WO2007043624A1 - 非水電解液、それを用いたリチウム二次電池 - Google Patents

非水電解液、それを用いたリチウム二次電池 Download PDF

Info

Publication number
WO2007043624A1
WO2007043624A1 PCT/JP2006/320410 JP2006320410W WO2007043624A1 WO 2007043624 A1 WO2007043624 A1 WO 2007043624A1 JP 2006320410 W JP2006320410 W JP 2006320410W WO 2007043624 A1 WO2007043624 A1 WO 2007043624A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
carbonate
group
charge
fluorine
Prior art date
Application number
PCT/JP2006/320410
Other languages
English (en)
French (fr)
Inventor
Akio Hiwara
Takashi Hayashi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to US12/083,005 priority Critical patent/US9209479B2/en
Priority to JP2007539986A priority patent/JP5192237B2/ja
Publication of WO2007043624A1 publication Critical patent/WO2007043624A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a non-aqueous electrolyte that improves the life characteristics of a non-aqueous electrochemical element such as a lithium secondary battery.
  • the present invention also relates to a lithium secondary battery that uses this electrolytic solution and has excellent charge / discharge cycle characteristics at high temperatures and excellent charge / discharge performance.
  • a lithium secondary battery includes a negative electrode made of an active material capable of occluding and releasing lithium metal or lithium ions, a positive electrode made of an active material capable of occluding and releasing lithium ions or anions, and non-aqueous electrolysis.
  • lithium secondary batteries Due to its high energy density, lithium secondary batteries have already been used as mainstream secondary batteries for portable devices such as small video cameras, mobile phones, and notebook computers.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-329528
  • Patent Document 2 JP-A-7-240232
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-47131
  • An object of the present invention is to suppress an increase in internal resistance of an electrochemical element that occurs when an electrolyte containing a sultone compound containing a double bond at a specific site is used. This is to provide a non-aqueous electrolyte that is excellent in charge / discharge cycle characteristics and has no problem in charge / discharge load characteristics.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte of the present invention. That is, the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte of the present invention.
  • R to R are independent of each other, hydrogen, fluorine, or fluorine having 1 to 12 carbon atoms.
  • N is an integer from 0 to 3, and when n is 2 or 3, R
  • the present invention relates to a lithium secondary battery using the nonaqueous electrolyte described in any one of (1) to (5) above.
  • the invention's effect [0007]
  • the charge / discharge cycle characteristics under high temperature are particularly excellent, and there is no problem with the charge / discharge load characteristics. Therefore, compared to conventional non-aqueous electrolytes, A lithium battery having a high capacity and a long life can be obtained.
  • FIG. 1 is a diagram showing the results of a load characteristic test 1.
  • FIG. 2 is a diagram showing the results of a load characteristic test 2.
  • FIG. 3 is a diagram showing the results of a charge / discharge cycle test.
  • the non-aqueous electrolyte of the present invention contains a specific sultone compound and ethylene carbonate in which hydrogen is substituted with fluorine.
  • the sultone compound according to the present invention is represented by the following formula [1].
  • R to R are independent of each other, hydrogen, fluorine, or fluorine having 1 to 12 carbon atoms.
  • N is an integer from 0 to 3, and when n is 2 or 3, R
  • the sultone compound represented by the formula [1] is preferable because when it is used as a non-aqueous electrolyte, a protective film is formed on the electrode surface of the non-aqueous electrochemical element to prevent a decrease in life.
  • various hydrocarbon groups which may contain fluorine having 1 to 12 carbon atoms are exemplified, and specific examples include methyl group, ethyl group, bur group, ethur group, propyl group, isopropyl group.
  • 1,3 proper 1 ene sultone and Z or methyl-1,3 proper 1 ene sultone are most preferable.
  • Methyl-1,3 proper 1 ene sultone includes 1-methyl-1,3 proper 1 ene sultone, 2-methyl-1,3 proper 1 Ensultone and 3-methyl-1,3proper 1 ene sultone are exemplified, and 2-methyl-1,3-proper 1-ene sultone is preferable from the viewpoint of ease of production of the compound.
  • 1,3-proper 1-ene sultone is most desirable from the viewpoint of improving life characteristics.
  • Examples of ethylene carbonate in which hydrogen is substituted with fluorine according to the present invention include various known compounds, specifically, 4-fluoroethylene carbonate, 4,4-diphenoloethylene carbonate, cis ⁇ 4, 5-diphenoleo ethylene carbonate, trans 4, 5-difluoroethylene carbonate, 4, 4, 5-trifluoroethylene carbonate, 4, 4, 5, 5-tetrafluoroethylene carbonate Illustrated.
  • fluorine substitution ratio of hydrogen in ethylene carbonate increases, the thermal stability of the compound tends to decrease, which is undesirable.
  • the higher the fluorine substitution ratio the higher the effect of suppressing the increase in the internal resistance of the battery.
  • the nonaqueous electrolytic solution of the present invention contains a nonaqueous solvent.
  • the nonaqueous solvent in the present invention is defined as excluding ethylene carbonate in which the above hydrogen is substituted with fluorine.
  • various known solvents suitable for the respective non-aqueous electrochemical elements can be used. Esters are suitably selected for lithium batteries and electric double layer capacitors.
  • sulfones, phosphate esters, strong rubamates, ethers, ureas, amides, sulfonate esters and the like can be applied.
  • a cyclic ester or a chain ester may have the power of only one kind of compound, You may mix and use a compound. In that case, a plurality of cyclic esters alone, a plurality of chain esters alone, or a plurality of cyclic esters and chain esters may be used.
  • the ionic conductivity of the electrolyte is increased and the characteristics of the lithium battery can be improved, it is preferable to use a mixture of a cyclic ester and a chain ester as the non-aqueous solvent. It is particularly preferable to use a mixture of carbonated carbonates.
  • cyclic ester examples include ethylene carbonate, 1,2-propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, y-butylolatone and the like.
  • ethylene carbonate and propylene carbonate which are excellent in electrochemical stability and have a high dielectric constant, are preferably used.
  • ethylene carbonate is particularly preferred.
  • chain ester examples include dimethyl carbonate, jetyl carbonate, ethinoremethinole carbonate, methinorepropinorecarbonate, methinoreisopropinorecarbonate, dipropinorecarbonate, methinolevbutenore.
  • examples thereof include carbonate, dibutinole carbonate, methyl trifluoroethyl carbonate, ditrifluoroethyl carbonate, ethyltrifluoroethyl carbonate, ethinore acetate, methinorepropionate, and ethinorepropionate.
  • dimethyl carbonate, methyl ethyl carbonate, jetyl carbonate, and methyl propionate which have low viscosity and excellent electrochemical stability, are preferably used.
  • the mixing ratio of the cyclic ester and the chain ester in the non-aqueous solvent can be appropriately selected.
  • the cyclic ester as represented by weight ratio: chain It is preferably in the form of estenole, preferably 10:90 to 70:30, particularly preferably 20:80 to 60:40.
  • the viscosity of the electrolytic solution can be reduced and the degree of dissociation of the electrolyte can be increased, so that the ionic conductivity of the electrolytic solution can be increased and the charge / discharge load characteristics of the battery can be improved.
  • the non-aqueous solvent a cyclic ester is used alone,
  • the amount of the chain ester mixed may be limited to less than 30% by weight with respect to the whole non-aqueous solvent.
  • the nonaqueous electrolytic solution of the present invention contains an electrolyte.
  • the electrolyte various known ones suitable for each non-aqueous electrochemical element can be used.
  • Lithium salts are preferably selected for lithium batteries, and salts with an organic cation such as tetraalkyl ammonium are preferably selected for electric double layer capacitors.
  • the non-aqueous electrolyte is for a lithium battery
  • a lithium salt is used as the electrolyte
  • a known electrolyte that is soluble in an organic solvent can be used.
  • lithium salts such as LiN (SO F) (SO Rf) (n is an integer of 0 to 2)
  • Rf is a perfluoroalkyl group having 1 to 8 carbon atoms which may be the same or different from each other.
  • LiPF LiPF
  • lithium salts may be used alone or as a mixture of two or more thereof.
  • Combinations of two or more electrolytes include LiPF and LiBF, LiPF and Li
  • the nonaqueous electrolytic solution of the present invention contains the sultone compound, ethylene carbonate in which hydrogen is replaced with fluorine, an electrolyte, and a nonaqueous solvent.
  • a nonaqueous solvents and electrolyte salts among those described in the previous item, those suitable as the electrolyte for lithium batteries are used.
  • the non-aqueous electrolyte of the present invention has the above-described sultone compound and hydrogen substituted with fluorine. Since tylene carbonate is essential, the charge / discharge cycle characteristics at high temperatures are synergistically excellent, and there is no problem in charge / discharge load characteristics.
  • the sultone compound has the effect of forming a protective film that prevents the life of the electrode on the electrode surface of the non-aqueous electrochemical element.
  • this protective film contains a lot of inorganic components. For this reason, the resistance to non-aqueous electrolytes is sufficient even at high temperatures, but the ionic conductivity may be insufficient.
  • Ethylene carbonate in which hydrogen is replaced with fluorine also forms a protective film.
  • this protective film contains a lot of organic components. Therefore, although there are few problems with ionic conductivity, the resistance to non-aqueous electrolytes mainly composed of organic solvents is insufficient at high temperatures.
  • the content of the sultone compound in the non-aqueous electrolyte of the present invention is 0.01% by weight or more and 10% by weight or less, preferably 0.05% by weight, based on the total amount of the non-aqueous electrolyte.
  • the content is 5% by weight or less, more preferably 0.1% by weight or more and 3% by weight or less. If the content of the sultone compound in the non-aqueous electrolyte is too small, the effect of suppressing the reduction in the life of the lithium battery may not be exhibited. On the other hand, if the content is too large, the effect of suppressing the decrease in the life is saturated, and the increase in the internal resistance of the battery is increased, which increases the possibility that the charge / discharge load characteristics are decreased.
  • the content of ethylene carbonate in which hydrogen is replaced with fluorine in the nonaqueous electrolytic solution of the present invention is 0.01 wt% or more and 50 wt% or less, preferably 0.05 wt%, based on the total amount of the nonaqueous electrolytic solution. % To 30% by weight, more preferably 0.1% to 5% by weight. If the content of ethylene carbonate substituted with fluorine in the non-aqueous electrolyte is too small, the above effects may not be exhibited. On the other hand, if the content is too high, the effect may be saturated, and there may be problems such as generation of a large amount of decomposition gas when stored at high temperatures.
  • the above-mentioned sultone compound according to the present invention and ethylene carbonate in which hydrogen is substituted with fluorine The weight ratio of the salt is 1:99 force to 99: 1, preferably 5:95 force to 80:20, more preferably 10:90 to 70:30.
  • the effect of improving the charge / discharge cycle characteristics of the sultone compound at high temperature is further improved, and the increase in the internal resistance of the battery due to the sultone compound is suppressed. Is done.
  • the lithium secondary battery using the non-aqueous electrolyte of the present invention is excellent in charge / discharge cycle characteristics particularly at high temperatures and has no problem in charge / discharge load characteristics.
  • the concentration of the lithium electrolyte in the nonaqueous electrolytic solution is usually 0.1 to 3 mol Z liters. From the viewpoint of increasing the ionic conductivity and the viscosity of the electrolyte, it is desirable that it be contained in the non-aqueous electrolyte at a concentration of 0.5 to 2 mol Z liter.
  • the non-aqueous electrolyte of the present invention may further contain a cyclic carbonate having a carbon-carbon unsaturated bond, in addition to the basic structure described above. In that case, the effect of further suppressing the decrease in the lifetime of the electrochemical element can be obtained, which is further preferable.
  • the cyclic carbonate having a carbon-carbon double bond include various known ones.
  • vinylene carbonate, methinolevylene carbonate, dimethinolevylene carbonate, ethenolevylene carbonate, phenylbinylene carbonate examples include diphenylenobinylene strength-bonates, vinylenoethylene carbonates, 1-echinolays, 1-vininoleethylene carbonates, divinylethylene carbonate, and the like.
  • beylene carbonate, butyl ethylene carbonate, dibule ethylene carbonate Is most desirable, and vinyl ethylene carbonate is most desirable.
  • the content of the cyclic carbonate having a carbon-carbon double bond in the nonaqueous electrolytic solution is usually 0.01 to 5% by weight. When the content is too large, there is a possibility that the effect of improving the charge / discharge load characteristics reduced by the sultone compound with ethylene carbonate in which fluorine is substituted with hydrogen may be lost.
  • the ability to further improve the charge / discharge cycle characteristics at high temperatures without affecting the improvement effect of the charge / discharge load characteristics degradation is that the content of cyclic carbonates having carbon-carbon unsaturated bonds is 0.01. ⁇ 1% by weight is desirable and 0.05-0.5% by weight is desirable.
  • the nonaqueous electrolytic solution of the present invention can include other additives as necessary within a range not impairing the object of the present invention.
  • Sulfuric acid esters include 1,3-propane sultone, 1,4-butane sultone, ethylene glycol di (methanesulfonic acid) ester, ethylene sulfite, propylene sulfite, ethylene sulfate, propylene sulfate, pentene sulfate, dimethyl metabenzene sulfonate, sulfuric acid Examples include jet and dimethyl sulfate.
  • borate ester examples include triethyl borate, tributyl borate, tris (trifluoroethyl) borate, tripropargyl borate, trimethyl borate and the like.
  • silyl esters include phosphoric acid silyl esters such as tris (trimethylsilyl) phosphate, tris (trimethylsilyl) borate, trimethylsilyl ethanesulfonate, trimethylsilyl ester of arylsulfonate, di (trimethylsilyl) sulfate, and the like. Is exemplified.
  • Examples of acid anhydrides include methanesulfonic acid anhydride, benzenesulfonic acid anhydride, ⁇ -toluenesulfonic acid anhydride, sulfobenzoic acid anhydride, succinic acid anhydride, maleic acid anhydride, glycolic acid anhydride, norl. Examples thereof include bornene dicarboxylic acid anhydride.
  • Examples of the lithium borate or lithium phosphate include bis (oxalato) lithium borate, difluoro (oxalato) lithium borate, bis (oxalato) lithium fluorophosphate, trifluoro (oxalato) lithium phosphate Etc. are exemplified.
  • silylesters such as silylester phosphates and tris (trimethylsilyl) borate Desirable as other additives.
  • silyl phosphates are desirably contained in an amount of 0.01 to 2% by weight in the most desired non-aqueous electrolyte because it improves the charge / discharge load characteristics.
  • additives can be added in a range without impairing the object of the present invention.
  • a total of 0.01 to: LO wt% is added to the whole non-aqueous electrolyte. it can.
  • the nonaqueous electrolytic solution of the present invention if these additives are added too much, the resistance of the battery may increase and the charge / discharge cycle characteristics may decrease. Therefore, the desired content is 0.01-2% by weight.
  • the non-aqueous electrolyte of the present invention can be used in various non-aqueous electrochemical elements, such as an electrolyte for a lithium secondary battery, an electrolyte for a polymer lithium battery in which the electrolyte is gelled with a polymer, lithium Examples include electrolytes for primary batteries, electrolytes for electric double layer capacitors, electrolytes for electrochemical capacitors, electrolytes for aluminum electrolytic capacitors, electrolytes for organic solar cells such as Gretcher cells, and electrolytes for electochromic cells Is done. Among these, it is suitably used as an electrolyte for lithium secondary batteries.
  • the lithium secondary battery of the present invention includes the non-aqueous electrolyte of the present invention, and other configurations are not particularly limited.
  • the lithium secondary battery of the present invention has a nonaqueous electrolyte, a negative electrode, a positive electrode, and a separator as basic components. Since the lithium secondary battery of the present invention includes the non-aqueous electrolyte of the present invention, it is excellent in charge / discharge cycle characteristics at high temperatures and charge / discharge load characteristics.
  • the negative electrode contains a negative electrode active material, and those used in ordinary lithium secondary batteries are used.
  • the negative electrode active material include carbonaceous materials that can be doped and dedoped with lithium ions, metallic lithium, lithium-containing alloys, silicon that can be alloyed with lithium, silicon alloys, tin, tin alloys, germanium, Germanium alloy, lithium ion doped 'dedoped tin oxide, silicon oxide, lithium ion doped' dedoped transition metal oxide, lithium ion doped 'dedoped transition metal nitride Alternatively, any mixture of the above-exemplified materials can be used.
  • a carbonaceous material that can be doped and dedoped with lithium ions is preferable because it has particularly excellent charge / discharge characteristics.
  • carbonaceous materials include coatas, vigorous bon black, activated carbon, artificial graphite, natural graphite, and amorphous carbon materials, and the shape thereof can be any of fibrous, spherical, potato, and flakes. It may be.
  • another negative electrode active material may be supported on the surface or inside of the carbonaceous material. Examples of other negative electrode active materials to be supported include metallic lithium, lithium-containing alloys, silicon that can be alloyed with lithium, silicon alloys, tin, and tin alloys.
  • the carbonaceous material has a (002) plane spacing measured by X-ray analysis of 0.340 nm or less and a true density of 1.70 gZcm 3 or more. energy This is particularly preferable because the density can be increased.
  • a material include graphite, a highly crystalline carbonaceous material having properties similar thereto, or a material having a surface coated with a carbonaceous material having low crystallinity.
  • the positive electrode contains a positive electrode active material.
  • the positive electrode active material include iron sulfate, iron phosphate, iron sulfide, transition metal oxides such as MoS, TiS, MnO, and V 2 O, transition metal sulfides, LiCoO,
  • Examples include composite oxides composed of transition metals, polyarine, polythiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazole z polya-phosphorus composites, fluorinated carbon, activated carbon, and the like.
  • composite oxides composed of lithium and a transition metal are particularly preferable because they are excellent in charge / discharge load characteristics and charge / discharge cycle characteristics.
  • complex oxides composed of lithium and transition metals have been used in which the potential at full charge is less than 4.3 V based on metal lithium. The standard is 4.3V or more.
  • the nonaqueous electrolytic solution of the present invention is particularly effective in a lithium secondary battery using a positive electrode active material having a full charge potential of 4.3 V or higher with respect to metallic lithium. This seems to be because the sultone compound represented by the formula [1] forms a protective film not only on the negative electrode of the lithium secondary battery but also on the positive electrode.
  • the positive electrode active material may be used alone or in combination of two or more.
  • a coating layer may be provided on the surface with an oxide or fluoride. Since the positive electrode active material usually has insufficient conductivity, it is used together with a conductive additive to constitute the positive electrode.
  • the conductive aid include carbon materials such as carbon black, amorphous whisker carbon, and graphite.
  • the separator according to the present invention is a porous film that is disposed between a positive electrode and a negative electrode, electrically insulates both electrodes and transmits lithium ions, and impregnates an electrolyte to exhibit ion conductivity.
  • Examples thereof include a quality film and a film having ionic conductivity.
  • the material of the porous film can be selected according to the purpose, such as polyolefin, polyimide, poly vinylidene, and polyester.
  • the shape of the separator is not particularly limited, but a porous film or a polymer electrolyte is usually used. When a porous film is used, a single layer or a plurality of porous films may be laminated. In addition, the film surface may be coated with a resin for imparting thermal stability. In the case of a film having ionic conductivity, a lithium salt may be dissolved in a high molecular compound or the electrolytic solution may be swollen.
  • the lithium secondary battery of the present invention can be formed into, for example, a cylindrical shape, a coin shape, a square shape, a film shape, or any other various shapes according to the purpose.
  • the basic structure of these batteries is the same regardless of the shape, and the negative electrode and the positive electrode face each other with a separator interposed therebetween, and the entire opposite body is impregnated with an electrolytic solution.
  • the negative electrode active material, the positive electrode active material, and the separator constituting each battery those described above are commonly used.
  • a positive electrode active material is applied to a negative electrode obtained by applying a negative electrode active material to a negative electrode current collector such as a copper foil, and a positive electrode current collector such as an A1 foil.
  • the applied positive electrode is wound through a separator, and insulating plates are arranged above and below the wound body.
  • a non-aqueous electrolyte is injected into the battery can, and when the internal pressure of the battery rises, the current contact is deformed and cut, and when the battery temperature rises,
  • a cylindrical battery is obtained by covering with a sealing body to which an element with an increased resistance is attached and applying force to the end of the battery can.
  • a disc-shaped negative electrode In the case of a coin-type lithium secondary battery, a disc-shaped negative electrode, a separator filled with a non-aqueous electrolyte, a disc-shaped positive electrode, and a spacer such as stainless steel or aluminum as required The plates are stacked in this order, and a battery can sandwiched from above and below is caulked through an insulating gasket to obtain a coin-type secondary battery.
  • Test methods of various tests in the examples are as follows. A coin battery was used as a test battery.
  • test 1 The test battery was charged at 3 mA constant current and 4.2 V constant voltage, then discharged at 10 mA, and the discharge capacity and voltage at this time were measured. The results obtained are shown in FIG.
  • test battery was charged at 3 mA constant current and 4.2 V constant voltage, then discharged at 8 mA, and the discharge capacity and voltage at this time were measured. The results obtained are shown in FIG.
  • the test battery was placed in a constant temperature bath at 50 ° C for testing. 3. Charging / discharging cycle was repeated under the condition of charging at 3.5mA constant current and 4.3V constant voltage and then discharging at 3.5mA. When the battery voltage is charged to 4.3V, the potential of the positive electrode is 4.38V based on metallic lithium. In addition, after every 100 cycles, the battery was charged and discharged at 1 mA after being charged under conditions of 3.5 mA constant current and 4.3 V constant voltage.
  • Figure 3 shows the discharge capacity (capacity retention rate (%)) with respect to the number of charge / discharge cycles, with the discharge capacity at the third cycle of each battery being 100.
  • ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were mixed in a ratio of 4: 6 (weight ratio), respectively, and the electrolyte, LiPF, was dissolved and the electrolyte was dissolved.
  • LiCoO Hydrophil FMC Energy Systems Co., Ltd. 90 parts by weight, acetylene black 5 layers
  • a positive electrode mixture slurry was prepared by kneading an amount of 5 parts by weight and 5 parts by weight of poly (vinylidene fluoride) into a paste form using N-methylpyrrolidinone as a solvent. Next, this positive electrode mixture slurry was applied to a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 20 ⁇ m, dried, and then compressed by a roll press to obtain a positive electrode sheet. At this time, the coating density of the positive electrode active material layer was 30 mgZcm 2 and the packing density was 3.3 gZml.
  • the above-mentioned negative electrode was punched into a disk shape having a diameter of 14 mm and the above-described positive electrode was punched into a disk having a diameter of 13 mm to obtain a coin electrode. Further, a microporous polyethylene film having a thickness of 25 ⁇ m was punched into a disk shape having a diameter of 17 mm to obtain a separator.
  • the obtained negative electrode, separator, and positive electrode are stacked in this order in a stainless steel battery can (2032 size), and a nonaqueous electrolyte solution 201 is injected to impregnate the separator, the positive electrode, and the negative electrode. It was. Further, an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a panel are placed on the positive electrode, and the battery is sealed by pressing the lid of the battery can through a polypropylene gasket. 3.
  • a 2 mm coin-type battery was fabricated. The coin battery was charged at a constant current of 0.5 mA and a constant voltage of 3.8 V, and then stored at 60 ° C. for 12 hours to obtain a test battery.
  • test batteries were evaluated for charge / discharge cycle characteristics at high temperatures. (Example 2)
  • a test battery was obtained in the same manner as in Example 1 except that both the contents of 1,3 proper 1 ene sultone and 4 fluoroethylene carbonate were adjusted to 1% by weight with respect to the total amount of the non-aqueous electrolyte. It was. The obtained test battery was evaluated for load characteristic test 1 and charge / discharge cycle characteristics at high temperature.
  • test battery was obtained in the same manner as in Example 1. The obtained test batteries were evaluated for charge / discharge cycle characteristics at high temperatures.
  • test battery was obtained in the same manner as in 1. The test battery obtained! The load characteristic test 1 was evaluated.
  • Example 1 Against the non-aqueous electrolyte solution the total amount, 1, 3 proper 1 2 methyl instead of Ensuruton - was adjusted to contain 1, 3 proper 1 Ensuruton 1 wt 0/0, 4 full O b carbonate 1 by weight%
  • a test battery was obtained in the same manner as in Example 1 except that. The obtained test battery was evaluated in load characteristic test 1.
  • a test battery was obtained in the same manner as in Comparative Example 1, except that the content was adjusted to contain 0.5% by weight of 1,3 proper 1 ene sultone with respect to the total amount of the nonaqueous electrolytic solution.
  • the test batteries obtained were evaluated! Load characteristics test 2 and charge / discharge cycle characteristics under high temperature were evaluated.o
  • a test battery was obtained in the same manner as in Comparative Example 1 except that the content was adjusted to contain 1% by weight of 1,3 proper 1 ene sultone with respect to the total amount of the nonaqueous electrolyte.
  • the obtained test battery was subjected to load characteristics test 1 and evaluation of charge / discharge cycle characteristics at high temperature. (Comparative Example 4)
  • a test battery was obtained in the same manner as in Comparative Example 1, except that the content was adjusted so as to contain 1% by weight of 4 fluoroethylene carbonate with respect to the total amount of the nonaqueous electrolytic solution.
  • the test battery thus obtained was evaluated for load characteristics test 1, load characteristics test 2, and charge / discharge cycle characteristics at high temperatures.
  • a test battery was obtained in the same manner as in Comparative Example 1 except that 4% by weight of 4 fluoroethylene carbonate was adjusted with respect to the total amount of the nonaqueous electrolyte.
  • the obtained test batteries were evaluated for charge / discharge cycle characteristics at high temperatures.
  • a test battery was obtained in the same manner as in Comparative Example 1 except that the content was adjusted so as to contain 1% by weight of bi-ethylene carbonate with respect to the total amount of the non-aqueous electrolyte.
  • the test battery thus obtained was evaluated for load characteristic test 1, load characteristic test 2, and charge / discharge cycle characteristics at high temperatures.
  • Table 1 shows the composites added to the non-aqueous electrolyte used in the test.
  • the abbreviations shown in Table 1 represent the following compounds, and the numbers represent the content% by weight relative to the entire non-aqueous electrolyte. "" Indicates no inclusion.
  • MPRS 2-Methyl-1, 3-Proper 1 ene sultone
  • FEC 4—Funoreo mouth ethylene carbonate
  • VEC butyl ethylene carbonate
  • FIG. 3 shows that the internal resistance of the electrolyte solution of Example 5 is particularly low and good.

Abstract

 式[1]で表されるスルトン化合物(R1~R4は、水素、フッ素、又は、炭素数1~12のフッ素を含んでいても良い炭化水素基であり、nは0~3の整数であり、nが2又は3のときR3及びR4は互いに独立である)と、水素がフッ素で置換されたエチレンカーボネートとを含有する非水電解液、及びそれを用いたリチウム二次電池を提供する。この非水電解液は、非水電気化学素子の内部抵抗の増加をもたらさず、寿命特性を向上させる。また、この非水電解液を含むリチウム二次電池は、高温下でのサイクル充放電特性が大幅に向上し、充放電負荷特性に優れている。

Description

明 細 書
非水電解液、それを用いたリチウム二次電池
技術分野
[0001] 本発明は、リチウム二次電池などの非水電気化学素子の寿命特性を向上させる非 水電解液に関する。また、この電解液を使用し、高温下での充放電サイクル特性に 優れ、かつ充放電性能に優れるリチウム二次電池に関する。
背景技術
[0002] リチウム二次電池は、リチウム金属もしくはリチウムイオンの吸蔵、放出が可能な活 物質からなる負極と、リチウムイオンもしくはァニオンの吸蔵、放出が可能な活物質か らなる正極と、非水電解液などとから構成された電池で、エネルギー密度が高いとい う特徴がある。また、最近では、高出力であることや、充放電繰り返し可能回数が非 常に多く長寿命であるという特徴が注目されている。
エネルギー密度が高いという特徴から、小型ビデオカメラ、携帯電話、ノート型パソ コン等の携帯機器用の主流二次電池としてリチウム二次電池が既に使用されており
、また、高出力かつ長寿命という特徴から、ハイブリッド型の電気自動車や夜間電力 貯蔵などのエネルギー回生用の電源としての利用について、精力的に検討がなされ ている。これらの状況から、今後もさらに、高エネルギー密度化と高出力と長寿命化と が求められている。
リチウム二次電池を高工ネルギー密度化するためには、一般的には電池中の活物 質の充填密度を高める方法を取る。この場合に、電極の空孔中に含浸される電解液 量が必然的に少なくなるために、電解液の少なさに起因する電池の寿命低下が起こ りやすくなる。また、ハイブリッド型の電気自動車や夜間電力貯蔵の用途では数年以 上の寿命が求められる。これらの理由から、電解液はこれまで以上に電池の寿命を 向上させ、かつ、充放電性能を高めるものである事が求められている。
[0003] これら課題のうち、電池の寿命特性を向上する方策として、種々の添加剤を添加す ることが検討されている。例えば、非水電解液に、特定部位に二重結合を含有するス ルトンィ匕合物を添加することが提案されている(例えば、特開 2002— 329528号公 報)。だ力 この場合は、電池寿命の向上作用は大きいが、電池の内部抵抗を増加さ せて充放電負荷特性を低下させる恐れがある。また、非水電解液にフルォロェチレ ンカーボネートを添加することが提案されている(例えば、特開平 7— 240232号公 報及び特開 2004— 47131号公報)。だ力 この場合は、電池の内部抵抗が増加す る可能性は小さいが、高温下での充放電サイクル特性の向上効果が小さい恐れがあ る。さらに、非水電解液にビニレンカーボネートを添加する事が提案されている。だが 、この場合は、電池の内部抵抗を増力!]させる恐れは小さいが、高温下での寿命特性 の向上効果が満足するものではない。
[0004] 特許文献 1:特開 2002— 329528号公報
特許文献 2:特開平 7— 240232号公報
特許文献 3:特開 2004 -47131号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明の目的は、特定部位に二重結合を含有するスルトン化合物を添加した電解 液を使用すると起こる電気化学素子の内部抵抗の増加を抑制する事により、電気化 学素子の高温下での充放電サイクル特性に優れ、充放電負荷特性に問題のな 、非 水電解液を提供する事である。
課題を解決するための手段
[0006] 上記課題に鑑み、本発明者らは鋭意検討を行った結果、本発明を完成させるに至 つた o
すなわち本発明の非水電解液は、
(1)下記式 [1]で表されるスルトンィ匕合物と、水素がフッ素で置換されたエチレンカー ボネートと、を含有する非水電解液、
[化 1]
Figure imgf000005_0001
式 [ 1 ]
[式中、 R〜Rは、互いに独立であり、水素、フッ素、又は、炭素数 1〜12のフッ素
1 4
を含んでいても良い炭化水素基であり、 nは 0〜3の整数であり、 nが 2又は 3のとき R
3 及び Rは互いに独立である。 ]
4
(2)スルトン化合物が 1, 3 プロパー 1 エンスルトン及び Z又はメチルー 1, 3 プ 口パー 1 エンスルトンである上記(1)記載の非水電解液、
(3)水素がフッ素で置換されたエチレンカーボネートが、 4 フルォロエチレンカーボ ネート及び Z又は 4, 5 ジフルォロエチレンカーボネートである上記(1)又は(2)記 載の非水電解液、
(4)さらに、炭素炭素不飽和結合を有する環状カーボネートを 0. 01〜1重量%含有 する上記(1)〜(3)の 、ずれかに記載の非水電解液、
(5)さらに、リン酸シリルエステルを 0. 01〜2重量0 /0含有する上記(1)〜(4)のいず れかに記載の非水電解液、
(6)上記(1)〜(5)の 、ずれかに記載の非水電解液を用いてなるリチウム二次電池、 に関するものである。
発明の効果 [0007] 本発明の非水電解液を用いることによって、特に高温下での充放電サイクル特性 が優れ、かつ、充放電負荷特性に問題がないために、従来の非水電解液に比べて、 高容量で長寿命のリチウム電池を得ることができる。
図面の簡単な説明
[0008] [図 1]負荷特性試験 1の結果を示す図である。
[図 2]負荷特性試験 2の結果を示す図である。
[図 3]充放電サイクル試験の結果を示す図である。
発明を実施するための最良の形態
[0009] 本発明の非水電解液は、特定のスルトンィ匕合物及び水素がフッ素で置換されたェ チレンカーボネートを含有するものである。
[0010] スルトン化合物
本発明に係るスルトンィ匕合物は、下記式 [1]で表される。
[化 2]
Figure imgf000006_0001
R3 H 式 [ 1 ]
(式中、 R〜Rは、互いに独立であり、水素、フッ素、又は、炭素数 1〜12のフッ素 を含んでいても良い炭化水素基であり、 nは 0〜3の整数であり、 nが 2又は 3のとき R
3 及び Rは互いに独立である。 )
4
[0011] この式 [1]で表されるスルトンィ匕合物は、非水電解液として使用した場合に、非水 電気化学素子の電極表面に寿命低下を防ぐ保護皮膜を形成するので好ましい。 式中、炭素数 1〜12のフッ素を含んでいても良い炭化水素基としては種々のもの が挙げられるが、具体的には、メチル基、ェチル基、ビュル基、ェチュル基、プロピル 基、イソプロピル基、 1 プロべ-ル基、 2—プロべ-ル基、 1 プロピ-ル基、 2—プ 口ピ-ル基、ブチル基、 sec ブチル基、 t ブチル基、 1ーブテュル基、 2—ブテ- ル基、 3 ブテュル基、 2—メチルー 2—プロべ-ル基、 1ーメチレンプロピル基、 1 メチルー 2—プロべ-ル基、 1, 2—ジメチルビ-ル基、 1 プチ-ル基、 2—ブチュル 基、 3 ブチュル基、ペンチル基、 1 メチルブチル基、 2 メチルブチル基、 3—メ チルブチル基、 1ーメチルー 2—メチルプロピル基、 2, 2—ジメチルプロピル基、フエ -ル基、メチルフエ-ル基、ェチルフエ-ル基、ビュルフエ-ル基、ェチュルフエ-ル 基、へキシル基、シクロへキシル基、ヘプチル基、ォクチル基、ノ-ル基、デシル基、 ゥンデシル基、ドデシル基、ジフルォロメチル基、モノフルォロメチル基、トリフルォロ メチル基、トリフルォロェチル基、ジフルォロェチル基、ペンタフルォロェチル基、ぺ ンタフルォロプロピル基、テトラフルォロプロピル基、パーフルォロブチル基、パーフ ルォロペンチル基、パーフルォ口へキシル基、パーフルォロシクロへキシル基、パー フルォ口へプチル基、パーフルォロォクチル基、パーフルォロノ-ル基、パーフルォ 口デシル基、パーフルォロウンデシル基、パーフルォロドデシル基、フルオロフ工-ル 基、ジフルオロフヱ-ル基、トリフルオロフヱ-ル基、パーフルオロフヱ-ル基、トリフ ルォロメチルフヱ-ル基、ナフチル基、ビフヱ-ル基などが例示される。この中でも、 フッ素を含んでも良い炭化水素基の炭素数は、電解液への溶解性の点から、 4以下 であることが望ましぐさらに望ましくは 2以下である。
[0012] また、式 [1]中、 nは 0〜3のいずれの整数であっても効果がある力 n= lまたは 2 が望ましぐさらには n= lが最も望ましい。
[0013] 本発明に係るスルトンィ匕合物としては、具体的には、以下の化合物を例示すること ができる。 [化 3]
Figure imgf000008_0001
以上説明してきた化合物のうち最も望ましい化合物は、式 [1]で表されるスルトン化 合物の R〜Rが全て水素もしくは R〜Rのうち 1つ力 Sメチル基で、且つ、 n= lである
1 4 1 4
。即ち、 1, 3 プロパー 1 エンスルトン及び Z又はメチルー 1, 3 プロパー 1ーェ ンスルトンであることが最も好ましい。メチルー 1, 3 プロパー 1 エンスルトンとして は、 1ーメチルー 1, 3 プロパー 1 エンスルトン、 2—メチルー 1, 3 プロパー 1 エンスルトン、 3—メチルー 1, 3 プロパー 1 エンスルトンが例示され、化合物の製 造の容易性の観点からは 2—メチル—1 , 3—プロパー 1—エンスルトンが望ましい。 さらには、 1, 3—プロパー 1—エンスルトンが寿命特性向上の観点からは最も望まし い。この化合物を用いた場合、電極表面に形成される保護皮膜中の有機 (炭化水素 )比率が最も少なく無機的である事から、電気化学素子の寿命低下の抑制作用が最 も高くなる。
[0016] 水素がフッ素で置換されたエチレンカーボネート
本発明に係る水素がフッ素で置換されたエチレンカーボネートとしては、公知の種 々の化合物が挙げられ、具体的には、 4 フルォロエチレンカーボネート、 4, 4ージ フノレオ口エチレンカーボネート、 cis -4, 5—ジフノレオ口エチレンカーボネート、 trans 4, 5—ジフルォロエチレンカーボネート、 4, 4, 5—トリフルォロエチレンカーボネ ート、 4, 4, 5, 5—テトラフルォロエチレンカーボネートが例示される。エチレンカー ボネートの水素のフッ素置換比率が高くなるほど、化合物の熱的な安定性が低下す る傾向があり、望ましくない。また、フッ素置換比率が高くなるほど、電池の内部抵抗 増加の抑制作用は高くなる。その一方で、理由は不明であるが、電極表面の保護皮 膜の寿命低下抑制作用が低下する。以上を総合的に勘案すると、これらのうちで、 4 フルォロエチレンカーボネート及び Z又は 4, 5—ジフルォロエチレンカーボネート が最も望ましい。水素がフッ素で置換されたエチレンカーボネートは、 1種を単独で 使用でき、または 2種以上を併用できる。
[0017] 非水溶媒
本発明の非水電解液は、非水溶媒を含む。なお、本発明における非水溶媒は、上 述の水素がフッ素で置換されたエチレンカーボネートを含まな 、ものと定義する。非 水溶媒としては、それぞれの非水電気化学素子に適した種々公知のものを使用でき る。リチウム電池用や電気二重層キャパシタ用としてはエステル類が好適に選ばれる 。その他、スルホン類、リン酸エステル類、力ルバメート類、エーテル類、ウレァ類、ァ ミド類、スルホン酸エステル類なども適用できる。
[0018] その中でも、通常は、環状エステルまたは鎖状エステル力もなるものが好ましい。環 状エステルまたは鎖状エステルは、 1種の化合物のみ力もなつても良いが、複数種の 化合物を混合して用いても良い。その場合、環状エステルのみを複数種用いても、 鎖状エステルのみを複数種用いても、更には環状エステル及び鎖状エステルをそれ ぞれ複数種用いても良い。
電解液のイオン伝導性が高くなりリチウム電池の特性を向上できるため、非水溶媒 として環状エステルと鎖状エステルとの混合物を用いることが好ましぐ電気化学的安 定性の良い、環状カーボネートと鎖状カーボネートの混合物にすることが特に好まし い。
[0019] 環状エステルとしては、具体的には、エチレンカーボネート、 1, 2—プロピレンカー ボネート、 1, 2—ブチレンカーボネート、 2, 3—ブチレンカーボネート、 yーブチロラ タトンなどが挙げられる。特に、電気化学的安定性に優れ、誘電率が高い、エチレン カーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛質材 料を含有した電池の場合は、エチレンカーボネートが特に好ま 、。
[0020] 鎖状エステルとしては、具体的には、ジメチルカーボネート、ジェチルカーボネート 、ェチノレメチノレカーボネート、メチノレプロピノレカーボネート、メチノレイソプロピノレカーボ ネート、ジプロピノレカーボネート、メチノレブチノレカーボネート、ジブチノレカーボネート、 メチルトリフルォロェチルカーボネート、ジトリフルォロェチルカーボネート、ェチルトリ フルォロェチルカーボネート、ェチノレアセテート、メチノレプロピオネート、ェチノレプロ ピオネートなどが挙げられる。特に、粘度が低く電気化学的安定性に優れる、ジメチ ルカーボネート、メチルェチルカーボネート、ジェチルカーボネート、メチルプロピオ ネートが好適に使用される。
[0021] 非水溶媒中の環状エステルと鎖状エステルの混合割合は適宜選択できるが、リチ ゥム電池の充放電負荷特性を向上させる観点から、重量比で表したときの環状エス テノレ:鎖状エステノレ ίま、好ましく【ま10 : 90〜70 : 30、特に好ましく【ま20 : 80〜60 :40 である。このような比率にすることによって、電解液の粘度を低減し、電解質の解離度 を高めることができる為、電解液のイオン伝導度を高め、電池の充放電負荷特性を 向上することができる。
また、リチウム電池の燃焼防止など安全性向上の観点から、溶媒の引火点を高くす る事が望ましい。この場合は、非水溶媒として、環状エステルを単独で使用するか、 鎖状エステルの混合量を、非水溶媒全体に対して重量比で 30%未満に制限して使 用しても良い。
[0022] 電解質
本発明の非水電解液は、電解質を含む。電解質としては、それぞれの非水電気化 学素子に適した種々公知のものを使用できる。リチウム電池用としてはリチウム塩類 が好適に選ばれ、電気二重層キャパシタ用としてはテトラアルキルアンモ-ゥムィォ ンなどの有機カチオンを対イオンとする塩類が好適に選ばれる。
[0023] 非水電解液がリチウム電池用である場合には、電解質としてはリチウム塩を使用し、 有機溶媒に可溶な公知のものを用いることができる。具体的には、 LiPF、 LiBF、 Li
6 4
CIO、 LiAsF、 Li SiF、 LiOSO Rf、 LiPF Rf (nは 0〜6の整数)、 LiBF Rf (
4 6 2 6 2 n (6-n) n (4-n) nは 0〜4の整数)、 LiC (SO Rf)、LiN (SO ORf) (SO Rf) (nは 0〜2の整数)
2 3 2 n 2 (n-2)
、 LiN (SO F) (SO Rf) (nは 0〜2の整数)などのリチウム塩が挙げられる(以上
2 n 2 (n-2)
の一般式全てにおいて、 Rfは、互いに同一であっても異なっていてもよい、炭素数 1 〜8のパーフルォロアルキル基である)。
これらのうち、 LiPF、 LiBF、 LiN (SO CF )、 LiN (SO C F )力 電解液中での
6 4 2 3 2 2 2 5 2
イオン解離度が高ぐイオン伝導性が高くなるため好ましい。さらに、電池外装金属へ の耐食性とイオン伝導度が特に高いことから、 LiPF
6が最も好ましい。
[0024] これらのリチウム塩は単独で使用してもよぐ 2種以上を混合して使用してもよい。 2 種以上の電解質を混合する場合の組み合わせとしては、 LiPFと LiBF、 LiPFと Li
6 4 6
N (SO CF )、 LiPFと LiN (SO C F ) 、 LiBFと LiN (SO CF )、 LiPFと LiN (S
2 3 2 6 2 2 5 2 4 2 3 2 6
O C F ) 、 LiPFと LiBFと LiN (SO CF ) 、 LiPFと LiBFと LiN (SO C F )が例
2 2 5 2 6 4 2 3 2 6 4 2 2 5 2 示される。これらのうち、 LiPFと LiBFを同時に含有する組み合わせ力 リチウム電
6 4
池の寿命特性が向上する観点からは好ましい。
[0025] 非 7k雷解液
本発明の非水電解液は、前記のスルトンィ匕合物、水素をフッ素で置換したエチレン カーボネート、電解質及び非水溶媒を含む。非水溶媒、電解質塩は、先の項目で述 ベたうち、リチウム電池用電解液として好適なものを使用する。
[0026] 本発明の非水電解液は、前記のスルトンィ匕合物及び水素がフッ素で置換されたェ チレンカーボネートを必須とするため、高温下での充放電サイクル特性が相乗的に 優れ、且つ、充放電負荷特性にも問題がない。
このような効果が得られる理由は、必ずしも明らかではないが、以下のように考えら れる。前記のスルトンィ匕合物は、非水電気化学素子の電極表面に寿命低下を防ぐ保 護膜を形成する効果がある。しかし、この保護皮膜は無機的な成分を多く含む。その ため、非水電解液に対する耐性は高温下でも十分であるが、イオン導電性が不十分 である恐れがある。水素がフッ素で置換されたエチレンカーボネートも保護皮膜を形 成する。しかし、この保護皮膜は有機的な成分を多く含む。そのため、イオン導電性 に問題は少ないが、有機溶媒が主体の非水電解液に対する耐性が、高温下では不 十分である。従って、この両者を同時に含有すると、両者の欠点が互いに補われ、非 水電解液に対する耐性に優れ、イオン導電性にも問題のない保護皮膜が電極上に 形成される。そのため、従来に無いような、高温下での充放電サイクル特性が相乗的 に優れ、且つ、充放電負荷特性にも問題のない電解液が得られるものと考えられる。
[0027] 本発明の非水電解液における前記のスルトンィ匕合物の含有量は、非水電解液全 量に対して、 0. 01重量%以上 10重量%以下、好ましくは 0. 05重量%以上 5重量 %以下、さらに好ましくは 0. 1重量%以上 3重量%以下である。非水電解液中の該ス ルトン化合物の含有量が少なすぎると、リチウム電池の寿命低下を抑制する効果が 発現しなくなる恐れがある。一方、含有量が多すぎると、寿命低下の抑制効果が飽和 すると共に、電池の内部抵抗の増加が大きくなり、充放電負荷特性の低下が起こる 恐れが大きくなる。
[0028] 本発明の非水電解液における水素がフッ素で置換されたエチレンカーボネートの 含有量は、非水電解液全量に対して 0. 01重量%以上 50重量%以下、好ましくは 0 . 05重量%以上 30重量%以下、さらに好ましくは 0. 1重量%以上 5重量%以下であ る。非水電解液中のフッ素で置換されたエチレンカーボネートの含有量が少なすぎ ると、上述の効果が発現しなくなる恐れがある。一方、含有量が多すぎると効果が飽 和したり、高温下で保管した時の分解ガスが多く発生するなどの不具合が起こる恐れ がある。
[0029] 本発明に係る前記のスルトンィ匕合物と水素がフッ素で置換されたエチレンカーボネ ートの含有量比は、重量比で 1: 99力ら 99: 1であり、好ましくは 5: 95力ら 80: 20、さ らに好ましくは 10 : 90から 70 : 30である。以上で述べた好適な範囲とする事で、該ス ルトンィ匕合物の高温下での充放電サイクル特性の向上作用がさらに向上し、かつ、 スルトンィ匕合物による電池の内部抵抗の増加が抑制される。この結果、本発明の非 水電解液を用いたリチウム二次電池は、特に高温下での充放電サイクル特性に優れ 、充放電負荷特性にも問題のないものとなる。
[0030] 非水電解液中のリチウム電解質の濃度は、通常、 0. 1〜3モル Zリットルである。ィ オン伝導度や電解液の粘性増加の観点からは、好ましくは 0. 5〜2モル Zリットルの 濃度で非水電解液中に含まれて 、ることが望ま 、。
[0031] 本発明の非水電解液は、上述の基本構成に加えて、さらに、炭素炭素不飽和結合 を有する環状カーボネートを含有しても良い。その場合には、電気化学素子の寿命 低下の抑制作用がさらに高まる効果が得られるので更に好ましい。炭素炭素二重結 合を有する環状カーボネートとしては、種々公知のものが挙げられる力 具体的には ビニレンカーボネート、メチノレビ二レンカーボネート、ジメチノレビ二レンカーボネート、 ェチノレビ二レンカーボネート、フエ二ルビ二レンカーボネート、ジフエニノレビ二レン力 ーボネート、ビニノレエチレンカーボネート、 1ーェチノレー 1ービニノレエチレンカーボネ ート、ジビニルエチレンカーボネートなどが例示される。この中でも、非水電解液にお いて、高温下での充放電サイクル特性の向上作用と充放電負荷特性への影響とを 総合的に勘案すると、ビ-レンカーボネート、ビュルエチレンカーボネート、ジビュル エチレンカーボネートが最も望ましぐさらには、ビニルエチレンカーボネートが最も 望ましい。
[0032] 炭素炭素二重結合を有する環状カーボネートの非水電解液中への含有量は通常 0. 01〜5重量%である。含有量が多すぎると、前記スルトンィ匕合物によって低下した 充放電負荷特性を、水素でフッ素を置換したエチレンカーボネートによって改善した 作用が失われる恐れがある。充放電負荷特性低下の改善作用に影響を与えず、か つ、高温下での充放電サイクル特性をさらに向上する観点力 は、炭素炭素不飽和 結合を有する環状カーボネートの含有量は、 0. 01〜1重量%が望ましぐさらには 0 . 05-0. 5重量%が望ましい。 [0033] 本発明の非水電解液は、本発明の目的を損なわない範囲で、必要に応じてその他 の添加剤をカ卩えることができる。
その他の添加剤としては、硫酸エステル類、ホウ酸エステル類、シリルエステル類、酸 無水物、ホウ酸エステル系リチウム塩、リン酸エステル系リチウム塩などが例示される 。硫酸エステルとしては、 1, 3—プロパンスルトン、 1, 4—ブタンスルトン、エチレング リコールジ (メタンスルホン酸)エステル、亜硫酸エチレン、亜硫酸プロピレン、硫酸ェ チレン、硫酸プロピレン、硫酸ペンテン、メタベンゼンスルホン酸ジメチル、硫酸ジェ チル、硫酸ジメチルなどが例示される。ホウ酸エステルとしては、ホウ酸トリエチル、ホ ゥ酸トリブチル、ホウ酸トリス(トリフルォロェチル)、ホウ酸トリプロパルギル、トリメチレ ンボレートなどが例示される。シリルエステルとしては、リン酸トリス(トリメチルシリル) エステルに代表されるリン酸シリルエステル類、ホウ酸トリス(トリメチルシリル)エステ ル、エタンスルホン酸トリメチルシリルエステル、ァリルスルホン酸トリメチルシリルエス テル、硫酸ジ(トリメチルシリル)エステルなどが例示される。酸無水物としては、メタン スルホン酸無水物、ベンゼンスルホン酸無水物、 ρ—トルエンスルホン酸無水物、ス ルホ安息香酸無水物、コハク酸無水物、マレイン酸無水物、グリコール酸無水物、ノ ルボルネンジカルボン酸無水物などが例示される。ホウ酸エステル系リチウム塩もしく はリン酸エステル系リチウム塩としては、ビス (ォキサラト)ホウ酸リチウム、ジフルォロ( ォキサラト)ホウ酸リチウム、ビス (ォキサラト)フルォロリン酸リチウム、トリフルォロ (ォ キサラト)リン酸リチウムなどが例示される。高温下での充放電サイクル特性ゃ充放電 負荷特性への影響を総合的に勘案すると、これらの添加剤のうちで、リン酸シリルェ ステル類、ホウ酸トリス(トリメチルシリル)エステルなどのシリルエステル類力 その他 の添加剤として望ましい。特に、リン酸シリルエステル類は、充放電負荷特性を向上 するので最も望ましぐ非水電解液中に 0. 01〜2重量%含有することが望ましい。
[0034] その他の添加剤は、本発明の目的を損なわな!/、範囲で添加することができ、例えば 、非水電解液全体に対して、合計で 0. 01〜: LO重量%を添加できる。ただし、本発 明の非水電解液においては、これらの添加剤類を添加しすぎると、電池の抵抗がか えって大きくなり、充放電サイクル特性がかえって低下する恐れがある。従って、望ま しい含有量は 0. 01〜2重量%である。 [0035] 本発明の非水電解液は、種々の非水電気化学素子に使用でき、例えば、リチウム 二次電池用電解液、電解液を高分子でゲルイ匕したポリマーリチウム電池用電解液、 リチウム一次電池用電解液、電気二重層キャパシタ用電解液、電気化学キャパシタ 用電解液、アルミ電解コンデンサ用電解液、グレッチェルセルなどの有機太陽電池 用電解液、エレクト口クロミズムセル用電解液などが例示される。この中でも、リチウム 二次電池用電解液として好適に用いられる。
[0036] リチウム二次電池
本発明のリチウム二次電池は、本発明の非水電解液を含むものであり、他の構成 は特に限定されない。通常は、本発明のリチウム二次電池は、非水電解液、負極、正 極およびセパレータを基本的な構成要素として有する。本発明のリチウム二次電池 は、本発明の非水電解液を含むため、高温下での充放電サイクル特性に優れ、且つ 、充放電負荷特性にも優れている。
[0037] 負極は負極活物質を含有し、通常のリチウム二次電池に使用されるものが用いられ る。負極活物質としては、例えば、リチウムイオンのドープ '脱ドープが可能な炭素質 材料、金属リチウム、リチウム含有合金、リチウムとの合金化が可能なシリコン、シリコ ン合金、スズ、スズ合金、ゲルマニウム、ゲルマニウム合金、リチウムイオンのドープ' 脱ドープが可能な酸化スズ、酸ィ匕シリコン、リチウムイオンのドープ '脱ドープが可能 な遷移金属酸化物、リチウムイオンのドープ '脱ドープが可能な遷移金属窒素化物、 あるいは、前述で例示した物の混合物のいずれをも用いることができる。 これらの 中では、リチウムイオンをドープ '脱ドープすることが可能な炭素質材料が、充放電サ イタル特性に特に優れるため好ましい。このような炭素質材料としては、コータス、力 一ボンブラック、活性炭、人造黒鉛、天然黒鉛、非晶質炭素材料類が例示され、その 形状は、繊維状、球状、ポテト状、フレーク状のいずれであってもよい。また、炭素質 材料の表面もしくは内部に、別の負極活物質を担持させたものであってもよい。担持 する別の負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化 が可能なシリコン、シリコン合金、スズ、スズ合金などが例示される。
[0038] また、炭素質材料は、 X線解析で測定した (002)面の面間隔が 0. 340nm以下で あることが好ましぐかつ真密度が 1. 70gZcm3以上であるものが電池のエネルギー 密度を高くすることができるため特に好ましい。このようなものとしては、黒鉛、それに 近 、性質を有する高結晶性炭素質材料、或 、はこれらの表面を結晶性の低 、炭素 質材料でコーティングしたものなどが挙げられる。
[0039] 正極は正極活物質を含有し、正極活物質としては、硫酸鉄、リン酸鉄、硫化鉄、 M oS、 TiS、 MnO、 V Oなどの遷移金属酸化物または遷移金属硫化物、 LiCoO、
2 2 2 2 5 2
LiMnO、 LiMn O、 LiNiO、 LiNi Co O (xは小数を含む 0〜1の数)、 LiNi C
2 2 4 2 X (1-X) 2 x o Mn O (x、 yは小数を含む 0〜1の数、但し (x+y)は 1以下)などのリチウムと y (1-x-y) 2
遷移金属とからなる複合酸化物、ポリア-リン、ポリチォフェン、ポリピロール、ポリア セチレン、ポリアセン、ジメルカプトチアジアゾール zポリア-リン複合体などの導電 性高分子材料、フッ素化炭素、活性炭などが例示される。これらの中でも、特にリチウ ムと遷移金属とからなる複合酸化物が、充放電負荷特性や、充放電サイクル特性に 優れるため好ましい。リチウムと遷移金属とからなる複合酸ィ匕物としては、従来は、満 充電時の電位が金属リチウムを基準として 4. 3V未満のものが使用されてきた力 満 充電時の電位が金属リチウムを基準として 4. 3V以上のものも例示される。本発明の 非水電解液は、特に満充電時の電位が金属リチウムを基準として 4. 3V以上の正極 活物質を使用したリチウム二次電池において効果的である。これは、式 [1]で表され るスルトンィ匕合物は、リチウム二次電池の負極のみならず正極上にも保護皮膜を形 成するためであると思われる。
[0040] 正極活物質は 1種類で使用してもよぐ 2種類以上を混合して使用してもよい。また 、電解液との反応性を低減するために、表面に酸ィ匕物やフッ化物などでコーティング 層を設けても良い。正極活物質は通常、導電性が不十分であるため、導電助剤ととも に使用して正極を構成する。導電助剤としては、カーボンブラック、アモルファスウイ スカーカーボン、黒鉛などの炭素材料を例示することができる。
[0041] 本発明に係るセパレータとしては、正極と負極との間に配置され、両極を電気的に 絶縁し且つリチウムイオンを透過する膜であって、電解質を含浸させてイオン伝導性 を示す多孔質フィルム、イオン導電性を有するフィルムなどが例示される。多孔質フィ ルムの素材は目的に応じて種々選択できる力 ポリオレフインやポリイミド、ポリフツイ匕 ビ-リデン、ポリエステル等が挙げられる。 [0042] セパレータの形状は特に限定されないが、通常、多孔質フィルムまたは高分子電 解質が用いられる。多孔質フィルムを用いる場合は、単層であっても良ぐ複数の多 孔質フィルムを積層しても良い。また、フィルム表面に熱安定性を付与する為の榭脂 をコーティングしたものであっても良い。イオン導電性を有するフィルムの場合は、高 分子化合物にリチウム塩を溶解したり、電解液を膨潤させても良い。
[0043] 本発明のリチウム二次電池は、目的に応じて、例えば、円筒型、コイン型、角型、フ イルム型その他種々の任意の形状にできる。これらの電池の基本構造は形状によら ず同じであり、セパレータを介して負極と正極が対向し、この対向体の全体に電解液 が含浸されている。各電池を構成する負極活物質、正極活物質およびセパレータと しては、前記したものが共通して使用される。
[0044] 例えば、円筒型リチウム二次電池の場合には、銅箔などの負極集電体に負極活物 質を塗布してなる負極と、 A1箔などの正極集電体に正極活物質を塗布してなる正極 とをセパレータを介して卷回し、この卷回体の上下に絶縁板を配置する。そして、この 卷回体を電池缶中に収納した後に、この電池缶中に非水電解液を注入し、電池の 内圧が上昇すると変形し切断される電流接点や、電池の温度が上昇すると電気抵抗 が上昇する素子が取り付けられた封口体で蓋をし、電池缶の端部を力しめて、円筒 型電池を得る。
コイン型リチウム二次電池の場合は、コイン型電池缶内に、円盤状負極、非水電解 液を注入したセパレータ、円盤状正極、そして必要に応じて、ステンレス、またはアル ミニゥムなどのスぺーサー板をこの順序に積層し、上下から挟んだ電池缶を絶縁材 のガスケットを介してかしめ、コイン型二次電池を得る。
[実施例]
[0045] 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれにより何ら制 限されるものではない。
実施例中の各種試験の試験方法は次に示すとおりである。コイン電池を試験用電 池として用いた。
[0046] <電池の負荷特性の評価 >
荷特件試,験 1 試験用電池を 3mA定電流かつ 4. 2V定電圧の条件で充電した後に、 10mAで放 電して、この時の放電容量及び電圧を測定した。得られた結果は、図 1に示す。
荷特件試,験 2
試験用電池を 3mA定電流かつ 4. 2V定電圧の条件で充電した後に、 8mAで放電 して、この時の放電容量及び電圧を測定した。得られた結果は、図 2に示す。
[0047] <電池の高温下での充放電サイクル特性の評価 >
試験用電池を 50°Cの恒温槽内に設置し試験を行った。 3. 5mA定電流かつ 4. 3V 定電圧の条件で充電した後に 3. 5mAで放電する条件で、充放電サイクルを繰り返 した。電池の電圧を 4. 3Vに充電した時の正極の電位は、金属リチウムが基準で 4. 38Vである。また、 100サイクルごと〖こ、 3. 5mA定電流かつ 4. 3V定電圧の条件で 充電した後に 1mAで放電する充放電を行った。各電池の 3サイクル目の放電容量を 100として、放電容量 (容量維持率 (%) )を充放電サイクル回数に対して示した結果 を、図 3に示す。
(実施例 1)
[0048] <非水電解液の調製 >
非水溶媒としてエチレンカーボネート(EC)とェチルメチルカーボネート (EMC)を それぞれ 4 : 6 (重量比)の割合で混合した中に、電解質である LiPFを溶解して、電
6
解質濃度が 1モル Zリットルとなるように調製した。これに、スルトンィ匕合物として 1, 3 プロパー 1 エンスルトン、および、水素がフッ素で置換されたエチレンカーボネー トとして 4 フルォロエチレンカーボネートを、非水電解液全量に対してそれぞれ 0. 5 重量%、 1重量%含有するように調整した。
[0049] <負極の作製 >
人造黒鉛 (TIMCAL社製 SFG6) 20重量部、天然黒鉛系黒鉛 (三井鉱山社製 G DR) 80重量部にカルボキシメチルセルロース 1重量部、 SBRラテックス 2重量部を水 溶媒でペースト状とし混鍊して負極合剤スラリーを調製した。次に、この負極合剤スラ リーを厚さ 18 mの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレス で圧縮して負極シートを得た。このときの負極活物質層の塗布密度は lOmgZcm2で あり、充填密度は 1. 5gZmlであった。 [0050] <正極の作製 >
LiCoO (本荘 FMCエナジーシステムズ (株)製) 90重量部、アセチレンブラック 5重
2
量部及びポリフッ化ビ-リデン 5重量部を、 N—メチルピロリジノンを溶媒としてペース ト状とし混練して正極合剤スラリーを調製した。次に、この正極合剤スラリーを厚さ 20 μ mの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して 正極シートを得た。このときの正極活物質層の塗布密度は 30mgZcm2であり、充填 密度は 3. 3gZmlであった。
[0051] <コイン電池の作製 >
上述の負極を直径 14mm、上述の正極を直径 13mmの円盤状に打ち抜いて、コィ ン状の電極を得た。また、厚さ 25 μ mの微多孔性ポリエチレンフィルムを直径 17mm の円盤状に打ち抜き、セパレータを得た。
得られた負極、セパレータ及び正極を、この順序でステンレス製の電池缶(2032サ ィズ)内に積層し、非水電解液 20 1を注入してセパレータと正極と負極とに含漬さ せた。更に、正極上にアルミニウム製の板(厚さ 1. 2mm、直径 16mm)およびパネを 乗せ、ポリプロピレン製のガスケットを介して、電池缶の蓋を力しめることにより電池を 密封し、直径 20mm、高さ 3. 2mmのコイン型電池を作製した。このコイン電池を、 0 . 5mA定電流かつ 3. 8V定電圧で充電した後に、 60°Cで 12時間保管して試験用電 池を得た。
得られた試験用電池につ!、て、高温下での充放電サイクル特性の評価を行った。 (実施例 2)
[0052] 非水電解液全量に対する 1, 3 プロパー 1 エンスルトン及び 4 フルォロェチレ ンカーボネートの含有量を共に 1重量%ずっとなるように調整したこと以外は、実施 例 1と同様にして試験用電池を得た。得られた試験用電池について、負荷特性試験 1、及び、高温下での充放電サイクル特性の評価を行った。
(実施例 3)
[0053] 非水電解液全量に対して、 1, 3 プロパー 1 エンスルトン 1重量%、 4 フルォロ エチレンカーボネート 1重量0 /0に加えてビ-レンカーボネート 0. 2重量0 /0を含有する ように調整したこと以外は、実施例 1と同様にして試験用電池を得た。得られた試験 用電池につ!、て、高温下での充放電サイクル特性の評価を行った。
(実施例 4)
[0054] 非水電解液全量に対して、 1, 3 プロパー 1 エンスルトン 1重量%、 4 フルォロ エチレンカーボネート 1重量%に加えてビュルエチレンカーボネート 0. 2重量%を含 有するように調整したこと以外は、実施例 1と同様にして試験用電池を得た。得られた 試験用電池につ!、て、高温下での充放電サイクル特性の評価を行った。
(実施例 5)
[0055] 非水電解液全量に対して、 1, 3 プロパー 1 エンスルトン 1重量%、 4 フルォロ エチレンカーボネート 1重量%に加えてリン酸トリス(トリメチルシリル) 0. 5重量0 /0を含 有するように調整したこと以外は、実施例 1と同様にして試験用電池を得た。得られた 試験用電池につ!、て、高温下での充放電サイクル特性の評価を行った。
(実施例 6)
[0056] 非水電解液全量に対して、 1, 3 プロノ 1 エンスルトン 0. 5重量0 /0、 4 フル ォロエチレンカーボネート 1重量%にカ卩えてリン酸トリス(トリメチルシリル) 1重量%を 含有するように調整したこと以外は、実施例 1と同様にして試験用電池を得た。得ら れた試験用電池につ!、て、負荷特性試験 2の評価を行った。
(実施例 7)
非水電解液全量に対して、 1, 3 プロパー 1 エンスルトン 1重量%、 4 フルォロ エチレンカーボネートの代わりに 4, 5 ジフルォロエチレンカーボネート 1重量%を 含有するように調整したこと以外は、実施例 1と同様にして試験用電池を得た。得ら れた試験用電池につ!、て、負荷特性試験 1の評価を行った。
(実施例 8)
非水電解液全量に対して、 1, 3 プロパー 1 エンスルトンの代わりに 2 メチル - 1, 3 プロパー 1 エンスルトン 1重量0 /0、 4 フルォロエチレンカーボネート 1重 量%を含有するように調整したこと以外は、実施例 1と同様にして試験用電池を得た 。得られた試験用電池について、負荷特性試験 1の評価を行った。
(比較例 1)
[0057] 非水電解液に 1, 3 プロパー 1 エンスルトン及び 4 フルォロエチレンカーボネ ートを含有させな力つたこと以外は、実施例 1と同様にして試験用電池を得た。得ら れた試験用電池につ!、て、負荷特性試験 2及び高温下での充放電サイクル特性の 評価を行った。
(比較例 2)
[0058] 非水電解液全量に対して、 1, 3 プロパー 1 エンスルトン 0. 5重量%を含有する ように調整したこと以外は、比較例 1と同様にして試験用電池を得た。得られた試験 用電池につ!ヽて、負荷特性試験 2及び高温下での充放電サイクル特性の評価を行 つた o
(比較例 3)
[0059] 非水電解液全量に対して、 1, 3 プロパー 1 エンスルトン 1重量%を含有するよう に調整したこと以外は、比較例 1と同様にして試験用電池を得た。得られた試験用電 ヽて、負荷特性試験 1及び高温下での充放電サイクル特性の評価を行った。 (比較例 4)
[0060] 非水電解液全量に対して、 4 フルォロエチレンカーボネート 1重量%を含有する ように調整したこと以外は、比較例 1と同様にして試験用電池を得た。得られた試験 用電池について、負荷特性試験 1、負荷特性試験 2、及び、高温下での充放電サイ クル特性の評価を行った。
(比較例 5)
[0061] 非水電解液全量に対して、 4 フルォロエチレンカーボネート 4重量%を含有する ように調整したこと以外は、比較例 1と同様にして試験用電池を得た。得られた試験 用電池につ!、て、高温下での充放電サイクル特性の評価を行った。
(比較例 6)
[0062] 非水電解液全量に対して、ビ-レンカーボネート 1重量%を含むように調整したこと 以外は、比較例 1と同様にして試験用電池を得た。得られた試験用電池について、 負荷特性試験 1、負荷特性試験 2、及び、高温下での充放電サイクル特性の評価を 行った。
[0063] 試験に使用した非水電解液に添加したィ匕合物について表 1に示す。表 1に示す略 号は以下の化合物を示し、数字は非水電解液全体に対する含有重量%を表し、「一 」は未含有であることを示す。
PRS : 1, 3—プロパー 1—エンスルトン
MPRS : 2—メチルー 1, 3—プロパー 1一エンスルトン
FEC :4—フノレオ口エチレンカーボネート
DFEC : 3, 4—ジフノレオ口エチレンカーボネート
VC:ビニレンカーボネート
VEC:ビュルエチレンカーボネート
TMSP:リン酸トリストリメチルシリルエステル
[表 1]
Figure imgf000022_0001
非水電解液に PRSのみを添加した場合 (比較例 2、比較例 3)は、非水電解液に無 添加(比較例 1)、 FECのみ添加(比較例 4、比較例 5)或いは VCのみ添加した場合 ( 比較例 6)よりも、充放電サイクル試験の劣化が少ない(図 3)。し力しながら、放電電 圧および放電容量が低レ、(図 1及び図 2)。
非水電解液に、 PRS類 (PRS、 MPRS)及び FEC類 (FEC、 DFEC)を添カ卩した場 合 (実施例 2、実施例 7、実施例 8)は、 PRSのみを添加した場合 (比較例 2、比較例 3 )よりも、放電電圧および放電容量が高くなり(図 1)、且つ、充放電サイクル試験の劣 化が少ない(図 3)。特に、 MPRSと FECを添加した場合 (実施例 8)は放電電圧が高 い(図 1)。非水電解液に、 PRS、 FEC及び TMSPの 3種を添カ卩した場合(実施例 5、 実施例 6)も、 PRS及び FECを添カ卩した場合と同様のことがいえる(図 2及び図 3)。ま た、特に充放電サイクル試験の劣化が少な 、(図 3)。
非水電解液に PRS及び FECを添加すると、 PRSにより引き起こされる電池の内部 抵抗の増加が抑制されると考えられる。なお、充放電サイクル試験の初期の、数十サ イタルでの容量維持率の低下は、電極活物質の利用率が電極内で不均一になること から生じるもので、電池の内部抵抗と相関がある事が分力つている。図 3は、実施例 5 の電解液の内部抵抗が特に低く良好である事を示して ヽる。
また、 PRS及び FECを添加した非水電解液に、更に VCや VEC等の極少量の炭 素炭素二重結合を有する環状カーボネートを添加した場合も、充放電サイクル試験 の劣化が少な 、ことがわかる。

Claims

請求の範囲 非水溶媒と、電解質と、下記式 [1]で表されるスルトンィ匕合物と、水素がフッ素で置 換されたエチレンカーボネートと、を含有する非水電解液。
[化 1]
Figure imgf000024_0001
R3 R, 式 [ 1 ]
[式中、 R〜Rは、互いに独立であり、水素、フッ素、又は、炭素数 1〜12のフッ素
1 4
を含んでいても良い炭化水素基であり、 nは 0〜3の整数であり、 nが 2又は 3のとき R
3 及び Rは互いに独立である。 ]
4
[2] 前記スルトン化合物が 1, 3 プロパ— 1—エンスルトン又は/及びメチル—1, 3- プロパー 1 エンスルトンである請求項 1記載の非水電解液。
[3] 前記水素がフッ素で置換されたエチレンカーボネートが、 4—フルォロエチレンカー ボネート及び Z又は 4, 5 ジフルォロエチレンカーボネートである請求項 1記載の非 水電解液。
[4] さらに、炭素炭素不飽和結合を有する環状カーボネートを 0. 01〜1重量%含有す る請求項 1記載の非水電解液。
[5] さらに、リン酸シリルエステルを 0. 01〜2重量%含有する請求項 1記載の非水電解 液。
[6] 前記スルトンィ匕合物を 0. 01〜: LO重量%と、前記水素がフッ素で置換されたェチレ ンカーボネートを 0. 01〜50重量%とを含有する請求項 1記載の非水電解液。
[7] 前記電解質がリチウム塩である、請求項 1記載の非水電解液。
[8] 請求項 1記載の非水電解液を用いてなるリチウム二次電池。
PCT/JP2006/320410 2005-10-12 2006-10-12 非水電解液、それを用いたリチウム二次電池 WO2007043624A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/083,005 US9209479B2 (en) 2005-10-12 2006-10-12 Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007539986A JP5192237B2 (ja) 2005-10-12 2006-10-12 リチウム二次電池用非水電解液、それを用いたリチウム二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-298105 2005-10-12
JP2005298105 2005-10-12
JP2005-333051 2005-11-17
JP2005333051 2005-11-17

Publications (1)

Publication Number Publication Date
WO2007043624A1 true WO2007043624A1 (ja) 2007-04-19

Family

ID=37942849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320410 WO2007043624A1 (ja) 2005-10-12 2006-10-12 非水電解液、それを用いたリチウム二次電池

Country Status (3)

Country Link
US (1) US9209479B2 (ja)
JP (1) JP5192237B2 (ja)
WO (1) WO2007043624A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010414A (ja) * 2006-06-02 2008-01-17 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2008016422A (ja) * 2006-06-07 2008-01-24 Sony Corp 電解質およびこれを用いた電池、並びに角型電池用電解質およびこれを用いた角型電池
WO2008015987A1 (en) * 2006-08-04 2008-02-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2008041635A (ja) * 2006-07-13 2008-02-21 Sony Corp 非水電解質組成物及び非水電解質二次電池
JP2008311211A (ja) * 2007-05-16 2008-12-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009016441A (ja) * 2007-07-02 2009-01-22 Mitsubishi Chemicals Corp 電気化学キャパシタ用非水系電解液及びそれを用いた電気化学キャパシタ
WO2009057232A1 (ja) * 2007-11-02 2009-05-07 Panasonic Corporation 非水電解質二次電池
JP2009110798A (ja) * 2007-10-30 2009-05-21 Sony Corp 電池
JP2009123465A (ja) * 2007-11-14 2009-06-04 Sony Corp リチウムイオン二次電池
WO2009131419A2 (en) 2008-04-25 2009-10-29 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
EP2158635A1 (en) * 2007-06-11 2010-03-03 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2182574A1 (en) 2008-10-29 2010-05-05 Samsung Electronics Co., Ltd. Electrolyte composition and catalyst ink used to form solid electrolyte membrane
JP2010170991A (ja) * 2009-01-22 2010-08-05 Samsung Sdi Co Ltd リチウム2次電池用電解液及びこれを含むリチウム2次電池
EP2304835A1 (en) 2008-07-30 2011-04-06 Byd Company Limited Electrolyte for lithium batteries, lithium batteries and method for producing the same
US20110136006A1 (en) * 2008-08-06 2011-06-09 Mitsui Chemicals Inc. Non-aqueous electrolytic solution and lithium secondary battery
US20120115042A1 (en) * 2006-06-02 2012-05-10 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
CN102893443A (zh) * 2010-05-21 2013-01-23 三井化学株式会社 包含含有甲硅烷基酯基的膦酸衍生物的非水电解液及锂二次电池
JP2015008160A (ja) * 2012-02-29 2015-01-15 新神戸電機株式会社 リチウムイオン電池
JP2015092471A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 電解液及びリチウムイオン二次電池
CN104737256A (zh) * 2012-10-16 2015-06-24 日清纺控股株式会社 蓄电器件用电解质盐和电解液以及蓄电器件
US9209479B2 (en) 2005-10-12 2015-12-08 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
US9419305B2 (en) 2012-04-30 2016-08-16 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
WO2017138452A1 (ja) 2016-02-08 2017-08-17 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
US9806376B2 (en) 2014-08-28 2017-10-31 Gs Yuasa International Ltd. Energy storage device
JP2018530852A (ja) * 2015-12-31 2018-10-18 シジャジュアン サン タイ ケミカル 高電圧リチウムイオン電池の電解液、その調製方法及びその応用
JP2019179613A (ja) * 2018-03-30 2019-10-17 三井化学株式会社 電池用非水電解液及びリチウム二次電池
WO2021006302A1 (ja) 2019-07-08 2021-01-14 セントラル硝子株式会社 非水電解液、及びこれを用いた非水電解液電池
JP2021022525A (ja) * 2019-07-30 2021-02-18 三井化学株式会社 電池用非水電解液及びリチウム二次電池
US11114693B2 (en) 2015-08-12 2021-09-07 Central Glass Company, Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508674B2 (ja) * 2007-01-04 2014-06-04 株式会社東芝 非水電解質電池、電池パック及び自動車
KR101178554B1 (ko) * 2009-07-09 2012-08-30 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
KR101297174B1 (ko) 2011-02-09 2013-08-21 삼성에스디아이 주식회사 리튬 이차 전지
US20120231325A1 (en) * 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
US9350048B2 (en) 2011-03-23 2016-05-24 Samsung Sdi Co., Ltd. Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
CN103582971A (zh) * 2011-05-31 2014-02-12 三洋电机株式会社 非水电解质电池
JP6024745B2 (ja) * 2012-04-17 2016-11-16 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
EP2840642B1 (en) 2012-04-17 2017-11-29 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
KR101537142B1 (ko) * 2012-04-30 2015-07-15 주식회사 엘지화학 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
DE102013219320A1 (de) 2013-09-25 2015-03-26 Robert Bosch Gmbh Mittel in einer Zelle zur Erhöhung der Lebensdauer und Sicherheit
US10587006B2 (en) * 2013-10-29 2020-03-10 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery, and manufacturing method for rechargeable lithium ion battery
KR102272267B1 (ko) * 2013-10-29 2021-07-02 삼성에스디아이 주식회사 리튬이온 이차전지 및 리튬이온 이차전지의 제조 방법
KR101620214B1 (ko) * 2013-10-31 2016-05-12 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2015065093A1 (ko) * 2013-10-31 2015-05-07 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
FR3013901B1 (fr) * 2013-11-28 2017-03-24 Centre Nat Rech Scient Dispositif electrochimique autophotorechargeable
EP3125352B1 (en) * 2014-03-27 2018-10-24 Daikin Industries, Ltd. Electrolyte and electrochemical device
WO2018011062A2 (en) * 2016-07-15 2018-01-18 Solvay Sa Nonaqueous electrolyte compositions
CN111226339A (zh) 2017-10-16 2020-06-02 株式会社杰士汤浅国际 非水电解质二次电池
CN114094190B (zh) * 2021-11-23 2023-01-13 湖北亿纬动力有限公司 一种电解液及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063145A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 非水電解質二次電池
JP2004171981A (ja) * 2002-11-21 2004-06-17 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2004172101A (ja) * 2002-10-28 2004-06-17 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2005050808A (ja) * 2003-07-16 2005-02-24 Mitsui Chemicals Inc 非水電解液、電気化学素子およびその製造方法
JP2005100851A (ja) * 2003-09-25 2005-04-14 Toshiba Corp 非水電解質二次電池
JP2006294519A (ja) * 2005-04-13 2006-10-26 Sony Corp 電解液および電池

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240232A (ja) * 1994-01-07 1995-09-12 Sony Corp 非水電解液二次電池
CA2245354C (en) * 1997-08-22 2009-01-06 Ube Industries, Ltd. Lithium secondary battery and electrolyte thereof
JPH11339850A (ja) 1998-05-29 1999-12-10 Nec Mori Energy Kk リチウムイオン二次電池
JP3163078B2 (ja) 1998-08-31 2001-05-08 エヌイーシーモバイルエナジー株式会社 非水電解液電池
JP3823683B2 (ja) * 1999-05-24 2006-09-20 宇部興産株式会社 非水電解液およびそれを用いたリチウム二次電池
JP2001313075A (ja) * 2000-04-27 2001-11-09 Sony Corp ゲル状電解質及びゲル状電解質電池
US7527899B2 (en) * 2000-06-16 2009-05-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Electrolytic orthoborate salts for lithium batteries
JP4190162B2 (ja) 2001-03-01 2008-12-03 三井化学株式会社 非水電解液、それを用いた二次電池、および電解液用添加剤
JP4151060B2 (ja) 2001-11-14 2008-09-17 株式会社ジーエス・ユアサコーポレーション 非水系二次電池
JP4187959B2 (ja) 2001-10-24 2008-11-26 三井化学株式会社 非水電解液およびそれを用いた二次電池
JP3797197B2 (ja) * 2001-11-01 2006-07-12 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池
JP2003157900A (ja) 2001-11-19 2003-05-30 Sony Corp 電 池
JP2004047131A (ja) 2002-07-08 2004-02-12 Sony Corp 非水電解質電池
KR100661680B1 (ko) * 2002-07-25 2006-12-26 가부시끼가이샤 도시바 비수전해질 이차 전지
JP2004071159A (ja) 2002-08-01 2004-03-04 Central Glass Co Ltd 非水電解質二次電池
JP2004087168A (ja) 2002-08-23 2004-03-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
KR100515298B1 (ko) * 2003-03-24 2005-09-15 삼성에스디아이 주식회사 비수성 전해질 및 이를 포함하는 리튬 이차 전지
JP4607488B2 (ja) * 2003-04-25 2011-01-05 三井化学株式会社 リチウム電池用非水電解液およびその製造方法ならびにリチウムイオン二次電池
CN100459273C (zh) * 2003-07-15 2009-02-04 三星Sdi株式会社 用于锂二次电池的电解液和包括该电解液的锂二次电池
JP4289967B2 (ja) * 2003-10-02 2009-07-01 日立電線株式会社 プラズマ電位測定用プローブ
JP4843936B2 (ja) 2004-01-20 2011-12-21 ソニー株式会社 二次電池およびその充放電方法
JP4527605B2 (ja) * 2004-06-21 2010-08-18 三星エスディアイ株式会社 リチウムイオン二次電池用電解液及びこれを含むリチウムイオン二次電池
WO2007043624A1 (ja) 2005-10-12 2007-04-19 Mitsui Chemicals, Inc. 非水電解液、それを用いたリチウム二次電池
JP5671770B2 (ja) 2005-11-16 2015-02-18 三菱化学株式会社 リチウム二次電池
JP4984524B2 (ja) 2005-12-22 2012-07-25 株式会社Gsユアサ 非水電解質二次電池
JP4893003B2 (ja) 2006-02-06 2012-03-07 株式会社Gsユアサ 非水電解質二次電池
WO2008032657A1 (fr) 2006-09-12 2008-03-20 Gs Yuasa Corporation Procédé pour fabriquer une batterie secondaire à électrolyte non aqueuse
JP4321584B2 (ja) * 2006-12-18 2009-08-26 ソニー株式会社 二次電池用負極および二次電池
JP5508674B2 (ja) * 2007-01-04 2014-06-04 株式会社東芝 非水電解質電池、電池パック及び自動車
US9130243B2 (en) * 2008-08-06 2015-09-08 Mitsui Chemicals, Inc. Non-aqueous electrolytic solution and lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063145A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 非水電解質二次電池
JP2004172101A (ja) * 2002-10-28 2004-06-17 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2004171981A (ja) * 2002-11-21 2004-06-17 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2005050808A (ja) * 2003-07-16 2005-02-24 Mitsui Chemicals Inc 非水電解液、電気化学素子およびその製造方法
JP2005100851A (ja) * 2003-09-25 2005-04-14 Toshiba Corp 非水電解質二次電池
JP2006294519A (ja) * 2005-04-13 2006-10-26 Sony Corp 電解液および電池

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209479B2 (en) 2005-10-12 2015-12-08 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
US20120115042A1 (en) * 2006-06-02 2012-05-10 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
US9231276B2 (en) * 2006-06-02 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
JP2008010414A (ja) * 2006-06-02 2008-01-17 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2008016422A (ja) * 2006-06-07 2008-01-24 Sony Corp 電解質およびこれを用いた電池、並びに角型電池用電解質およびこれを用いた角型電池
JP2008041635A (ja) * 2006-07-13 2008-02-21 Sony Corp 非水電解質組成物及び非水電解質二次電池
WO2008015987A1 (en) * 2006-08-04 2008-02-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8663850B2 (en) 2006-08-04 2014-03-04 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2008311211A (ja) * 2007-05-16 2008-12-25 Sanyo Electric Co Ltd 非水電解質二次電池
EP2158635A1 (en) * 2007-06-11 2010-03-03 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
US9515351B2 (en) 2007-06-11 2016-12-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
US9673484B2 (en) 2007-06-11 2017-06-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
JP2010529633A (ja) * 2007-06-11 2010-08-26 エルジー・ケム・リミテッド 非水電解液及びこれを含む二次電池
JP2014112549A (ja) * 2007-06-11 2014-06-19 Lg Chem Ltd 非水電解液及びこれを含む二次電池
EP2645463A1 (en) * 2007-06-11 2013-10-02 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2158635A4 (en) * 2007-06-11 2012-08-08 Lg Chemical Ltd WATER-FREE ELECTROLYTE AND SECONDARY BATTERY THEREWITH
JP2009016441A (ja) * 2007-07-02 2009-01-22 Mitsubishi Chemicals Corp 電気化学キャパシタ用非水系電解液及びそれを用いた電気化学キャパシタ
JP2009110798A (ja) * 2007-10-30 2009-05-21 Sony Corp 電池
WO2009057232A1 (ja) * 2007-11-02 2009-05-07 Panasonic Corporation 非水電解質二次電池
JP2009123465A (ja) * 2007-11-14 2009-06-04 Sony Corp リチウムイオン二次電池
EP2274790A2 (en) * 2008-04-25 2011-01-19 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
EP2274790A4 (en) * 2008-04-25 2013-01-23 Lg Chemical Ltd NONAQUEOUS ELECTROLYTIC SOLUTION FOR LITHIUM SECONDARY BATTERY AND BATTERY CONTAINING SAID SOLUTION
JP2011519133A (ja) * 2008-04-25 2011-06-30 エルジー・ケム・リミテッド リチウム二次電池用非水電解質及びそれを含むリチウム二次電池
US8697293B2 (en) 2008-04-25 2014-04-15 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
WO2009131419A2 (en) 2008-04-25 2009-10-29 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
EP2304835A4 (en) * 2008-07-30 2013-01-23 Byd Co Ltd ELECTROLYTE FOR LITHIUM BATTERIES, LITHIUM BATTERIES AND METHOD FOR THE PRODUCTION THEREOF
EP2304835A1 (en) 2008-07-30 2011-04-06 Byd Company Limited Electrolyte for lithium batteries, lithium batteries and method for producing the same
US20110136006A1 (en) * 2008-08-06 2011-06-09 Mitsui Chemicals Inc. Non-aqueous electrolytic solution and lithium secondary battery
US9130243B2 (en) 2008-08-06 2015-09-08 Mitsui Chemicals, Inc. Non-aqueous electrolytic solution and lithium secondary battery
EP2182574A1 (en) 2008-10-29 2010-05-05 Samsung Electronics Co., Ltd. Electrolyte composition and catalyst ink used to form solid electrolyte membrane
US8415055B2 (en) 2008-10-29 2013-04-09 Samsung Electronics Co., Ltd. Electrolyte composition and catalyst ink and solid electrolyte membrane formed by using the same
US9391342B2 (en) 2008-10-29 2016-07-12 Samsung Electronics Co., Ltc. Electrolyte composition and catalyst ink and solid electrolyte membrane formed by using the same
US8945776B2 (en) 2009-01-22 2015-02-03 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2010170991A (ja) * 2009-01-22 2010-08-05 Samsung Sdi Co Ltd リチウム2次電池用電解液及びこれを含むリチウム2次電池
CN102893443A (zh) * 2010-05-21 2013-01-23 三井化学株式会社 包含含有甲硅烷基酯基的膦酸衍生物的非水电解液及锂二次电池
JP2015008160A (ja) * 2012-02-29 2015-01-15 新神戸電機株式会社 リチウムイオン電池
US9419305B2 (en) 2012-04-30 2016-08-16 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN104737256A (zh) * 2012-10-16 2015-06-24 日清纺控股株式会社 蓄电器件用电解质盐和电解液以及蓄电器件
JP2015092471A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 電解液及びリチウムイオン二次電池
US9806376B2 (en) 2014-08-28 2017-10-31 Gs Yuasa International Ltd. Energy storage device
US11114693B2 (en) 2015-08-12 2021-09-07 Central Glass Company, Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
JP2018530852A (ja) * 2015-12-31 2018-10-18 シジャジュアン サン タイ ケミカル 高電圧リチウムイオン電池の電解液、その調製方法及びその応用
WO2017138452A1 (ja) 2016-02-08 2017-08-17 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR20210013779A (ko) 2016-02-08 2021-02-05 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액, 및 이것을 이용한 비수전해액 전지
US11302964B2 (en) 2016-02-08 2022-04-12 Central Glass Company, Limited Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same
JP2019179613A (ja) * 2018-03-30 2019-10-17 三井化学株式会社 電池用非水電解液及びリチウム二次電池
WO2021006302A1 (ja) 2019-07-08 2021-01-14 セントラル硝子株式会社 非水電解液、及びこれを用いた非水電解液電池
KR20220027953A (ko) 2019-07-08 2022-03-08 샌트랄 글래스 컴퍼니 리미티드 비수전해액, 및 이것을 이용한 비수전해액 전지
JP2021022525A (ja) * 2019-07-30 2021-02-18 三井化学株式会社 電池用非水電解液及びリチウム二次電池
JP7326681B2 (ja) 2019-07-30 2023-08-16 三井化学株式会社 電池用非水電解液及びリチウム二次電池

Also Published As

Publication number Publication date
JPWO2007043624A1 (ja) 2009-04-16
US9209479B2 (en) 2015-12-08
US20090226808A1 (en) 2009-09-10
JP5192237B2 (ja) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5192237B2 (ja) リチウム二次電池用非水電解液、それを用いたリチウム二次電池
JP6472888B2 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
US8795893B2 (en) Nonaqueous secondary battery electrode, nonaqueous secondary battery including the same, and assembled battery
US9130243B2 (en) Non-aqueous electrolytic solution and lithium secondary battery
JP4012174B2 (ja) 効率的な性能を有するリチウム電池
JP2002329528A (ja) 非水電解液、それを用いた二次電池、および電解液用添加剤
JP2004171981A (ja) 非水電解液およびそれを用いた二次電池
JP4711639B2 (ja) 非水電解液およびそれを用いたリチウム二次電池
US20130280599A1 (en) Electricity storage device
WO2015020074A1 (ja) 非水電解液及び該電解液を有する電気化学デバイス
JP2010061851A (ja) ジイソチオシアナート誘導体を含有する非水電解液、及びその二次電池
JP2005285492A (ja) 非水電解液およびそれを用いたリチウム二次電池
JP4424895B2 (ja) リチウム二次電池
JP5063448B2 (ja) 非水電解質及び該非水電解質を含む非水電解質二次電池
JP5499359B2 (ja) 非水電解質及び該非水電解質を含む非水電解質二次電池
JP2000299127A (ja) 非水電解液およびそれを用いた二次電池
JP2004087282A (ja) 非水電解液およびそれを用いた二次電池
KR20040038679A (ko) 비수전해액 및 그것을 사용한 2차전지
JP7395816B2 (ja) 電池用非水電解液及びリチウム二次電池
JP5107118B2 (ja) 非水電解質及び該非水電解質を含む非水電解質二次電池
JPWO2020026853A1 (ja) 電池用非水電解液及びリチウム二次電池
JP2021048006A (ja) 電池用非水電解液及びリチウム二次電池
JP2000123869A (ja) 非水二次電池
JP7347768B2 (ja) 電池用非水電解液及びリチウム二次電池
WO2013069790A1 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007539986

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12083005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811698

Country of ref document: EP

Kind code of ref document: A1