature cycle characteristics and high temperature storage capacity characteristics. Since it can be improved at the same time, it can be very useful in the secondary battery field.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 프로필렌 카보네이트(PC) 및 에스테르계 용매를 포함하는 비수성 유기 용매; 및 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함하는 것을 특징으로 하는 비수성 전해액 및 이를 포함하는 리튬 이차전지를 제공한다. 본 발명의 비수성 전해액에 의하면, 이를 포함하는 리튬 이차전지의 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써 저온, 상온 및 고온 출력 특성을 개선할 수 있을 뿐 아니라, 고온 사이클 특성 및 고온 저장 후 용량 특성을 동시에 향상시킬 수 있다.
Description
본 발명은 프로필렌 카보네이트(PC) 및 에스테르계 용매를 포함하는 비수성 유기 용매; 및 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함하는 비수성 전해액, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 금속 산화물이 사용되고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소 또는 탄소 복합체가 사용되고 있다. 상기 활물질을 적당한 두께와 길이로 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포하여 절연체인 세퍼레이터와 함께 감거나 적층하여 전극군을 만든 다음, 캔 또는 이와 유사한 용기에 넣은 후, 전해액을 주입하여 이차전지를 제조한다.
이러한 리튬 이차전지는 양극의 리튬 금속 산화물로부터 리튬 이온이 음극의 흑연 전극으로 삽입(intercalation)되고 탈리(deintercalation)되는 과정을 반복하면서 충방전이 진행된다. 이때 리튬은 반응성이 강하므로 탄소 전극과 반응하여 Li2CO3, LiO, LiOH 등을 생성시켜 음극의 표면에 피막을 형성한다. 이러한 피막을 고체 전해질(Solid Electrolyte Interface; SEI) 막이라고 하는데, 충전 초기에 형성된 SEI 막은 충방전중 리튬 이온과 탄소 음극 또는 다른 물질과의 반응을 막아준다. 또한 이온 터널(Ion Tunnel)의 역할을 수행하여 리튬 이온만을 통과시킨다. 이 이온 터널은 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해액의 유기용매들이 탄소 음극에 함께 코인터컬레이션되어 탄소 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 한다.
따라서, 리튬 이차전지의 고온 사이클 특성 및 저온 출력을 향상시키기 위해서는, 반드시 리튬 이차전지의 음극에 견고한 SEI 막을 형성하여야만 한다. SEI 막은 최초 충전시 일단 형성되고 나면 이후 전지 사용에 의한 충방전 반복시 리튬 이온과 음극 또는 다른 물질과의 반응을 막아주며, 전해액과 음극 사이에서 리튬 이온만을 통과시키는 이온 터널로서의 역할을 수행하게 된다.
종래에는 전해액 첨가제를 포함하지 않거나 열악한 특성의 비수성 유기 용매또는 전해액 첨가제를 포함하는 전해액의 경우 불균일한 SEI 막의 형성으로 인해 저온 출력 특성의 향상을 기대하기 어려웠다. 특히, 전해액에 포함되는 비수성 유기 용매, 전해액 첨가제 또는 리튬염의 종류 또는 투입량을 필요량으로 조절하지 못하는 경우, 고온 반응시 양극 표면이 분해되거나 전해액이 산화 반응을 일으켜 궁극적으로 이차전지의 비가역 용량이 증가하고 출력 특성이 저하되는 문제가 있었다.
이에, 이차전지의 출력 특성을 향상시키기 위해 에스테르계 용매가 사용되었으나, 이 경우 출력 특성은 개선되어도 에스테르계 용매의 물질 특성으로 인해 기존의 리튬 이차전지만큼의 고온 특성은 유지하기 어려운 문제가 있었다.
[선행기술문헌]
특허문헌
KR 2012-0090969 A
본 발명의 해결하고자 하는 과제는 저온, 상온 및 고온 출력 특성을 개선할 수 있을 뿐 아니라, 고온 사이클 특성 및 고온 저장 후 용량 특성을 향상시킬 수 있는 비수성 전해액 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.
상기 해결하고자 하는 과제를 해결하기 위하여, 본 발명은 i) 프로필렌 카보네이트(PC) 및 에스테르계 용매를 포함하는 비수성 유기 용매; 및 ii) 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함하는 것을 특징으로 하는 비수성 전해액을 제공한다.
또한, 본 발명은 양극, 음극, 상기 양극과 상기 음극 사이에 개재된 세퍼레이터, 및 상기 비수성 전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명의 비수성 전해액에 의하면, 이를 포함하는 리튬 이차전지의 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써 저온, 상온 및 고온 출력 특성을 개선할 수 있을 뿐 아니라, 고온 사이클 특성 및 고온 저장 후 용량 특성을 동시에 향상시킬 수 있다.
도 1은 실험예 1에 따라, 실시예 1 내지 3, 및 비교예 1, 3 및 4의 리튬 이차전지의 저온(-30℃) 출력 특성을 측정한 결과를 나타내는 그래프이다.
도 2는 실험예 2에 따라, 실시예 1 내지 3, 및 비교예 1, 3 및 4의 리튬 이차전지의 고온(45℃) 사이클 특성을 측정한 결과를 나타내는 그래프이다.
도 3은 실험예 3에 따라, 실시예 1 내지 3, 및 비교예 1, 3 및 4의 리튬 이차전지의 고온 저장(60℃) 후 출력 특성을 측정한 결과를 나타내는 그래프이다.
도 4a 및 4b는 실험예 4에 따라, 실시예 1, 및 비교예 1과 2의 리튬 이차전지의 SOC(충전심도)에 따른 초기 방전 출력 특성(도 4a) 및 초기 충전 출력 특성(도 4b)을 측정한 결과를 나타내는 그래프이다.
도 5는 실험예 5에 따라, 실시예 1 및 비교예 1과 2의 리튬 이차전지의 고온 저장 후 저장 기간에 따른 용량 보유율(%)을 측정한 결과를 나타내는 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예를 따르는 비수성 전해액은 프로필렌 카보네이트(PC) 및 에스테르계 용매를 포함하는 비수성 유기 용매; 및 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 프로필렌 카보네이트(PC) 및 에스테르계 용매를 포함하는 비수성 유기 용매하에 리튬비스플루오로설포닐이미드를 조합하여 사용할 경우, 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써 초기 출력 특성, 저온 및 고온 출력 특성을 개선시킴은 물론, 45℃ 이상의 고온 사이클 작동시 발생할 수 있는 양극 표면의 분해를 억제하고 전해액의 산화 반응을 방지하여 이차전지의 용량 특성을 동시에 향상시킬 수 있다.
일반적으로, 에스테르계 용매는 다른 카보네이트계 용매에 비해 어는점이 낮고, 저온에서의 점도 및 유전율이 뛰어나 리튬 이차전지에 적용시 초기 상온 출력 특성뿐만 아니라, 저온에서 전지의 저항을 낮추고 출력 특성을 향상시킬 수 있는 장점이 있다. 그러나, 어는점이 낮은 관계로 고온에서의 전지 특성은 기존의 리튬 이차전지만큼 유지하기 어려움이 있을 수 있다.
한편, 프로필렌 카보네이트는 다른 카보네이트계 용매에 비해 넓은 온도 범위를 가지면서 전해질로서 뛰어난 역할을 할 수 있는 장점이 있다.
이에, 본 발명에서는 에스테르계 용매의 장점인 저온 또는 상온에서의 우수한 출력 특성을 유지하고, 에스테르계 용매의 고온 특성에 대한 문제를 프로필렌 카보네이트와 조합하여 사용함으로써 해결할 수 있다.
그러나, 용매로서 프로필렌 카보네이트를 LiPF6 등의 리튬염과 함께 사용할 경우, 프로필렌 카보네이트는 탄소 전극을 사용하는 리튬 이온 전지에서 SEI 막을 형성하는 과정, 및 프로필렌 카보네이트에 의하여 용매화된 리튬 이온이 탄소층 사이에 삽입되는 과정에서 막대한 용량의 비가역 반응이 발생할 수 있다. 이는 고온 사이클 특성 등 전지의 성능이 저하되는 문제를 야기할 수 있다.
또한, 프로필렌 카보네이트에 의하여 용매화된 리튬 이온이 음극을 구성하는 탄소층에 삽입될 때, 탄소 표면층의 박리(exfoliation)가 진행될 수 있다. 이러한 박리는 탄소층 사이에서 용매가 분해될 때 발생하는 기체가 탄소층 사이에 큰 뒤틀림을 유발함으로써 발생될 수 있다. 이와 같은 표면층의 박리와 전해액의 분해는 계속적으로 진행될 수 있으며, 이로 인하여 프로필렌 카보네이트 전해액을 탄소계 음극재와 병용하는 경우 효과적인 SEI 막이 생성되지 않아 리튬 이온이 삽입되지 않을 수 있다.
본 발명에서는 프로필렌 카보네이트와 LiPF6 등의 리튬염을 함께 사용할 경우의 상기와 같은 문제점을 리튬비스플루오로설포닐이미드를 사용하여 이들을 조합함으로써 해결할 수 있는 것이다.
상기 리튬비스플루오로설포닐이미드는 리튬염으로서 비수성 전해액에 첨가되어, 음극에 견고하고 안정한 SEI 막을 형성함으로써 저온 출력 특성을 개선시킴은 물론, 고온 사이클 작동시 발생할 수 있는 양극 표면의 분해를 억제하고 전해액의 산화 반응을 방지할 수 있다.
본 발명의 일 실시예에 따르면, 비수성 유기 용매로서 상기 프로필렌 카보네이트와 에스테르계 용매의 혼합비는 초기 상온 출력, 저온 출력, 고온 출력 및 고온 저장 후 용량 특성을 모두 향상시키는데 중요한 영향을 미칠 수 있다.
상기 프로필렌 카보네이트와 에스테르계 용매의 혼합비는 예를 들어 1 : 0.5 내지 4 중량비, 바람직하게는 1 : 1 내지 3.5, 더욱 바람직하게는 1 : 1 내지 2.5가 바람직하며, 상기 혼합비의 범위를 만족하는 경우 두 비수성 유기 용매의 혼용에 의한 시너지 효과가 발현될 수 있다.
만일, 상기 프로필렌 카보네이트의 함량이 상기 범위보다 적게 첨가되는 경우, 고온 사이클 시 양극 표면의 분해로 인해 가스가 지속적으로 발생되어 전지의 두께가 증가되는 스웰링 현상이 발생할 수 있고, 상기 범위를 초과할 경우 초기 충전지 음극에서 견고한 SEI 막을 형성시키기 어려울 가능성이 있다.
본 발명의 일 실시예에 따르는 비수성 유기 용매에 있어서, 에스테르계 용매는 비수성 유기용매 100 중량부를 기준으로 10 중량부 내지 70 중량부, 바람직하게는 20 중량부 내지 50 중량부로 포함될 수 있다.
만일, 상기 에스테르계 용매가 70 중량부를 초과하여 첨가되는 경우에는 고온 성능이 떨어질 수 있고, 10 중량부 미만으로 첨가되는 경우 목적하는 초기 상온 출력 및 저온 출력 특성이라는 효과를 충분히 발휘하기가 어려워 바람직하지 않다.
본 발명의 일 실시예에 따르면, 상기 에스테르계 용매의 사용량 내에서 프로필렌카보네이트를 상기 혼합비의 범위내에서 적절히 조절함으로써 본 발명의 리튬 이차전지의 상온, 저온 및 고온 출력 특성뿐 아니라, 고온 저장 후 용량 특성 등에 있어 최적의 효과를 달성할 수 있다.
본 발명의 일 실시예에 따른 비수성 유기 용매에 있어서, 상기 에스테르계 용매의 예로는, 메틸 포르메이트(methyl formate), 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), 이소프로필 아세테이트(isopropyl acetate), 이소아밀 아세테이트(isoamyl acetate), 메틸 프로피오네이트(methyl propionate), 에틸 프로피오네이트(ethyl propionate), 메틸 부틸레이트(methyl butylate) 및 에틸 부틸레이트(ethyl butylate)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다. 그 중에서도 바람직하게는 메틸 프로피오네이트(methyl propionate), 에틸 프로피오네이트(ethyl propionate) 또는 이들의 혼합용매, 가장 바람직하게는 에틸 프로피오네이트를 포함하는 것이 좋다.
또한, 상기 에스테르계 용매 및 프로필렌 카보네이트 외에 비수성 전해액에 더 포함될 수 있는 비수성 유기 용매로는, 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다.
본 발명의 일 실시예에 따라 비수성 전해액에 더 포함될 수 있는 비수성 유기 용매는, 예를 들어 부틸렌 카보네이트(BC), 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 더 포함할 수 있다.
한편, 본 발명의 일 실시예에 따르면, 상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도가 0.1 mole/ℓ 내지 2 mole/ℓ인 것이 바람직하며, 0.5 mole/ℓ 내지 1.5 mole/ℓ이 더욱 바람직하다. 상기 리튬비스플루오로설포닐이미드의 농도가 0.1 mole/ℓ 보다 적으면 전지의 저온 출력 개선 및 고온 사이클 특성의 개선의 효과가 미미할 수 있고, 상기 리튬비스플루오로설포닐이미드의 농도가 2 mole/ℓ를 초과하면 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있다.
이러한 부반응을 더욱 방지하기 위해, 본 발명의 비수성 전해액에는 리튬염을 더 포함할 수 있다. 상기 리튬염은 당 분야에서 통상적으로 사용되는 리튬염을 사용할 수 있으며, 예를 들어 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서, 1:1 내지 9인 것이 바람직하다. 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비가 상기 몰비의 범위를 벗어날 경우, 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있다.
특히, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서, 1:6 내지 9인 것이 바람직하다. 구체적으로, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비가 몰비로서, 1:6 미만인 경우, 리튬 이온 전지에서 SEI 피막을 형성하는 과정, 및 프로필렌 카보네이트 및 에스테르계 용매에 의하여 용매화된 리튬 이온이 음극 사이에 삽입되는 과정에서 막대한 용량의 비가역 반응이 발생할 수 있으며, 음극 표면층(예를 들어, 탄소 표면층)의 박리와 전해액의 분해에 의해, 이차전지의 저온 출력 개선, 고온 저장 후, 사이클 특성 및 용량 특성의 개선의 효과가 미미할 수 있다.
한편, 본 발명의 일 실시예에 따른 비수성 전해액은 첨가제로서, LiBF4, 리튬 옥살릴디플루오로보레이트(Lithium oxalyldifluoroborate, LiODFB) 및 에틸렌 설페이트(Ethylene sulfate, ESa)로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다. 또한, 바람직하게는, 상기 LiBF4, 리튬 옥살릴디플루오로보레이트(Lithium oxalyldifluoroborate, LiODFB) 및 에틸렌 설페이트(Ethylene sulfate, ESa)로 이루어진 군으로부터 선택되는 2종 이상의 화합물을 포함할 수 있다. 상기 첨가제는 과량의 리튬비스플루오로설포닐이미드를 포함하는 리튬 이차전지의 상온에서의 전지 충방전시 전해액 내의 부반응을 억제할 수 있다. 이에 따라서 상기 첨가제는 전지의 상온 조건에서의 사이클 특성 향상에 효과적이다. 이 때 상기 첨가제의 함량은 전해액 총량을 기준으로 각각 0.01 내지 5 중량%일 수 있다.
