WO2013165077A1 - 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 - Google Patents

전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2013165077A1
WO2013165077A1 PCT/KR2013/000725 KR2013000725W WO2013165077A1 WO 2013165077 A1 WO2013165077 A1 WO 2013165077A1 KR 2013000725 W KR2013000725 W KR 2013000725W WO 2013165077 A1 WO2013165077 A1 WO 2013165077A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
additive
formula
compound
Prior art date
Application number
PCT/KR2013/000725
Other languages
English (en)
French (fr)
Inventor
안경호
이철행
양두경
임영민
안유하
김민정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014524955A priority Critical patent/JP5943264B2/ja
Priority to CN201380001466.7A priority patent/CN103597647B/zh
Priority to EP13784877.6A priority patent/EP2698857B1/en
Priority to US14/014,813 priority patent/US9666901B2/en
Publication of WO2013165077A1 publication Critical patent/WO2013165077A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolyte solution additive including a lithium salt having an oxalato complex as an anion and a phosphate compound, a non-aqueous electrolyte solution including the electrolyte additive, and a lithium secondary battery including the same. More specifically, the present invention relates to an electrolyte additive for providing a lithium secondary battery having improved lifetime characteristics and at the same time excellent output characteristics.
  • lithium secondary batteries having high energy density and voltage among these secondary batteries are commercially used and widely used.
  • a battery for a hybrid electric vehicle is required to have a high power characteristic for instantaneously operating a motor assisting engine power, but a high power characteristic at a low temperature, especially under severe conditions.
  • the present invention aims to solve the technical problem that has been requested from the past as described above.
  • the inventors of the present application disclose that the non-aqueous electrolyte solution and the lithium secondary battery including the same using a lithium salt having an oxalato complex as an anion and an additive including a predetermined phosphate-based compound have improved lifespan characteristics and excellent low-temperature output characteristics. Confirmed to have completed the present invention.
  • the present invention provides an electrolyte additive comprising a lithium salt having an oxalato complex as an anion and a compound of Formula 1 below.
  • the present invention provides a non-aqueous electrolyte solution including an electrolyte salt containing a lithium salt having an oxalato complex as an anion and a compound of formula 1, a non-aqueous organic solvent, and a lithium salt.
  • the present invention also includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte, wherein the positive electrode active material is a manganese spinel active material It provides a lithium secondary battery which is a lithium metal oxide or a mixture thereof.
  • the electrolyte additive of the present invention exhibits improved cycle life through the formation of a solid electrolyte interphase (SEI) coating, and at the same time, interfacial characteristics between the electrode and the electrolyte during charge and discharge, that is, mobility of lithium ions. It is possible to provide a lithium secondary battery having improved output by improving the resistance at the interface.
  • SEI solid electrolyte interphase
  • Example 1 is a graph showing the results of measuring low-temperature (-30 ° C) charge output characteristics of a secondary battery including an electrolyte solution additive according to Experimental Example 1 according to the present invention.
  • FIG. 2 is a graph showing the results of measuring low-temperature (-30 ° C) discharge output characteristics of a secondary battery including the electrolyte additive according to the present invention according to Experimental Example 1.
  • FIG. 2 is a graph showing the results of measuring low-temperature (-30 ° C) discharge output characteristics of a secondary battery including the electrolyte additive according to the present invention according to Experimental Example 1.
  • FIG 3 is a graph showing results of measuring high temperature (45 ° C) cycle characteristics of a secondary battery including an electrolyte solution additive according to Experimental Example 2 according to the present invention.
  • the electrolyte additive according to the present invention may include a lithium salt having an oxalato complex as an anion and a compound represented by the following Chemical Formula 1.
  • the electrolyte additive according to the present invention may include a lithium salt having an oxalato complex as an anion and a compound represented by the following Chemical Formula 1.
  • An SEI film may be formed by a lithium salt having an oxalato complex as an anion, and thus lifespan characteristics of a lithium secondary battery may be improved.
  • the SEI film may act as a resistive layer that inhibits the movement of lithium ions, which may cause a decrease in output of the lithium secondary battery.
  • the output of the lithium secondary battery may be remarkably improved by reducing the resistance of the battery due to the improvement of the interface property between the electrode and the electrolyte.
  • the lithium salt having the oxalato complex as an anion generates an SEI film by a reduction reaction on the electrode surface, whereby the life characteristics of the lithium secondary battery can be improved.
  • the phosphate-based compound of Formula 1 does not participate in the SEI film formation reaction, but reduces the resistance that inhibits the charge transfer reaction of lithium ions during charging and discharging, thereby enabling smooth movement of lithium ions. That is, the problem of the output reduction which may be caused by the lithium salt which uses the oxalato complex as an anion can be solved by addition of the phosphate type compound of Formula (1).
  • the present invention provides an electrolyte solution additive comprising a combination of a lithium salt having an oxalato complex as an anion and a predetermined phosphate compound. Furthermore, the non-aqueous electrolyte and the lithium secondary battery including the same having improved lifespan characteristics and reducing the resistance at low temperatures of the SEI film formed on the electrode surface at low temperatures (-30 ° C, see Example 1) have been improved. to provide.
  • the lithium salt using the oxalato complex as an anion may be included without limitation, provided that the anion compound containing the oxalato group and the lithium ion form a complex compound through a coordinating bond, for example. It may be one or more selected from the group consisting of Lithium Difluoro (oxalato) borate (LiODFB), Lithium Tetrafluoro (oxalato) phosphate (LiTFOP), and Lithium bis (oxalato) borate (LiBOB).
  • LiODFB Lithium Difluoro (oxalato) borate
  • LiTFOP Lithium Tetrafluoro (oxalato) phosphate
  • LiBOB Lithium bis (oxalato) borate
  • the lithium salt in which the oxalato complex is an anion may be included in an amount of 0.2 to 2% by weight based on the total amount of the electrolyte. If the content of the lithium salt containing the oxalato complex as an anion is less than 0.2% by weight, it is difficult to form a stable SEI film sufficiently. If it exceeds 2% by weight, the SEI film may be thick and the internal resistance may be excessively increased.
  • the compound of Formula 1 may be specifically at least one selected from the group consisting of tris (trimethylsilyl) phosphate (TMSP) and tris (2,2,2-trifluoroethyl) phosphate (TFEP). .
  • TMSP tris (trimethylsilyl) phosphate
  • TFEP tris (2,2,2-trifluoroethyl) phosphate
  • the compound of Formula 1 is preferably included in an amount of 0.01 to 2% by weight, more preferably 0.01 to 1% by weight based on the total amount of the electrolyte. If the content is less than 0.01% by weight can not produce a sufficient output improvement effect, if the content exceeds 2% by weight, the output improvement effect is remarkable, but side reactions that inhibit the output and stability of the battery may be induced.
  • the present invention relates to an electrolyte solution additive containing a lithium salt having an oxalato complex as an anion and a compound of formula 1, a non-aqueous organic solvent, and a non-aqueous electrolyte solution containing a lithium salt.
  • the non-aqueous electrolyte according to the present invention includes lithium salt having the oxalato complex as an anion and a compound of formula 1 as an electrolyte additive, thereby exhibiting improved cycle life characteristics due to the interaction between the two, and at the same time, improving the output. Can be represented.
  • the non-aqueous electrolyte solution of the present invention may further include lithium salts other than lithium salts in which the oxalato complex used as the electrolyte additive is an anion.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiBF 6 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 Lithium salts commonly used in electrolytes of lithium secondary batteries, such as LiSO 3 CF 3 and LiClO 4 , may be used, and these may be used alone, or two or more thereof may be used in combination.
  • non-aqueous organic solvent that can be included in the non-aqueous electrolyte, decomposition by the oxidation reaction or the like during the charging and discharging process of the battery can be minimized, there is no limitation as long as it can exhibit the desired characteristics with the additive,
  • cyclic carbonates, linear carbonates, esters, ethers or ketones These may be used alone, or two or more thereof may be used in combination.
  • a carbonate-based organic solvent may be preferably used, and cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC), and linear carbonates include dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethylmethyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • the non-aqueous electrolyte may further include one or more additives selected from the group consisting of carbonate compounds, sulfate compounds and sultone compounds to form a stable SEI film on the electrode surface.
  • the carbonate-based compound may be at least one selected from the group consisting of vinylene carbonate and vinylene ethylene carbonate.
  • the carbonate-based compound may be included in an amount of 1.5 to 3 wt% based on the total amount of the electrolyte.
  • the sulfate-based compound may be ethylene sulfate, and when the sulfate-based compound is included as an additive of the non-aqueous electrolyte, it may be included in an amount of 0.5 to 1.5 wt% based on the total amount of the electrolyte.
  • the sultone compound may be 1,3-propane sultone, and when the sultone compound is included as an additive of the non-aqueous electrolyte, it may be included in an amount of 0.5 to 1 wt% based on the total amount of the electrolyte. Can be.
  • the lithium secondary battery according to an embodiment of the present invention may include a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and the non-aqueous electrolyte.
  • the positive electrode and the negative electrode may include a positive electrode active material and a negative electrode active material, respectively.
  • the positive electrode active material may include a manganese spinel active material, a lithium metal oxide, or a mixture thereof.
  • a carbon-based negative electrode active material such as crystalline carbon, amorphous carbon, or a carbon composite may be used alone or in combination of two or more thereof.
  • the separator is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer This may be a single or two or more laminated.
  • a porous nonwoven fabrics such as high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used, but are not limited thereto.
  • Ethylene carbonate (EC): Ethylene methyl carbonate (EMC) vinylene carbonate (VC) 3 in an organic solvent having a composition of 3: 7 (volume ratio) and a mixed solvent containing 1.0 M LiPF 6 based on the total amount of the electrolyte solution.
  • a non-aqueous electrolyte was prepared by adding 1 wt%, 1.5 wt% of 1,3-propanesultone and 1.5 wt% of ethylene sulfate, and further adding 1 wt% of LiODFB and 0.2 wt% of TMSP.
  • a positive electrode active material a mixture consisting of a manganese spinel active material and a lithium-nickel-manganese-cobalt-based oxide was used, and a positive electrode slurry was prepared by mixing polyvinylidene fluoride (PVdF) as a binder and carbon as a conductive material.
  • PVdF polyvinylidene fluoride
  • the cathode slurry was coated on an aluminum current collector, followed by drying and rolling to prepare a cathode.
  • negative electrode active material natural graphite, PVdF binder and a thickener were mixed and dispersed in water to prepare a negative electrode slurry, and the negative electrode slurry was coated on a copper current collector and then dried and rolled to prepare a negative electrode.
  • the prepared non-aqueous electrolyte was injected to complete the production of a lithium secondary battery.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared under the same conditions as in Example 1, except that 1 wt% of LiTFOP and 0.2 wt% of TMSP were added.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared under the same conditions as in Example 1 except that 1 wt% LiBOB and 0.2 wt% TMSP were added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1 except that an electrolyte solution containing no lithium salt and TMSP containing an oxalato complex as an anion as an additive was prepared.
  • Charge and discharge output at low temperatures were calculated by the voltage difference generated by charging and discharging the lithium secondary batteries of Examples 1 to 3 at 0.5C to 4C for 10 seconds for each SOC (charge depth) at -30 ° C. The results are shown in FIGS. 1 and 2, respectively.
  • the lithium secondary batteries of Examples 1 to 3 are about 1.5 to 2 times or more than those of the lithium secondary battery of Comparative Example 1 (3.0 to 4.0 or more / 2.0) It can be seen that the low-temperature charge output characteristics are improved. Similarly, even when the SOC was 20, 40, 80, and 100%, it was confirmed that the low temperature output characteristics were improved as in the case where the SOC was 60%.
  • the lithium secondary batteries of Examples 1 to 3 exhibit improved discharge output characteristics compared to those of the lithium secondary battery of Comparative Example 1.
  • the electrolyte additive according to the present invention has an effect of improving low-temperature charge and discharge output characteristics of a lithium secondary battery as compared to an electrolyte solution containing no lithium salt and TMSP having an oxalato complex as an anion as an additive. .
  • This effect showed a similar trend even with 0.5 wt% TMSP.
  • Capacity retention rate (%) (discharge capacity for each cycle) / (discharge capacity at 1st cycle) x 100
  • the capacity retention ratio was about 200 cycles after the battery of Examples 1 to 3. It can be seen that it begins to decrease significantly. Furthermore, in the capacity retention rate at about 400 cycles, the battery of Comparative Examples 1 is about 75%, whereas the batteries of Examples 1 to 3 are maintained at 80% or more. This difference is further increased as the number of cycles increases, and after about 700 cycles, it can be seen that the batteries of Examples 1 to 3 exhibit capacity retention rates that are nearly twice that of the batteries of Comparative Example 1.
  • the lithium secondary batteries of Examples 1 to 3 exhibited excellent cycle characteristics compared to the lithium secondary batteries of Comparative Example 1, and it was confirmed that high capacity of the battery was possible and the lifespan characteristics of the battery could be improved. .
  • This cycle characteristic showed a similar trend even when the TMSP was included at 0.5% by weight.

Abstract

옥살라토 착물(complex)을 음이온으로 하는 리튬염 및 트리스(트리메틸실일)포스페이트(TMSP) 및 트리스(2,2,2-트리플루오로에틸)포스페이트(TFEP)로 이루어진 군에서 선택된 하나 이상을 포함하는 전해액 첨가제를 제공한다. 또한, 이러한 전해액 첨가제를 포함하는 비수성 전해액과 이를 포함하는 리튬 이차 전지를 제공한다.

Description

전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
본 발명은 옥살라토 착물(complex)을 음이온으로 하는 리튬염 및 포스페이트계 화합물을 포함하는 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것이다. 더욱 구체적으로, 본 발명은 개선된 수명 특성을 가지는 동시에, 우수한 출력 특성을 가지는 리튬 이차 전지를 제공하기 위한 전해액 첨가제에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있고, 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차 전지가 상용화되어 널리 사용되고 있다.
최근에는 소형 기기용 전원뿐만 아니라, 전력 저장설비용 전원이나 차량 탑재용 동력 전원으로서의 중대형 산업용으로 사용될 수 있도록 기술 개발되고 있다.
특히 하이브리드 자동차(Hybrid Electric Vehicle)용 전지는 엔진 동력을 보조하는 모터를 순간적으로 작동시키기 위한 고출력 특성이나, 특히 조건이 가혹한 저온에서의 고출력 특성이 요구되고 있다.
한편, 중대형 산업용 동력 전원으로 사용되기 위하여는 다수의 전지를 집결시켜 사용하는 경우가 많다는 점, 전지의 교환에 비용이 소요된다는 점에서, 긴 수명 특성을 가지는 전지가 요구되고 있다.
본 발명은 상기와 같이 과거로부터 요청되어 온 기술적 과제 해결을 목적으로 한다.
본 출원의 발명자들은 옥살라토 착물을 음이온으로 하는 리튬염 및 소정의 포스페이트계 화합물을 포함하는 첨가제를 사용한 비수성 전해액 및 이를 포함하는 리튬 이차 전지는 개선된 수명 특성을 가지는 동시에, 우수한 저온 출력 특성을 가지는 것을 확인하고 본 발명을 완성하였다.
상기 해결하고자 하는 과제를 해결하기 위하여, 본 발명은 옥살라토 착물(complex)을 음이온으로 하는 리튬염 및 하기 화학식 1의 화합물을 포함하는 전해액 첨가제를 제공한다.
[화학식 1]
Figure PCTKR2013000725-appb-I000001
(상기 식에서, a는 C 또는 Si, b는 H 또는 F, n은 1 내지 5이다.)
나아가, 본 발명은 옥살라토 착물을 음이온으로 하는 리튬염 및 하기 화학식 1의 화합물을 포함하는 전해액 첨가제, 비수성 유기 용매, 및 리튬염을 포함하는 비수성 전해액을 제공한다.
[화학식 1]
Figure PCTKR2013000725-appb-I000002
(상기 식에서, a는 C 또는 Si, b는 H 또는 F, n은 1 내지 5이다.)
또한, 본 발명은 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 상기 양극과 상기 음극 사이에 개재된 세퍼레이터, 및 상기 비수성 전해액을 포함하고, 상기 양극 활물질은 망간계 스피넬(spinel) 활물질, 리튬 금속 산화물 또는 이들의 혼합물인 리튬 이차 전지를 제공한다.
본 발명의 전해액 첨가제 및 이를 포함하는 비수성 전해액에 따르면 SEI(Solid Electrolyte Interphase) 피막 형성을 통해 향상된 사이클 수명 특성을 나타냄과 동시에, 충방전시 전극과 전해액 사이의 계면 특성, 즉 리튬 이온의 이동성을 향상시켜 계면에서의 저항을 감소시킴으로써 출력이 개선된 리튬 이차 전지를 제공할 수 있다.
도 1은 실험예 1에 따라, 본 발명에 의한 전해액 첨가제를 포함하는 이차 전지의 저온(-30℃) 충전 출력 특성을 측정한 결과를 나타내는 그래프이다.
도 2는 실험예 1에 따라, 본 발명에 의한 전해액 첨가제를 포함하는 이차 전지의 저온(-30℃) 방전 출력 특성을 측정한 결과를 나타내는 그래프이다.
도 3은 실험예 2에 따라, 본 발명에 의한 전해액 첨가제를 포함하는 이차 전지의 고온(45℃) 사이클 특성을 측정한 결과를 나타내는 그래프이다.
본 발명에 따르는 전해액 첨가제는 옥살라토 착물(complex)을 음이온으로 하는 리튬염 및 하기 화학식 1의 화합물을 포함할 수 있다.
[화학식1]
Figure PCTKR2013000725-appb-I000003
(상기 식에서, a는 C 또는 Si, b는 H 또는 F, n은 1 내지 5이다.)
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따르는 전해액 첨가제는 옥살라토 착물(complex)을 음이온으로 하는 리튬염 및 하기 화학식 1의 화합물을 포함할 수 있다.
[화학식1]
Figure PCTKR2013000725-appb-I000004
(상기 식에서, a는 C 또는 Si, b는 H 또는 F, n은 1 내지 5이다.)
옥살라토 착물을 음이온으로 하는 리튬염에 의해 SEI 피막이 형성될 수 있으며, 이를 통해 리튬 이차 전지의 수명 특성이 개선될 수 있다. 그러나, SEI 피막은 리튬 이온의 이동을 저해하는 저항층으로 작용할 수 있어, 리튬 이차 전지의 출력 저하가 유발될 수 있다. 그러나, 본 발명에 따라 화학식 1의 포스페이트계 화합물을 더하는 경우 전극과 전해액 사이의 계면 특성 향상으로 전지의 저항이 감소함으로써 리튬 이차 전지의 출력이 현저히 개선될 수 있다.
따라서 본 발명에 따르면, 옥살라토 착물을 음이온으로 하는 리튬염은 전극 표면에서의 환원반응에 의해 SEI 피막을 생성하며, 이를 통하여 리튬 이차 전지의 수명 특성이 개선될 수 있다. 이와 동시에, 화학식 1의 포스페이트계 화합물은 SEI 피막 형성 반응에 참여하지는 않으나, 충방전시 리튬 이온의 전하 이동(charge transfer) 반응을 저해하는 저항을 감소시킴으로써, 원활한 리튬 이온의 이동을 가능하게 한다. 즉, 옥살라토 착물을 음이온으로 하는 리튬염에 의해 발생할 수 있는 출력 저하의 문제점이 화학식 1의 포스페이트계 화합물의 첨가에 의해 해결될 수 있는 것이다.
특히, 중대형 전지의 상용화를 위하여는 소형 전지에 비하여 전지의 수명 특성과 저온에서의 출력 개선이 더욱 중요하다. 본 발명은 옥살라토 착물을 음이온으로 하는 리튬염 및 소정의 포스페이트계 화합물의 조합을 포함하는 전해액 첨가제를 제공한다. 나아가, 향상된 수명 특성을 가지면서도 전극 표면에 형성되는 SEI 피막의 저온에서의 저항을 감소시켜 저온 환경(-30℃, 실시예 1 참조)에서 출력이 개선된 비수성 전해액 및 이를 포함한 리튬 이차 전지를 제공한다.
하나의 실시예에서, 상기 옥살라토 착물을 음이온으로 하는 리튬염에는 옥살라토 그룹을 포함하는 음이온 화합물과 리튬 이온이 배위결합 등을 통해 착화합물을 형성하는 것이라면 제한 없이 포함될 수 있으나, 예를 들어 LiODFB(Lithium Difluoro(oxalato)borate), LiTFOP (Lithium Tetrafluoro(oxalato) phosphate) 및 LiBOB(Lithium bis(oxalato)borate)로 이루어진 군에서 선택된 하나 또는 그 이상일 수 있다.
전해액에 상기 옥살라토 착물을 음이온으로 하는 리튬염을 첨가함에 있어서, 상기 옥살라토 착물을 음이온으로 하는 리튬염은 바람직하게 전해액 총량을 기준으로 0.2 내지 2 중량%로 포함될 수 있다. 옥살라토 착물을 음이온으로 하는 리튬염의 함량이 0.2 중량% 미만이면 안정한 SEI 피막이 충분히 형성되기 어렵고, 2 중량%를 초과하면 SEI 피막이 두껍게 되어 내부 저항이 지나치게 상승할 수 있다.
하나의 실시예에서, 상기 화학식 1의 화합물은 구체적으로 트리스(트리메틸실일)포스페이트(TMSP) 및 트리스(2,2,2-트리플루오로에틸)포스페이트(TFEP)로 이루어진 군에서 선택된 하나 이상일 수 있다.
상기 화학식 1의 화합물을 전해액에 첨가함에 있어서, 화학식 1의 화합물은 전해액 총량을 기준으로 0.01 내지 2 중량%로 포함하는 것이 바람직하며, 0.01 내지 1 중량% 로 포함하는 것이 더욱 바람직하다. 그 함량이 0.01 중량% 미만이면 충분한 출력 개선 효과를 낼 수 없고, 그 함량이 2 중량%를 초과하면 출력 개선 효과는 현저하나 전지의 출력 및 안정성을 저해하는 부반응이 유발될 수 있다.
한편, 본 발명은 옥살라토 착물(complex)을 음이온으로 하는 리튬염 및 하기 화학식 1의 화합물을 포함하는 전해액 첨가제, 비수성 유기 용매, 및 리튬염을 포함하는 비수성 전해액에 관한 것이다.
[화학식1]
Figure PCTKR2013000725-appb-I000005
(상기 식에서, a는 C 또는 Si, b는 H 또는 F, n은 1 내지 5이다.)
본 발명에 따른 비수성 전해액은 상기 옥살라토 착물을 음이온으로 하는 리튬염 및 화학식 1의 화합물을 전해액 첨가제로 함께 포함함으로써, 양자의 상호작용으로 개선된 사이클 수명 특성을 나타내는 것과 동시에, 출력 개선 효과를 나타낼 수 있다.
본 발명의 비수성 전해액에는 상기 전해액 첨가제로 사용되는 상기 옥살라토 착물을 음이온으로 하는 리튬염 외의 리튬염이 더 포함될 수 있다. 상기 리튬염으로는 LiPF6, LiAsF6, LiCF3SO3, LiN(CF3SO2)2, LiBF4, LiBF6, LiSbF6, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiSO3CF3 및 LiClO4 등 리튬 이차 전지의 전해액에 통상적으로 사용되는 리튬염들이 사용될 수 있으며, 이들은 단독으로 사용될 수 있고, 2종 이상이 혼용되어 사용될 수 있다.
또한, 상기 비수성 전해액에 포함될 수 있는 비수성 유기 용매로는, 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없고, 예를 들어 환형 카보네이트, 선형 카보네이트, 에스테르, 에테르 또는 케톤 등일 수 있다. 이들은 이들은 단독으로 사용될 수 있고, 2종 이상이 혼용되어 사용될 수 있다. 상기 유기 용매들 중 특히 카보네이트계 유기 용매가 바람직하게 사용될 수 있는데, 환형 카보네이트로는 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC)가, 선형 카보네이트로는 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)가 대표적이다.
하나의 실시예에서, 상기 비수성 전해액은 전극 표면에 안정한 SEI 피막을 형성할 수 있도록 카보네이트계 화합물, 설페이트계 화합물 및 설톤계 화합물로 이루어진 군에서 선택된 하나 이상을 첨가제를 더 포함할 수 있다.
상기 카보네이트계 화합물은 비닐렌 카보네이트(vinylene carbonate) 및 비닐렌 에틸렌 카보네이트(vinylene ethylene carbonate)로 이루어진 군에서 선택된 하나 이상일 수 있다. 상기 카보네이트계 화합물이 비수성 전해액의 첨가제로 포함되는 경우, 전해액 총량을 기준으로 1.5 내지 3 중량%로 포함될 수 있다.
상기 설페이트계 화합물은 에틸렌 설페이트(ethylene sulfate)일 수 있으며, 상기 설페이트계 화합물이 비수성 전해액의 첨가제로 포함되는 경우, 전해액 총량을 기준으로 0.5 내지 1.5 중량%로 포함될 수 있다.
상기 설톤계 화합물은 1,3-프로판설톤(1,3-propane sultone) 일 수 있으며, 상기 설톤계 화합물이 비수성 전해액의 첨가제로 포함되는 경우, 전해액 총량을 기준으로 0.5 내지 1 중량%로 포함될 수 있다.
한편, 본 발명의 일 실시예에 따르는 리튬 이차 전지는 양극, 음극, 상기 양극과 상기 음극 사이에 개재된 세퍼레이터 및 상기 비수성 전해액을 포함할 수 있다. 상기 양극 및 음극은 각각 양극 활물질 및 음극 활물질을 포함할 수 있다.
여기서, 상기 양극 활물질은 망간계 스피넬(spinel) 활물질, 리튬 금속 산화물 또는 이들의 혼합물을 포함할 수 있다. 나아가, 상기 리튬 금속 산화물은 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간-코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물로 이루어진 군에서 선택될 수 있으며, 보다 구체적으로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2) 일 수 있다.
한편, 상기 음극 활물질로는 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.
또한, 상기 세퍼레이터는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름이 단독으로 또는 2종 이상이 적층된 것일 수 있다. 이 외에 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으며, 이에 한정되는 것은 아니다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
실시예 1
[전해액의 제조]
에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC)=3:7(부피비)의 조성을 갖는 유기 용매 및 1.0M의 LiPF6를 포함하는 혼합 용매에, 전해액 총량을 기준으로, 비닐렌 카보네이트(VC) 3 중량%, 1,3-프로판설톤 1.5 중량% 및 에틸렌 설페이트 1.5 중량%를 첨가하고, LiODFB 1 중량% 및 TMSP 0.2중량%를 더 첨가하여 비수성 전해액을 제조하였다.
[리튬 이차 전지의 제조]
양극 활물질로서 망간계 스피넬 활물질 및 리튬-니켈-망간-코발트계 산화물로 이루어진 혼합물을 사용하였고, 바인더로서 폴리비닐리덴 플루오라이드(PVdF), 및 도전재로서 카본을 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체에 코팅한 후 건조 및 압연하여 양극을 제조하였다.
또한, 음극 활물질로서 천연 흑연, PVdF바인더 및 증점제를 혼합한 후 물에 분산시켜 음극 슬러리를 제조하고, 상기 음극 슬러리를 구리 집전체에 코팅한 후 건조 및 압연하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극을 PE 분리막과 함께 통상적인 방법으로 전지를 제작한 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.
실시예 2
LiTFOP 1 중량% 및 TMSP 0.2 중량%로 첨가하였다는 것을 제외하고는 실시예 1과 동일한 조건으로 비수성 전해액 및 리튬 이차 전지를 제조하였다.
실시예 3
LiBOB 1 중량% 및 TMSP 0.2 중량%로 첨가하였다는 것을 제외하고는 실시예 1과 동일한 조건으로 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 1
첨가제로서 옥살라토 착물을 음이온으로 하는 리튬염 및 TMSP를 포함하지 않는 전해액을 제조하였다는 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
실험예 1
실시예 1 내지 3의 리튬 이차 전지를 -30℃에서 SOC(충전 심도) 별로 0.5C 내지 4C로 10초간 충전 및 방전하여 발생하는 전압차로 저온에서의 충전 및 방전 출력을 계산하였다. 그 결과를 각각 도 1 및 도 2에 나타낸다.
도 1을 참조하면, -30℃ 충전 출력을 나타내는 결과에서 SOC가 60%인 경우에 실시예 1 내지 3의 리튬 이차 전지가 비교예 1의 리튬 이차 전지에 비하여 약 1.5 내지 2배 이상(3.0∼4.0 이상/2.0) 저온 충전 출력 특성이 향상됨을 알 수 있다. 마찬가지로, SOC가 20, 40, 80 및 100%인 경우에 있어서도, SOC가 60%인 경우와 마찬가지로 향상된 저온 출력 특성을 나타냄을 확인할 수 있었다.
도 2를 참조하면, -30℃ 방전 충전 출력을 나타내는 결과에서 SOC가 20, 40 및 60%인 경우 실시예 1내지 3의 리튬 이차 전지가 비교예 1의 리튬 이차 전지에 비하여 향상된 방전 출력 특성을 나타냄을 확인할 수 있었다.
따라서, 본 발명에 따른 전해액 첨가제는 첨가제로서 옥살라토 착물을 음이온으로 하는 리튬염 및 TMSP를 포함하지 않은 전해액에 비하여 리튬 이차 전지의 저온 충전 및 방전 출력 특성을 개선하는 효과가 있음을 확인할 수 있다. 이러한 효과는 TMSP를 0.5 중량%로 포함하는 경우에도 유사한 추이를 나타내었다.
실험예 2
실시예 1 내지 3 및 비교예 1의 리튬 이차 전지를 45℃의 온도 환경에서 1C=800mA의 정전류에서 충전하고, 전지의 전압이 4.2V가 된 후에는 4.2V의 정전압에서 충전 전류값이 50mA가 될 때까지1회째의 충전을 행하였다. 이렇게 1회째의 충전을 행한 전지에 대하여 1C의 정전류에서 전지 전압이 3V에 이를 때까지 방전을 행하여 1 사이클 째의 방전 용량을 구하였다.
계속하여, 실시예 1 내지 3 및 비교예 1의 전지에 대하여 충전 및 방전을 1000 사이클까지 반복 실시하여, 각 사이클에 대한 방전 용량을 마찬가지로 측정하였다. 여기서 용량 유지율(%)는 다음과 수학식 1에 의하여 구하였다.
[수학식 1]
용량 유지율(%) = (각 사이클에 대한 방전 용량)/(1 사이클째의 방전 용량)×100
이렇게 하여 실시예 1 내지 3 및 비교예 1의 전지에 대하여 산출한 용량 유지율을 도 3에 나타내었다.
도 3을 참조하면, 옥살라토 착물을 음이온으로 하는 리튬염 및 TMSP를 포함하지 않은 전해액을 포함하는 비교예 1의 전지의 경우 약 200 사이클 이후부터 실시예 1 내지 3의 전지에 비하여 용량 유지율이 크게 감소되기 시작함을 확인할 수 있다. 나아가, 약 400 사이클에서의 용량 유지율에 있어서, 비교예 1의 전지의 경우 약 75% 정도임에 반하여, 실시예 1 내지 3의 전지는 80% 이상을 유지하고 있음을 알 수 있다. 이러한 차이는 사이클 횟수가 증가함에 따라 더욱 커져서 약 700 사이클 이후에는 실시예 1 내지 3의 전지가 비교예 1의 전지에 비하여 약 2배에 가까운 용량 유지율을 나타내고 있음을 확인할 수 있다.
이처럼, 실시예 1 내지 3의 리튬 이차 전지는 비교예 1의 리튬 이차 전지에 비하여 우수한 사이클 특성을 나타내었으며, 이를 통해 전지의 고용량화가 가능함은 물론, 전지의 수명 특성이 개선될 수 있음을 확인하였다. 이러한 사이클 특성은 TMSP를 0.5 중량%로 포함하는 경우에도 유사한 추이를 나타내었다.

Claims (11)

  1. 옥살라토 착물(complex)을 음이온으로 하는 리튬염 및 하기 화학식 1의 화합물을 포함하는 전해액 첨가제.
    [화학식 1]
    Figure PCTKR2013000725-appb-I000006
    (상기 식에서, a는 C 또는 Si, b는 H 또는 F, n은 1 내지 5이다.)
  2. 제 1 항에 있어서,
    상기 리튬염은 LiODFB(Lithium Difluoro(oxalato)borate), LiTFOP (Lithium Tetrafluoro(oxalato) phosphate) 및 LiBOB(Lithium bis(oxalato)borate)로 이루어진 군에서 선택된 하나 이상인 전해액 첨가제.
  3. 제 1 항에 있어서,
    상기 리튬염은 전해액 총량을 기준으로 0.2 내지 2 중량%로 포함되는 전해액 첨가제.
  4. 제 1 항에 있어서,
    상기 화학식 1의 화합물은 트리스(트리메틸실일)포스페이트(TMSP) 및 트리스(2,2,2-트리플루오로에틸)포스페이트(TFEP)로 이루어진 군에서 선택된 하나 이상인 전해액 첨가제.
  5. 제 1 항에 있어서,
    상기 화학식 1의 화합물은 전해액 총량을 기준으로 0.01 내지 2 중량%로 포함되는 전해액 첨가제.
  6. 제 1 항에 있어서,
    상기 화학식 1의 화합물은 전해액 총량을 기준으로 0.01 내지 1 중량% 로 포함되는 전해액 첨가제.
  7. 옥살라토 착물(complex)을 음이온으로 하는 리튬염 및 하기 화학식 1의 화합물을 포함하는 전해액 첨가제;
    [화학식1]
    Figure PCTKR2013000725-appb-I000007
    (상기 식에서, a는 C 또는 Si, b는 H 또는 F, n은 1 내지 5이다.)
    비수성 유기 용매, 및
    리튬염을 포함하는 비수성 전해액.
  8. 제 7 항에 있어서,
    상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 비수성 전해액.
  9. 제 7 항에 있어서,
    비닐렌 카보네이트(vinylene carbonate) 또는 비닐렌 에틸렌 카보네이트(vinylene ethylene carbonate),
    에틸렌 설페이트(ethylene sulfate), 및
    1,3-프로판설톤(1,3-propane sultone)으로 이루어진 군에서 선택된 하나 이상의 첨가제를 더 포함하는 비수성 전해액.
  10. 양극 활물질을 포함하는 양극,
    음극 활물질을 포함하는 음극,
    상기 양극과 상기 음극 사이에 개재된 세퍼레이터, 및
    제 7 항의 비수성 전해액을 포함하고,
    상기 양극 활물질은 망간계 스피넬(spinel) 활물질, 리튬 금속 산화물 또는 이들의 혼합물인 리튬 이차 전지.
  11. 제 10 항에 있어서,
    상기 리튬 금속 산화물은 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간-코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물로 이루어진 군에서 선택되는 리튬 이차 전지.
PCT/KR2013/000725 2012-04-30 2013-01-30 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 WO2013165077A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014524955A JP5943264B2 (ja) 2012-04-30 2013-01-30 非水性電解液及びリチウム二次電池
CN201380001466.7A CN103597647B (zh) 2012-04-30 2013-01-30 电解质溶液添加剂、包含该添加剂的非水电解质溶液以及锂二次电池
EP13784877.6A EP2698857B1 (en) 2012-04-30 2013-01-30 Electrolyte additive, lithium secondary battery and non-aqueous electrolyte comprising additive
US14/014,813 US9666901B2 (en) 2012-04-30 2013-08-30 Additive for electrolyte solution, non-aqueous electrolyte solution including the additive and lithium secondary battery including the electrolyte solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120045627A KR101537142B1 (ko) 2012-04-30 2012-04-30 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR10-2012-0045627 2012-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/014,813 Continuation US9666901B2 (en) 2012-04-30 2013-08-30 Additive for electrolyte solution, non-aqueous electrolyte solution including the additive and lithium secondary battery including the electrolyte solution

Publications (1)

Publication Number Publication Date
WO2013165077A1 true WO2013165077A1 (ko) 2013-11-07

Family

ID=49514458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000725 WO2013165077A1 (ko) 2012-04-30 2013-01-30 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지

Country Status (6)

Country Link
US (1) US9666901B2 (ko)
EP (1) EP2698857B1 (ko)
JP (1) JP5943264B2 (ko)
KR (1) KR101537142B1 (ko)
CN (1) CN103597647B (ko)
WO (1) WO2013165077A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317385A1 (en) * 2014-12-17 2017-11-02 Basf Corporation Electrolyte Compositions For Rechargeable Lithium Ion Batteries

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376454B2 (ja) * 2014-08-28 2018-08-22 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
KR102137665B1 (ko) * 2014-11-27 2020-07-24 에스케이케미칼 주식회사 이차전지용 전해액 및 첨가제
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
KR20160135513A (ko) * 2015-05-18 2016-11-28 주식회사 엘지화학 리튬이차전지용 비수 전해액 및 이를 포함한 리튬이차전지
US20180138551A1 (en) * 2015-05-26 2018-05-17 Mitsui Chemicals, Inc. Non-aqueous electrolyte solution for battery and lithium secondary battery
US9653755B2 (en) 2015-06-22 2017-05-16 Wildcat Discovery Technologies, Inc Electrolyte formulations for lithium ion batteries
CA3002153C (en) * 2015-10-26 2023-09-26 Solvay Sa Nonaqueous electrolyte compositions comprising a fluorinated solvent and a lactone
US11205796B2 (en) 2016-04-07 2021-12-21 StoreDot Ltd. Electrolyte additives in lithium-ion batteries
CN105845983B (zh) 2016-04-15 2020-02-21 宁德时代新能源科技股份有限公司 一种电解液及含有该电解液的锂离子电池
WO2018016246A1 (ja) 2016-07-22 2018-01-25 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール
US20180069265A1 (en) 2016-08-30 2018-03-08 Wildcat Discovery Technologies, Inc Electrolyte formulations for electrochemical cells containing a silicon electrode
US10128537B2 (en) 2016-08-30 2018-11-13 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102276985B1 (ko) 2017-05-17 2021-07-12 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102565048B1 (ko) * 2018-03-08 2023-08-08 주식회사 아모그린텍 이차전지용 전해액, 이를 포함하는 배터리 및 플렉서블 배터리
CN112534618A (zh) * 2018-06-18 2021-03-19 法国国家科学研究中心 用于钠-离子电池的新型电解质组合物
EP3809497A4 (en) * 2018-08-16 2021-10-27 Lg Chem, Ltd. PROCESS FOR PREPARING NEGATIVE ELECTRODE FOR SECONDARY LITHIUM BATTERY AND NEGATIVE ELECTRODE FOR SECONDARY LITHIUM BATTERY THUS PREPARED
CN110611121B (zh) 2019-09-10 2021-06-22 宁德时代新能源科技股份有限公司 电解液及包含该电解液的锂离子电池
JP7153001B2 (ja) 2019-09-18 2022-10-13 株式会社東芝 光検出器、光検出システム、ライダー装置、及び車
CN111987359B (zh) * 2019-11-27 2021-07-16 中节能万润股份有限公司 一种新型锂离子电池电解液添加剂及其应用
DE102020213672A1 (de) 2020-10-30 2022-05-05 Robert Bosch Gesellschaft mit beschränkter Haftung Sensoranordnung, Gehäuse für eine Sensoranordnung sowie Verfahren zum Herstellen einer Sensoranordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050068669A (ko) * 2003-12-30 2005-07-05 제일모직주식회사 전지용 비수전해액
US20060240327A1 (en) * 2005-04-25 2006-10-26 Ferro Corporation Non-aqueous electrolytic solution
KR20070073386A (ko) * 2006-01-05 2007-07-10 제일모직주식회사 숙신산 및 트리메틸실릴 보레이트를 포함하는 비수성전해액 및 이를 포함하는 리튬 2차 전지
US20100209780A1 (en) * 2009-02-17 2010-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. HIGH VOLTAGE ELECTROLYTE (Muldoon, Allred)
KR20110054406A (ko) * 2009-11-17 2011-05-25 한국조폐공사 콤비 카드 제조 방법 및 이를 이용해 제조된 콤비 카드

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026074B2 (en) * 2002-02-15 2006-04-11 The University Of Chicago Lithium ion battery with improved safety
JP2005005117A (ja) * 2003-06-11 2005-01-06 Sony Corp 電池
JP2005293962A (ja) * 2004-03-31 2005-10-20 Sony Corp 電解質用組成物、高分子電解質およびそれを用いた電池
KR100788565B1 (ko) * 2004-06-21 2007-12-26 삼성에스디아이 주식회사 리튬이온 이차전지용 전해액 및 이를 포함하는 리튬이온이차전지
WO2007043624A1 (ja) * 2005-10-12 2007-04-19 Mitsui Chemicals, Inc. 非水電解液、それを用いたリチウム二次電池
JP4706528B2 (ja) * 2006-03-22 2011-06-22 ソニー株式会社 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
JP5508674B2 (ja) * 2007-01-04 2014-06-04 株式会社東芝 非水電解質電池、電池パック及び自動車
KR101033697B1 (ko) 2007-10-17 2011-05-09 주식회사 엘지화학 리튬이차전지용 전해액 첨가제, 상기 전해액 첨가제를포함하는 비수성 전해액 및 리튬이차전지
US9293773B2 (en) * 2008-04-08 2016-03-22 California Institute Of Technology Electrolytes for wide operating temperature lithium-ion cells
US9190698B2 (en) * 2008-08-19 2015-11-17 California Institute Of Technology Lithium-ion electrolytes with improved safety tolerance to high voltage systems
EP2354089B1 (en) * 2008-12-02 2014-02-12 Stella Chemifa Corporation Production process of difluorophosphate
WO2010074151A1 (ja) * 2008-12-24 2010-07-01 三菱樹脂株式会社 電池用セパレータおよび非水系リチウム電池
CN102318124A (zh) * 2009-02-11 2012-01-11 陶氏环球技术有限责任公司 包含多孔有机粒子的聚合物电解质
US9099756B2 (en) * 2009-02-17 2015-08-04 Samsung Sdi Co., Ltd. Flame retardant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2011054406A (ja) 2009-09-01 2011-03-17 Mitsui Chemicals Inc 非水電解液及びそれを用いた非水電解質二次電池
JP5145367B2 (ja) 2010-03-11 2013-02-13 株式会社日立製作所 非水電解液及びこれを用いたリチウム二次電池
CN101826635A (zh) 2010-04-09 2010-09-08 广州天赐高新材料股份有限公司 一种锂电池用聚合物电解液及其电池的制造方法
KR101297174B1 (ko) * 2011-02-09 2013-08-21 삼성에스디아이 주식회사 리튬 이차 전지
EP2675010B1 (en) * 2011-02-10 2019-03-27 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution for secondary battery, and non-aqueous electrolyte secondary battery using same
US20120231325A1 (en) * 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
US9350048B2 (en) * 2011-03-23 2016-05-24 Samsung Sdi Co., Ltd. Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
CN102315483A (zh) * 2011-09-30 2012-01-11 湖南大学 一种新型多功能电解液
CN102394314A (zh) * 2011-11-30 2012-03-28 天津力神电池股份有限公司 一种锂离子电池电解液及锂离子二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050068669A (ko) * 2003-12-30 2005-07-05 제일모직주식회사 전지용 비수전해액
US20060240327A1 (en) * 2005-04-25 2006-10-26 Ferro Corporation Non-aqueous electrolytic solution
KR20070073386A (ko) * 2006-01-05 2007-07-10 제일모직주식회사 숙신산 및 트리메틸실릴 보레이트를 포함하는 비수성전해액 및 이를 포함하는 리튬 2차 전지
US20100209780A1 (en) * 2009-02-17 2010-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. HIGH VOLTAGE ELECTROLYTE (Muldoon, Allred)
KR20110054406A (ko) * 2009-11-17 2011-05-25 한국조폐공사 콤비 카드 제조 방법 및 이를 이용해 제조된 콤비 카드

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317385A1 (en) * 2014-12-17 2017-11-02 Basf Corporation Electrolyte Compositions For Rechargeable Lithium Ion Batteries

Also Published As

Publication number Publication date
US9666901B2 (en) 2017-05-30
EP2698857A4 (en) 2015-09-30
CN103597647A (zh) 2014-02-19
JP5943264B2 (ja) 2016-07-05
KR20130122364A (ko) 2013-11-07
KR101537142B1 (ko) 2015-07-15
CN103597647B (zh) 2016-09-14
JP2014526125A (ja) 2014-10-02
US20140011081A1 (en) 2014-01-09
EP2698857A1 (en) 2014-02-19
EP2698857B1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2014129823A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2014129824A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2014104710A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
CN101981749B (zh) 锂电池用非水电解液以及使用了该非水电解液的锂电池
WO2013168882A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 구비하는 리튬 이차 전지
US20160028115A1 (en) Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
WO2018097523A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
WO2015065093A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2016089099A1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013191476A1 (ko) 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2013157883A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2016048106A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2017010820A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 전해액 및 이차전지
WO2012015241A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 함유한 리튬 이차전지
WO2014185750A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2014204185A1 (ko) 수명 특성이 향상된 리튬 이차전지
WO2013157867A1 (ko) 레이트 특성이 향상된 리튬 이차전지
WO2016048093A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR20210026500A (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
CN111048831B (zh) 用于二次电池的电解液以及包含电解液的锂二次电池
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
KR20200126781A (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2014046409A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013784877

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE