CN107078353A - 非水电解液及包含所述非水电解液的锂二次电池 - Google Patents

非水电解液及包含所述非水电解液的锂二次电池 Download PDF

Info

Publication number
CN107078353A
CN107078353A CN201580004429.0A CN201580004429A CN107078353A CN 107078353 A CN107078353 A CN 107078353A CN 201580004429 A CN201580004429 A CN 201580004429A CN 107078353 A CN107078353 A CN 107078353A
Authority
CN
China
Prior art keywords
secondary battery
lithium secondary
lithium
electrolytic solution
nonaqueous electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580004429.0A
Other languages
English (en)
Other versions
CN107078353B (zh
Inventor
李哲行
金实基
金广渊
梁斗景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lg Energy Solution
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN107078353A publication Critical patent/CN107078353A/zh
Application granted granted Critical
Publication of CN107078353B publication Critical patent/CN107078353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种锂二次电池,所述锂二次电池包括:非水电解液、正极、负极和隔膜,所述非水电解液包括作为添加剂的双(氟代磺酰基)酰亚胺锂(LiFSI)和氟代苯基化合物;所述正极包含作为正极活性材料的锂‑镍‑锰‑钴基氧化物。本发明具有用于锂二次电池的非水电解液,当包括所述非水电解液的锂二次电池初始充电时,在负极上形成坚固的SEI膜,提高了锂二次电极的输出性能,同时能提升高温存储后的输出性能和稳定性。

Description

非水电解液及包含所述非水电解液的锂二次电池
技术领域
[相关申请的交叉引用]
本申请要求享有于2014年9月26日向韩国知识产权局提交的韩国专利申请第10-2014-0128878号的优先权,通过引用将上述专利申请的全部内容结合在此。
[技术领域]
本发明涉及包含非水电解液、正极(positive electrode)、负极(negativeelectrode)和隔膜(separator)的锂二次电池,所述非水电解液包含作为添加剂的双(氟代磺酰基)酰亚胺锂(Lithium bis(fluorosulfonyl)imide;LiFSI)和氟代苯基化合物;所述正极包含作为正极活性材料的锂-镍-锰-钴基氧化物。
背景技术
随着技术的不断发展和对移动设备需求的增多,将二次电池用作能源的需求急速增加,且在众多二次电池中,具有高的能量密度和电压的锂二次电池已被商业化且广泛应用。
在锂二次电池中,锂金属氧化物被用作正极活性材料,锂金属、锂合金、结晶(crystalline)碳及非晶碳或碳的复合物被用作负极活性材料。所述二次电池通过以下的方法来制备,即在集电器(collector)上涂布合适厚度和长度的活性材料,或者活性材料自身以膜的形式涂布,并将活性材料与绝缘体的隔膜进行缠绕或层叠以形成电极组(electrode group),将上述电极组置于罐或类似容器中,并注入电解液。
当锂离子反复从正极的锂金属氧化物到负极的石墨电极的嵌入(intercalation)和脱嵌(deintercalation)时,所述的锂二次电池就经历了充电和放电。其中,锂离子因其高反应活性与碳电极反应,且在负极的表面上生成Li2CO3、LiO、LiOH和类似产物而形成膜。这层膜被称作固体电解质界面(Solid Electrolyte Interface;SEI)膜,且形成于充电初期的上述SEI膜可在放电和充电过程中阻止锂离子与碳负极材料或其它材料发生反应。另外,所述SEI膜还发挥了离子通道的作用且仅传递锂离子。这种离子通道使锂离子变成溶剂化物(solvation),且通过与电解液的高分子量有机溶剂的相互聚集并共嵌到碳负极而起到防止碳负极结构塌陷的作用。
因此,为了提高锂二次电池的高温循环性能和低温输出性能,需要将坚固的SEI膜形成在锂二次电池的负极上。一旦上述SEI膜在初始的充电中形成,SEI膜将在之后电池使用中的重复充电和放电过程中阻止锂离子与负极材料或其它材料的反应,并在电解液和负极之间起到离子通道(Ion tunnel)的作用且仅传递锂离子。
在现有技术中,在不包含电解液添加剂的电解液中或在包含性能差的添加剂的电解液中增强低温输出性能一直被认为是困难的,这是由于形成了非均匀的SEI膜。另外,即使加入了电解液添加剂,但如果添加剂加入的量没有调整到所需的量,则仍然会有由于电解液添加剂的原因而使正极表面在高温下发生分解的问题,或者,电解液引起了氧化反应而最终使二次电池的不可逆电容量增加和输出性能降低。
发明内容
技术问题
本发明的一方面提供了一种用于锂二次电池的非水电解液以及包含所述非水电解液的锂二次电池,所述非水电解液不仅能提高二次电池在低温和室温下的输出性能,而且能提高二次电池的高温存储性能、容量特性和稳定性。
技术方案
根据本发明的一个方面,提供了一种锂二次电池,所述锂二次电池包含:非水电解液,所述非水电解液包含作为添加剂的双(氟代磺酰基)酰亚胺锂(Lithium bis(fluorosulfonyl)imide;LiFSI)和氟代苯基化合物;正极,所述正极包含作为正极活性材料的锂-镍-锰-钴基氧化物;负极;及隔膜。
所述非水电解液可进一步包含锂盐,且锂盐与双(氟代磺酰基)酰亚胺锂的混合比例为摩尔比1:0.01至1:1,且双(氟代磺酰基)酰亚胺锂在非水电解液中的浓度为0.01mol/L至2mol/L。
所述锂-镍-锰-钴基氧化物可包括由以下化学式1表示的氧化物:
[化学式1]
Li1+x(NiaCobMnc)O2
在所述化学式1中,0.55≤a≤0.65,0.18≤b≤0.22,0.18≤c≤0.22,-0.2≤x≤0.2,且x+a+b+c+=1。
有益效果
本发明具有用于锂二次电池的非水电解液以及包含所述非水电解液的二次电池,当包含所述非水电解液的所述锂二次电池初始充电时,在负极上形成一种坚固的SEI膜,在高温环境下抑制了气体的生成,使得电池厚度的增加最小化,且通过阻止正极表面的分解和电解液的氧化反应,提高了所述锂二次电池的输出性能,并且还能提高在高温存储后的输出性能和稳定性。
本发明的最佳实施方式
下文中,将更详细地描述本发明以阐明本发明。本说明书和权利要求书中所使用的术语或用语不可以被限制性地理解成一般定义或词典定义,而应当被理解为是基于发明人为了以最佳可能的方式描述发明可以适当地定义术语的概念的原则,将这些术语或用语理解为与本发明的技术思想相对应的含义和概念。
根据本发明实施方式的一种非水电解液包含双(氟代磺酰基)酰亚胺锂(LiFSI)。
将双(氟代磺酰基)酰亚胺锂作为一种锂盐加入到非水电解液,不仅通过在负极上形成坚固的且薄的SEI薄膜而提高了低温输出性能,而且抑制了在高温循环运行中可能发生的正极表面的分解,还阻止了电解液的氧化反应。再者,形成于负极的SEI膜的厚度薄,锂离子在负极内的迁移可以更通畅,且相应地,能够提高二次电池的输出性能。
根据本发明的一个实施方式,双(氟代磺酰基)酰亚胺锂在非水电解液中优选浓度为0.01mol/L至2mol/L,且更优选地为0.01mol/L至1mol/L。当双(氟代磺酰基)酰亚胺锂的浓度低于0.1mol/L,锂二次电池的低温输出性能和高温循环性能的提高效果是不显著的,而当双(氟代磺酰基)酰亚胺锂的浓度高于2mol/L,电池充电和放电期间电解液中的副反应会过度发生进而造成溶胀(swelling)现象,以及可以引发电解液中由金属组成的正极或负极集电器的腐蚀。
为了防止这类副反应,本发明的非水电解液可进一步包含锂盐。作为所述锂盐,可以采用本领域常用的锂盐,具体实例可以是选自:LiPF6、LiAsF6、LiCF3SO3、LiBF6、LiSbF6、LiN(C2F5SO2)2、LiAlO4、LiAlCl4、LiSO3CF3和LiClO4所构成的组中的任何一个或者至少两个的混合物。
锂盐和双(氟代磺酰基)酰亚胺锂的混合比例优选为摩尔比1:0.01至1:1。如果锂盐和双(氟代磺酰基)酰亚胺锂的混合比例高于上述摩尔比的范围,当电池充电和放电时那么电解液中的副反应会过度发生进而造成溶胀(swelling)现象,而如果锂盐和双(氟化磺酰基)酰亚胺锂的混合比例低于上述摩尔比时,就会降低二次电池的输出性能提高的程度。具体地,当锂盐和双(氟代磺酰基)酰亚胺锂的混合摩尔比低于1:0.01时,在SEI膜形成于锂离子电池内的过程中和在负极之间引入由碳酸酯基溶剂溶解的锂离子的过程中,会发生大量的不可逆反应,因此,借由脱去负极表面层(例如碳表面层)和电解液的分解,对二次电池的低温输出性能、高温存储后的二次电池的循环性能和电容量特性所实现的改进效果是微不足道的。当锂盐和双(氟代磺酰基)酰亚胺锂的混合摩尔比高于1:1时,电解液中含有过量的双(氟代磺酰基)酰亚胺锂,随着充电和放电的进行可以造成电极集电器的腐蚀,且由此可以影响二次电池的稳定性。
正极活性材料为锂-镍-锰-钴基氧化物,可包括由以下化学式1表示的一种氧化物:
[化学式1]
Li1+x(NiaCobMnc)O2
(化学式1中,0.55≤a≤0.65,0.18≤b≤0.22,0.18≤c≤0.22,-0.2≤x≤0.2且x+a+b+c+=1。)
通过在正极使用锂-镍-锰-钴基氧化物的正极活性材料,可以获得正极活性材料与双(氟代磺酰基)酰亚胺锂结合的协同效应。在锂-镍-锰-钴基氧化物正极活性材料中,随着过渡金属镍含量的增加,在充电和放电过程中,正极活性材料的层结构中一价Li离子和二价Ni离子的位置调换的阳离子混合(cation mixing)现象导致结构的塌陷,结果是正极活性材料与电解液产生副反应,或者发生过渡金属的洗脱反应及类似反应。这一现象的产生与一价Li离子和二价Ni离子的离子半径相近有关。因此,经历了副反应的二次电池中的电解液发生了损耗,且正极活性材料的结构发生了塌陷,结果是电池的性能显著地降低。
鉴于上述内容,根据本发明的实施方式将采用了LiFSI的电解液运用到化学式1的正极活性材料上,并利用来自上述电解液的LiFSI中的各组分在正极表面上形成层,现已发现了镍过渡金属的一个含量范围,该镍过渡金属含量范围能足以确保正极活性材料的电容量而同时又能抑制一价Li离子和二价Ni离子的阳离子混合。采用包含本发明化学式1的氧化物的正极活性材料,以使用采用了LiFSI的电解液时,可以有效抑制电解液中的副反应、金属的洗脱反应和类似的反应。
具体地,当镍过渡金属在由化学式1表示的氧化物中的比例大于0.65时,即使借助于与LiFSI在上述正极表面上形成的层,一价Li离子和二价Ni离子的阳离子混合也不会被抑制,因为正极活性材料中含有过量的镍。
另外,当正极活性材料中含有过量的镍过渡金属时,镍过渡金属在高温环境或者类似条件下有一条d轨道,当其以共价键结合时需要有一个常规的八面体结构,由于能级的顺序被外部能量供应而改变、或者镍氧化态的变化而引起的氧化态的改变(非均匀反应),镍过渡金属形成了一种变形的八面体结构。因此,含有镍过渡金属的正极活性材料中的晶体结构发生了改变,且正极活性材料中镍金属被洗脱的可能性就提高了。
因此,本发明的发明人指出:LiFSI盐与含有化学式1的氧化物的正极活性材料结合在提供高输出性能的同时,显示出优异的输出性能和电容量特性。
另外,根据本发明实施方式的电解液添加剂可包含氟代苯基化合物。具体地说,所述化合物可以为选自由以下化学式2表示的化合物构成的组中的一个或更多个。
[化学式2]
其中,n是1至3的整数。
具体地说,氟代苯基化合物可以为选自由氟代苯、二氟代苯、三氟代苯及其衍生物所构成的组中的一个或更多个,根据本发明的一个实施方式,氟化苯基化合物可以是1,3,6-三氟代苯。
在现有的锂二次电池中,在高温环境下从正极释放的氧促成了电解液溶剂的放热分解反应而导致电池的溶胀,因此,电池的寿命、充电及放电效率迅速降低,在一些实例中,电池的安全性显著地降低以致发生爆炸。在氟代苯基化合物中,氟取代物是一种阻燃化合物,且通过将其加入到电解液中,氟取代物能够阻止由电解液在电池内部处于高温下与正极和负极表面所发生的分解反应引起的气体生成。因此,根据本发明实施方式通过加入氟代苯基化合物,就能能够提高二次电池在高温下的寿命和存储性能,并且可以通过针刺测试中降低点燃的可能性来提高二次电池的稳定性。
在此,氟代苯基化合物的含量并没有明显限定,只要所述的氟代苯基化合物的含量能够实现本发明的效果即可,所述本发明的效果诸如增强二次电池的高温存储输出性能和稳定性,氟代苯基化合物的含量范围的实例,基于电解液的总重量,可以以重量计为1%至20%,优选地以重量计为3.0%至15%。当氟代苯基化合物的含量少于以重量计的1%时,就达不到所期望的借由添加剂对气体生成的抑制以及阻燃的效果,而当氟化苯基化合物的含量超过以重量计的20%时,就会出现如下的问题,例如,不可逆的电容量增加或负极内阻的增加,尽管增加的程度是有限的。具体地,氟代苯基化合物可以依据双(氟化磺酰基)酰亚胺锂的所加入量进行控制。这种方法用于更高效地防止大量的双(氟代磺酰基)酰亚胺锂的加入所产生的副反应。
除此以外,非水电解液还包括非水有机溶剂,且对加入到非水电解液的非水有机溶剂没有特别限制,只要非水有机溶剂能够使电池充电和放电过程中由氧化反应或类似反应导致的分解反应最小化即可,或者是与添加剂一起实现本发明所需目标效果,且实例可以包括腈基溶剂、环状碳酸酯、线型碳酸酯、酯、醚、酮或类似物。这些溶剂可以单独使用,或两个或更多个组合使用。
在这些有机溶剂中,碳酸酯基溶剂可为有用的有机溶剂,环状碳酸酯可以为选自由碳酸亚乙酯(EC)、碳酸亚丙酯(PC)和碳酸亚丁酯(BC)所构成的组中的一个或至少两个的混合物,线型碳酸酯可以为选自由碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)、碳酸甲乙酯(EMC)、碳酸甲丙酯(MPC)和碳酸乙丙酯(EPC)所构成的组中的一个或至少两个的混合物。
腈基溶剂可以为选自:乙腈、丙腈、丁腈、戊腈、辛腈、庚腈、环戊腈、环己腈、2-氟苯甲腈(2-fluorobenzonitrile)、4-氟苯甲腈、二氟代苯甲腈、三氟代苯甲腈、苯乙腈、2-氟苯乙腈、4-氟苯乙腈所构成的组中的一个或更多个,根据本发明的实施方式的非水溶剂可以采用乙腈。
与此同时,根据本发明的实施方式的锂二次电池可以包含正极、负极、介于正极和负极之间设置的隔膜和非水电解液。根据本发明的一个实施方式正极和负极可以分别包含正极活性材料和负极活性材料。
与此同时,负极活性材料包括非晶碳或结晶化碳,具体地说,可以采用如下的材料:碳材料,例如硬质碳和石墨基碳;金属复合氧化物,例如LixFe2O3(0≤x≤1)、LixWO2(0≤x≤1)、SnxMe1-xMe'yOz(Me:Mn、Fe、Pb、Ge;Me':Al、B、P、Si,周期表中Ⅰ、Ⅱ、Ⅲ主族元素及卤素;0<x≤1;1≤y≤3;1≤z≤8);锂金属;锂合金;硅基合金、锡基合金;氧化物,例如SnO、SnO2、PbO、PbO2、Pb2O3、Pb3O4、Sb2O3、Sb2O4、Sb2O5、GeO、GeO2、Bi2O3、Bi2O4、Bi2O5;导电聚合物,例如聚乙炔;锂钴镍基材料及类似材料。
另外,隔膜可包括多孔聚合物膜,例如,采用聚烯烃基化合物制备的聚合物膜;举例来说,可以单独采用乙烯均聚物、丙烯均聚物、乙烯和丁烯共聚物、乙烯和己烯共聚物、乙烯和甲基丙烯酸酯共聚物,或者将上述聚合物材料中两种或更多种层压使用。除此之外,可以采用常规的多孔无纺布,例如,由高熔点玻璃纤维、聚对苯二甲酸乙二醇酯纤维以及类似纤维制成的多孔无纺布,但是隔膜材料不仅限制于上述材料。
本发明的二次电池可以根据实际用途而改变,包括:柱型、方型、袋型和类似形状,但不仅限制于本领域已知的构造。根据本发明实施方式的锂二次电池可以是袋型二次电池。
本发明的实施方式
下文中,将参考实施例和测试实施例来更详细地描述本发明,但是本发明并不限制于下述实施例和测试例。
实施例
实施例1
[电解液的制备]
通过在含有碳酸亚乙酯(EC):碳酸甲乙酯(EMC)=3:7(体积比)组分的非水有机溶剂,基于非水电解液的总量,加入作为锂盐的浓度为0.9mol/L的LiPF6和0.1mol/L的双(氟代磺酰基)酰亚胺锂,以及基于非水电解液的总重,作为非水电解液添加剂的重量百分比为5%的1,3,6-三氟代苯以制备非水电解液。
[锂二次电池的制备]
正极混合浆料采用如下方法制备,将以重量计为92%的作为正极活性材料的Li(Ni0.6Co0.2Mn0.2)O2,以重量计为4%的作为导体的炭黑,以重量计为4%的作为粘合剂的聚偏二氟乙烯(PVdF)加入到溶剂N-甲基-2-吡咯烷酮(NMP)中来制备。将所述正极混合浆料施用到厚度约20μm的铝(Al)薄膜的正极集电器上,经烘干和辊压(roll press)以制得正极。
另外,负极混合浆料采用如下方法制备,将以重量计为96%的作为负极活性材料的碳粉末,以重量计为3%的作为粘合剂的PVdF以及重量计为1%的作为导体的炭黑(carbon black)加入到溶剂NMP中来制备。将所述负极混合浆料施用到厚度约10μm的铜(Cu)薄膜的负极集电器上,经烘干和辊压以制得负极。
采用上述方法制备的正极和负极,以及由三层的聚丙烯/聚乙烯/聚丙烯(PP/PE/PP)所形成的隔膜通过常用方法制备聚合物型电池,将制得的非水电解液注入到聚合物型电池中完成锂二次电池的制备。
实施例2
除以下不同之外,按照与实施例1所示的相同方式来制备非水电解液和锂二次电池,其中不同之处在于,基于非水电解液的总重,作为锂盐使用的LiPF6浓度为0.7mol/L和双(氟代磺酰基)酰亚胺锂浓度为0.3mol/L。
实施例3
除以下不同之外,按照与实施例1所示的相同方式来制备非水电解液和锂二次电池,其中不同之处在于,基于非水电解液的总重,作为锂盐的LiPF6浓度为0.6mol/L和双(氟代磺酰基)酰亚胺锂浓度为0.4mol/L。
实施例4
除以下不同之外,按照与实施例1所示的相同方式来制备非水电解液和锂二次电池,其中不同之处在于,基于非水电解液的总重,作为锂盐的LiPF6浓度为0.5mol/L和双(氟代磺酰基)酰亚胺锂浓度为0.5mol/L。
对比实施例1
除以下不同之外,按照与实施例1所示的相同方式来制备非水电解液和锂二次电池,其中不同之处在于,基于非水电解液的总重,作为锂盐的LiPF6浓度为0.4mol/L和双(氟代磺酰基)酰亚胺锂浓度为0.6mol/L。
对比实施例2
除以下不同之外,按照与实施例2所示的相同方式来制备非水电解液和锂二次电池,不同之处在于没有使用前述的添加剂。
对比实施例3
除以下不同之外,按照与实施例2所示的相同方式来制备非水电解液和锂二次电池,不同之处在于采用Li(Ni0.5Co0.3Mn0.2)O2作为正极活性材料。
测试实施例
<低温输出性能>
采用在-30℃条件下以恒定电流0.5C对实施例1-4和对比实施例1-3中制备的二次电池进行充电和放电10秒所产生的电压差计算输出功率。其中,对比实施例1的输出功率为4.18W。基于对比实施例1的输出功率,实施例1-4的输出功率及对比实施例2和3的输出功率可计为百分数。结果在下表1中列出。测试是在50%充电状态(SOC,state of charge)下实施的。
<室温输出性能>
采用在23℃条件下以恒定电流0.5C对实施例1-4和对比实施例1-3中制备的二次电池进行充电和放电10秒所产生的电压差计算输出功率。其中,对比实施例1的输出功率为45.9W。基于对比实施例1的输出功率,实施例1-4的输出功率及对比实施例2和3的输出功率可计为百分数。结果在下表1中列出。测试是在50%充电状态(SOC,state of charge)下实施的。
<高温寿命性能>
将实施例1-4和对比实施例1-3的锂二次电池在45℃下以1C在恒定电流/恒定电压(CC/CV)条件下充电至4.2V/38mA,接着以3C在恒定电流(CC)条件下放电至2.5V,并测量锂二次电池的放电容量。此过程重复1至800个循环,基于第1次循环计算以百分数计的第800次循环得到的放电容量(第800个循环的容量/第1个循环的容量*100(%))示出于表1中。
<高温存储后的容量特性>
将实施例1-4和对比实施例1-3的锂二次电池以1C在恒定电流/恒定电压(CC/CV)条件下充电至4.2V/38mA,接着以3C在恒定电流(CC)条件下放电至2.5V,并测量锂二次电池的放电容量。随后,将上述实施例1-4和对比实施例1-3中制备的锂二次电池在60℃下存储20周,将高温存储后的锂二次电池各自在23℃下再次以1C在恒定电流/恒定电压(CC/CV)条件下充电至4.2V/38mA,且接着以3C在恒定电流(CC)条件下放电至2.5V,测量锂二次电池的放电容量。基于初始放电容量计算以百分数计的20周后的放电容量的测量结果(20周后的放电容量/初始放电容量*100(%))示出于下表1中。
<针刺测试>
将实施例2、4和对比实施例1、2中制备的锂二次电池充电至4.2V,接着以1m/min的速度用钉扎入并穿透电池实施针刺测试,从而评价电池安全性,且通过将热电偶连接至电池来检测电池温度的升高。每次针刺测试中的最大升高温度列于下表1中。
【表1】
如表1所示,可知,实施例1-4的二次电池在低温和室温输出方面显示出优异的输出性能,且相对于对比实施例1-3的二次电池的输出功率最多约超过8%。尤其地,实施例1-4的二次电池通过使用氟代苯基化合物作为添加剂提高了高温下的稳定性,且与对比实施例1-3的二次电池相比,实施例1-4的二次电池通过将氟代苯基化合与锂盐LiFSI结合而在高温存储之后在性能(容量和寿命性能)方面也显示出优异的效果。
在针刺测试中,针扎入电池破坏了隔膜,正极和负极短路的瞬间形成了巨大的电流,使得电池温度瞬间升高,在极端情况下会发生燃烧或爆炸。如表1所示,与对比实施例2中制备的电池相比,加入了氟代苯基化合物的实施例2、4和对比实施例1中制备的二次电池具有34℃-38℃的最高电池温度,且抑制了温度上升至超过电池的正常工作温度。但从对比实施例1的电池看出,最大的升高温度值依赖于LiFSI的比例。因此,可以看出本发明范围内的二次电池最有效地提升安全性。

Claims (13)

1.一种锂二次电池,所述锂二次电池包括:
非水电解液,所述非水电解液包括作为添加剂的双(氟代磺酰基)酰亚胺锂(LiFSI)和氟代苯基化合物;
正极,所述正极包含作为正极活性材料的锂-镍-锰-钴基氧化物;
负极;和
隔膜。
2.如权利要求1所述的锂二次电池,其中,所述锂-镍-锰-钴基氧化物包括由以下化学式1表示的氧化物:
[化学式1]
Li1+x(NiaCobMnc)O2
其中,0.55≤a≤0.65,0.18≤b≤0.22,0.18≤c≤0.22,-0.2≤x≤0.2且x+a+b+c+=1。
3.如权利要求1所述的锂二次电池,其中,所述非水电解液进一步包含锂盐。
4.如权利要求3所述的锂二次电池,其中,所述锂盐和所述双(氟代磺酰基)酰亚胺锂的混合比例以摩尔比计为从1:0.01至1:1。
5.如权利要求1所述的锂二次电池,其中,所述双(氟代磺酰基)酰亚胺锂在所述非水电解液中的浓度为0.01mol/L至2mol/L。
6.如权利要求3所述的锂二次电池,其中,所述锂盐包括选自由LiPF6、LiAsF6、LiCF3SO3、LiN(CF3SO2)2、LiBF6、LiSbF6、LiN(C2F5SO2)2、LiAlO4、LiAlCl4、LiSO3CF3和LiClO4所构成的组中的任何一个或至少两个的混合物。
7.如权利要求1所述的锂二次电池,其中,所述氟代苯基化合物为选自由化学式2表示的化合物所构成的组中的一个或更多个:
[化学式2]
其中,n是1至3的整数。
8.如权利要求1所述的锂二次电池,其中,所述氟代苯基化合物是选自由氟代苯、二氟代苯、三氟代苯及其衍生物所构成的组中的一个或更多个。
9.如权利要求1所述的锂二次电池,其中,所述氟代苯基化合物的含量,基于所述非水电解液的总重,按重量计为1%-20%。
10.如权利要求1所述的锂二次电池,其中,所述非水电解液包括非水有机溶剂,并且所述非水有机溶剂包括:腈基溶剂、线型碳酸酯、环状碳酸酯、酯、醚、酮或者上述溶剂的组合。
11.如权利要求10所述的锂二次电池,其中,所述环状碳酸酯为选自由碳酸亚乙酯(EC)、碳酸亚丙酯(PC)和碳酸亚丁酯(BC)所构成的组中的任何一个或至少两个的混合物;所述线型碳酸酯为选自由碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)、碳酸甲乙酯(EMC)、碳酸甲丙酯(MPC)和碳酸乙丙酯(EPC)所构成的组中的任何一个或至少两个的混合物。
12.如权利要求10所述的锂二次电池,其中,所述腈基溶剂为选自:乙腈、丙腈、丁腈、戊腈、辛腈、庚腈、环戊腈、环己腈、2-氟苯甲腈、4-氟苯甲腈、二氟代苯腈、三氟代苯腈、苯乙腈、2-氟苯乙腈、4-氟苯乙腈所构成的组中的一个或更多个。
13.如权利要求1-12任一项所述的锂二次电池,所述锂二次电池是袋型锂二次电池。
CN201580004429.0A 2014-09-26 2015-09-25 非水电解液及包含所述非水电解液的锂二次电池 Active CN107078353B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140128878A KR101802018B1 (ko) 2014-09-26 2014-09-26 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR10-2014-0128878 2014-09-26
PCT/KR2015/010214 WO2016048093A1 (ko) 2014-09-26 2015-09-25 비수성 전해액 및 이를 포함하는 리튬 이차 전지

Publications (2)

Publication Number Publication Date
CN107078353A true CN107078353A (zh) 2017-08-18
CN107078353B CN107078353B (zh) 2019-08-16

Family

ID=55581511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580004429.0A Active CN107078353B (zh) 2014-09-26 2015-09-25 非水电解液及包含所述非水电解液的锂二次电池

Country Status (7)

Country Link
US (1) US10276894B2 (zh)
EP (1) EP3076472B1 (zh)
JP (1) JP6678659B2 (zh)
KR (1) KR101802018B1 (zh)
CN (1) CN107078353B (zh)
TW (1) TWI605628B (zh)
WO (1) WO2016048093A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167097A (zh) * 2018-09-05 2019-01-08 中国科学院过程工程研究所 一种锂离子电池宽温电解液
CN111052482A (zh) * 2017-11-30 2020-04-21 株式会社Lg化学 用于凝胶聚合物电解质的组合物、由该组合物制备的凝胶聚合物电解质和包括该凝胶聚合物电解质的锂二次电池
CN114335678A (zh) * 2021-12-29 2022-04-12 蜂巢能源科技(无锡)有限公司 一种电池及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102518992B1 (ko) * 2017-02-03 2023-04-07 주식회사 엘지에너지솔루션 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
JP2018181650A (ja) * 2017-04-14 2018-11-15 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
KR102452325B1 (ko) * 2017-11-30 2022-10-11 주식회사 엘지에너지솔루션 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
KR102264636B1 (ko) * 2017-11-30 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102675258B1 (ko) * 2018-01-30 2024-06-17 주식회사 엘지에너지솔루션 고온 저장 특성이 향상된 리튬 이차전지
PL3651256T3 (pl) 2018-01-30 2022-06-20 Lg Energy Solution Ltd. Akumulator litowy o ulepszonej charakterystyce przechowywania w wysokiej temperaturze
CN111512480A (zh) 2018-05-11 2020-08-07 株式会社Lg化学 锂二次电池
US11367901B2 (en) * 2018-06-01 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
CN114464884B (zh) * 2022-01-21 2024-08-23 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的含硅基负极的电池
CN114824485A (zh) * 2022-06-07 2022-07-29 河北文景联合科技有限公司 一种锂离子电池电解液及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0944125A1 (en) * 1998-03-19 1999-09-22 Sanyo Electric Co., Ltd. Positive electrode material for lithium secondary battery
US20090162751A1 (en) * 2007-12-25 2009-06-25 Hitachi Vehicle Energy, Ltd. Lithium ion secondary battery
CN102082296A (zh) * 2010-12-30 2011-06-01 东莞市杉杉电池材料有限公司 一种阻燃型锂离子电池的电解液
US20120258357A1 (en) * 2011-04-11 2012-10-11 Sb Limotive Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN104995785A (zh) * 2013-02-18 2015-10-21 株式会社日本触媒 电解液及具备该电解液的锂离子二次电池
CN106663838A (zh) * 2014-08-01 2017-05-10 宇部兴产株式会社 非水电解液及使用了该非水电解液的蓄电设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034136B2 (ja) 2000-11-14 2012-09-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
JP4945879B2 (ja) * 2002-08-21 2012-06-06 三菱化学株式会社 非水系電解液二次電池および非水系電解液
JP4795019B2 (ja) 2005-01-26 2011-10-19 パナソニック株式会社 非水電解質二次電池
JP5678539B2 (ja) * 2009-09-29 2015-03-04 三菱化学株式会社 非水系電解液電池
JP5472041B2 (ja) 2010-10-28 2014-04-16 三菱化学株式会社 非水系電解液およびそれを用いた非水系電解液二次電池
EP3758124A1 (en) 2011-02-10 2020-12-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte secondary battery
KR101929599B1 (ko) 2011-02-10 2018-12-14 미쯔비시 케미컬 주식회사 2 차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 2 차 전지
JP5962040B2 (ja) * 2011-02-10 2016-08-03 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5720325B2 (ja) * 2011-03-11 2015-05-20 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6065367B2 (ja) * 2011-06-07 2017-01-25 ソニー株式会社 非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR101689212B1 (ko) 2011-12-07 2016-12-26 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102050964B1 (ko) * 2012-11-12 2019-12-02 선천 캡쳄 테크놀로지 컴퍼니 리미티드 비수성 전해질 용액 및 이를 포함하는 전기화학 전지
US20150249269A1 (en) 2012-11-23 2015-09-03 Lg Chem, Ltd. Electrolyte for lithium secondary batteries and lithium secondary battery including the same
KR20140082573A (ko) 2012-12-24 2014-07-02 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
JP6113496B2 (ja) 2012-12-26 2017-04-12 株式会社日本触媒 リチウム二次電池
US9850591B2 (en) * 2013-03-14 2017-12-26 Applied Materials, Inc. High purity aluminum top coat on substrate
US9812735B2 (en) * 2013-08-21 2017-11-07 Sekisui Chemical Co., Ltd. Lithium ion secondary battery
MY183272A (en) * 2013-09-26 2021-02-18 Mitsubishi Chem Corp Nonaqueous electrolytic solution and nonaqueous electrolyte battery using the same
CN103762352B (zh) 2014-01-16 2016-04-06 东莞新能源科技有限公司 改性的锂镍钴锰三元正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0944125A1 (en) * 1998-03-19 1999-09-22 Sanyo Electric Co., Ltd. Positive electrode material for lithium secondary battery
US20090162751A1 (en) * 2007-12-25 2009-06-25 Hitachi Vehicle Energy, Ltd. Lithium ion secondary battery
CN102082296A (zh) * 2010-12-30 2011-06-01 东莞市杉杉电池材料有限公司 一种阻燃型锂离子电池的电解液
US20120258357A1 (en) * 2011-04-11 2012-10-11 Sb Limotive Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN104995785A (zh) * 2013-02-18 2015-10-21 株式会社日本触媒 电解液及具备该电解液的锂离子二次电池
CN106663838A (zh) * 2014-08-01 2017-05-10 宇部兴产株式会社 非水电解液及使用了该非水电解液的蓄电设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052482A (zh) * 2017-11-30 2020-04-21 株式会社Lg化学 用于凝胶聚合物电解质的组合物、由该组合物制备的凝胶聚合物电解质和包括该凝胶聚合物电解质的锂二次电池
US11581577B2 (en) 2017-11-30 2023-02-14 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte including fluoroalkylene oligomer, lithium salt, and phosphate or boran-based additive, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the gel polymer electrolyte
CN109167097A (zh) * 2018-09-05 2019-01-08 中国科学院过程工程研究所 一种锂离子电池宽温电解液
CN114335678A (zh) * 2021-12-29 2022-04-12 蜂巢能源科技(无锡)有限公司 一种电池及其制备方法
CN114335678B (zh) * 2021-12-29 2023-11-21 蜂巢能源科技(无锡)有限公司 一种电池及其制备方法

Also Published As

Publication number Publication date
TWI605628B (zh) 2017-11-11
JP6678659B2 (ja) 2020-04-08
US20160329600A1 (en) 2016-11-10
TW201630244A (zh) 2016-08-16
JP2017528894A (ja) 2017-09-28
EP3076472B1 (en) 2018-01-31
KR20160036808A (ko) 2016-04-05
KR101802018B1 (ko) 2017-11-27
WO2016048093A1 (ko) 2016-03-31
EP3076472A4 (en) 2017-03-01
US10276894B2 (en) 2019-04-30
CN107078353B (zh) 2019-08-16
EP3076472A1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
CN107078353B (zh) 非水电解液及包含所述非水电解液的锂二次电池
JP5932150B2 (ja) 非水性電解液及びこれを含むリチウム二次電池
KR101634910B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
TWI384668B (zh) 電解質、電池及形成鈍化層的方法
KR101639858B1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
JP6094843B2 (ja) リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池
CN104393242B (zh) 非水电解质及包含该非水电解质的二次电池
KR101537142B1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
CN105934848B (zh) 非水电解液及包含所述非水电解液的锂二次电池
CN105720304B (zh) 一种非水电解液和一种锂离子电池
CN107078346A (zh) 非水液体电解质以及包含该非水液体电解质的锂二次电池
JP7046330B2 (ja) 非水性電解液及びこれを含むリチウム二次電池
KR20160037102A (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
KR101781251B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
CN107078351A (zh) 非水性电解液及包含所述非水性电解液的锂二次电池
US11437646B2 (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP2022518409A (ja) 非水電解液添加剤、これを含むリチウム二次電池用非水電解液及びリチウム二次電池
KR20130122366A (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
CN104011927B (zh) 非水电解质溶液和包含其的锂二次电池
CN108028426A (zh) 含非水电解液的锂二次电池
Wan et al. Advanced Electrolyte Systems with Sultones Additives for High‐Voltage Lithium Batteries
KR20170038537A (ko) 비수성 전해액을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211220

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.

TR01 Transfer of patent right