한편, 본 발명의 일 실시예에 따르는 리튬 이차전지는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 상기 음극 사이에 개재된 세퍼레이터; 및 상기 비수성 전해액을 포함할 수 있다.
여기서, 상기 양극 활물질은 망간-스피넬계 활물질, 리튬 금속 산화물 또는 이들의 혼합물을 포함할 수 있다. 나아가, 상기 리튬 금속 산화물은 리튬-니켈-망간 코발트계 산화물, 리튬-망간계 산화물, 리튬-니켈-망간계 산화물 및 리튬-망간-코발트계 산화물로 이루어진 군에서 선택될 수 있으며, 보다 구체적으로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2) 일 수 있다.
한편, 상기 음극 활물질로는 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있으며, 바람직하게는 결정질 탄소로 천연흑연과 인조흑연과 같은 흑연질(graphite) 탄소일 수 있다.
구체적으로, 리튬 이차전지에 있어서, 상기 양극 또는 음극은, 예를 들어, 양극 또는 음극 집전체 상에 양극 또는 음극 활물질, 도전제 및 바인더의 혼합물을 소정의 용매와 혼합하여 슬러리를 제조한 후, 이 슬러리를 집전체 상에 도포한 후 건조하여 제조될 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 또는 음극 슬러리에 사용되는 상기 도전제는 통상적으로 양극 또는 음극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 양극 또는 음극 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 또는 음극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
또한, 상기 용매의 바람직한 예로는 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 알코올, N-메틸피롤리돈(NMP), 아세톤 또는 물 등을 들 수 있으며, 건조 과정에서 제거된다.
상기 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전지 케이스는 당분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
실시예 1
[비수성 전해액의 제조]
프로필렌 카보네이트(PC): 에틸프로피오네이트(EP): 디메틸 카보네이트(DMC) =2:4:4 (중량비)의 조성을 갖는 비수성 유기 용매에 비수성 전해액 총량을 기준으로 LiPF6 0.1 mole/ℓ 및 리튬비스플루오로설포닐이미드 0.9 mole/ℓ 를 첨가하여 비수성 전해액을 제조하였다.
[리튬 이차전지의 제조]
양극 활물질로서 Li(Ni0.33Co0.33Mn0.33)O2의 혼합물 89 중량%, 도전제로 카본 블랙(carbon black) 8 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 97 중량%, 2 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극을 폴리올레핀 분리막과 함께 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 2
상기 리튬염을 비수성 전해액 총량을 기준으로 LiPF6 0.14 mole/ℓ 및 리튬비스플루오로설포닐이미드 0.86 mole/ℓ(약 1:6 몰비율)을 사용한 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 3
LiPF6 0.17 mole/ℓ 및 리튬비스플루오로설포닐이미드 0.83 mole/ℓ(약 1:5 의 몰비율)을 사용한 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 1
프로필렌 카보네이트(PC): 에틸메틸 카보네이트(EMC): 디메틸 카보네이트(DMC) =3:3:4 (중량비)의 조성을 갖는 비수성 유기 용매를 사용한 것을 제외하고는 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 2
에틸렌 카보네이트(EC) : 에틸메틸 카보네이트(EMC): 디메틸 카보네이트(DMC) =3:3:4 (중량비)의 조성을 갖는 비수성 유기 용매를 사용한 것을 제외하고는 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 3
리튬염으로서 LiPF6를 단독으로 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 4
LiPF6 및 리튬비스플루오로설포닐이미드를 약 1:0.5의 몰비율을 사용한 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실험예 1
< LiPF6 및 LiFSI의 몰비에 따른 저온 출력 특성 실험>
실시예 1 내지 3, 및 비교예 1, 3 및 4의 리튬 이차전지를 -30℃에서 SOC(충전 심도) 별로 0.5C로 10초간 방전하여 발생하는 전압차로 저온 출력을 계산하였다. 그 결과를 도 1에 나타낸다.
도 1을 참조하면, SOC가 100%인 경우에 있어서, LiPF6 및 리튬비스플루오로설포닐이미드(LiFSI)의 몰비가 1:5 내지 1:9인 경우, 몰비가 1:0.5인 비교예 4 및 LiFSI를 사용하지 않고 LiPF6 단독 사용한 비교예 3에 비해, 현저히 향상되었음을 알 수 있으며, 특히, LiFSI의 함량이 증가할수록 저온 출력특성이 향상됨을 알 수 있다.
구체적으로, LiPF6 및 LiFSI의 몰비가 1:9인 실시예 1의 경우, 몰비가 1:0.5인 비교예 4에 비해 SOC가 100%인 경우에 있어서, 실시예 1이 비교예 4에 비해 약 40% 이상 저온 출력 특성이 향상되었고, 비교예 3에 비해 60% 이상 향상됨을 알 수 있다. 마찬가지로, SOC가 20, 40, 60 및 80%인 경우에 있어서도, SOC가 100%인 경우와 마찬가지로 우수한 결과를 얻을 수 있었다.
한편, LiPF6 및 LiFSI의 몰비가 1: 6인 실시예 2는 몰비가 1: 5인 실시예 3에 비해 1 몰비 차이임에도 불구하고, 실시예 2에서 실시예 1에서의 LiFSI의 증가율 대비 현저한 차이를 보임을 알 수 있다.
따라서, LiPF6 및 LiFSI의 몰비를 조절함으로써, 리튬 이차전지의 저온 출력 특성을 향상시킬 수 있음을 확인할 수 있다.
실험예 2
<리튬 이차전지의 고온 사이클 특성 실험>
실시예 1 내지 3, 및 비교예 1, 3 및 4의 리튬 이차전지를 45℃에서 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.03V까지 3C로 방전하고, 그 방전 용량을 측정하였다. 이를 1 내지 1000 사이클로 반복 실시하였고, 측정한 방전 용량을 도 2에 나타내었다.
도 2를 참조하면, 실시예 1 내지 3, 및 비교예 1, 3 및 4의 리튬 이차전지의 고온 사이클 특성은 초기 250회째 사이클까지는 용량 보유율이 유사하였으나, 사이클 수가 증가함에 따라, 특히 700 사이클 이후 실시예 1 내지 3은 비교예 1, 3 및 4 대비 현저한 차이를 보였다.
또한, 1000회째 사이클에서 실시예 1 및 2는 용량 보유율이 비교예 1에 비해 약 40% 이상, 비교예 4에 비해 약 35% 이상, 비교예 3에 비해 약 100% 이상까지 향상됨을 알 수 있다.
한편, LiPF6 및 LiFSI의 몰비가 1: 6인 실시예 2는 몰비가 1: 5인 실시예 3에 비해 1 몰비 차이임에도 불구하고, 실시예 2에서 실시예 1에서의 LiFSI의 증가율 대비 현저한 차이를 보임을 알 수 있다.
따라서, LiPF6 및 LiFSI의 몰비를 조절함으로써, 리튬 이차전지의 고온 사이클 특성을 향상시킬 수 있음을 확인할 수 있다.
실험예 3
< LiPF6 및 LiFSI의 몰비에 따른 고온 저장 후 출력 특성 실험>
실시예 1 내지 3, 및 비교예 1, 3 및 4의 리튬 이차전지를 60℃에서 저장 후 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.0V까지 1C로 방전하고, 그 방전 용량을 측정하였다. 그 결과를 도 3에 나타낸다.
도 3을 참조하면, 본 발명의 실시예 1 내지 3의 리튬 이차전지는 저장 기간 16주까지 용량 보유율이 비교예 1, 3 및 4의 리튬 이차전지에 비해 현저히 우수함을 알 수 있다.
이에 반해, 몰비가 1:0.5인 비교예 4 및 LiFSI를 사용하지 않고 LiPF6 단독 사용한 비교예 3의 경우, 저장 기간 16주에 용량 보유율이 본원 실시예 1 및 2에 비해 10% 내지 30%까지 현저히 감소하였다.
따라서, LiPF6 및 LiFSI의 몰비를 조절함으로써, 리튬 이차전지의 고온 저장 특성을 향상시킬 수 있으며, 특히 LiPF6 및 LiFSI의 몰비가 1: 6 내지 1: 9인 경우, 이 범위를 벗어나는 경우에 비해 리튬 이차전지의 고온 저장 특성이 현저히 우수함을 확인할 수 있었다.
따라서, LiPF6 및 LiFSI의 몰비를 조절함으로써, 리튬 이차전지의 고온 저장 후 출력 특성을 향상시킬 수 있음을 확인할 수 있다.
실험예 4
<초기 상온 출력 특성 실험>
유기 용매의 종류에 따른 출력 특성 시험을 평가하기 위하여, 실시예 1, 및 비교예 1과 2의 리튬 이차전지를 23℃에서 SOC(충전 심도) 별로 0.5C로 10초간 방전하여 발생하는 전압차로 상온 출력을 계산하였다. 그 결과를 도 4a 및 도 4b에 나타낸다. 도 4a는 SOC(%)에 따른 23℃에서의 방전 출력(W) 결과를 나타낸 것이고, 도 4b는 SOC(%)에 따른 23℃에서의 충전 출력(W) 결과를 나타낸 것이다.
도 4a를 참조하면, 실시예 1의 리튬 이차전지는 비교예 1과 2의 리튬 이차전지에 비해 SOC 30%부터 출력 특성이 우수하였고, SOC가 50% 이후부터 출력 특성이 비교예 1과 2와 더욱 현저한 차이를 보기 시작하였다. 또한, SOC가 90%인 경우 실시예 1의 리튬 이차전지는 비교예 1과 2의 리튬 이차전지에 비하여 약 1.2 내지 1.4배 정도 이상 상온 방전 출력 특성이 향상됨을 알 수 있다. 마찬가지로, 도 4b의 SOC(%)에 따른 23℃에서의 충전 출력(W) 결과를 살펴보면 SOC 30(%)에서 약 1.2배 이상의 출력 특성 차이를 보였다.
특히, 비교예 2와 같이 비수성 유기 용매로서 프로필렌 카보네이트 및 에스테르계 용매(에틸프로피오네이트)를 사용하지 않은 경우, 상온 출력 특성이 현저히 떨어짐을 알 수 있으며, 비교예 1과 같이 프로필렌 카보네이트를 사용하였으나 에스테르계 용매(에틸프로피오네이트)를 사용하지 않은 경우, 비교예 2에 비해 출력 특성은 증가하나, 이들을 조합하여 사용한 실시예 1에 비해 현저히 떨어짐을 확인 할 수 있다.
따라서, 프로필렌 카보네이트와 에스테르계인 에틸프로피오네이트를 포함하는 비수성 유기 용매하에, 리튬비스플루오로설포닐이미드를 조합하여 사용함으로써 초기 상온 출력 특성을 현저히 개선할 수 있음을 확인할 수 있다.
실험예 5
<고온 저장 후 용량 특성 실험>
실시예 1, 및 비교예 1과 2의 리튬 이차전지를 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.0V까지 1C로 방전하고, 그 방전 용량을 측정하였다. 그 결과를 도 5에 나타낸다.
도 5를 참조하면, 저장기간 8주까지 비교예 1과 2 및 실시예 1의 용량보유율(%)에는 차이가 없었으나, 저장기간 3주 이후 비교예 1과 2의 리튬 이차전지는 저장기간이 증가할수록 용량보유율이 급격히 떨어져, 저장기간 5주 이후 실시예 1은 비교예 1과 2의 리튬 이차전지의 용량 보유율의 차이가 점차 커짐을 알 수 있다.
따라서, 실시예 1의 리튬 이차전지는 비교예 1과 2의 리튬 이차전지에 비해 고온 저장 후 용량 특성이 개선되는 효과가 있음을 확인할 수 있다.
따라서, 프로필렌 카보네이트와 에스테르계인 에틸프로피오네이트를 포함하는 비수성 유기 용매하에, 리튬비스플루오로설포닐이미드를 조합하여 사용한 실시예 1의 리튬 이차전지는 이와 구성이 다른 비교예 1과 2의 리튬 이차전지에 비해 고온 저장 후 용량 특성이 개선되는 효과가 있음을 확인할 수 있다.
본 발명의 비수성 전해액에 의하면, 이를 포함하는 리튬 이차전지의 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써 저온, 상온 및 고온 출력 특성을 개선할 수 있을 뿐 아니라, 고온 사이클 특성 및 고온 저장 후 용량 특성을 동시에 향상시킬 수 있으므로, 이차전지 분야에 매우 유용할 수 있다.
Claims (15)
- i) 프로필렌 카보네이트(PC) 및 에스테르계 용매를 포함하는 비수성 유기 용매; 및ii) 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI)를 포함하는 것을 특징으로 하는 비수성 전해액.
- 제 1 항에 있어서,상기 프로필렌 카보네이트와 에스테르계 용매의 혼합비는 1:0.5 내지 4 중량비인 것을 특징으로 하는 비수성 전해액.
- 제 1 항에 있어서,상기 에스테르계 용매는 메틸 포르메이트(methyl formate), 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), 이소프로필 아세테이트(isopropyl acetate), 이소아밀 아세테이트(isoamyl acetate), 메틸 프로피오네이트(methyl propionate), 에틸 프로피오네이트(ethyl propionate), 메틸 부틸레이트(methyl butylate) 및 에틸 부틸레이트(ethyl butylate)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 비수성 전해액.
- 제 3 항에 있어서,상기 에스테르계 용매는 메틸 프로피오네이트(methyl propionate), 에틸 프로피오네이트(ethyl propionate), 또는 이들의 혼합용매인 것을 특징으로 하는 비수성 전해액.
- 제 1 항에 있어서,상기 비수성 전해액은 리튬염을 더 포함하는 것을 특징으로 하는 비수성 전해액.
- 제 5 항에 있어서,상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서 1:1 내지 9인 것을 특징으로 하는 비수성 전해액.
- 제 6 항에 있어서,상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서 1:6 내지 9인 것을 특징으로 하는 비수성 전해액.
- 제 1 항에 있어서,상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도가 0.1 mole/ℓ 내지 2 mole/ℓ인 것을 특징으로 하는 비수성 전해액.
- 제 1 항에 있어서,상기 에스테르계 용매의 함량은 비수성 유기용매 100 중량부를 기준으로 10 중량부 내지 70 중량부인 것을 특징으로 하는 비수성 전해액.
- 제 9 항에 있어서,상기 에스테르계 용매의 함량은 비수성 유기용매 100 중량부를 기준으로 20 중량부 내지 50 중량부인 것을 특징으로 하는 비수성 전해액.
- 제 1 항에 있어서,상기 비수성 유기 용매는 부틸렌 카보네이트(BC), 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 더 포함하는 것을 특징으로 하는 비수성 전해액.
- 제 5 항에 있어서,상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 비수성 전해액.
- 제 1 항에 있어서,LiBF4, 리튬 옥살릴디플루오로보레이트(LiODFB) 및 에틸렌 설페이트(ESa)로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함하는 것을 특징으로 하는 비수성 전해액.
- 제 1 항에 있어서,LiBF4, 리튬 옥살릴디플루오로보레이트(LiODFB) 및 에틸렌 설페이트(ESa)로 이루어진 군에서 선택되는 2종 이상의 화합물을 더 포함하는 것을 특징으로 하는 비수성 전해액.
- 양극, 음극, 상기 양극과 상기 음극 사이에 개재된 세퍼레이터, 및제 1 항의 비수성 전해액을 포함하는 리튬 이차전지.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480001987.7A CN104604014B (zh) | 2013-05-27 | 2014-05-27 | 非水电解质溶液和包含其的锂二次电池 |
JP2015520082A JP6037486B2 (ja) | 2013-05-27 | 2014-05-27 | 非水性電解液及びこれを含むリチウム二次電池 |
EP14795932.4A EP2846393B1 (en) | 2013-05-27 | 2014-05-27 | Non-aqueous electrolyte and lithium secondary battery comprising same |
US14/448,155 US9806379B2 (en) | 2013-05-27 | 2014-07-31 | Non-aqueous electrolyte solution and lithium secondary battery including the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130059920 | 2013-05-27 | ||
KR10-2013-0059920 | 2013-05-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/448,155 Continuation US9806379B2 (en) | 2013-05-27 | 2014-07-31 | Non-aqueous electrolyte solution and lithium secondary battery including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014193148A1 true WO2014193148A1 (ko) | 2014-12-04 |
Family
ID=51989104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/004731 WO2014193148A1 (ko) | 2013-05-27 | 2014-05-27 | 비수성 전해액 및 이를 포함하는 리튬 이차전지 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2846393B1 (ko) |
JP (1) | JP6037486B2 (ko) |
KR (1) | KR101605957B1 (ko) |
CN (1) | CN104604014B (ko) |
TW (1) | TWI548133B (ko) |
WO (1) | WO2014193148A1 (ko) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6296597B2 (ja) * | 2013-10-16 | 2018-03-20 | 学校法人 関西大学 | リチウムイオン二次電池 |
JP6750196B2 (ja) * | 2015-07-09 | 2020-09-02 | 株式会社豊田中央研究所 | 非水系リチウム電池及びその使用方法 |
WO2017057968A1 (ko) * | 2015-09-30 | 2017-04-06 | 주식회사 엘지화학 | 비수성 전해액 및 이를 포함하는 리튬 이차전지 |
KR101992124B1 (ko) | 2015-09-30 | 2019-06-25 | 주식회사 엘지화학 | 비수성 전해액 및 이를 포함하는 리튬 이차전지 |
JP6876369B2 (ja) * | 2016-01-15 | 2021-05-26 | 株式会社日本触媒 | リチウムイオン二次電池 |
US11211637B2 (en) | 2016-01-25 | 2021-12-28 | Panasonic Intellectual Property Management Co., Ltd. | Lithium battery |
JP2017191740A (ja) * | 2016-04-15 | 2017-10-19 | 国立大学法人 東京大学 | リチウムイオン二次電池 |
KR102640842B1 (ko) * | 2016-06-09 | 2024-02-27 | 삼성에스디아이 주식회사 | 리튬전지 |
US11489203B2 (en) * | 2018-07-04 | 2022-11-01 | Lg Energy Solution, Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery including same |
WO2020158299A1 (ja) * | 2019-01-31 | 2020-08-06 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池およびこれに用いる電解液 |
JP7152965B2 (ja) * | 2019-02-18 | 2022-10-13 | 株式会社豊田中央研究所 | 蓄電デバイス |
CN112164826A (zh) * | 2020-09-29 | 2021-01-01 | 中国科学院长春应用化学研究所 | 一种双离子电池低温型电解液以及一种双离子电池 |
CN113346095A (zh) * | 2021-05-17 | 2021-09-03 | 上海超碳石墨烯产业技术有限公司 | 一种具有耐高温系统的扣式电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004165151A (ja) * | 2002-10-23 | 2004-06-10 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池およびそれに用いる電解質 |
KR20090003921A (ko) * | 2007-07-05 | 2009-01-12 | 삼성전자주식회사 | 냉장고 |
KR20120035638A (ko) * | 2010-10-06 | 2012-04-16 | 삼성에스디아이 주식회사 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
KR20120090755A (ko) * | 2010-12-22 | 2012-08-17 | 삼성에스디아이 주식회사 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
KR20120090969A (ko) | 2009-09-29 | 2012-08-17 | 미쓰비시 가가꾸 가부시키가이샤 | 비수계 전해액 전지 및 비수계 전해액 |
US20120258357A1 (en) * | 2011-04-11 | 2012-10-11 | Sb Limotive Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7709157B2 (en) * | 2002-10-23 | 2010-05-04 | Panasonic Corporation | Non-aqueous electrolyte secondary battery and electrolyte for the same |
US20080057403A1 (en) * | 2006-09-06 | 2008-03-06 | Issaev Nikolai N | Lithium cell |
KR101033697B1 (ko) * | 2007-10-17 | 2011-05-09 | 주식회사 엘지화학 | 리튬이차전지용 전해액 첨가제, 상기 전해액 첨가제를포함하는 비수성 전해액 및 리튬이차전지 |
JP5125559B2 (ja) * | 2008-02-04 | 2013-01-23 | 株式会社Gsユアサ | 非水電解質電池及びその製造方法 |
FR2948232B1 (fr) * | 2009-07-16 | 2011-08-26 | Commissariat Energie Atomique | Electrolyte liquide pour accumulateur au lithium, comprenant un melange de solvants organiques non aqueux |
JPWO2011052605A1 (ja) * | 2009-10-27 | 2013-03-21 | 旭硝子株式会社 | 二次電池用非水電解液および二次電池 |
CN102074734A (zh) * | 2010-09-30 | 2011-05-25 | 张家港市国泰华荣化工新材料有限公司 | 一种含氟磺酰亚胺锂锂盐的电解质溶液及其用途 |
CN102544570A (zh) * | 2010-12-31 | 2012-07-04 | 张家港市国泰华荣化工新材料有限公司 | 一种含氟磺酰亚胺锂的非水电解质溶液的锂硫电池 |
JP6065367B2 (ja) * | 2011-06-07 | 2017-01-25 | ソニー株式会社 | 非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
CN102952099B (zh) * | 2011-08-30 | 2015-05-06 | 海洋王照明科技股份有限公司 | 吡咯类离子液体及其制备方法和应用 |
JP2013084592A (ja) * | 2011-09-26 | 2013-05-09 | Nippon Shokubai Co Ltd | アルカリ金属電池 |
-
2014
- 2014-05-27 WO PCT/KR2014/004731 patent/WO2014193148A1/ko active Application Filing
- 2014-05-27 JP JP2015520082A patent/JP6037486B2/ja active Active
- 2014-05-27 TW TW103118427A patent/TWI548133B/zh active
- 2014-05-27 CN CN201480001987.7A patent/CN104604014B/zh active Active
- 2014-05-27 EP EP14795932.4A patent/EP2846393B1/en active Active
- 2014-05-27 KR KR1020140063806A patent/KR101605957B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004165151A (ja) * | 2002-10-23 | 2004-06-10 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池およびそれに用いる電解質 |
KR20090003921A (ko) * | 2007-07-05 | 2009-01-12 | 삼성전자주식회사 | 냉장고 |
KR20120090969A (ko) | 2009-09-29 | 2012-08-17 | 미쓰비시 가가꾸 가부시키가이샤 | 비수계 전해액 전지 및 비수계 전해액 |
KR20120035638A (ko) * | 2010-10-06 | 2012-04-16 | 삼성에스디아이 주식회사 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
KR20120090755A (ko) * | 2010-12-22 | 2012-08-17 | 삼성에스디아이 주식회사 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
US20120258357A1 (en) * | 2011-04-11 | 2012-10-11 | Sb Limotive Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same |
Also Published As
Publication number | Publication date |
---|---|
EP2846393B1 (en) | 2018-10-17 |
CN104604014B (zh) | 2018-03-06 |
JP6037486B2 (ja) | 2016-12-07 |
KR20140139442A (ko) | 2014-12-05 |
JP2015522924A (ja) | 2015-08-06 |
EP2846393A1 (en) | 2015-03-11 |
CN104604014A (zh) | 2015-05-06 |
TWI548133B (zh) | 2016-09-01 |
KR101605957B1 (ko) | 2016-03-23 |
EP2846393A4 (en) | 2015-05-27 |
TW201523967A (zh) | 2015-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014193148A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2014185750A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019103460A1 (ko) | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
WO2014104710A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2014129824A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2014129823A1 (ko) | 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 | |
WO2020055183A1 (ko) | 리튬 이차전지용 음극 및 리튬 이차전지의 제조방법 | |
WO2020085823A1 (ko) | 리튬 이차전지용 음극의 제조방법 | |
WO2017086672A1 (ko) | 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019074306A2 (ko) | 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 | |
WO2018208035A1 (ko) | 리튬 이차전지의 제조방법 | |
WO2020076091A1 (ko) | 리튬 이차전지용 음극의 제조방법 | |
WO2019098541A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2020153690A1 (ko) | 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법 | |
WO2019013511A2 (ko) | 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019017643A9 (ko) | 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2016052996A1 (ko) | 비수 전해액 리튬 이차전지 | |
WO2019177403A1 (ko) | 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극 | |
WO2018097575A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2016053040A1 (ko) | 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 | |
WO2019078688A2 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020153701A1 (ko) | 이차전지용 양극 활물질의 제조방법 | |
WO2019203455A1 (ko) | 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019078506A2 (ko) | 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2019194609A1 (ko) | 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2014795932 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015520082 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14795932 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |