WO2010098639A2 - 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지 - Google Patents

리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지 Download PDF

Info

Publication number
WO2010098639A2
WO2010098639A2 PCT/KR2010/001265 KR2010001265W WO2010098639A2 WO 2010098639 A2 WO2010098639 A2 WO 2010098639A2 KR 2010001265 W KR2010001265 W KR 2010001265W WO 2010098639 A2 WO2010098639 A2 WO 2010098639A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
secondary battery
carbonate
aqueous electrolyte
group
Prior art date
Application number
PCT/KR2010/001265
Other languages
English (en)
French (fr)
Other versions
WO2010098639A3 (ko
Inventor
윤수진
유성훈
전종호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US13/201,897 priority Critical patent/US8304118B2/en
Priority to JP2011538574A priority patent/JP5598867B2/ja
Priority claimed from KR1020100017589A external-priority patent/KR101135605B1/ko
Publication of WO2010098639A2 publication Critical patent/WO2010098639A2/ko
Publication of WO2010098639A3 publication Critical patent/WO2010098639A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte used in a lithium secondary battery and a lithium secondary battery having the same.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • a lithium secondary battery has a negative electrode, a positive electrode, and a nonaqueous electrolyte that provides a migration path between lithium ions therebetween, and oxidation and reduction reactions when lithium ions are intercalated / deintercalated at the positive electrode and the negative electrode
  • the lithium secondary battery has been spotlighted for its high operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution.
  • conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution.
  • such a lithium secondary battery has a problem in that its performance deteriorates as charging and discharging are repeated, which becomes more serious as the capacity density of the battery increases.
  • JP 1996-45545 discloses a method using vinylene carbonate (VC).
  • VC vinylene carbonate
  • the problem to be solved by the present invention is applied to a lithium secondary battery to form a stable SEI film on the negative electrode, a non-aqueous electrolyte that can improve the life characteristics of the battery by controlling the amount of LiF formed in the SEI film and lithium having the same It is to provide a secondary battery.
  • Another object of the present invention is to provide a lithium secondary battery that can be applied to a specific negative electrode using an aqueous binder to achieve the above object.
  • the nonaqueous electrolyte solution for a lithium secondary battery including an electrolyte salt and an organic solvent includes (a) two or more functional groups, and at least one of the functional groups is a polyfunctional compound; And (b) any one anion receptor selected from the group consisting of borane compounds, borate compounds, and mixtures thereof.
  • the polyfunctional compound is preferably a compound containing two or more acrylic groups, for example, tetraethylene glycol diacrylate, molecular weight of 50 to 20,000 Polyethylene glycol diacrylate, bisphenol A ethoxylated diacrylate having a molecular weight of 100 to 10,000, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, TriMethylol Propane Triacrylate, DiTriMethylol Propane TetraAcrylate, Dipentaerythritol hexaacrylate (DiPentaErythritol) HexaAcrylate), Tris [2- (acryloyloxy) ethyl] Isocyanurate (Tris [2- (acryloyloxy) ethy l] isocyanurate) may be used alone or in combination of two or more thereof.
  • acrylic groups for example, tetraethylene glycol diacrylate, molecular weight
  • the borane compound is a compound represented by the following formula (1)
  • the borate compound is a compound represented by the following formula (2).
  • R 1 to R 3 are each independently hydrogen or halogen, or an alkyl group or silyl group having 1 to 6 carbon atoms.
  • R 4 to R 6 are each independently hydrogen or halogen, or an alkyl or silyl group having 1 to 6 carbon atoms.
  • the content of the (a) component and (b) component may be 0.05 to 10% by weight, respectively, based on the total weight of the nonaqueous electrolyte.
  • the nonaqueous electrolyte of the present invention described above is applied to a conventional lithium secondary battery including a negative electrode, a positive electrode and a nonaqueous electrolyte.
  • the binder forming the negative electrode preferably includes an aqueous binder, for example, styrene-butadiene rubber (SBR).
  • the nonaqueous electrolyte solution for lithium secondary batteries according to the present invention has the following effects.
  • the acrylic group-containing polyfunctional compound contained in the nonaqueous electrolyte solution forms a stable SEI film on the surface of the negative electrode.
  • an anion receptor made of a borane compound or a borate compound elutes the LiF in the SEI film to control the LiF content in the SEI film. Accordingly, the resistance of the SEI film is controlled to improve the life characteristics of the battery.
  • the aqueous binder when used as the binder of the negative electrode, the LiF content in the above-described SEI film increases significantly than when using a conventional solvent-based binder, which can effectively control the problem. Therefore, the advantages of using an aqueous binder, that is, economically and environmentally friendly, it is possible to manufacture a high capacity lithium secondary battery due to increased binding effect.
  • Example 1 is an XPS graph obtained from a surface of a negative electrode after charging a battery according to Example 1 and Comparative Example 1 at 0.1C, respectively.
  • a nonaqueous electrolyte solution for a lithium secondary battery including an electrolyte salt and an organic solvent includes: (a) a multifunctional compound having two or more functional groups, and at least one of the functional groups is an acryl group; And (b) any one anion receptor selected from the group consisting of borane compounds, borate compounds, and mixtures thereof.
  • a polyfunctional compound comprising two or more functional groups, at least one of which is an acrylic group, polymerizes at a potential lower than that of the solvent during initial charging to form an SEI film on the surface of the negative electrode.
  • a compound containing two or more acrylic groups for example, tetraethylene glycol diacrylate, polyethylene glycol having a molecular weight of 50 to 20,000.
  • the SEI film formed from the above-mentioned component (a) has high stability, the amount of LiF contained in the film increases, which acts as a large resistance during charge and discharge.
  • an aqueous binder is used as the negative electrode binder, unlike a solvent-based binder such as PVdF, the moisture content of the negative electrode is increased.
  • the hydrofluoric acid content in the nonaqueous electrolytic solution is significantly increased, so that the amount of LiF is also increased when the SEI film is formed by the component (a).
  • the present invention solves this problem by adding any one anion receptor selected from the group consisting of (b) a borane compound, a borate compound, and a mixture thereof to the nonaqueous electrolyte. That is, an anion receptor made of a borane compound or a borate compound contained in the nonaqueous electrolyte solution elutes LiF in the SEI film. Accordingly, since the LiF content in the SEI film is controlled to be low, the resistance of the SEI film is lowered, thereby improving the life characteristics of the battery.
  • nonaqueous electrolyte of the present invention it is preferable to use a compound represented by the following formula (1) as the borane compound added to the nonaqueous electrolyte and a compound represented by the following formula (2) as the borate compound.
  • R 1 to R 3 are each independently hydrogen or halogen, or an alkyl group or silyl group having 1 to 6 carbon atoms.
  • R 4 to R 6 are each independently hydrogen or halogen, or an alkyl or silyl group having 1 to 6 carbon atoms.
  • the nonaqueous electrolyte of the present invention contains an organic solvent.
  • the organic solvent is not particularly limited as long as it is usually used as an organic solvent for nonaqueous electrolyte, and cyclic carbonate, linear carbonate, lactone, ether, ester, acetonitrile, lactam, and / or ketone can be used.
  • Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), fluoroethylene carbonate (FEC), and the like.
  • Examples of the linear carbonate include diethyl carbonate (DEC) and dimethyl carbonate. (DMC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), and the like, and these may be used alone or in combination of two or more thereof.
  • Examples of the lactone include gamma-butyrolactone (GBL), and examples of the ether include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane And 1,2-diethoxyethane.
  • Examples of such esters include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl pivalate and the like.
  • the lactam includes N-methyl-2-pyrrolidone (NMP) and the like
  • the ketone includes polymethylvinyl ketone.
  • a halogen derivative of the organic solvent may be used, but is not limited thereto. These organic solvents can be used individually or in mixture of 2 or more types.
  • the nonaqueous electrolyte of the present invention includes an electrolyte salt, and the electrolyte salt is not particularly limited as long as it is usually used as an electrolyte salt for nonaqueous electrolyte.
  • the electrolyte salt is (i) Li +, Na + , a cation and (ii) selected from the group consisting of K + PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2) 3 - , but can be configured with a combination of an anion selected from the group consisting of, but not always limited thereto.
  • These electrolyte salts can be used individually or in mixture of 2 or more types.
  • the electrolyte salt is LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li and LiC ( It is preferable to use lithium salts such as CF 3 SO 2 ) 3 and LiC 4 BO 8 .
  • the lithium secondary battery of the present invention includes all conventional lithium secondary batteries, such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • the lithium secondary battery of the present invention can be prepared according to conventional methods known in the art. For example, a porous separator may be placed between the positive electrode and the negative electrode, and then the nonaqueous electrolyte solution having the above-described composition may be added.
  • the electrode of a lithium secondary battery can be manufactured by conventional methods known in the art.
  • a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in an electrode active material, and then applying (coating) to a current collector of a metal material, compressing, and drying the electrode to prepare an electrode.
  • Lithium cobalt oxides such as lithium nickel oxide, LiCoO 2 , and manganese, nickel, and cobalt in which some of these oxides are substituted with other transition metals, or vanadium oxide containing lithium, etc.), but are not limited thereto. .
  • the negative electrode active material may be a conventional negative electrode active material that can be used in the negative electrode of a conventional lithium secondary battery, non-limiting examples of lithium metal, lithium alloy, carbon, petroleum coke that can occlude and release lithium ions ), Activated carbon, graphite, carbon fiber, and the like.
  • lithium oxide may be occluded and released, and metal oxides such as TiO 2 , SnO 2, and the like having a potential of less than 2 V may be used, but are not limited thereto.
  • carbon materials such as graphite, carbon fiber and activated carbon are preferable.
  • the current collector of the metal material is a metal having high conductivity, and any metal can be used as long as the slurry of the electrode active material can be easily adhered and is not reactive in the voltage range of the battery.
  • Non-limiting examples of the positive electrode current collector is a foil produced by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector is produced by copper, gold, nickel or copper alloy or a combination thereof Foil and the like.
  • a binder such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), or the like is used for the negative electrode of the lithium secondary battery to bind the active material particles to maintain the molded body.
  • the binder is a solvent-based binder represented by polyvinylidene fluoride (PVdF) (i.e., a binder using an organic solvent as a solvent) and an aqueous binder represented by styrene-butadiene rubber (hereinafter referred to as SBR).
  • PVdF polyvinylidene fluoride
  • SBR aqueous binder represented by styrene-butadiene rubber
  • Aqueous binders unlike solvent binders, are economical, environmentally friendly, harmless to the health of workers, and have a greater binding effect than solvent-based binders.
  • the lithium secondary battery of the present invention can solve the above-described problems caused by the use of an aqueous binder according to the use of a specific nonaqueous electrolyte, thereby further facilitating high capacity.
  • the aqueous binder is preferably SBR (styrene-butadiene rubber), and, as is well known, may be applied to a negative electrode by dispersing it in water together with a thickener such as carboxymethyl cellulose (CMC).
  • SBR styrene-butadiene rubber
  • the conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical change in the electrochemical device.
  • carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM).
  • Solvents for forming the electrode include organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents are used alone or in combination of two or more. It can be mixed and used. However, when forming a cathode, water is used as a solvent. The amount of the solvent used is sufficient to dissolve and disperse the electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
  • organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents are used alone or in combination of two or more. It can be mixed and used. However, when forming a cathode, water is used as a solvent. The amount of the solvent used is sufficient to dissolve and disperse the electrode active material, the binder, and the conductive material in consideration of the coating thickness of
  • the lithium secondary battery of the present invention may include a separator.
  • the separator is not particularly limited, but it is preferable to use a porous separator, and non-limiting examples include a polypropylene-based, polyethylene-based, or polyolefin-based porous separator.
  • the lithium secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch type, or coin type using a can.
  • Ethylene carbonate (EC): Ethyl methyl carbonate (EMC) 3: 7 (v: v) to dissolve LiPF 6 in an organic solvent to a concentration of 1M, and then in the solution Dipentaerythritol hexaacrylate and tripropyl borate of the formula
  • the nonaqueous electrolyte was prepared by adding 0.5 wt% and 0.1 wt%, respectively, based on the total weight of the non-aqueous electrolyte.
  • An electrode was prepared using LiCoO 2 as the positive electrode, artificial graphite as the negative electrode, and SBR as the negative electrode binder.
  • a bicell type pouch battery was manufactured by a conventional method of injecting the nonaqueous electrolyte prepared by the above-described method.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that tripropyl borane was used instead of tripropyl borate.
  • a nonaqueous electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that 1% by weight of fluoroethylene carbonate represented by the following Formula 4 was further added.
  • a nonaqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that Neopentyl glycol dimethacrylate was used instead of dipentaerythritol hexaacrylate.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1 except for using Dipentaerythritol pentaacrylate instead of Dipentaerythritol hexaacrylate.
  • a nonaqueous electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that tripropyl borate was not added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 3, except that tripropyl borane was not added.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that dipentaerythritol hexaacrylate was not added.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 2, except that dipentaerythritol hexaacrylate was not added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 4, except that tripropyl borate was not added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 5, except that tripropyl borate was not added.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that dipentaerythritol hexaacrylate and tripropyl borate were not added.
  • Example 1 Dipentaerythritol hexaacrylate 0.5 wt% tripropyl borate 0.1wt% 86.8
  • Example 2 Dipentaerythritol hexaacrylate 0.5 wt% tripropyl borane 0.1 wt% 83.9
  • Example 3 Dipentaerythritol hexaacrylate 0.5 wt% Fluoro-ethylene carbonate 1wt% tripropyl borate 0.1 wt% 87.2
  • Example 4 Neopentyl glycol dimethacrylate 0.5 wt% tripropyl borate 0.1wt% 78.1
  • Example 5 Dipentaerythritol pentaacrylate 0.5 wt% tripropyl borate 0.1wt% 84.4 Comparative Example 1 Dipentaerythritol hexaacrylate 0.5 wt% 63.3 Comparative Example 2 Dipentaerythritol hexaacrylate
  • a lithium secondary battery of Example 1 in which a nonaqueous electrolyte containing an acrylic group-containing polyfunctional compound and an anion receptor at the same time is applied to a negative electrode using an aqueous binder has only an acrylic group-containing polyfunctional compound alone. It can be seen that the LiF content in the SEI film was significantly reduced compared to the battery of Comparative Example 1 in which the nonaqueous electrolyte solution was applied to the negative electrode using the aqueous binder. This is because the anion receptor eluted LiF among the components of the SEI film on the surface of the cathode, thereby confirming that an SEI film is easily formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지에 관한 것이다. 본 발명에 따라 전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액은, (a) 관능기를 2개 이상 포함하며, 상기 관능기 중 적어도 1개는 아크릴기인 다관능성 화합물; 및 (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 함유한다. 본 발명의 비수 전해액을 구비한 리튬 이차전지는 음극에 안정한 SEI 막이 형성되며, 형성된 SEI 막 중 LiF의 양이 제어됨으로서 전지의 수명특성이 개선된다.

Description

리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
본 출원은 2009년 02월 26일에 출원된 한국특허출원 제10-2009-0016357호 및 2010년 02월 26일에 출원된 한국특허출원 제10-2010-0017589호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
본 발명은 리튬 이차전지에 사용되는 비수 전해액 및 이를 구비한 리튬 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지는 음극, 양극 및 이 사이에서 리튬 이온의 이동 경로를 제공하는 비수 전해액을 구비하며, 리튬 이온이 양극 및 음극에서 삽입(intercalation)/탈삽입((deintercalation)될 때의 산화 및 환원반응에 의해 전기 에너지를 생성한다. 이러한 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나, 이러한 리튬 이차 전지는 충방전이 반복됨에 따라 성능이 열화되는 문제점이 있다. 이와 같은 문제는 전지의 용량 밀도를 증가시킬수록 더 심각해진다.
전술한 문제점들을 해결하기 위하여, 다양한 화합물을 비수 전해액에 첨가하여 음극 표면상에 고체 전해질 계면(SEI) 막을 형성하는 방법들이 제시되었다. 예를 들어, JP 1996-45545호에는 비닐렌 카보네이트(vinylene carbonate, VC)를 이용하는 방법이 개시되어 있다. 그러나, VC가 형성하는 SEI막은 저항이 다소 크고, 고온 하에서 쉽게 붕괴되는 것으로 알려져 있다.
따라서, 안정한 SEI 막을 형성하면서 수명특성도 현저히 개선하는 등, 리튬 이차전지에 최적화된 비수 전해액에 대한 연구가 계속되고 있다.
따라서 본 발명이 해결하고자 하는 과제는, 리튬 이차전지에 적용되어 음극에 안정한 SEI 막을 형성하며, 형성된 SEI 막 중 LiF의 양을 제어하여 전지의 수명특성을 개선할 수 있는 비수 전해액 및 이를 구비한 리튬 이차전지를 제공하는데 있다.
본 발명이 해결하고자 하는 다른 과제는, 수계 바인더를 사용한 특정의 음극에 적용되어 전술한 목적을 달성할 수 있는 리튬 이차전지를 제공하는데 있다.
상기 과제를 해결하기 위하여, 본 발명에 따라 전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액은, (a) 관능기를 2개 이상 포함하며, 상기 관능기 중 적어도 1개는 아크릴기인 다관능성 화합물; 및 (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 함유한다.
본 발명의 비수 전해액에 있어서, 상기 다관능성 화합물은 2개 이상의 아크릴기를 포함하는 화합물을 사용하는 것이 바람직한데, 예를 들어, 테트라에틸렌 글리콜 디아크릴레이트(tetraethylene glycol diacrylate), 분자량이 50 내지 20,000인 폴리에틸렌 글리콜 디아크릴레이트(Polyethylene glycol diacrylate), 분자량이 100 내지 10,000인 비스페놀 A 에톡시레이티드 디아크릴레이트(Bisphenol A ethoxylated diacrylate), 1,4-부탄디올 디아크릴레이트(1,4-butanediol diacrylate), 1,6-헥산디올 디아크릴레이트(1,6-hexandiol diacrylate), 트리메틸올프로판 트리아크릴레이트(TriMethylolPropane TriAcrylate), 디트리메틸올프로판 테트라아크릴레이트(DiTriMethylolPropane TetraAcrylate), 디펜타에리트리톨 헥사아크릴레이트(DiPentaErythritol HexaAcrylate), 트리스[2-(아크릴로일옥시)에틸] 이소시아누레이트(Tris[2-(acryloyloxy)ethyl] isocyanurate) 등을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다.
또한, 본 발명의 비수 전해액에 있어서, 보란 화합물은 하기 화학식 1로 표시되는 화합물을, 보레이트 화합물은 하기 화학식 2로 표시되는 화합물을 사용하는 것이 바람직하다.
화학식 1
Figure PCTKR2010001265-appb-C000001
상기 화학식 1에서, R1 내지 R3는 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.
화학식 2
Figure PCTKR2010001265-appb-C000002
상기 화학식 2에서, R4 내지 R6은 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.
본 발명의 비수 전해액에 있어서, 상기 (a) 성분 및 (b) 성분의 함량은 비수 전해액 총 중량을 기준으로 각각 0.05 내지 10 중량%일 수 있다.
전술한 본 발명의 비수 전해액은 음극, 양극 및 비수 전해액을 포함하는 통상적인 리튬 이차전지에 적용된다. 바람직하게는, 상기 음극을 형성하는 바인더가 수계 바인더, 예를 들어 SBR(styrene-butadiene rubber)을 포함하는 것이 바람직하다.
본 발명에 따른 리튬 이차전지용 비수 전해액은 다음과 같은 효과를 나타낸다.
첫째, 비수 전해액에 함유된 아크릴기 함유 다관능성 화합물은 음극 표면에 안정한 SEI 막을 형성한다. 또한, 보란 화합물 또는 보레이트 화합물로 된 음이온 리셉터는 SEI 막 중의 LiF를 용출시켜 SEI 막 내의 LiF 함량을 제어한다. 이에 따라 SEI 막의 저항이 제어되어 전지의 수명특성이 개선된다.
둘째, 음극의 바인더로서 수계 바인더를 사용할 경우, 전술한 SEI 막 내의 LiF 함량은 통상적인 용제계 바인더를 사용할 때보다 크게 증가하는데, 이로 인한 문제점을 효율적으로 제어할 수 있다. 따라서, 수계 바인더 사용에 따른 잇점, 즉 경제적이고 친환경적으로, 결착효과 증대로 인해 고용량화 된 리튬 이차전지를 제조할 수 있다.
도 1은 실시예 1 및 비교예 1에 따른 전지를 각각 0.1C로 충전한 후, 음극 표면으로부터 얻은 XPS 그래프이다.
이하, 본 발명에 대해 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따라 전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액은, (a) 관능기를 2개 이상 포함하며, 상기 관능기 중 적어도 1개는 아크릴기인 다관능성 화합물; 및 (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 함유한다.
관능기를 2개 이상 포함하며, 상기 관능기 중 적어도 1개는 아크릴기인 다관능성 화합물은 초기 충전시에 용매보다 낮은 전위에서 중합반응하여 음극 표면에 SEI 막을 형성한다.
이러한 (a) 성분에 따른 다관능성 화합물은 2개 이상의 아크릴기를 포함하는 화합물을 사용하는 것이 바람직한데, 예를 들어, 테트라에틸렌 글리콜 디아크릴레이트(tetraethylene glycol diacrylate), 분자량이 50 내지 20,000인 폴리에틸렌 글리콜 디아크릴레이트(Polyethylene glycol diacrylate), 분자량이 100 내지 10,000인 비스페놀 A 에톡시레이티드 디아크릴레이트(Bisphenol A ethoxylated diacrylate), 1,4-부탄디올 디아크릴레이트(1,4-butanediol diacrylate), 1,6-헥산디올 디아크릴레이트(1,6-hexandiol diacrylate), 트리메틸올프로판 트리아크릴레이트(TriMethylolPropane TriAcrylate), 디트리메틸올프로판 테트라아크릴레이트(DiTriMethylolPropane TetraAcrylate), 디펜타에리트리톨 헥사아크릴레이트(DiPentaErythritol HexaAcrylate), 트리스[2-(아크릴로일옥시)에틸] 이소시아누레이트(Tris[2-(acryloyloxy)ethyl] isocyanurate) 등을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
전술한 (a) 성분으로부터 형성된 SEI 막은 안정성이 높으나, 막에 포함된 LiF 양이 증가하여 충방전시 큰 저항으로 작용한다. 특히, 음극 바인더로서 수계 바인더를 사용하는 경우, PVdF와 같은 용제계 바인더와 달리, 음극의 수분 함량이 높아지게 된다. 이에 따라, 비수 전해액 내의 불산 함량이 현저히 증가하게 되므로, (a) 성분에 의한 SEI 막 형성시 LiF의 양도 증대된다.
본 발명은 비수 전해액에 (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 첨가하므로서 이러한 문제를 해결하였다. 즉, 비수 전해액에 함유된 보란 화합물 또는 보레이트 화합물로 된 음이온 리셉터는 SEI 막 중의 LiF를 용출시킨다. 이에 따라 SEI 막 내의 LiF 함량이 낮게 제어되므로, SEI 막의 저항이 낮아져 전지의 수명특성이 개선된다.
본 발명의 비수 전해액에 있어서, 비수 전해액에 첨가된 보란 화합물로는 하기 화학식 1로 표시되는 화합물을, 보레이트 화합물로는 하기 화학식 2로 표시되는 화합물을 사용하는 것이 바람직하다.
<화학식 1>
Figure PCTKR2010001265-appb-I000001
상기 화학식 1에서, R1 내지 R3는 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.
<화학식 2>
Figure PCTKR2010001265-appb-I000002
상기 화학식 2에서, R4 내지 R6은 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.
전술한 (a) 성분 및 (b) 성분은 전지의 수명 향상 효과 및 성능을 고려할 때, 예를 들어 비수 전해액 총 중량을 기준으로 각각 0.05 내지 10 중량%를 첨가하는 것이 바람직하다.
본 발명의 비수 전해액에 있어서, 비수 전해액은 유기 용매를 포함한다. 상기 유기 용매는 통상 비수 전해액용 유기 용매로 사용하고 있는 것이면 특별히 제한하지 않으며, 환형 카보네이트, 선형 카보네이트, 락톤, 에테르, 에스테르, 아세토니트릴, 락탐, 및/또는 케톤을 사용할 수 있다.
상기 환형 카보네이트의 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC), 플루오르에틸렌 카보네이트(FEC) 등이 있고, 상기 선형 카보네이트의 예로는 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 디프로필 카보네이트(DPC), 에틸 메틸 카보네이트(EMC), 및 메틸 프로필 카보네이트(MPC) 등이 있으며, 이들을 각각 단독으로 또는 이들을 2종 이상 혼합하여 사용할 수 있다. 상기 락톤의 예로는 감마-부티로락톤(GBL)이 있으며, 상기 에테르의 예로는 디부틸에테르, 테트라히드로푸란, 2-메틸테트라히드로푸란, 1,4-디옥산, 1,2-디메톡시에탄, 1,2-디에톡시에탄 등이 있다. 상기 에스테르의 예로는 메틸 포메이트, 에틸 포메이트, 프로필 포메이트, 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 부틸 프로피오네이트, 메틸 피발레이트 등이 있다. 또한, 상기 락탐으로는 N-메틸-2-피롤리돈(NMP) 등이 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있다. 또한, 상기 유기 용매의 할로겐 유도체도 사용 가능하나, 이에 한정하지는 않는다. 이들 유기 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
또한, 본 발명의 비수 전해액에 있어서, 비수 전해액은 전해질 염을 포함하는데, 상기 전해질 염은 통상 비수 전해액용 전해질 염으로 사용하고 있는 것이면 특별히 제한하지 않는다.
상기 전해질 염은 (i) Li+, Na+, K+로 이루어진 군에서 선택된 양이온과 (ii) PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -로 이루어진 군에서 선택된 음이온의 조합으로 이루어질 수 있으나, 이에 한정하지 않는다. 이들 전해질 염은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 특히, 상기 전해질 염으로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li 및 LiC(CF3SO2)3, LiC4BO8 등의 리튬염을 사용하는 것이 바람직하다.
한편, 본 발명의 리튬 이차전지는 리튬금속 이차전지, 리튬이온 이차전지, 리튬폴리머 이차전지 또는 리튬이온폴리머 이차전지 등, 통상적인 리튬 이차전지들을 모두 포함한다.
본 발명의 리튬 이차전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 다공성의 세퍼레이터를 넣고 전술한 조성의 비수 전해액을 투입하여 제조할 수 있다.
리튬 이차전지의 전극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 전극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산재를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 전극을 제조할 수 있다.
양극활물질은 LiMxOy(M = Co, Ni, Mn, CoaNibMnc)와 같은 리튬 전이금속 복합산화물(예를 들면, LiMn2O4 등의 리튬 망간 복합산화물, LiNiO2 등의 리튬 니켈 산화물, LiCoO2 등의 리튬 코발트 산화물 및 이들 산화물의 망간, 니켈, 코발트의 일부를 다른 전이금속 등으로 치환한 것 또는 리튬을 함유한 산화바나듐 등) 등을 사용할 수 있으나, 이에 한정하지는 않는다.
음극활물질은 종래 리튬 이차전지의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 이의 비제한적인 예로는 리튬 이온을 흡장 및 방출할 수 있는 리튬 금속, 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 흑연(graphite), 탄소 섬유(carbon fiber) 등이 있다. 기타, 리튬을 흡장 및 방출할 수 있고, 리튬에 대한 전위가 2V 미만인 TiO2, SnO2 등과 같은 금속 산화물을 사용할 수 있으나, 이에 한정하지는 않는다. 특히, 흑연, 탄소섬유(carbon fiber), 활성화 탄소 등의 탄소재가 바람직하다.
금속 재료의 집전체는 전도성이 높은 금속으로, 상기 전극활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
리튬 이차전지의 음극에는 활물질 입자들을 결착시켜 성형체를 유지하기 위하여 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVdF), SBR(styrene butadiene rubber) 등과 같은 바인더가 사용된다. 바인더는 폴리불화비닐리덴(PVdF)으로 대표되는 용제계 바인더(즉, 유기용제를 용매로 하는 바인더)와, 스티렌-부타디엔 러버(styrene-butadiene rubber, 이하 SBR이라 함)로 대표되는 수계 바인더(즉, 물을 용매로 하는 바인더)로 나뉜다. 수계 바인더는 용제계 바인더와 달리 경제적, 친환경적이고, 작업자의 건강에도 무해하며, 용제계 바인더에 비하여 결착효과도 크므로 동일체적당 활물질의 비율을 높일 수 있어 고용량화가 가능하다. 본 발명의 리튬 이차전지는 특정의 비수 전해액 사용에 따라 수계 바인더 사용에 따른 전술한 문제점을 해소할 수 있음으로 고용량화가 더욱 용이해진다. 수계 바인더로는 SBR(styrene-butadiene rubber)인 것이 바람직하며, 잘 알려진 바와 같이 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 물에 분산시켜 음극에 적용할 수 있다.
도전재로는 전기화학소자에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일반적으로 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다.
전극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 다만, 음극을 형성하는 경우 용매로서 물을 사용한다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 전극활물질, 바인더, 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.
본 발명의 리튬 이차전지는 세퍼레이터를 포함할 수 있다. 상기 세퍼레이터는 특별한 제한이 없으나, 다공성 세퍼레이터를 사용하는 것이 바람직하며, 비제한적인 예로는 폴리프로필렌계, 폴리에틸렌계, 또는 폴리올레핀계 다공성 세퍼레이터 등이 있다.
본 발명의 리튬 이차전지는 그 외형에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어져서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
비수 전해액의 제조
에틸렌 카보네이트(EC): 에틸 메틸 카보네이트(EMC)= 3: 7(v: v)의 조성을 갖는 유기 용매에 LiPF6를 1M 농도가 되도록 용해시킨 후, 상기 용액에 하기 화학식 3의 Dipentaerythritol hexaacrylate 및 tripropyl borate를 비수 전해액 총 중량을 기준으로 각각 0.5 중량% 및 0.1 중량% 첨가하여 비수 전해액을 제조하였다.
화학식 3
Figure PCTKR2010001265-appb-C000003
리튬 이차전지의 제조
양극으로 LiCoO2를, 음극으로 인조 흑연을 사용하고, 음극 바인더로서 SBR을 사용하여 전극을 제조한 다음. 전술한 방법으로 준비한 비수 전해액을 주입하는 통상적인 방법으로 바이셀 형태의 파우치 전지를 제조하였다.
실시예 2
tripropyl borate 대신 tripropyl borane을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
실시예 3
하기 화학식 4로 표시되는 플루오로에틸렌 카보네이트 1 중량%를 더 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
화학식 4
Figure PCTKR2010001265-appb-C000004
실시예 4
Dipentaerythritol hexaacrylate 대신 Neopentyl glycol dimethacrylate를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
실시예 5
Dipentaerythritol hexaacrylate 대신 Dipentaerythritol pentaacrylate를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
비교예 1
tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
비교예 2
tripropyl borane을 첨가하지 않은 것을 제외하고는, 실시예 3과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
비교예 3
Dipentaerythritol hexaacrylate를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
비교예 4
Dipentaerythritol hexaacrylate를 첨가하지 않은 것을 제외하고는, 실시예 2와 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
비교예 5
tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 4와 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
비교예 6
tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 5와 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
비교예 7
Dipentaerythritol hexaacrylate 및 tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.
수명 특성 평가
실시예 1 내지 5 및 비교예 1 내지 7에 따른 파우치 전지를 0.5 C로 충방전을 200회 실시하였고, 초기용량 대비 용량 유지율을 측정하여 그 결과를 하기 표 1에 나타내었다.
표 1
첨가제 200회 충방전 후용량 유지율 (%)
실시예 1 Dipentaerythritol hexaacrylate 0.5 wt%tripropyl borate 0.1wt% 86.8
실시예 2 Dipentaerythritol hexaacrylate 0.5 wt%tripropyl borane 0.1 wt% 83.9
실시예 3 Dipentaerythritol hexaacrylate 0.5 wt%Fluoro-ethylene carbonate 1wt%tripropyl borate 0.1 wt% 87.2
실시예 4 Neopentyl glycol dimethacrylate 0.5 wt%tripropyl borate 0.1wt% 78.1
실시예 5 Dipentaerythritol pentaacrylate 0.5 wt%tripropyl borate 0.1wt% 84.4
비교예 1 Dipentaerythritol hexaacrylate 0.5 wt% 63.3
비교예 2 Dipentaerythritol hexaacrylate 0.5 wt%Fluoro-ethylene carbonate 1wt% 64.6
비교예 3 tripropyl borate 0.1 wt% 66.7
비교예 4 tripropyl borane 0.1 wt% 63.1
비교예 5 Neopentyl glycol dimethacrylate 0.5 wt% 56.5
비교예 6 Dipentaerythritol pentaacrylate 0.5 wt% 61.3
비교예 7 없음 51.2
상기 표 1에서 알 수 있듯이, 본 발명에 따라 아크릴기 함유 다관능성 화합물 및 음이온 리셉터를 동시에 포함한 비수 전해액을 수계 바인더를 사용한 음극에 적용한 리튬 이차전지는, 아크릴기 함유 다관능성 화합물 및 음이온 리셉터를 모두 함유하지 않거나 또는 이들을 각각 단독으로 사용하는 경우보다 수명이 크게 향상되었음을 확인할 수 있다.
SEI 막의 LiF 함량 평가
실시예 1 및 비교예 1에 따른 전지를 0.1C로 충전한 후, 음극을 탈리하여 XPS로 표면분석을 시행하였고, 그 결과를 도 1에 나타내었다.
도 1을 참조하면, 본 발명에 따라 아크릴기 함유 다관능성 화합물 및 음이온 리셉터를 동시에 포함한 비수 전해액을 수계 바인더를 사용한 음극에 적용한 실시예 1의 리튬 이차전지는, 아크릴기 함유 다관능성 화합물 만을 단독으로 포함한 비수 전해액을 수계 바인더를 사용한 음극에 적용한 비교예 1의 전지보다 SEI 막 내의 LiF 함량이 크게 감소되었음을 알 수 있다. 이는 음이온 리셉터가 음극 표면의 SEI막의 성분 중 LiF를 용출시켰기 때문으로서, 이에 따라 충방전이 용이한 SEI 막이 형성됨을 확인할 수 있다.

Claims (12)

  1. 전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액에 있어서,
    상기 비수 전해액은,
    (a) 관능기를 2개 이상 포함하며, 상기 관능기 중 적어도 1개는 아크릴기인 다관능성 화합물; 및
    (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 함유하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  2. 제1항에 있어서,
    상기 다관능성 화합물은 2개 이상의 아크릴기를 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  3. 제2항에 있어서,
    상기 다관능성 화합물은 테트라에틸렌 글리콜 디아크릴레이트(tetraethylene glycol diacrylate), 분자량이 50 내지 20,000인 폴리에틸렌 글리콜 디아크릴레이트(Polyethylene glycol diacrylate), 분자량이 100 내지 10,000인 비스페놀 A 에톡시레이티드 디아크릴레이트(Bisphenol A ethoxylated diacrylate), 1,4-부탄디올 디아크릴레이트(1,4-butanediol diacrylate), 1,6-헥산디올 디아크릴레이트(1,6-hexandiol diacrylate), 네오펜틸 글리콜 디메타크릴레이트(neopentyl glycol dimethacrylate), 트리메틸올프로판 트리아크릴레이트(TriMethylolPropane TriAcrylate), 디트리메틸올프로판 테트라아크릴레이트(DiTriMethylolPropane TetraAcrylate), 디펜타에리트리톨 헥사아크릴레이트(DiPentaErythritol HexaAcrylate), 디펜타에리트리톨 펜타아크릴레이트(DiPentaErythritol pentaAcrylate) 및 트리스[2-(아크릴로일옥시)에틸] 이소시아누레이트(Tris[2-(acryloyloxy)ethyl] isocyanurate)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  4. 제1항에 있어서,
    상기 보란 화합물은 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
    <화학식 1>
    Figure PCTKR2010001265-appb-I000003
    상기 화학식 1에서, R1 내지 R3는 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.
  5. 제1항에 있어서,
    상기 보레이트 화합물은 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
    <화학식 2>
    Figure PCTKR2010001265-appb-I000004
    상기 화학식 2에서, R4 내지 R6은 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.
  6. 제1항에 있어서,
    상기 (a) 성분 및 (b) 성분의 함량은 비수 전해액 총 중량을 기준으로 각각 0.05 내지 10 중량%인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  7. 제1항에 있어서,
    상기 전해질 염은 리튬염인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  8. 제7항에 있어서,
    상기 리튬염은 LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  9. 제1항에 있어서,
    상기 유기용매는 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 및 플루오르에틸렌 카보네이트로 이루어진 군으로부터 선택된 환형 카보네이트, 디에틸 카보네이트, 디메틸 카보네이트, 에틸메틸 카보네이트, 디프로필 카보네이트 및 메틸프로필 카보네이트로 이루어진 군으로부터 선택된 선형 카보네이트 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
  10. 음극, 양극 및 비수 전해액을 포함하는 리튬 이차전지에 있어서,
    상기 비수 전해액은 제1항 내지 제10항 중 어느 한 항의 리튬 이차전지용 비수 전해액인 것을 특징으로 하는 리튬 이차전지.
  11. 제10항에 있어서,
    상기 음극은 수계 바인더를 포함하는 것을 특징으로 하는 리튬 이차전지.
  12. 제11항에 있어서,
    상기 수계 바인더는 SBR(styrene-butadiene rubber)인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2010/001265 2009-02-26 2010-02-26 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지 WO2010098639A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/201,897 US8304118B2 (en) 2009-02-26 2010-02-26 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP2011538574A JP5598867B2 (ja) 2009-02-26 2010-02-26 リチウム二次電池用非水電解質及びそれを備えたリチウム二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090016357 2009-02-26
KR10-2009-0016357 2009-02-26
KR1020100017589A KR101135605B1 (ko) 2009-02-26 2010-02-26 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
KR10-2010-0017589 2010-02-26

Publications (2)

Publication Number Publication Date
WO2010098639A2 true WO2010098639A2 (ko) 2010-09-02
WO2010098639A3 WO2010098639A3 (ko) 2010-11-25

Family

ID=42666097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001265 WO2010098639A2 (ko) 2009-02-26 2010-02-26 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2010098639A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038690A (zh) * 2019-06-04 2020-12-04 北京卫蓝新能源科技有限公司 一种含硼聚合物固态电解质及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704921A1 (en) * 1994-09-07 1996-04-03 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US20070048616A1 (en) * 2005-03-18 2007-03-01 Takefumi Okumura Gel electrolyte and secondary battery
US20070212615A1 (en) * 2004-04-20 2007-09-13 Degussa Ag Electrolyte Composition in Addition to the Use Thereof as an Electrolyte Material for Electrochemical Energy Storage Systems
US20070287070A1 (en) * 2004-07-20 2007-12-13 Takefumi Okumura Electrode for Polymer Electrolyte Secondary Battery and Polymer Electrolyte Secondary Battery
KR20080053399A (ko) * 2005-10-05 2008-06-12 메드트로닉 인코포레이티드 리튬 이온 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704921A1 (en) * 1994-09-07 1996-04-03 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US20070212615A1 (en) * 2004-04-20 2007-09-13 Degussa Ag Electrolyte Composition in Addition to the Use Thereof as an Electrolyte Material for Electrochemical Energy Storage Systems
US20070287070A1 (en) * 2004-07-20 2007-12-13 Takefumi Okumura Electrode for Polymer Electrolyte Secondary Battery and Polymer Electrolyte Secondary Battery
US20070048616A1 (en) * 2005-03-18 2007-03-01 Takefumi Okumura Gel electrolyte and secondary battery
KR20080053399A (ko) * 2005-10-05 2008-06-12 메드트로닉 인코포레이티드 리튬 이온 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038690A (zh) * 2019-06-04 2020-12-04 北京卫蓝新能源科技有限公司 一种含硼聚合物固态电解质及其应用

Also Published As

Publication number Publication date
WO2010098639A3 (ko) 2010-11-25

Similar Documents

Publication Publication Date Title
KR101135605B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2014129823A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2015037867A1 (ko) 리튬 전극 및 그를 포함하는 리튬 이차전지
WO2010016727A2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2020055183A1 (ko) 리튬 이차전지용 음극 및 리튬 이차전지의 제조방법
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2013073901A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2013157883A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2016048106A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2014185750A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2018159950A1 (ko) 리튬 이차전지
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2014168327A1 (ko) 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2015065093A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2016060300A1 (ko) 저온 특성 개선용 첨가제를 포함하는 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
KR101069100B1 (ko) 수계 바인더를 포함하는 음극을 구비한 리튬 이차전지
WO2014116085A1 (ko) 리튬 이차 전지
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
WO2020105981A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746478

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011538574

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13201897

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10746478

Country of ref document: EP

Kind code of ref document: A2