WO2016048093A1 - 비수성 전해액 및 이를 포함하는 리튬 이차 전지 - Google Patents

비수성 전해액 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2016048093A1
WO2016048093A1 PCT/KR2015/010214 KR2015010214W WO2016048093A1 WO 2016048093 A1 WO2016048093 A1 WO 2016048093A1 KR 2015010214 W KR2015010214 W KR 2015010214W WO 2016048093 A1 WO2016048093 A1 WO 2016048093A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
carbonate
lithium secondary
aqueous electrolyte
Prior art date
Application number
PCT/KR2015/010214
Other languages
English (en)
French (fr)
Inventor
이철행
김슬기
김광연
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/107,684 priority Critical patent/US10276894B2/en
Priority to CN201580004429.0A priority patent/CN107078353B/zh
Priority to JP2017516688A priority patent/JP6678659B2/ja
Priority to EP15843681.6A priority patent/EP3076472B1/en
Publication of WO2016048093A1 publication Critical patent/WO2016048093A1/ko
Priority to US16/298,277 priority patent/US11437646B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a non-aqueous electrolyte solution containing lithium bis (fluorosulfonyl) imide (LiFSI) and a fluorinated benzene compound compound, and a lithium-nickel-manganese-cobalt oxide as a positive electrode active material. It relates to a lithium secondary battery comprising a positive electrode, a negative electrode, and a separator.
  • lithium secondary batteries having high energy density and voltage among these secondary batteries are commercially used and widely used.
  • Lithium metal oxide is used as a positive electrode active material of a lithium secondary battery, and lithium metal, a lithium alloy, crystalline or amorphous carbon or a carbon composite material is used as a negative electrode active material.
  • the active material is applied to a current collector with a suitable thickness and length, or the active material itself is applied in a film shape to form an electrode group by winding or laminating together with a separator, which is an insulator, and then put it in a can or a similar container, and then injecting an electrolyte solution.
  • a secondary battery is manufactured.
  • lithium secondary battery In such a lithium secondary battery, charging and discharging progress while repeating a process of intercalating and deintercalating lithium ions from a lithium metal oxide of a positive electrode to a graphite electrode of a negative electrode.
  • lithium is highly reactive and reacts with the carbon electrode to generate Li 2 CO 3 , LiO, LiOH and the like to form a film on the surface of the negative electrode.
  • a film is called a solid electrolyte interface (SEI) film, and the SEI film formed at the beginning of charging prevents the reaction between lithium ions and a carbon anode or other material during charging and discharging. It also acts as an ion tunnel, allowing only lithium ions to pass through.
  • the ion tunnel serves to prevent the organic solvents of a large molecular weight electrolyte which solvates lithium ions and move together and are co-intercalated with the carbon anode to decay the structure of the carbon anode.
  • a solid SEI film must be formed on the negative electrode of the lithium secondary battery. Once formed, the SEI membrane prevents the reaction between lithium ions and the negative electrode or other materials during repeated charge / discharge cycles, and serves as an ion tunnel that passes only lithium ions between the electrolyte and the negative electrode. Will be performed.
  • the problem to be solved by the present invention is to provide a non-aqueous electrolyte lithium secondary battery and a lithium secondary battery comprising the same, which can improve the low temperature and room temperature output characteristics, as well as the high temperature storage characteristics and capacity characteristics and stability.
  • the present invention provides a non-aqueous electrolyte containing lithium bis (fluorosulfonyl) imide (LiFSI) and a fluorinated benzene compound compound additive, and lithium-nickel-manganese-as a cathode active material. It provides a lithium secondary battery comprising a positive electrode, a negative electrode, and a separator comprising a cobalt-based oxide.
  • the non-aqueous electrolyte solution may further include a lithium salt, the mixing ratio of the lithium salt and lithium bisfluoro sulfonyl imide is 1: 0.01 to 1: 1 in molar ratio, the lithium bisfluoro sulfonyl imide is
  • the concentration of the aqueous electrolyte may be a lithium secondary battery of 0.01 mol / L to 2 mol / L.
  • the lithium-nickel-manganese-cobalt-based oxide may include an oxide represented by Formula 1 below.
  • a solid SEI film is formed at a negative electrode during initial charging of the lithium secondary battery including the same, and the increase in battery thickness is minimized by suppressing gas generation at a high temperature environment.
  • the non-aqueous electrolyte solution according to one embodiment of the present invention includes lithium bisfluorosulfonylimide (LiFSI).
  • the lithium bisfluorosulfonylimide is added to the non-aqueous electrolyte as a lithium salt to form a solid, thin SEI film on the negative electrode to improve low temperature output characteristics, as well as to decompose positive electrode surfaces that may occur during high temperature cycle operation. It can suppress and prevent the oxidation reaction of electrolyte solution.
  • the SEI film generated on the negative electrode has a small thickness so that the movement of lithium ions in the negative electrode can be more smoothly performed, thereby improving the output of the secondary battery.
  • the lithium bisfluorosulfonylimide preferably has a concentration in the non-aqueous electrolyte of 0.01 mol / L to 2 mol / L, more preferably 0.01 mol / L to 1 mol / L. Do.
  • the concentration of the lithium bisfluorosulfonylimide is less than 0.1 mol / L, the effect of improving the low temperature output and the high temperature cycle characteristics of the lithium secondary battery is insignificant, and the concentration of the lithium bisfluorosulfonylimide is When the amount exceeds 2 mol / l, side reactions in the electrolyte may be excessively generated during charging and discharging of the battery, and a swelling phenomenon may occur, and corrosion of the positive electrode or the negative electrode current collector made of metal in the electrolyte may occur.
  • the non-aqueous electrolyte solution of the present invention may further include a lithium salt.
  • the lithium salt may be used a lithium salt commonly used in the art, for example LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBF 6 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 , LiSO 3 CF 3 and LiClO 4 may be any one selected from the group consisting of or a mixture of two or more thereof.
  • the mixing ratio of the lithium salt and lithium bisfluoro sulfonyl imide is preferably 1: 0.01 to 1 as molar ratio.
  • the mixing ratio of the lithium salt and lithium bisfluoro sulfonyl imide is greater than or equal to the molar ratio, side reactions in the electrolyte may occur excessively during charging and discharging of the battery, and a swelling phenomenon may occur. In this case, output improvement of the generated secondary battery may be reduced.
  • the mixing ratio of the lithium salt and lithium bisfluoro sulfonyl imide is less than 1: 0.01
  • a process of forming an SEI film in a lithium ion battery, and lithium ions solvated by a carbonate solvent In the process of being inserted between the negative electrode, a large number of irreversible reactions may occur, and by the peeling of the negative electrode surface layer (for example, the carbon surface layer) and the decomposition of the electrolyte, the low temperature output of the secondary battery may be improved, the high temperature storage, the cycle characteristics and The effect of improving the dose characteristics may be insignificant.
  • the mixing ratio of the lithium salt and the lithium bisfluoro sulfonyl imide is a molar ratio
  • the ratio is greater than 1: 1
  • lithium bisfluoro sulfonyl imide of excessive capacity is included in the electrolyte to prevent corrosion of the electrode current collector during charging and discharging. This may affect the stability of the secondary battery.
  • the positive electrode active material which is the lithium-nickel-manganese-cobalt-based oxide may include an oxide represented by Formula 1 below.
  • the positive electrode active material which is the lithium-nickel-manganese-cobalt-based oxide
  • the positive electrode active material which is the lithium-nickel-manganese-cobalt-based oxide
  • it may be combined with lithium bisfluoro sulfonyl imide to have a synergistic effect.
  • Li + 1 ions and Ni + 2 ions in the layered structure of the cathode active material change as the amount of Ni in the transition metal increases. mixing) occurs and the structure thereof collapses, and the cathode active material causes side reactions with the electrolyte, or dissolution of transition metals. This occurs because Li +1 ions and Ni +2 ions have similar sizes.
  • the performance of the battery is easily degraded due to electrolyte depletion and structural collapse of the positive electrode active material inside the secondary battery.
  • LiFSI applied electrolyte to the positive electrode active material of Formula 1 to form a layer layer of the LiFSI-based components on the surface of the anode cation mixing of Li + 1 ions and Ni + 2 ions While suppressing the phenomenon, a range was found in which sufficient nickel transition metal amount for securing the capacity of the positive electrode active material could be secured.
  • the positive electrode active material including the oxide according to Chemical Formula 1 of the present invention when using a LiFSI-applied electrolyte, it is possible to effectively suppress the electrolyte, side reactions, metal dissolution and the like.
  • Li + 1 is also ionized by the layer layer formed of LiFSI on the electrode surface described above. And Ni +2 may not suppress cation mixing of ions.
  • a nickel transition metal having a d-orbit should have an octahedral structure in coordination bonds at high temperature or the like due to variation in the oxidation number of Ni. The order is reversed, or the oxidation number is varied (heterogeneous reaction) to form a distorted octahedron. As a result, the crystal structure of the positive electrode active material including the nickel transition metal is deformed to increase the probability of eluting nickel metal in the positive electrode active material.
  • the present inventors have confirmed that while producing a high output when the positive electrode active material including the oxide according to the range of the formula (1) and LiFSI salt combination, while showing a high efficiency in the output characteristics and capacity characteristics.
  • the electrolyte additive according to an embodiment of the present invention may include a fluorinated benzene compound. Specifically, at least one selected from the group consisting of compounds represented by Formula 2 below.
  • N is an integer of 1 to 3.
  • R 1 is the fluorinated benzene compound may be at least one selected from the group consisting of fluoro benzene, difluoro benzene, trifluoro benzene and derivatives thereof, according to an embodiment of the present invention,
  • the fluorinated benzene compound may be 1,3,6 trifluoro benzine.
  • a fluorinated benzene compound In a lithium secondary battery, oxygen released from a positive electrode in a high temperature environment promotes an exothermic decomposition reaction of an electrolyte solvent, causing a so-called swelling phenomenon in which the battery swells, thereby rapidly deteriorating battery life and charging / discharging efficiency.
  • the battery is greatly deteriorated, such as an explosion.
  • a fluorine substituent is added to the electrolyte as a flame retardant compound, and the surface of the negative electrode and the positive electrode at a high temperature inside the battery may react with the electrolyte to suppress a gas generated due to decomposition of the electrolyte.
  • the life and storage characteristics at high temperatures can be improved, and the stability of the secondary battery can be increased by reducing the possibility of ignition during nail test.
  • the content of the fluorinated benzene-based compound may be used without limitation as long as it is an amount necessary to achieve the effects of the present invention, such as high temperature storage output and stability of the battery, for example, 1 to 20 weight based on the total amount of the electrolyte %, Preferably 3.0% to 15% by weight.
  • the amount of the fluorinated benzene compound is less than 1% by weight, it is difficult to sufficiently exhibit the effect of suppressing gas generation and flame retardancy with addition.
  • the amount of the fluorinated benzene compound is more than 20% by weight, the effect is increased. While the degree is limited, problems may arise such as increasing the irreversible capacity or increasing the resistance of the cathode.
  • the fluorinated benzene compound can be adjusted depending on the amount of lithium bis fluoro sulfonyl imide added. This is to more effectively prevent side reactions that may occur with the addition of a large amount of lithium bis fluorosulfonyl imide.
  • the non-aqueous electrolyte solution includes a non-aqueous organic solvent, the non-aqueous organic solvent that may be included in the non-aqueous electrolyte, the decomposition by the oxidation reaction, etc. in the charge and discharge of the battery can be minimized, with an additive
  • a non-aqueous organic solvent the non-aqueous organic solvent that may be included in the non-aqueous electrolyte, the decomposition by the oxidation reaction, etc. in the charge and discharge of the battery can be minimized, with an additive
  • an additive There is no restriction as long as it can exhibit the desired properties, and for example, it may be a nitrile solvent, a cyclic carbonate, a linear carbonate, an ester, an ether or a ketone, or the like. These may be used alone, or two or more thereof may be used in combination.
  • Carbonate-based organic solvents of the organic solvents can be easily used, the cyclic carbonate is any one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC) or two of them A mixture of two or more species, the linear carbonate consists of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) and ethylpropyl carbonate (EPC) It may be any one selected from the group or a mixture of two or more thereof.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethylmethyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • the nitrile solvents include acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile and 4-fluorobenzonitrile , Difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, 4-fluorophenylacetonitrile may be one or more selected from the group consisting of, one embodiment of the present invention Acetonitrile may be used as the non-aqueous solvent according to the example.
  • the lithium secondary battery according to an embodiment of the present invention may include a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and the non-aqueous electrolyte.
  • the positive electrode and the negative electrode may each include a positive electrode active material and a negative electrode active material according to an embodiment of the present invention.
  • the negative electrode active material includes amorphous carbon or crystalline carbon, specifically, carbon such as non-graphitized carbon, graphite-based carbon; LixFe 2 O 3 (0 ⁇ x ⁇ 1), LixWO 2 (0 ⁇ x ⁇ 1 ), SnxMe 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P , Metal complex oxides such as Si, Group 1, 2, 3 Group elements of the periodic table, halogen, 0 ⁇ x ⁇ 1, 1 ⁇ y ⁇ 3, 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O
  • the separator is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer This may be a single or two or more laminated.
  • a porous nonwoven fabrics such as high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used, but are not limited thereto.
  • the secondary battery is various according to the purpose of performing the cylindrical, square, pouch type and the like, and is not limited to the configuration known in the art.
  • Lithium secondary battery according to an embodiment of the present invention may be a pouch-type secondary battery.
  • a non-aqueous electrolyte was prepared by adding 0.9 mol / l and 0.1 mol / l of lithium bisfluorosulfonylimide and 1,3,6 trifluorinated benzene as an additive based on the total weight of the non-aqueous electrolyte.
  • Li (Ni 0.6 Co 0.2 Mn 0.2 ) O 2 as a positive electrode active material
  • carbon black as a conductive agent
  • PVdF polyvinylidene fluoride
  • NMP 2-pyrrolidone
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • the positive electrode and the negative electrode prepared as described above were manufactured with a polymer battery by a conventional method with a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), followed by pouring the prepared non-aqueous electrolyte solution into a lithium secondary battery. The manufacture of the battery was completed.
  • LiPF 6 based on the total amount of the non-aqueous electrolyte A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1 except that 0.7 mol / l and 0.3 mol / l of lithium bisfluorosulfonylimide were used.
  • LiPF 6 based on the total amount of the non-aqueous electrolyte A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1 except that 0.6 mol / l and 0.4 mol / l of lithium bisfluorosulfonylimide were used.
  • LiPF 6 based on the total amount of the non-aqueous electrolyte A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1 except that 0.5 mol / l and 0.5 mol / l of lithium bisfluorosulfonylimide were used.
  • LiPF 6 based on the total amount of the non-aqueous electrolyte A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1 except that 0.4 mol / l and 0.6 mol / l of lithium bisfluorosulfonylimide were used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 2 except that the additive was not used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 2 except for Li (Ni 0.5 Co 0.3 Mn 0.2 ) O 2 as the cathode active material.
  • the output was calculated using the voltage difference generated when the secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were charged and discharged at ⁇ 30 ° C. at 0.5C for 10 seconds. At this time, the output of Comparative Example 1 was 4.18W. Based on Comparative Example 1, the outputs of Examples 1 to 4 and Comparative Examples 2 to 3 were calculated as percentages. The results are shown in Table 1 below. The test was performed at 50% SOC (state of charge).
  • the outputs were calculated using the voltage difference generated when the secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were charged and discharged at 23 ° C. for 0.5 seconds at 0.5 ° C. At this time, the output of Comparative Example 1 was 45.9W. Based on Comparative Example 1, the outputs of Examples 1 to 4 and Comparative Examples 2 to 3 were calculated as percentages. The results are shown in Table 1 below. The test was performed at 50% SOC (state of charge).
  • the lithium secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were charged at 1 C to 4.2 V / 38 mA at constant current / constant voltage (CC / CV) conditions at 45 ° C., and then to 2.5 V at constant current (CC) conditions. It discharged at 3C and the discharge capacity was measured. This was repeated 1 to 800 cycles, and the discharge capacity measured by calculating the percentage of the 800th cycle as a percentage based on the first cycle (800th capacity / 1st capacity * 100 (%)) is shown in Table 1.
  • the secondary batteries manufactured in Examples 1 to 4 and Comparative Examples 1 to 3 were charged at 1 C up to 4.2 V / 38 mA under constant current / constant voltage (CC / CV) conditions, and then discharged at 3 C up to 2.5 V under constant current (CC) conditions. And the discharge capacity was measured. Then, after storing the secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 3 for 20 weeks at 60 ° C., the secondary batteries were again 4.2V / 38mA at 23 ° C. under constant current / constant voltage (CC / CV) conditions. After charging to 1C, and discharged at 3C to 2.5V under constant current (CC) conditions, the discharge capacity was measured. Table 1 shows the results obtained by calculating the discharge capacity after 24 weeks as a percentage based on the initial discharge capacity (discharge capacity after 20 weeks / initial discharge capacity * 100 (%)).
  • thermocouple was applied to the battery while the safety test was performed by performing a nail test that penetrates the battery into the nail at a rate of 1 m / min after charging to 4.2V. The temperature rise of the battery was confirmed by the adhesion. The maximum rise temperature of the battery at each nail test is shown in Table 1 below.
  • Example 1 Compared with Low Temperature Output (%) Comparative Example 1 Compared to Comparative Example 1 High temperature characteristics Elevated Temperature at Nail Test (°C) Life Characteristics (%) Capacity characteristic (%) Example 1 3.34 1.25 81 89.6 - Example 2 4.98 3.4 83.9 93.4 37 Example 3 4.31 2.87 82.1 90.2 - Example 4 3.78 1.69 81.6 90.4 34 Comparative Example 1 - - 80.4 88.2 38 Comparative Example 2 -8.61 -4.82 77.2 91.6 102 Comparative Example 3 -4.72 -3.94 73.5 83.7 -
  • the secondary batteries of Examples 1 to 4 exhibited excellent outputs of up to about 8% than the secondary batteries of Comparative Examples 1 to 3 at low temperature and room temperature output.
  • the secondary batteries of Examples 1 to 4 have a stability at high temperature by using a fluorinated benzene-based compound as an additive, and in combination with LiFSI, which is a lithium salt, even in the properties after the high temperature storage (capacity and lifespan characteristics), Comparative Examples It was confirmed that the effect was superior to the secondary battery of 1 to 3.
  • the batteries prepared in Examples 2, 4 and Comparative Example 1, to which the fluorinated benzene-based compound was added have a maximum temperature of 34 to 38 ° C. as compared to the batteries prepared in Comparative Example 2.
  • the temperature rise above normal operating temperature was suppressed.
  • the rise temperature was the largest according to the LiFSI ratio. Therefore, it was found that the secondary battery within the scope of the present invention most efficiently improved safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 비스플루오로 설포닐 이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 플루오르화 벤젠계 화합물 첨가제를 포함하는 비수성 전해액, 양극 활물질로서 리튬-니켈-망간-코발트계 산화물을 포함하는 양극, 음극, 및 분리막을 포함하는 것인 리튬 이차전지를 제공한다. 본 발명의 리튬 이차 전지용 비수성 전해액에 의하면, 이를 포함하는 리튬 이차 전지의 초기 충전시 음극에서 견고한 SEI 막을 형성시키고, 리튬 이차 전지의 출력 특성을 개선시킴은 물론, 고온 저장 후 출력 특성 및 용량 특성을 향상시킬 수 있다.

Description

비수성 전해액 및 이를 포함하는 리튬 이차 전지
[관련출원과의 상호 인용]
본 출원은 2014년 09월 26일자 한국 특허 출원 제10-2014-0128878호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 리튬 비스플루오로 설포닐 이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 플루오르화 벤젠계 화합물 첨가제를 포함하는 비수성 전해액, 양극 활물질로서 리튬-니켈-망간-코발트계 산화물을 포함하는 양극, 음극, 및 분리막을 포함하는 것인 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있고, 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차 전지가 상용화되어 널리 사용되고 있다.
리튬 이차 전지의 양극 활물질로는 리튬 금속 산화물이 사용되고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소 또는 탄소 복합체가 사용되고 있다. 상기 활물질을 적당한 두께와 길이로 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포하여 절연체인 분리막과 함께 감거나 적층하여 전극군을 만든 다음, 캔 또는 이와 유사한 용기에 넣은 후, 전해액을 주입하여 이차 전지를 제조한다.
이러한 리튬 이차 전지는 양극의 리튬 금속 산화물로부터 리튬 이온이 음극의 흑연 전극으로 삽입(intercalation)되고 탈리(deintercalation)되는 과정을 반복하면서 충방전이 진행된다. 이때 리튬은 반응성이 강하므로 탄소 전극과 반응하여 Li2CO3, LiO, LiOH 등을 생성시켜 음극의 표면에 피막을 형성한다. 이러한 피막을 고체 전해질(Solid Electrolyte Interface; SEI) 막이라고 하는데, 충전 초기에 형성된 SEI 막은 충방전중 리튬 이온과 탄소 음극 또는 다른 물질과의 반응을 막아준다. 또한 이온 터널(Ion Tunnel)의 역할을 수행하여 리튬 이온만을 통과시킨다. 이 이온 터널은 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해액의 유기용매들이 탄소 음극에 함께 코인터컬레이션되어 탄소 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 한다.
따라서, 리튬 이차 전지의 고온 사이클 특성 및 저온 출력을 향상시키기 위해서는, 반드시 리튬 이차 전지의 음극에 견고한 SEI 막을 형성하여야만 한다. SEI 막은 최초 충전시 일단 형성되고 나면 이후 전지 사용에 의한 충방전 반복시 리튬 이온과 음극 또는 다른 물질과의 반응을 막아주며, 전해액과 음극 사이에서 리튬 이온만을 통과시키는 이온 터널(Ion Tunnel)로서의 역할을 수행하게 된다.
종래에는 전해액 첨가제를 포함하지 않거나 열악한 특성의 전해액 첨가제를 포함하는 전해액의 경우 불균일한 SEI 막의 형성으로 인해 저온 출력 특성의 향상을 기대하기 어려웠다. 더욱이, 전해액 첨가제를 포함하는 경우에도 그 투입량을 필요량으로 조절하지 못하는 경우, 상기 전해액 첨가제로 인해 고온 반응시 양극 표면이 분해되거나 전해액이 산화 반응을 일으켜 궁극적으로 이차 전지의 비가역 용량이 증가하고 출력 특성이 저하되는 문제가 있었다.
본 발명의 해결하고자 하는 과제는 저온 및 상온 출력 특성을 개선할 뿐만 아니라, 고온 저장 특성 및 용량 특성과 안정성을 향상시킬 수 있는 리튬 이차 전지용 비수성 전해액 및 이를 포함하는 리튬 이차 전지를 제공하는 것이다.
상기 과제를 해결하기 위하여 본 발명은 리튬 비스플루오로 설포닐 이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 플루오르화 벤젠계 화합물 첨가제를 포함하는 비수성 전해액, 양극 활물질로서 리튬-니켈-망간-코발트계 산화물을 포함하는 양극, 음극, 및 분리막을 포함하는 것인 리튬 이차전지를 제공한다.
상기 비수성 전해액은 리튬염을 더 포함할 수 있고, 상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비는 몰비로서 1:0.01 내지 1:1이며, 상기 리튬 비스플루오로 설포닐 이미드는 비수성 전해액 중의 농도가 0.01 mol/ℓ 내지 2 mol/ℓ인 것인 리튬 이차전지일 수 있다.
상기 리튬-니켈-망간-코발트계 산화물은 하기 화학식 1로 표시되는 산화물을 포함하는 것일 수 있다.
[화학식 1]
Li1+x(NiaCobMnc)O2
상기 화학식 1에서, 0.55≤a≤0.65, 0.18≤b≤0.22, 0.18≤c≤0.22, -0.2≤x≤0.2, 및 x+a+b+c+=1이다.
본 발명의 리튬 이차 전지용 비수성 전해액 및 이를 포함하는 이차전지에 의하면, 이를 포함하는 리튬 이차 전지의 초기 충전시 음극에서 견고한 SEI 막을 형성시키고, 고온 환경 시 가스발생을 억제하여 전지 두께 증가를 최소화하고, 양극 표면의 분해 및 전해액의 산화 반응을 방지함으로써, 리튬 이차 전지의 출력 특성을 개선시킴은 물론, 고온 저장 후 출력 특성 및 안정성을 향상시킬 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예를 따르는 비수성 전해액은 리튬비스플루오로설포닐이미드(LiFSI)를 포함한다.
상기 리튬비스플루오로설포닐이미드는 리튬염으로서 비수성 전해액에 첨가되어, 음극에 견고하고, 얇은 SEI 막을 형성함으로써 저온 출력 특성을 개선시킴은 물론, 고온 사이클 작동시 발생할 수 있는 양극 표면의 분해를 억제하고 전해액의 산화 반응을 방지할 수 있다. 더욱이 상기 음극에 생성된 SEI 피막은 그 두께가 얇아 음극에서의 리튬 이온의 이동을 보다 원활하게 수행할 수 있고, 이에 따라 이차전지의 출력을 향상 시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도가 0.01 mol/ℓ 내지 2 mol/ℓ인 것이 바람직하며, 0.01 mol/ℓ 내지 1 mol/ℓ가 더욱 바람직하다. 상기 리튬비스플루오로설포닐이미드의 농도가 0.1 mol/ℓ보다 적으면 리튬 이차 전지의 저온 출력 개선 및 고온 사이클 특성의 개선의 효과가 미미하고, 상기 리튬비스플루오로설포닐이미드의 농도가 2 mol/ℓ를 초과하면 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있고, 전해액 중에서 금속으로 이루어진 양극, 또는 음극 집전체의 부식을 유발할 수 있다.
이러한 부반응을 방지하기 위해, 본 발명의 비수성 전해액에는 리튬염을 더 포함할 수 있다. 상기 리튬염은 당 분야에서 통상적으로 사용되는 리튬염을 사용할 수 있으며, 예를 들어 LiPF6, LiAsF6, LiCF3SO3, LiBF6, LiSbF6, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiSO3CF3 및 LiClO4로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비는 몰비로서, 1:0.01 내지 1인 것이 바람직하다. 상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비가 상기 몰비의 범위 이상인 경우, 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있고, 상기 몰비 범위 이하인 경우, 생성되는 이차전지의 출력 향상이 저하될 수 있다. 구체적으로, 상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비가 몰비로서, 1:0.01 미만인 경우, 리튬 이온 전지에서 SEI 피막을 형성하는 과정, 및 카보네이트계 용매에 의하여 용매화된 리튬 이온이 음극 사이에 삽입되는 과정에서 다수 용량의 비가역 반응이 발생할 수 있으며, 음극 표면층(예를 들어, 탄소 표면층)의 박리와 전해액의 분해에 의해, 이차 전지의 저온 출력 개선, 고온 저장 후, 사이클 특성 및 용량 특성의 개선의 효과가 미비할 수 있다. 상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비가 몰비로서, 1:1 초과인 경우 과도한 용량의 리튬 비스플루오로 설포닐 이미드가 전해액에 포함되어 충 방전 진행시에 전극 집전체의 부식을 일으켜 이차전지의 안정성에 영향을 줄 수 있다.
상기 리튬-니켈-망간-코발트계 산화물인 양극 활물질은, 이하 화학식 1로 표시되는 산화물을 포함하는 것일 수 있다.
[화학식 1]
Li1+x(NiaCobMnc)O2
(상기 화학식 1에서, 0.55≤a≤0.65, 0.18≤b≤0.22, 0.18≤c≤0.22, -0.2≤x≤0.2, 및 x+a+b+c+=1이다.)
상기 리튬-니켈-망간-코발트계 산화물인 양극 활물질을 양극에 이용함으로써, 리튬 비스 플로오로 설포닐 이미드와 조합되어 상승 작용을 가질 수 있다. 리튬-니켈-망간-코발트계 산화물 양극 활물질은 전이 금속 중 Ni의 함량이 증가할수록 충방전 과정에서 상기 양극활물질의 층상 구조내의 Li +1가 이온과 Ni +2가 이온의 자리가 바뀌는 현상(cation mixing)이 발생하여 그 구조가 붕괴되고, 이에 상기 양극활물질은 전해액과 부반응을 일으키거나, 전이금속의 용출현상 등이 나타난다. 이는 Li +1가 이온과 Ni +2가 이온의 크기가 유사하기 때문에 발생되는 것이다. 결국 상기 부반응을 통하여 이차 전지 내부의 전해액 고갈과 양극활물질의 구조 붕괴로 전지의 성능이 쉽게 저하된다.
그렇기 때문에 본 발명의 일 실시예에 따른 화학식 1의 양극활물질에 LiFSI 적용 전해액을 사용하여 양극 표면에 LiFSI에 기인한 성분으로 layer층을 형성하여 Li +1가 이온과 Ni +2가 이온의 cation mixing 현상을 억제하면서도, 양극 활물질의 용량 확보를 위한 충분한 니켈 전이금속량을 확보할 수 있는 범위를 찾아내었다. 본 발명의 상기 화학식 1에 따른 산화물을 포함하는 양극 활물질에 의하면 LiFSI 적용 전해액을 사용할 시에 전해액과 부반응, metal 용출현상 등을 효과적으로 억제할 수 있다.
특히, 상기 화학식 1로 표시되는 산화물에서 Ni 전이금속의 비가 0.65를 초과하는 경우에는 과량의 Ni이 양극 활물질 내에 포함됨으로 인하여, 상술한 전극 표면의 LiFSI로 생성된 layer층에 의해서도 Li +1가 이온과 Ni +2가 이온의 cation mixing 현상을 억제하지 못할 수 있다.
또한, 과량의 Ni 전이금속이 양극 활물질 내에 포함시 Ni의 산화수 변동에 따라 고온 등의 환경에서 d 궤도를 가지는 니켈 전이금속이 배위 결합시 정팔면체 구조를 가져야 하나 외부의 에너지 공급에 의하여, 에너지 레벨의 순서가 뒤바뀌거나, 산화수가 변동되어(불균일화 반응) 뒤틀어진 팔면체를 형성하게 된다. 결과적으로 니켈 전이 금속을 포함하는 양극 활물질의 결정 구조가 변형되어 양극 활물질 내의 니켈 금속이 용출될 확률이 높아진다.
결과적으로, 본 발명자들은 상기 화학식 1의 범위에 따른 산화물을 포함하는 양극 활물질과 LiFSI 염 조합시에 높은 출력을 생성하면서도, 출력 특성 및 용량 특성에서 우수한 효율을 나타내는 것을 확인하였다.
또한, 본 발명의 일 실시예를 따르는 전해액 첨가제로는 플루오르화 벤젠계 화합물을 포함할 수 있다. 구체적으로 이하 화학식 2로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상일 수 있다.
[화학식 2]
Figure PCTKR2015010214-appb-I000001
상기 n은 1 내지 3의 정수이다.
구체적으로 상기 R1은 상기 플루오르화 벤젠계 화합물은 플루오로 벤젠, 디플루오로 벤젠, 트리플루오로 벤젠 및 그 유도체로 이루어진 군에서 선택되는 1종 이상일 수 있고, 본 발명의 일 실시예에 따르면, 상기 플루오르화 벤젠계 화합물은 1,3,6 트리플루오로 벤진일 수 있다.
리튬 이차전지는 고온 환경시 양극에서 방출된 산소는 전해액 용매의 발열 분해 반응을 촉진시켜, 전지가 부풀어 오르는 이른바 스웰링 현상을 유발하여 전지의 수명과 충방전 효율이 급격히 저하되고, 경우에 따라서는 전지가 폭발되는 등 전지의 안전성이 크게 저하된다. 이에, 상기 플루오르화 벤젠계 화합물은 플루오루 치환기가 난연성 화합물로서 전해액에 첨가되어 전지 내부에서 고온시의 음극 및 양극 표면과 전해액이 반응하여 전해액의 분해로 인하여 발생하는 가스를 억제할 수 있다. 따라서, 본 발명의 일 실시예에 따른 플루오르화 벤젠계 화합물을 첨가하여, 고온에서의 수명 및 저장 특성을 향상시키고, nail test시 발화 가능성을 줄여 이차전지의 안정성이 상승될 수 있다.
이때, 상기 플루오르화 벤젠계 화합물의 함량은 전지의 고온 저장 출력 및 안정성 향상 등 본 발명의 효과를 달성하는 데 필요한 양이면 제한되지 않고 사용할 수 있으나, 예를 들어 전해액 총량을 기준으로 1 내지 20 중량%일 수 있고, 바람직하게는 3.0 중량% 내지 15중량%일 수 있다. 상기 플루오르화 벤젠계 화합물의 양이 1 중량%보다 적으면 첨가에 따라 가스발생 억제, 난연성의 효과를 충분히 발휘하기가 어렵고, 상기 플루오르화 벤젠계 화합물의 양이 20 중량%를 초과하면 효과 상승의 정도는 한정적인 반면에 비가역 용량을 증가시키거나 음극의 저항이 증가한다는 문제가 발생할 수 있다. 특히 상기 플루오르화 벤젠계 화합물은 리튬 비스 플루오로 설포닐 이미드의 첨가량에 따라 조절 가능하다. 다량의 리튬 비스 플루오로 설포닐 이미드 첨가에 따라 발생될 수 있는 부반응을 보다 효율적으로 방지하기 위함이다.
또한, 상기 비수성 전해액은 비수성 유기 용매를 포함하고, 상기 비수성 전해액에 포함될 수 있는 비수성 유기 용매로는, 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없고, 예를 들어 니트릴계 용매, 환형 카보네이트, 선형 카보네이트, 에스테르, 에테르 또는 케톤 등일 수 있다. 이들은 단독으로 사용될 수 있고, 2종 이상이 조합하여 사용될 수 있다.
상기 유기 용매들 중 카보네이트계 유기 용매가 용이하게 이용될 수 있는데, 상기 환형 카보네이트는 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이고, 선형 카보네이트는 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 것일 수 있으며, 본 발명의 일 실시예에 따른 비수성 용매는 아세토 니트릴을 이용할 수 있다.
한편, 본 발명의 일 실시예에 따르는 리튬 이차 전지는 양극, 음극, 상기 양극과 상기 음극 사이에 개재된 분리막 및 상기 비수성 전해액을 포함할 수 있다. 상기 양극 및 음극은 각각 본 발명의 일 실시예에 따른 양극 활물질 및 음극 활물질을 포함할 수 있다.
한편, 상기 음극 활물질로는 비정질 카본 또는 정질 카본을 포함하며, 구체적으로는 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5 등의 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni계 재료 등을 사용할 수 있다.
또한, 상기 분리막은 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름이 단독으로 또는 2종 이상이 적층된 것일 수 있다. 이 외에 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으며, 이에 한정되는 것은 아니다.
상기 이차전지는 원통형, 각형, 파우치형 등 수행되는 목적에 따라 다양한 것이고, 당업계에 공지된 구성에 제한되는 것은 아니다. 본 발명의 일 실시예에 따른 리튬 이차전지는 파우치형 이차전지일 수 있다.
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
실시예
실시예 1
[전해액의 제조]
에틸렌 카보네이트(EC): 에틸 메틸 카보네이트(EMC) 3:7 (부피비)의 조성을 갖는 비수성 유기 용매 및 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 0.9 mol/ℓ 및 리튬비스플루오로설포닐이미드 0.1 mol/ℓ, 첨가제로서 1,3,6 트리플루오르화 벤젠을 비수 전해액 총 중량을 기준으로 5 중량%를 첨가하여 비수성 전해액을 제조하였다.
[리튬 이차 전지의 제조]
양극 활물질로서 Li(Ni0.6Co0.2Mn0.2)O2 92 중량%, 도전제로 카본 블랙(carbon black) 4 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.
실시예 2
상기 리튬염을 비수성 전해액 총량을 기준으로 LiPF6 0.7 mol/ℓ 및 리튬비스플루오로설포닐이미드 0.3 mol/ℓ를 사용한 것을 제외하고는 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
실시예 3
상기 리튬염을 비수성 전해액 총량을 기준으로 LiPF6 0.6 mol/ℓ 및 리튬비스플루오로설포닐이미드 0.4 mol/ℓ를 사용한 것을 제외하고는 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
실시예 4
상기 리튬염을 비수성 전해액 총량을 기준으로 LiPF6 0.5 mol/ℓ 및 리튬비스플루오로설포닐이미드 0.5 mol/ℓ를 사용한 것을 제외하고는 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 1
상기 리튬염을 비수성 전해액 총량을 기준으로 LiPF6 0.4 mol/ℓ 및 리튬비스플루오로설포닐이미드 0.6 mol/ℓ를 사용한 것을 제외하고는 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 2
상기 첨가제를 이용하지 않은 것을 제외하고는 실시예 2와 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 3
상기 양극활물질로서 Li(Ni0.5Co0.3Mn0.2)O2 제외하고는 실시예 2와 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
실험예
<저온 출력 특성>
실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 이차전지를 -30℃에서 0.5C으로 10초간 충전 및 방전하는 경우 발생하는 전압차를 이용하여 출력을 계산하였다. 이때 비교예 1의 출력은 4.18W 였다. 비교예 1을 기준으로 하여 실시예 1 내지 4 및 비교예 2 내지 3의 출력을 백분율로 계산하였다. 그 결과를 하기 표 1에 기재하였다. 시험은 SOC(충전 상태, state of charge)가 50%에서 수행하였다.
<상온 출력 특성>
실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 이차전지를 23℃에서 0.5C으로 10초간 충전 및 방전하는 경우 발생하는 전압차를 이용하여 출력을 계산하였다. 이때 비교예 1의 출력은 45.9W 였다. 비교예 1을 기준으로 하여 실시예 1 내지 4 및 비교예 2 내지 3의 출력을 백분율로 계산하였다. 그 결과를 하기 표 1 에 기재하였다. 시험은 SOC(충전 상태, state of charge)가 50%에서 수행하였다.
<고온 수명 특성>
실시예 1 내지 4, 및 비교예 1 내지 3의 리튬 이차 전지를 45℃에서 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 2.5V까지 3C로 방전하고, 그 방전 용량을 측정하였다. 이를 1 내지 800 사이클로 반복 실시하였고, 1회째 사이클을 기준으로 800회째의 사이클을 백분율로 계산(800회째 용량/1회째 용량*100(%))하여 측정한 방전 용량을 표 1에 나타내었다.
<고온 저장 후 용량 특성>
실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 이차전지를 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 2.5V까지 3C로 방전하고, 그 방전 용량을 측정하였다. 그 다음 실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 이차전지를 60℃에서 20주 저장 후, 다시 상기 이차전지들을 각각 23℃에서 정전류/정전압(CC/CV) 조건에서 4.2V/38mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 2.5V까지 3C로 방전하고, 그 방전 용량을 측정하였다. 최초 방전 용량을 기준으로 24주 후의 방전 용량을 백분율로 계산(20주 후 방전용량/최초 방전 용량*100(%))하여 측정한 결과를 하기 표 1에 기재하였다.
<Nail test>
실시예 2, 4 및 비교예 1, 2에서 제조된 이차전지를 사용하여 4.2V까지 충전 후 1m/min의 속도로 못으로 전지를 관통하는 Nail test를 실시하여 안전성을 평가하면서, thermocouple을 전지에 부착하여 전지의 온도 상승을 확인하였다. 각각의 Nail test 시 전지의 최대 상승 온도를 하기 표 1에 기재하였다.
저온출력(%)비교예 1 대비 상온출력(%)비교예 1 대비 고온 특성 Nail test 시 상승온도(℃)
수명 특성(%) 용량 특성(%)
실시예 1 3.34 1.25 81 89.6 -
실시예 2 4.98 3.4 83.9 93.4 37
실시예 3 4.31 2.87 82.1 90.2 -
실시예 4 3.78 1.69 81.6 90.4 34
비교예 1 - - 80.4 88.2 38
비교예 2 -8.61 -4.82 77.2 91.6 102
비교예 3 -4.72 -3.94 73.5 83.7 -
표 1에 나타난 바와 같이 실시예 1 내지 4의 이차전지는 저온 및 상온 출력에 있어서 비교예 1 내지 3의 이차전지 보다 최대 8% 내외의 우수한 출력을 나타내는 것을 확인할 수 있었다. 특히, 실시예 1 내지 4의 이차전지는 플루오르화 벤젠계 화합물을 첨가제로서 이용하여 고온에서의 안정성이 증가되어 고온 저장 후 특성(용량, 수명 특성)에 있어서도, 리튬염인 LiFSI와 조합되어 비교예 1 내지 3의 이차전지 보다 우수한 효과를 나타내는 것을 확인할 수 있었다.
Nail test에서, 못이 전지 내부로 침투하여 분리막을 찢고 들어가 양극과 음극이 단락되는 순간 다량의 전류가 흘러 순간적으로 온도가 상승하여 심한 경우 발화 또는 폭발이 된다. 상기 표 1에 의하면, 플루오르화 벤젠계 화합물이 첨가된, 실시예 2, 4 및 비교예 1에서 제조된 전지는 비교예 2에서 제조된 전지에 비해 전지의 최대 온도가 34~38℃로서 전지의 정상 작동 온도 이상으로 온도 상승되는 것을 억제하였다. 다만 비교예 1의 전지의 경우, LiFSI 비율에 따라서 상승 온도가 가장 큰 것을 알 수 있었다. 따라서, 본 발명에 범위 내에 따른 이차전지가 가장 효율적으로 안전성이 향상됨을 알 수 있었다.

Claims (13)

  1. 리튬 비스플루오로 설포닐 이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 플루오르화 벤젠계 화합물 첨가제를 포함하는 비수성 전해액; 양극 활물질로서 리튬-니켈-망간-코발트계 산화물을 포함하는 양극; 음극; 및 분리막을 포함하는 리튬 이차전지.
  2. 제 1 항에 있어서,
    상기 리튬-니켈-망간-코발트계 산화물은 하기 화학식 1로 표시되는 산화물을 포함하는 리튬 이차전지.
    [화학식 1]
    Li1+x(NiaCobMnc)O2
    (상기 화학식 1에서, 0.55≤a≤0.65, 0.18≤b≤0.22, 0.18≤c≤0.22, -0.2≤x≤0.2, 및 x+a+b+c+=1이다.)
  3. 제 1 항에 있어서,
    상기 비수성 전해액은 리튬염을 더 포함하는 리튬 이차전지.
  4. 제 3 항에 있어서,
    상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비는 몰비로서 1:0.01 내지 1:1인 리튬 이차전지.
  5. 제 1 항에 있어서,
    상기 리튬 비스플루오로 설포닐 이미드는 비수성 전해액 중의 농도가 0.01 mol/ℓ 내지 2 mol/ℓ인 리튬 이차전지.
  6. 제 3 항에 있어서,
    상기 리튬염은 LiPF6, LiAsF6, LiCF3SO3, LiN(CF3SO2)2, LiBF6, LiSbF6, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiSO3CF3 및 LiClO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 리튬 이차전지.
  7. 제 1 항에 있어서,
    상기 플루오르화 벤젠계 화합물은 화학식 2로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상인 리튬 이차전지.
    [화학식 2]
    Figure PCTKR2015010214-appb-I000002
    (상기 n은 1 내지 3의 정수이다.)
  8. 제 1 항에 있어서,
    상기 플루오르화 벤젠계 화합물은 플루오로 벤젠, 디플루오로 벤젠, 트리플루오로 벤젠 및 그 유도체로 이루어진 군에서 선택되는 1종 이상인 리튬 이차전지.
  9. 제 1 항에 있어서,
    상기 플루오르화 벤젠계 화합물 첨가제의 함량은 상기 비수 전해액 총 중량을 기준으로 1~20 중량%인 리튬 이차전지.
  10. 제 1 항에 있어서,
    상기 비수성 전해액은 비수성 유기 용매를 포함하고, 상기 비수성 유기 용매는 니트릴계 용매, 선형 카보네이트, 환형 카보네이트, 에스테르, 에테르, 케톤 또는 이들의 조합을 포함하는 리튬 이차전지.
  11. 제 10 항에 있어서,
    상기 환형 카보네이트는 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이고, 선형 카보네이트는 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 리튬 이차전지.
  12. 제 10 항에 있어서,
    상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 리튬 이차전지.
  13. 제 1 항 내지 제 12 항 중 어느 한 항의 이차전지는 파우치형 리튬 이차전지인 리튬 이차전지.
PCT/KR2015/010214 2014-09-26 2015-09-25 비수성 전해액 및 이를 포함하는 리튬 이차 전지 WO2016048093A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/107,684 US10276894B2 (en) 2014-09-26 2015-09-25 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
CN201580004429.0A CN107078353B (zh) 2014-09-26 2015-09-25 非水电解液及包含所述非水电解液的锂二次电池
JP2017516688A JP6678659B2 (ja) 2014-09-26 2015-09-25 非水性電解液及びこれを含むリチウム二次電池
EP15843681.6A EP3076472B1 (en) 2014-09-26 2015-09-25 Nonaqueous electrolyte solution and lithium secondary battery containing same
US16/298,277 US11437646B2 (en) 2014-09-26 2019-03-11 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140128878A KR101802018B1 (ko) 2014-09-26 2014-09-26 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR10-2014-0128878 2014-09-26

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15107684 A-371-Of-International 2014-09-25
US15/107,684 A-371-Of-International US10276894B2 (en) 2014-09-26 2015-09-25 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
US16/298,277 Continuation-In-Part US11437646B2 (en) 2014-09-26 2019-03-11 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2016048093A1 true WO2016048093A1 (ko) 2016-03-31

Family

ID=55581511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010214 WO2016048093A1 (ko) 2014-09-26 2015-09-25 비수성 전해액 및 이를 포함하는 리튬 이차 전지

Country Status (7)

Country Link
US (1) US10276894B2 (ko)
EP (1) EP3076472B1 (ko)
JP (1) JP6678659B2 (ko)
KR (1) KR101802018B1 (ko)
CN (1) CN107078353B (ko)
TW (1) TWI605628B (ko)
WO (1) WO2016048093A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102518992B1 (ko) * 2017-02-03 2023-04-07 주식회사 엘지에너지솔루션 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
JP2018181650A (ja) * 2017-04-14 2018-11-15 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
KR102452325B1 (ko) * 2017-11-30 2022-10-11 주식회사 엘지에너지솔루션 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
KR102264636B1 (ko) * 2017-11-30 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102217107B1 (ko) * 2017-11-30 2021-02-18 주식회사 엘지화학 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
KR102675258B1 (ko) * 2018-01-30 2024-06-17 주식회사 엘지에너지솔루션 고온 저장 특성이 향상된 리튬 이차전지
PL3651256T3 (pl) 2018-01-30 2022-06-20 Lg Energy Solution Ltd. Akumulator litowy o ulepszonej charakterystyce przechowywania w wysokiej temperaturze
CN111512480A (zh) 2018-05-11 2020-08-07 株式会社Lg化学 锂二次电池
US11367901B2 (en) * 2018-06-01 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
CN109167097A (zh) * 2018-09-05 2019-01-08 中国科学院过程工程研究所 一种锂离子电池宽温电解液
CN114335678B (zh) * 2021-12-29 2023-11-21 蜂巢能源科技(无锡)有限公司 一种电池及其制备方法
CN114464884B (zh) * 2022-01-21 2024-08-23 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的含硅基负极的电池
CN114824485A (zh) * 2022-06-07 2022-07-29 河北文景联合科技有限公司 一种锂离子电池电解液及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120115839A (ko) * 2011-04-11 2012-10-19 에스비리모티브 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US20130330610A1 (en) * 2011-02-10 2013-12-12 Mitsubishi Chemical Corporation Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery employing the same
US20140134501A1 (en) * 2012-11-12 2014-05-15 Novolyte Technologies, Inc. Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising Same
KR20140066645A (ko) * 2012-11-23 2014-06-02 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20140082573A (ko) * 2012-12-24 2014-07-02 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524762B2 (ja) * 1998-03-19 2004-05-10 三洋電機株式会社 リチウム二次電池
JP5034136B2 (ja) 2000-11-14 2012-09-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
JP4945879B2 (ja) * 2002-08-21 2012-06-06 三菱化学株式会社 非水系電解液二次電池および非水系電解液
JP4795019B2 (ja) 2005-01-26 2011-10-19 パナソニック株式会社 非水電解質二次電池
JP5401035B2 (ja) * 2007-12-25 2014-01-29 日立ビークルエナジー株式会社 リチウムイオン二次電池
JP5678539B2 (ja) * 2009-09-29 2015-03-04 三菱化学株式会社 非水系電解液電池
JP5472041B2 (ja) 2010-10-28 2014-04-16 三菱化学株式会社 非水系電解液およびそれを用いた非水系電解液二次電池
CN102082296B (zh) 2010-12-30 2012-12-26 东莞市杉杉电池材料有限公司 一种阻燃型锂离子电池的电解液
EP3758124A1 (en) 2011-02-10 2020-12-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte secondary battery
JP5962040B2 (ja) * 2011-02-10 2016-08-03 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5720325B2 (ja) * 2011-03-11 2015-05-20 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6065367B2 (ja) * 2011-06-07 2017-01-25 ソニー株式会社 非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR101689212B1 (ko) 2011-12-07 2016-12-26 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP6113496B2 (ja) 2012-12-26 2017-04-12 株式会社日本触媒 リチウム二次電池
US10978740B2 (en) 2013-02-18 2021-04-13 Nippon Shokubai Co., Ltd. Electrolyte solution and lithium ion secondary battery provided with same
US9850591B2 (en) * 2013-03-14 2017-12-26 Applied Materials, Inc. High purity aluminum top coat on substrate
US9812735B2 (en) * 2013-08-21 2017-11-07 Sekisui Chemical Co., Ltd. Lithium ion secondary battery
MY183272A (en) * 2013-09-26 2021-02-18 Mitsubishi Chem Corp Nonaqueous electrolytic solution and nonaqueous electrolyte battery using the same
CN103762352B (zh) 2014-01-16 2016-04-06 东莞新能源科技有限公司 改性的锂镍钴锰三元正极材料及其制备方法
US20170214091A1 (en) 2014-08-01 2017-07-27 Ube Industries, Ltd. Nonaqueous electrolytic solution and energy storage device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130330610A1 (en) * 2011-02-10 2013-12-12 Mitsubishi Chemical Corporation Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery employing the same
KR20120115839A (ko) * 2011-04-11 2012-10-19 에스비리모티브 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US20140134501A1 (en) * 2012-11-12 2014-05-15 Novolyte Technologies, Inc. Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising Same
KR20140066645A (ko) * 2012-11-23 2014-06-02 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20140082573A (ko) * 2012-12-24 2014-07-02 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
TWI605628B (zh) 2017-11-11
JP6678659B2 (ja) 2020-04-08
US20160329600A1 (en) 2016-11-10
TW201630244A (zh) 2016-08-16
JP2017528894A (ja) 2017-09-28
EP3076472B1 (en) 2018-01-31
KR20160036808A (ko) 2016-04-05
CN107078353A (zh) 2017-08-18
KR101802018B1 (ko) 2017-11-27
EP3076472A4 (en) 2017-03-01
US10276894B2 (en) 2019-04-30
CN107078353B (zh) 2019-08-16
EP3076472A1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2016048093A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2016048106A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2013168882A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 구비하는 리튬 이차 전지
WO2014129824A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2014129823A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
JP6671724B2 (ja) 非水性電解液リチウム二次電池
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2009131419A2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
WO2015065093A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2014185750A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
US10454137B2 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
WO2019111983A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
KR102010325B1 (ko) 비수성 전해액을 포함하는 리튬 이차 전지
WO2016053040A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR101797289B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2016048104A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2014116084A1 (ko) 고전압 리튬 이차 전지
KR102028647B1 (ko) 비수성 전해액을 포함하는 리튬 이차 전지
KR20160036807A (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR20200080170A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2016048094A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2014046409A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2014046408A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2011087205A2 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107684

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015843681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843681

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017516688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE