WO2013002559A2 - 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법 - Google Patents

양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법 Download PDF

Info

Publication number
WO2013002559A2
WO2013002559A2 PCT/KR2012/005096 KR2012005096W WO2013002559A2 WO 2013002559 A2 WO2013002559 A2 WO 2013002559A2 KR 2012005096 W KR2012005096 W KR 2012005096W WO 2013002559 A2 WO2013002559 A2 WO 2013002559A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
secondary battery
lithium secondary
concentration
Prior art date
Application number
PCT/KR2012/005096
Other languages
English (en)
French (fr)
Other versions
WO2013002559A3 (ko
Inventor
최문호
김직수
신종승
정재용
전석용
이민형
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Priority claimed from KR1020120069019A external-priority patent/KR101378580B1/ko
Publication of WO2013002559A2 publication Critical patent/WO2013002559A2/ko
Publication of WO2013002559A3 publication Critical patent/WO2013002559A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material, a lithium secondary battery including the cathode active material, and a method of electrochemically activating the lithium secondary battery, and more particularly, to include a cathode active material having excellent high capacity and thermal stability, and the cathode active material. It relates to a lithium secondary battery and a method for electrochemically activating the lithium secondary battery.
  • Lithium ion secondary batteries have been widely used as power sources for portable devices since their introduction in 1991. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and developed remarkably, and the demand for lithium ion secondary battery as a power source to drive these portable electronic information communication devices is increasing day by day. It is increasing.
  • lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , and LiFeO 2.
  • LiCoO 2 has a good electrical conductivity and high battery. It shows voltage and excellent electrode characteristics, and is a typical cathode active material that is currently commercialized and commercially available.
  • the negative electrode active material a carbon-based material capable of intercalating and deintercalating lithium ions in an electrolyte is used, and a polyethylene-based porous polymer is used as a separator.
  • the lithium ion secondary battery manufactured by using the positive electrode, the negative electrode, and the electrolyte receives energy while reciprocating both electrodes such that lithium ions from the positive electrode active material are inserted into the carbon particles, which are negative electrode active materials, and are detached again during discharge. Charge and discharge is possible because it plays a role.
  • Li 2 MnO 3 Li 2 O.MnO 2
  • Li 2 O.MnO 2 Li 2 O.MnO 2
  • Li 2 O.MnO 2 Li 2 O.MnO 2
  • it cannot be used as an insertion electrode in a lithium battery because it is inefficiently desirable to accommodate.
  • Li 2 MnO 3 may be electrochemically active, as reported by Robertson et al. In the Chemistry of Materials (Vol. 15, page 1984, (2003)), these activated electrodes have been shown to have poor performance in lithium batteries. It is known that it is not desirable. This is because lithium manganese ions are tetravalent in Li 2 MnO 3 (Li 2 O.MnO 2 ) and are not easily oxidized at the actual potential, so lithium extraction is not possible.
  • Korean Patent Publication No. 2005-0083869 has proposed a lithium transition metal oxide having a concentration gradient of metal composition
  • Korean Patent Publication No. 2006-0134631 has a core portion composed of a nickel-based cathode active material and high thermal stability.
  • a cathode active material of a core-shell structure composed of a shell portion is proposed.
  • An object of the present invention is to provide a positive electrode active material having a new structure having excellent safety when high voltage is applied and a lithium secondary battery including the positive electrode active material.
  • Another object of the present invention is to provide a method of electrochemically activating the lithium secondary battery.
  • the present invention provides a ⁇ Li 2 M'O 3 ⁇ ⁇ (1-a) ⁇ LiMO 2 ⁇ (0 ⁇ a ⁇ 1.0, M is composed of V, Mn, Fe, Co and Ni).
  • M is composed of V, Mn, Fe, Co and Ni.
  • M ' is an element selected from the group consisting of Mn, Ti, Zr, Re and Pt
  • the concentration of the M in the ⁇ LiMO 2 ⁇ component has a concentration gradient in the radial direction of the particle, with the ⁇ Li 2 M'O 3 ⁇ ⁇ component and the LiMO 2 ⁇ the ⁇ Li 2 M'O 3 ⁇ for the whole color component concentration of the radial direction of the particles of the component
  • It provides a cathode active material having a concentration gradient, wherein the ⁇ Li 2 M'O 3 ⁇ component concentration is higher at the particle surface portion than at the particle center.
  • the particle center portion indicates about 0.01 ⁇ m to 0.1 ⁇ m from the center of the particle
  • the particle surface portion indicates about 0.01 ⁇ m to 0.1 ⁇ m inward from the edge surface of the particle.
  • M ' is preferably Mn.
  • Mn in the transition metal is fully lithiated with Li 2 MnO 3 , it forms a solid solution
  • a layered structure containing an excessive amount of lithium is formed to have a concentration gradient from the center portion to the surface portion, so that the concentration of Li 2 MnO 3 generated by reacting excess lithium with Mn, namely, The Li 2 MnO 3 concentration relative to the total concentration of the ⁇ Li 2 M'O 3 ⁇ component and the ⁇ LiMO 2 ⁇ component is higher at the particle surface portion than at the particle center portion.
  • the particle center and the particle surface of the ⁇ Li 2 M'O 3 ⁇ component concentration relative to the total concentration of the ⁇ Li 2 M'O 3 ⁇ component and the ⁇ LiMO 2 ⁇ component The difference in wealth is characterized by being 0.01 to 0.9.
  • the M is Ni at the center of the particle 1-x1-y1 Co x1 Mn y1 (0 ⁇ 1-x One -y One ⁇ 1, 0.1 ⁇ x One ⁇ 0.8, 0 ⁇ y One ⁇ 0.5)
  • Ni 1-x2-y2 Co x2 Mn y2 (0 ⁇ 1-x 2 -y 2 ⁇ 1, 0 ⁇ x 2 ⁇ 0.5, 0.2 ⁇ y 2 ⁇ 0.8)
  • the concentrations of Ni, Mn, and Co have a concentration gradient in the radial direction of the particles
  • the concentrations of Ni, Co, and Mn exhibit a continuous concentration gradient.
  • the cathode active material of the present invention is produced by reacting the excess lithium and the transition metal as the layered component constituting the cathode active material contains an excess of lithium and the transition metal is formed with a concentration gradient in the radial direction of the particles.
  • Li 2 MnO 3 is also characterized by being formed with a concentration gradient in the radial direction of the particles.
  • the method for producing the cathode active material according to the present invention is not particularly limited, and any method can be used without limitation as long as the transition metal exhibits a difference in concentration between the center portion and the surface portion.
  • the present invention also provides a lithium secondary battery comprising the cathode active material according to the present invention.
  • the present invention also provides a method for electrochemically activating a lithium secondary battery including the cathode active material according to the present invention.
  • the cathode active material according to the present invention has a characteristic flat level voltage range in a range of 4.4V to 4.8V, and is activated by a formation step at a high voltage above the flat level range to express a high capacity. to be. Therefore, the positive electrode active material according to the present invention can maintain a high capacity when driven in the 4.4V ⁇ 4.8V region.
  • the method of electrochemically activating the lithium secondary battery of the present invention is characterized by applying a voltage of 4.4 V or more and 4.8 V or less with respect to Li o .
  • the method of electrochemically activating the lithium secondary battery of the present invention is characterized by applying a voltage of 4.4 V or more and 4.8 V or less with respect to Li 2 MnO 3 .
  • Li 2 MnO 3 exhibits structural stability as the layered component constituting the cathode active material contains an excess of lithium and a transition metal is formed with a concentration gradient in the radial direction of the particles. It is formed with a concentration gradient from the center to the surface, thus showing a stable effect even at high voltage.
  • FIG. 1 to 3 illustrate EDX of a cross section of the cathode active material powders obtained in Examples 1-1 to 1-3 to check whether the concentration gradient of metal ions is maintained in the active material before and after firing. The measurement result is shown.
  • Figure 4 shows the SEM photograph of the positive electrode active material prepared in Examples 1 to 3 of the present invention.
  • FIG. 5 shows the results of charge and discharge experiments at a voltage of 4.3 V in a battery manufactured using the cathode active materials of Examples 1-1 to 1-3.
  • FIG. 8 shows the results of experiments of charge and discharge characteristics at 4.3 V after activation at 4.6 V in a battery prepared using the cathode active materials of Examples 2 and 3.
  • FIG. 9 shows the results of measuring lifetime characteristics when the active materials prepared in Example 1-1 were not activated, and the active materials prepared in Examples 2 and 3 were activated at 4.6 V, respectively. It was.
  • Example 10 shows the results of measuring life characteristics after charge and discharge at 4.6 V when the particles prepared in Comparative Example 1, Example 2, and Example 3 were used.
  • 11 to 12 show EDX measurements of cross sections before and after firing of the cathode active material powders obtained in Examples 4 and 7, with respect to the obtained cathode active material.
  • FIG. 13 shows SEM photographs of the cathode active materials prepared in Examples 4 and 7.
  • FIG. 14 shows the results of charge and discharge experiments at a voltage of 4.3 V in a battery manufactured using the cathode active materials of Examples 4 and 7.
  • FIG. 15 shows the results of charge and discharge experiments when activated at a voltage of 4.6 V in a battery prepared using the cathode active materials of Examples 4 and 7.
  • FIG. 16 shows the results of experiments of charge and discharge characteristics at 4.3 V on a battery manufactured using the cathode active materials of Examples 5, 6, 8, and 9 and activated at 4.6V.
  • FIG. 17 shows the charge and discharge characteristics of the battery prepared using the cathode active material prepared in Comparative Example 3 at 4.3 V, the charge and discharge characteristics when 4.6 V is applied, and 4.6.
  • the charge and discharge characteristics of the battery activated at V were tested at 4.3V.
  • FIG. 20 and 21 show the rate characteristics and the lifespan characteristics when a voltage of 4.6 V is applied in a battery manufactured using the positive electrode active materials prepared in Example 2 and Comparative Example 2.
  • FIG. 20 and 21 show the rate characteristics and the lifespan characteristics when a voltage of 4.6 V is applied in a battery manufactured using the positive electrode active materials prepared in Example 2 and Comparative Example 2.
  • a molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate for core formation was supplied at a rate of 0.3 L / hr of a 2.4 M aqueous metal solution mixed at a ratio of 80: 20: 0, and a concentration of 4.8 mol for pH adjustment.
  • Sodium hydroxide solution was supplied to maintain the pH at 11.
  • the impeller speed was adjusted to 1000 rpm.
  • the average residence time of the solution in the reactor was about 6 hours, and after the reaction reached a steady state, a steady state duration was given to the reactant to obtain a more dense composite metal hydroxide.
  • the concentration of the transition metal shows a continuous concentration gradient It was made. That is, the reaction was continued using the changed aqueous metal solution while changing the concentration until the molar ratio of nickel sulfate, cobalt sulfate and manganese sulfate aqueous solution became 80: 20: 0 to 50: 0: 50.
  • the metal composite hydroxide was filtered, washed with water, dried in a 110 ° C. hot air dryer for 15 hours, and then mixed with the metal composite hydroxide and lithium hydroxide (LiOH) so that the molar ratio of Li to transition metal ions was 1.05. After preheating was performed at 500 ° C. for 10 hours after heating at a temperature rising rate of min. , 1-3 cathode active material powders were obtained.
  • Example 1-1 Example 1-2
  • Example 1-3 Firing temperature 780 °C 840 °C 900 °C a Measured value Li / (Ni + Co + Mn) 1.05 1.04 1.04 Ni / (Ni + Co + Mn) 58.8 59.2 58.9 Co / (Ni + Co + Mn) 7.7 7.7 7.8 Mn / (Ni + Co + Mn) 33.5 33.1 33.4
  • Example 2 For the positive electrode active material obtained in Example 1, EDX of the cross section was measured to confirm whether the concentration gradient of the metal ions before and after firing was maintained according to the firing temperature, and the results are shown in FIGS. 1 to 3.
  • Example 1 the metal composite hydroxide and lithium hydroxide (LiOH) were mixed at a molar ratio of 1: 1.10, heated at a heating rate of 2 ° C./min, and maintained at 500 ° C. for 10 hours, and preliminary firing was performed at 780 ° C. 20
  • a positive electrode active material powder was obtained in the same manner as in Example 1 except that the sample was calcined for a time.
  • Example 1 the metal composite hydroxide and lithium hydroxide (LiOH) were mixed at a molar ratio of 1: 1.15, heated at a heating rate of 2 ° C./min, and maintained at 500 ° C. for 10 hours to carry out preliminary firing at 780 ° C. 20
  • a positive electrode active material powder was obtained in the same manner as in Example 1 except that the sample was calcined for a time.
  • a precursor was prepared by a coprecipitation process so that the entire active material had a uniform composition, and lithium hydroxide was mixed so that the ratio of Li was 1.3 to prepare a Li 1.3 Ni 0.25 Co 0.15 Mn 0.60 active material.
  • a Li 1.3 Ni 0.25 Co 0.15 Mn 0.60 active material was prepared in the same manner as in Comparative Example 1 except that a hydroxide salt was used, in which the entire active material was a uniform composition and the Li ratio was 1.3.
  • Li 1.1 Ni 0.25 Co 0.15 Mn 0.60 active material was prepared in the same manner as in Comparative Example 1 except that lithium hydroxide was mixed so that the ratio of Li was 1.1 .
  • Slurry was prepared by mixing acetylene black as a positive electrode active material and a conductive material prepared in Examples 1 to 3 and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 80:10:10. The slurry was uniformly applied to an aluminum foil having a thickness of 20 ⁇ m, and dried under vacuum at 120 ° C. to prepare a positive electrode for a lithium secondary battery.
  • PVdF polyvinylidene fluoride
  • the anode and the lithium foil were used as counter electrodes, and a porous polyethylene membrane (manufactured by Celgard ELC, Celgard 2300, thickness: 25 ⁇ m) was used as a separator, and ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
  • a coin battery was prepared according to a known manufacturing process using a liquid electrolyte in which LiPF 6 was dissolved at a concentration of 1 M in a solvent.
  • Example 5 shows the results of charging and discharging experiments at a voltage of 4.3 V in the battery manufactured using the cathode active materials of Example 1-1, Example 1-2, and Example 1-3. As shown in Figure 5 it can be seen that the initial charge capacity is the best when the firing temperature is 900 °C.
  • the ratio of Li to the transition metal prepared in Comparative Example 1 is 1.3
  • the active material particles having a uniform composition without a concentration gradient of the transition metal are used and the particles prepared in Examples 1-2 and 1-3 are used.
  • the results of measuring the life characteristics after charge and discharge at 4.6 V are shown in FIG. 10.
  • the concentration of the transition metal in the particles shows a gradient and the lithium is included in excess, it can be seen that the life characteristics are greatly improved.
  • Example 1 Mixing the molar ratio of nickel sulfate, cobalt sulfate and manganese sulfate in an aqueous solution for forming a core in Example 1 65: 35: 0 ratio, and the mol of nickel sulfate, cobalt sulfate and manganese sulfate as an aqueous solution for preparing the surface composition
  • a positive electrode active material powder was obtained in the same manner as in Example 1 except that the ratio was mixed at a 50: 0: 50 ratio and calcined at 780 ° C.
  • the preliminary firing was carried out by keeping the metal composite hydroxide and the fishery in Example 4 for 10 hours, and calcining at 780 ° C. for 20 hours to obtain a cathode active material powder in the same manner as in Example 4.
  • Example 4 the metal composite hydroxide and lithium hydroxide (LiOH) were mixed at a molar ratio of 1: 1.15, heated at a heating rate of 2 ° C./min, and maintained at 500 ° C. for 10 hours to carry out preliminary firing at 780 ° C. 20
  • a positive electrode active material powder was obtained in the same manner as in Example 4 except for the time firing.
  • Example 4 a design value 1.05 1.10 1.15 a Measured value Li / (Ni + Co + Mn) 1.04 1.11 1.14 Ni / (Ni + Co + Mn) 54.8 54.8 55.3 Co / (Ni + Co + Mn) 17.1 17 17.1 Mn / (Ni + Co + Mn) 28.1 28.2 27.5
  • Example 1 Mixing the molar ratio of nickel sulfate, cobalt sulfate and manganese sulfate in an aqueous solution for forming a core in Example 1 in a ratio of 70: 30: 0, and the mol of nickel sulfate, cobalt sulfate and manganese sulfate as an aqueous solution for preparing the surface composition
  • a metal hydroxide was prepared by mixing the ratio in a 50: 0: 50 ratio, and the cathode active material powder was obtained in the same manner as in Example 1 except that the metal hydroxide was calcined at 780 ° C.
  • Example 7 the metal composite hydroxide and lithium hydroxide (LiOH) were mixed at a molar ratio of 1: 1.10, heated at a heating rate of 2 ° C./min, and maintained at 500 ° C. for 10 hours to carry out preliminary firing at 780 ° C. 20
  • a positive electrode active material powder was obtained in the same manner as in Example 7, except that the product was calcined for a time.
  • Example 7 the metal composite hydroxide and lithium hydroxide (LiOH) were mixed at a molar ratio of 1: 1.15, heated at a heating rate of 2 ° C./min, and maintained at 500 ° C. for 10 hours to perform preliminary firing at 780 ° C. 20
  • a positive electrode active material powder was obtained in the same manner as in Example 4 except for the time firing.
  • Slurry was prepared by mixing acetylene black as a positive electrode active material and a conductive material prepared in Examples 4 to 9 and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 80:10:10.
  • the slurry was uniformly applied to an aluminum foil having a thickness of 20 ⁇ m, and dried under vacuum at 120 ° C. to prepare a positive electrode for a lithium secondary battery.
  • the anode and the lithium foil were used as counter electrodes, and a porous polyethylene membrane (manufactured by Celgard ELC, Celgard 2300, thickness: 25 ⁇ m) was used as a separator, and ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
  • a coin battery was prepared according to a known manufacturing process using a liquid electrolyte in which LiPF 6 was dissolved at a concentration of 1 M in a solvent.
  • FIG. 17 shows the results of measuring life characteristics at 4.3 V after using the active materials prepared in Examples 5 to 9 and Comparative Example 3 and activating at 4.6 V.
  • FIG. 17 shows the results of measuring life characteristics at 4.3 V after using the active materials prepared in Examples 5 to 9 and Comparative Example 3 and activating at 4.6 V.
  • FIG. 18 In the case of using the active material prepared in Examples 5 to 9 at 4.6 V in Figure 18 it can be confirmed that the life characteristics are improved because the capacity is maintained at almost 100% even after 100 cycles.
  • the active material prepared in Comparative Example 3 after activating at 4.6 V it can be seen that after 100 cycles, the life characteristics are reduced to about 75%.
  • Example 21 and 22 show results according to the rate characteristics and the life characteristics when a voltage of 4.6 V is applied in a battery manufactured using the cathode active materials of Example 2 and Comparative Example 2.
  • the rate characteristic was confirmed that Example 2 is significantly improved compared to Comparative Example 2, and the overall voltage drop state is also very superior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법에 관한 것으로, 보다 상세하게는 고용량과 열적 안정성이 모두 우수한 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법에 관한 것이다.

Description

양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
본 발명은 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법에 관한 것으로, 보다 상세하게는 고용량과 열적 안정성이 모두 우수한 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법에 관한 것이다.
리튬 이온 이차 전지는 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC 등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보 통신기기들을 구동할 동력원으로서 리튬 이온 이차 전지에 대한 수요가 나날이 증가하고 있다.
특히 최근에는 내연기관과 리튬이차 전지를 혼성화(hybrid)하여 전기자동차용 동력원에 관한 연구가 미국, 일본, 유럽 등에서 활발히 진행 중에 있다. 전기 자동차용의 대형 전지로서는, 아직도 개발 시작 단계이고 특히 안전성의 관점에서 니켈 수소 전지가 사용되고 있으며, 에너지 밀도 관점에서 리튬 이온전지 사용을 고려하고 있지만, 높은 가격과 안전성이 문제가 되고 있다.
현재 리튬 계열 이차 전지에 사용되는 양극활물질로는 LiCoO2, LiNiO2, LiMn2O4, LiMnO2, LiFeO2 등의 리튬 함유 전이 금속 복합산화물이 있으며, 특히, LiCoO2는 양호한 전기 전도도, 높은 전지 전압 및 우수한 전극 특성을 보이며, 현재 상업화되어 시판되고 있는 대표적인 양극활물질이다. 음극활물질로는 전해액 중의 리튬 이온을 삽입(intercalation) 및 탈리(deintercalation)될 수 있는 카본계 재료를 이용하고 있으며, 분리막으로는 폴리에틸렌 계열의 다공성 고분자를 사용하고 있다. 상기의 양극, 음극 및 전해질을 이용하여 제조된 리튬 이온 이차 전지는 첫번째 충전에 의해 양극활물질로부터 나온 리튬 이온이 음극활물질인 카본 입자내에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.
이러한 리튬 이차 전지를 고용량, 고출력 및 고전압으로 제조하기 위해서는, 전지내 양극활물질의 이론적 가용 용량을 증가시켜야 할 필요성이 있다.
근래에 Li2MnO3 를 도입하여 층상계 양극활물질의 안정성을 높이면서 이론적 가용 용량을 증가시키고자 하는 제안이 있다.
종래, 리튬과 망간 이온이 8면 모두를 차지하고 있는 층상 암염 타입 구조를 갖는 Li2MnO3 (Li2O·MnO2)는 이웃하는 8면 구조와 맞대고 있는 4면 구조의 삽입 공간이 추가적인 리튬을 수용하기에는 비효율적으로 바람직하지 않기 때문에 리튬 전지에서 삽입 전극(insertion electrode)으로서 사용될 수 없는 것으로 알려져 있었다.
Materials Research Bulletin(Volume 26, page 463 (1991))에서 Rossouw 외 다수에 의하면, Li2-xMnO3-x/2를 생산하기 위한 화학 처리에 의해 Li2MnO3 구조로부터 Li2O를 제거함으로써, Li2MnO3이 전기화학적으로 활성될 수 있으나, Chemistry of Materials( Volume 15, page 1984, (2003))에서 Robertson 외 다수에 의해 보고된 바에 의하면, 이러한 활성된 전극은 리튬 전지에서의 성능이 바람직하지 못하다는 것이 알려져 있다. Li2MnO3(Li2O·MnO2) 에서 망간 이온이 4가이며, 실제 퍼텐셜에서는 쉽게 산화되지 않기 때문에, 리튬 추출이 가능하지 않기 때문이다.
그러나, 복합 전극에서, 가령 Li2MnO3와 LiMO2 성분이 모두 층상 타입 구조를 갖는 xLi2MnO3·(l-x)LiMO2 (M=Mn, Ni, Co) 등의 두 가지 성분의 전극 시스템에서는 Li2MnO3와 LiMO2 성분이 원소 레벨로 일체화되어, 편의상 “복합”구조라고 일컬어지는 높은 수준의 복잡한 구조를 생성하게 되고, 결과적으로 개선된 전기화학적 속성에서는 높은 효율성을 지닐 수 있다는 것이 알려져 있다.
한편, 고용량 이차전지 활물질로 사용되기 위해서는 입자 내부에서는 리튬의 삽입탈리 자리가 많고 구조적으로 안정해야 하나, 표면에서는 안전성을 향상시키기 위해 전해액과의 반응을 최소화시켜야 한다. 이를 위해서 대한민국 특허공개 제2005-0083869호 등에는 금속 조성의 농도 구배를 갖는 리튬전이금속 산화물이 제안되어 있고, 대한민국 특허공개 제2006-0134631 호에는 니켈계 양극활물질로 구성된 코어부와 열적 안정성이 높은 쉘부로 구성되는 코어-쉘 구조의 양극활물질에 대해 제안하고 있다.
본 발명은 고전압 인가시 안전성이 뛰어난 새로운 구조의 양극활물질 및 상기 양극활물질을 포함하는 리튬 이차 전지를 제공하는 것을 목적으로 한다.
본 발명은 또한, 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법을 제공하는 것을 목적으로 한다.
상기와 같은 과제를 해결하기 위하여 본 발명은 a{Li2M'O3}·(1-a){LiMO2} (0<a<1.0, M 은 V, Mn, Fe, Co 및 Ni 로 이루어진 그룹에서 선택되는 하나 또는 두개 이상의 원소, 상기 M' 은 Mn, Ti, Zr, Re 및 Pt 로 이루어진 그룹에서 선택되는 원소임)로 이루어지는 양극활물질에 있어서, 상기 {LiMO2} 성분에서 상기 M 의 농도가 입자의 반경 방향으로 농도 구배를 가지고, 상기 {Li2M'O3} 성분과 상기 {LiMO2} 성분의 전체 농도에 대한 상기 {Li2M'O3} 성분 농도가 입자의 반경 방향으로 농도 구배를 가지며, 상기 {Li2M'O3} 성분 농도가 입자 중심부에 비하여 입자 표면부에서의 높은 것을 특징으로 하는 양극활물질을 제공한다.
본 발명에 있어서, 입자 중심부는 입자의 중앙으로부터 0.01 ㎛ 내지 0.1 ㎛ 내외를 가리키며, 입자 표면부는 입자의 가장 자리 표면으로부터 내부방향으로 0.01 ㎛ 내지 0.1 ㎛ 내외를 가리킨다.
본 발명의 양극활물질에 있어서, 상기 M' 은 Mn 인 것이 바람직하다. 전이 금속 중에서 Mn 만이 Li2MnO3로 완전히 리튬화될 경우에, 고용체를 형성한다
본 발명의 양극활물질에 있어서, 0.05≤a<1.0 인 것, 바람직하게 상기 0.1≤a<1.0인 것을 특징으로 한다.
본 발명의 양극활물질은 리튬을 과량으로 포함하는 층상 구조의 물질을 중심부로부터 표면부까지 농도 구배를 가지고 형성하도록 하여, 과량의 리튬과 Mn 이 반응하여 생성되는 Li2MnO3 의 농도, 즉, 상기 {Li2M'O3} 성분과 상기 {LiMO2} 성분의 전체 농도에 대한, Li2MnO3 의 농도가 입자 중심부에 비하여 입자 표면부에서의 높은 것을 특징으로 한다. 구체적으로, 본 발명의 양극활물질에 있어서, 상기 {Li2M'O3} 성분과 상기 {LiMO2} 성분의 전체 농도에 대한 상기 {Li2M'O3} 성분 농도의 입자 중심부와 입자 표면부에서의 차이가 0.01 내지 0.9 인 것을 특징으로 한다.
본 발명의 양극활물질에 있어서, 상기 M 은 입자의 중심부에서는 Ni1-x1-y1Cox1Mny1 (0≤1-x1-y1≤1, 0.1≤x1≤0.8, 0≤y1≤0.5) 이고, 표면에서는 Ni1-x2-y2Cox2Mny2 (0≤1-x2-y2≤1, 0≤x2≤0.5, 0.2≤y2≤0.8) 로 표시되고, 상기 Ni, Mn, 및 Co 의 농도가 입자의 반경 방향으로 농도 구배를 가지며, y1≤y2, x2 ≤x1 의 관계를 만족하는 것을 특징으로 한다. 본 발명의 양극활물질에 있어서, 상기 Ni, Co, Mn 의 농도가 연속적인 농도 구배를 나타내는 것을 특징으로 한다.
본 발명의 양극활물질은 상기 양극활물질을 구성하는 층상계 성분이 리튬을 과량으로 포함하면서, 전이 금속이 입자의 반경 방향으로 농도 구배를 가지고 형성됨에 따라 상기 과량의 리튬과 전이 금속이 반응하여 생성되는 Li2MnO3 도 입자의 반경 방향으로 농도 구배를 가지고 형성되는 것을 기술적 특징으로 한다. 본 발명에 의한 양극활물질을 제조하는 방법은 특별히 제한되지 않으며, 중심부와 표면부에 전이 금속이 농도 차이를 나타나게 하는 방법이라면 제한없이 사용가능하다.
본 발명은 또한, 본 발명에 의한 양극활물질을 포함하는 리튬 이차 전지를 제공한다.
본 발명은 또한, 상기 본 발명에 의한 양극활물질을 포함하는 리튬 이차 전지를 전기화학적으로 활성화시키는 방법을 제공한다.
본 발명에 의한 양극활물질은 기존의 다른 양극재료들과 달리 4.4V ~ 4.8V 구간에서 특징적인 평탄준위전압영역을 가지며, 이러한 평탄준위영역 이상의 고전압에서 포메이션 단계를 거쳐야만 활성화되어 고용량을 발현하는 특수한 재료이다. 따라서, 본 발명에 의한 양극활물질은 4.4V ~ 4.8V 영역에서 구동할 경우 고용량이 유지될 수 있다.
구체적으로 본 발명의 리튬 이차 전지를 전기화학적으로 활성화시키는 방법은 Lio 에 대하여 4.4V 이상 4.8 V 이하의 전압을 인가하는 것을 특징으로 한다.
본 발명의 리튬 이차 전지를 전기화학적으로 활성화시키는 방법은 Li2MnO3 에 대하여 4.4V 이상 4.8 V 이하의 전압을 인가하는 것을 특징으로 한다.
본 발명에 의한 양극활물질은 상기 양극활물질을 구성하는 층상계 성분이 리튬을 과량으로 포함하면서, 전이 금속이 입자의 반경 방향으로 농도 구배를 가지고 형성됨에 따라, 구조적인 안정성을 나타내는 Li2MnO3 가 중심으로부터 표면까지 농도 구배를 가지고 형성되므로 고전압에서도 안정적인 효과를 나타낸다.
도 1 내지 도 3은 상기 실시예 1-1 내지 실시예 1-3 에서 얻어진 양극활물질 분말에 있어서, 소성 전후의 활물질 내부에서 금속 이온의 농도 구배가 유지되는지 여부를 확인해 보기 위해서 단면에 대한 EDX 를 측정한 결과를 나타낸다.
도 4는 본 발명의 상기 실시예 1 내지 실시예3에서 제조된 양극활물질에 대한 SEM 사진 결과를 나타내었다.
도 5는 상기 실시예 1-1 내지 실시예 1-3 의 양극활물질을 사용하여 제조된 전지에 있어서의 4.3V 전압에서의 충방전 실험 결과를 나타내었다.
도 6은 실시예 2, 실시예 3에서 금속의 농도에 대한 Li 의 비율이 달라질 경우 충방전 실험 결과를 나타내었다.
도 7은 상기 실시예 1-1, 실시예 2, 실시예 3 의 양극활물질을 사용하여 제조된 전지에 있어서의 4.6V 전압을 인가한 경우의 충방전 실험 결과를 나타내었다.
도 8은 상기 실시예 2, 실시예 3 의 양극활물질을 사용하여 제조된 전지에 있어서 4.6V 에서 활성화시킨 후 4.3 V 에서 충방전 특성을 실험한 결과를나타내었다.
도 9는 상기 실시예 1-1 에서 제조된 활물질을 활성화시키지 않은 경우, 상기 실시예 2, 실시예 3에서 제조된 활물질을 사용하고 4.6V 에서 활성화시킨 경우의 수명특성을 각각 측정한 결과를 나타내었다.
도 10은 상기 비교예 1, 상기 실시예 2, 실시예 3 에서 제조된 입자를 사용한 경우 4.6 V 전압에서 충방전후 수명 특성을 측정한 결과를 나타내었다.
도 11 내지 도 12는 상기 실시예 4, 실시예 7 에서 얻어진 양극활물질 분말에 있어서, 얻어진 양극활물질에 대해 소성 전후의 단면에 대한 EDX 를 측정 결과를 나타낸다.
도 13은 상기 실시예 4, 실시예 7에서 제조된 양극활물질에 대한 SEM 사진 결과를 나타내었다.
도 14는 상기 실시예 4, 실시예 7 의 양극활물질을 사용하여 제조된 전지에 있어서의 4.3V 전압에서의 충방전 실험 결과를 나타내었다.
도 15는 상기 실시예 4, 실시예 7 의 양극활물질을 사용하여 제조된 전지에 있어서의 4.6V 전압에서 활성화시킨 경우의 충방전 실험 결과를 나타내었다.
도 16은 상기 실시예 5, 실시예 6, 실시예 8, 실시예 9 의 양극활물질을 사용하여 제조되고, 4.6V 에서 활성화시킨 전지에 대해 4.3 V 에서 충방전 특성을 실험한 결과를 나타내었다.
도 17은 상기 비교예 3에서 제조된 양극 활물질을 사용하여 제조된 전지에 있어서의 4.3V에서 충방전 특성을 실험한 결과, 4.6V 전압을 인가한 경우의 충방전 특성을 실험한 결과, 및 4.6V에서 활성화시킨 전지에 대해 4.3V에서 충방전 특성을 실험한 결과를 나타내었다.
도 18은 상기 비교예 3, 상기 실시예 5, 실시예 6, 실시예 8, 실시예 9에서 제조된 활물질을 사용하고 4.6V 활성화시킨 후 4.3V에서의 수명 특성을 측정한 결과를 나타내었다.
도 19 는 비교예 3, 실시예 2 에서 제조된 양극 활물질을 사용하여 제조된 전지에 있어서의 충방전 특성을 실험한 후 DSC 결과를 나타내었다.
도 20, 도 21은 실시예 2와 비교예 2 에서 제조된 양극 활물질을 사용하여 제조된 전지에 있어서의 4.6V 전압을 인가한 경우의 율특성과 수명 특성을 나타내었다.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
<실시예 1>
공침 반응기(용량 4L, 회전모터의 출력 80W이상)에 증류수 4리터를 넣은 뒤 질소 가스를 반응기에 0.5리터/분의 속도로 공급함으로써, 용존산소를 제거하고 반응기의 온도를 50℃로 유지시키면서 1000 rpm으로 교반하였다.
먼저, 4.8 mol 농도의 암모니아 용액을 0.8 몰/시간으로 반응기에 연속적으로 투입하였다.
이후, 코아 형성을 위한 황산니켈, 황산코발트 및 황산망간의 몰 비가 80 : 20 :0 비율로 혼합된 2.4M 농도의 금속 수용액을 0.3 리터/시간으로, 공급하고, 또한 pH 조정을 위해 4.8 mol 농도의 수산화나트륨 용액을 공급하여 pH 가 11로 유지되도록 하였다. 임펠러 속도는 1000 rpm으로 조절하였다. 유량을 조절하여 용액의 반응기 내의 평균체류시간은 6 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 상기 반응물에 대해 정상상태 지속시간을 주어 좀 더 밀도 높은 복합금속수산화물을 얻도록 하였다.
정상 상태에 도달한 상기 복합금속수산화물의 입자 크기가 8-13㎛ 가 되면, 이후 표면 형성을 위한 수용액과 상기 코아 형성을 위한 금속 수용액을 혼합하면서 공급하여 전이 금속의 농도가 연속적인 농도 구배를 나타내도록 하였다. 즉, 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 80 : 20 : 0 에서 50 : 0 : 50 이 될 때 까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용하여 반응을 계속하였다. 금속 수용액의 몰 비가 50 : 0 : 50 에 이르면 그 몰 비를 유지한 상태로 정상 상태에 도달할 때까지 반응을 지속하여 농도 구배를 가지는 구형의 니켈망간코발트 복합 수산화물을 얻었다.
상기 금속 복합수산화물을 여과 하고, 물 세척한 후에 110℃ 온풍건조기에서 15시간 건조 후, Li 과 전이 금속 이온과의 몰비가 1.05가 되도록 상기 금속 복합 수산화물과 수산화리튬(LiOH)을 혼합하여 2℃/min의 승온 속도로 가열한 후 500℃에서 10시간 유지시켜 예비 소성을 수행하였으며 780℃, 840℃, 900℃ 에서 20시간 소성시켜 다음 표 1의 조성으로 나타내어지는 실시예 1-1, 1-2, 1-3의 양극활물질 분말을 얻었다.
표 1
실시예 1-1 실시예1-2 실시예 1-3
소성 온도 780 ℃ 840℃ 900℃
a 측정값Li/(Ni+Co+Mn) 1.05 1.04 1.04
Ni/(Ni+Co+Mn) 58.8 59.2 58.9
Co/(Ni+Co+Mn) 7.7 7.7 7.8
Mn/(Ni+Co+Mn) 33.5 33.1 33.4
<실험예 1> EDX 측정 결과
상기 실시예 1에서 얻어진 양극활물질에 대해 소성 온도에 따라 소성 전후의 금속 이온의 농도 구배가 유지되는지 여부를 확인해 보기 위해서 단면에 대한 EDX 를 측정하였으며 그 결과를 도 1 내지 도 3으로 나타내었다.
도 1 내지 도 3에서 실선은 소성후의 EDX 분석한 결과를 나타내고, 점선은 소성전의 EDX 분석한 결과를 나타낸다. 본 발명에 따른 양극활물질 분말의 경우 소성 온도가 900℃ 로 높아져도 소성후 내부 전이 금속의 농도가 중심으로부터 표면 방향으로 농도 구배를 유지하는 것을 확인할 수 있다. 이는 Li을 과량으로 첨가함에 따라 입자의 중심으로부터 표면 방향으로 농도 구배를 가지고 생성되는 Li2MnO3 에 의한 구조 안전성이 소성에 의해서도 영향을 받지 않는다는 것을 의미한다.
<실시예 2>
상기 실시예 1에서 금속 복합 수산화물과 수산화리튬(LiOH)을 1 : 1.10 몰비로 혼합하고, 2℃/min의 승온 속도로 가열한 후 500℃에서 10시간 유지시켜 예비 소성을 수행하였으며 780℃ 에서 20시간 소성시킨 것을 제외하고는 상기 실시예 1과 동일하게 하여 양극활물질 분말을 얻었다.
<실시예 3>
상기 실시예 1에서 금속 복합 수산화물과 수산화리튬(LiOH)을 1 : 1.15 몰비로 혼합하고, 2℃/min의 승온 속도로 가열한 후 500℃에서 10시간 유지시켜 예비 소성을 수행하였으며 780℃ 에서 20시간 소성시킨 것을 제외하고는 상기 실시예 1과 동일하게 하여 양극활물질 분말을 얻었다.
<실험예 2> SEM 사진 측정 결과
상기 실시예 1에서 소성 온도에 따라 제조된 양극활물질, 실시예2, 3에서 제조된 양극활물질에 대한 SEM 사진 결과를 도 4에 나타내었다. SEM 사진에서는 제조된 양극활물질 입자의 크기가 10㎛ 이며, 구형을 유지하는 것을 확인할 수 있다.
<비교예 1>
탄산염 수용액을 사용하여 활물질 전체가 균일한 조성이 되도록 공침 과정으로 전구체를 제조하고, Li 의 비율이 1.3 이 되도록 수산화리튬을 혼합하여 Li1.3Ni0.25Co0.15Mn0.60 활물질을 제조하였다.
<비교예 2>
수산화염을 사용했다는 점을 제외하고는 상기 비교예 1과 동일하게 하여 활물질 전체가 균일한 조성이고, Li 의 비율이 1.3 이 되는 Li1.3Ni0.25Co0.15Mn0.60 활물질을 제조하였다.
<비교예 3>
Li 의 비율이 1.1 이 되도록 수산화리튬을 혼합했다는 점을 제외하고는 상기 비교예 1과 동일하게 하여 Li1.1Ni0.25Co0.15Mn0.60 활물질을 제조하였다.
<제조예> 리튬 이차 전지의 제조
상기 실시예 1 내지 3에서 제조된 양극 활물질과 도전재로 아세틸렌블랙, 결합제로는 폴리비닐리덴 플루오라이드(PVdF)를 80 : 10 : 10 의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 20㎛ 두께의 알루미늄박에 균일하게 도포하고, 120℃에서 진공 건조하여 리튬 이차 전지용 양극을 제조하였다.
상기 양극과, 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막 (셀가르드 엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 디에틸 카보네이트가 부피비로 1:1로 혼합된 용매에 LiPF6 가 1 M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다.
<실험예 3> 4.3 V 충방전 실험
상기 실시예 1-1, 실시예 1-2,실시예 1-3 의 양극활물질을 사용하여 제조된 전지에 있어서의 4.3V 전압에서의 충방전 실험 결과를 도 5에 나타내었다. 도 5에서 보는 바와 같이 소성 온도가 900℃ 일 경우 초기 충전 용량이 가장 우수한 것을 확인할 수 있다.
상기 실시예 2, 3에서 금속의 농도에 대한 Li 의 비율이 달라질 경우 충방전 실험 결과를 도 6에 나타내었다. Li 의 비율이 1.10 이상으로높아지면 충방전 용량의 증가폭이 작아지는 것을 확인하였다.
<실험예 4> 전기화학적 활성화 실험 - 4.6V
상기 실시예 1-1, 실시예 2, 3 의 양극활물질을 사용하여 제조된 전지에 있어서의 4.6V 전압을 인가한 경우의 충방전 실험 결과를 도 7에 나타내었다.
도 7에서 Li 의 비율이 높을수록 4.4V 이후 평탄 전위가 발생되는 것을 확인할 수 있다. 이와 같은 평탄 전위는 본 발명의 경우 Li2MnO3 가 생성되었으며, 상기 Li2MnO3 로부터 리튬이 탈리되고 있음을 간접적으로 보여주는 것이다.
<실험예 5> 4.6 V 활성화 후 4.3 V 에서 충방전 특성 실험
상기 실시예 1-1, 실시예 2, 3 의 양극활물질을 사용하여 제조된 전지에 있어서 상기 실험예 4에서와 같이 4.6V 에서 활성화시킨 후 4.3 V 에서 충방전 특성을 실험한 결과를 도 8 에 나타내었다.
4.6 V 에서 활성화시킨 후 4.3 V 에서 충방전 특성을 나타내는 도 8의 경우 활성화 없이 4.3 V로 충방전시킨 도 6의 결과에서보다 20 mAh/g 정도 용량이 향상된 것을 확인할 수 있었다.
<실험예 6> 수명 특성 측정
상기 실시예 1-1 에서 제조된 활물질을 활성화시키지 않은 경우,상기 실시예 2, 3에서 제조된 활물질, 비교예 3에서 제조된 활물질을 사용하고 4.6 V 에서 활성화시킨 경우의 수명특성을 측정한 결과를 도 9에 나타내었다. 도 9에서 4.6 V 를 인가하여 활성화시킨 경우 수명 특성이 크게 개선되는 것을 확인할 수 있다.
상기 비교예 1에서 제조된 전이 금속에 대한 Li 의 비율이 1.3 이지만, 전이 금속의 농도 구배가 없이 균일한 조성을 나타내는 활물질 입자를 사용한 경우와 상기 실시예 1-2, 1-3 에서 제조된 입자를 사용한 경우 4.6 V 전압에서 충방전후 수명 특성을 측정한 결과를 도 10에 나타내었다. 본 발명에 의하여 입자 내에 전이 금속의 농도가 구배를 나타내며 리튬이 과량으로 포함된 경우 수명 특성이 크게 향상되는 것을 확인할 수 있다.
<실시예 4 >
상기 실시예 1 에서 코아 형성을 위한 수용액으로 황산니켈, 황산코발트 및 황산망간의 몰 비를 65 : 35 : 0 비율로 혼합하고, 표면 조성을 제조하기 위한 수용액으로 황산니켈, 황산코발트 및 황산망간의 몰 비를 50 : 0 : 50 비율로 혼합하고, 780℃에서 소성한 것을 제외하고는 상기 실시예 1과 동일하게 하여 양극활물질 분말을 얻었다.
<실시예 5 >
상기 실시예 4 에서 금속 복합 수산화물과 수산 에서 10시간 유지시켜 예비 소성을 수행하였으며 780℃ 에서 20시간 소성시킨 것을 제외하고는 상기 실시예 4와 동일하게 하여 양극활물질 분말을 얻었다.
<실시예 6>
상기 실시예 4 에서 금속 복합 수산화물과 수산화리튬(LiOH)을 1 : 1.15 몰비로 혼합하고, 2℃/min의 승온 속도로 가열한 후 500℃에서 10시간 유지시켜 예비 소성을 수행하였으며 780℃ 에서 20시간 소성시킨 것을 제외하고는 상기 실시예 4와 동일하게 하여 양극활물질 분말을 얻었다.
표 2
실시예 4 실시예5 실시예 6
a 설계값 1.05 1.10 1.15
a 측정값Li/(Ni+Co+Mn) 1.04 1.11 1.14
Ni/(Ni+Co+Mn) 54.8 54.8 55.3
Co/(Ni+Co+Mn) 17.1 17 17.1
Mn/(Ni+Co+Mn) 28.1 28.2 27.5
<실시예 7>
상기 실시예 1 에서 코아 형성을 위한 수용액으로 황산니켈, 황산코발트 및 황산망간의 몰 비를 70 : 30 : 0 비율로 혼합하고, 표면 조성을 제조하기 위한 수용액으로 황산니켈, 황산코발트 및 황산망간의 몰 비를 50 : 0 : 50 비율로 혼합하여 금속수산화물을 제조하고, 780℃에서 소성한 것을 제외하고는 상기 실시예 1과 동일하게 하여 양극활물질 분말을 얻었다.
<실시예 8 >
상기 실시예 7 에서 금속 복합 수산화물과 수산화리튬(LiOH)을 1 : 1.10 몰비로 혼합하고, 2℃/min의 승온 속도로 가열한 후 500℃ 에서 10시간 유지시켜 예비 소성을 수행하였으며 780℃ 에서 20시간 소성시킨 것을 제외하고는 상기 실시예 7과 동일하게 하여 양극활물질 분말을 얻었다.
<실시예 9>
상기 실시예 7 에서 금속 복합 수산화물과 수산화리튬(LiOH)을 1 : 1.15 몰비로 혼합하고, 2℃/min의 승온 속도로 가열한 후 500℃에서 10시간 유지시켜 예비 소성을 수행하였으며 780℃ 에서 20시간 소성시킨 것을 제외하고는 상기 실시예 4와 동일하게 하여 양극활물질 분말을 얻었다.
<실험예 7> 단면에 대한 EDX 측정
상기 실시예 4, 실시예 7 에서 얻어진 양극활물질 분말에 있어서, 소성 전후의 금속 이온의 농도 구배가 유지되는지 여부를 확인해 보기 위해서 단면에 대한 EDX 를 측정하였으며 그 결과를 도 11 내지 도 12에 나타내었다.
도 11 내지 도 12에서 실선은 소성후의 EDX 분석한 결과를 나타내고, 점선은 소성전의 EDX 분석한 결과를 나타낸다. 본 발명에 따른 양극활물질 분말의 경우 소성 온도가 높아지더라도 소성후 내부 전이 금속의 농도가 중심으로부터 표면 방향으로 농도 구배를 유지하는 것을 확인할 수 있다. 이는 Li2MnO3 에 의한 구조 안전성이 소성에 의해서도 영향을 받지 않는다는 것을 의미한다.
<실험예 8> SEM 사진 측정 결과
상기 실시예 4, 실시예 7에서 제조된 양극활물질, 실시예2, 실시예 3에서 제조된 양극활물질에 대한 SEM 사진 결과를 도 13에 나타내었다. SEM 사진에서는 제조된 양극활물질 입자의 크기가 10㎛ 이며, 구형을 유지하는 것을 확인할 수 있다.
<제조예> 리튬 이차 전지의 제조
상기 실시예 4 내지 9에서 제조된 양극 활물질과 도전재로 아세틸렌블랙, 결합제로는 폴리비닐리덴 플루오라이드(PVdF)를 80 : 10 : 10의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 20㎛ 두께의 알루미늄박에 균일하게 도포하고, 120℃에서 진공 건조하여 리튬 이차 전지용 양극을 제조하였다. 상기 양극과, 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막 (셀가르드 엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 디에틸 카보네이트가 부피비로 1:1로 혼합된 용매에 LiPF6가 1 M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다.
<실험예 9> 4.3 V 충방전 실험
상기 실시예 4, 실시예 7 의 양극활물질을 사용하여 제조된 전지에 있어서의 4.3V 전압에서의 충방전 실험 결과를 도 14에 나타내었다.
<실험예 10> 4.6 V 활성화 실험
상기 실시예 4, 실시예 7 의 양극활물질을 사용하여 제조된 전지에 있어서 4.6V 전압에서 활성화시킨 경우의 충방전 실험 결과를 도 15에 나타내었다.
도 15에서 전이금속에 대한 Li 의 비율이 달라져도 4.4V 이후 평탄 전위가 발생되는 것을 확인할 수 있다. 이와 같은 평탄 전위는 본 발명의 경우 Li2MnO3 가 생성되었으며, 상기 Li2MnO3 로부터 리튬이탈리되고 있음을 간접적으로 보여주는 것이다.
<실험예 11> 4.6 V 활성화 후 4.3 V 에서 충방전 특성 실험
상기 실시예 4, 실시예 7 의 양극활물질을 사용하여 제조된 전지에 있어서상기 실험예 10에서 4.6V 에서 활성화시킨 전지에 대해 4.3 V 에서 충방전 특성을 실험한 결과를 도 16에 나타내었다.
도 16에서 충방전 용량이 180 mAh/g 으로 측정되어,활성화없이 4.3 V로 충방전시킨 결과를 나타내는 도 15 에서보다 20 mAh/g 정도 용량이 향상된 것을 확인할 수 있었다.
상기 비교예 3에서 제조된 양극활물질을 사용하여 제조된 전지에 있어서상기 실험예 9 내지 11의 4.3V 충방전 실험, 4.6V 활성화 실험, 4.6 V 활성화 후 4.3 V 에서 충방전 특성 실험을 진행하고, 그 결과를 도 17 및 아래 표 3에 나타내었다. 도 17 및 아래 표 3에서 전이 금속의 농도 구배가 없이 균일한 조성을 나타내는 비교예 3의 활물질 입자를 사용한 경우 4.6V로 활성화시킨 후 충방전 용량은 증가하였으나, 농도구배를 가지는 실시예 2, 3과 비교하여 증가폭이 적음을 확인하였다.
표 3
  a 설계값 소성 온도 (℃) 4.3V 방전 (mAh/g) 4.6V 방전 (mAh/g) 4.6V→4.3V(mAh/g) 활성화 후 용량 차이 (mAh/g)
실시예 2 1.10 780 164.1 214.3 181.1 17.0
실시예 3 1.15 780 165.6 213.8 183.4 17.8
비교예 3 1.10 780 165.7 199.8 172.3 6.6
<실험예 12> 수명 특성 측정
상기 실시예 5 내지 실시예 9 및 비교예 3에서 제조된 활물질을 사용하고 4.6V 에서 활성화시킨후 4.3 V 에서의 수명특성을 측정한 결과를 도 17 에 나타내었다. 도 18 에서 4.6 V 에서 실시예 5 내지 실시예 9 에서 제조된 활물질을 사용하는 경우 활성화시키고 100 싸이클 이후에도 용량이 거의 100% 로 유지되어 수명 특성이 개선되는 것을 확인할 수 있다. 반면 비교예 3에서 제조된 활물질을 사용하는 경우 4.6 V에서 활성화시킨 후 100 싸이클 이후에 수명 특성이 약 75%까지 감소하는 것을 확인 할 수 있다.
<실험예 13> DSC 특성 평가
상기 비교예 1에서 4.6 V 충방전특성 실험 후 DSC 측정 결과, 상기 비교예 3에서 4.3 V에서 충방전 특성 실험후 DSC 측정 결과, 상기 실시예2 에서 4.6 V에서 활성화 시킨 후 4.3 V에서 DSC 결과를 아래 표 4 및 도 19에 나타내었다. 발열이 개시되는 온도는 비슷하지만, 발열량은 비교예3, 실시예 2, 실시예2의 순으로 농도구배가 있고, 활성화를 진행한 순서로 감소하였다.
표 4
Onset [℃] Peak [℃] 열량 [J/g]
실시예 2 4.3V 286 293 368
실시예 2 4.6V→4.3V 280 285 243
비교예 3 4.3V 281 287 663
<실험예 14> 율특성 평가
상기 실시예 2와 비교예 2의 양극활물질을 사용하여 제조된 전지에 있어서의 4.6V 전압을 인가한 경우의 율특성과 수명 특성에 따른 결과를 도 21과 도 22에 나타내었다. 율특성은 실시예 2가 비교예 2에 비하여 크게 개선되었으며, 전반적인 전압의 강하 상태도 매우 우월한 것을 확인하였다.
따라서, Li2MnO3 가 농도구배를 가지는 본 발명의 실시예의 경우 비교예에 비하여 에너지 밀도가 우수하고, 반복적인 충방전에서도 용량 에너지 유지율도 매우 뛰어난 것을 확인하였다.

Claims (10)

  1. a{Li2M'O3}·(1-a){LiMO2} (0<a<1.0, M 은 V, Mn, Fe, Co 및 Ni 로 이루어진 그룹에서 선택되는 하나 또는 두 개 이상의 원소, 상기 M' 은 Mn, Ti, Zr, Re 및 Pt 로 이루어진 그룹에서 선택되는 원소임)로 이루어지는 양극활물질에 있어서,
    상기 {LiMO2} 성분에서 상기 M 의 농도가 입자의 반경 방향으로 농도 구배를 가지며,
    상기 {Li2M'O3} 성분과 상기 {LiMO2} 성분의 전체 농도에 대한 상기 {Li2M'O3} 성분 농도가 입자의 반경 방향으로 농도 구배를 가지며,
    상기 {Li2M'O3} 성분 농도가 입자 중심부에 비하여 입자 표면부에서의 높은 것을 특징으로 하는 양극활물질.
  2. 제1항에 있어서, 상기 M' 은 Mn 이고, 0.05≤a<1.0인 것을 특징으로 하는 양극활물질
  3. 제2항에 있어서, 상기 0.1≤a<1.0인 것을 특징으로 하는 양극활물질.
  4. 제1항에 있어서, 상기 M 은 입자의 중심부에서는 Ni1-x1-y1Cox1Mny1 (0≤1-x1-y1≤1, 0.1≤x1≤0.8, 0≤y1≤0.5) 이고, 입자의 표면부에서는 Ni1-x2-y2Cox2Mny2 (0≤1-x2-y2≤1, 0≤x2≤0.5, 0.2≤y2≤0.8) 로 표시되고,
    상기 Ni, Mn, 및 Co 의 농도가 입자의 반경 방향으로 농도 구배를 가지며,
    y1≤y2, x2 ≤x1 의 관계를 만족하는 것을 특징으로 하는 양극활물질.
  5. 제 4 항에 있어서, 상기 Ni, Co, Mn 의 농도가 연속적인 농도 구배를 나타내는 것을 특징으로 하는 양극활물질.
  6. 제 1 항에 있어서, 상기 Li2M'O3 성분의 입자 중심부와 입자 표면부에서의 농도 차이가 0.01 내지 0.9 인 것을 특징으로 하는 양극활물질.
  7. 제 1 항 내지 제 6 항 중 어느 하나의 양극활물질을 포함하는 리튬 이차 전지.
  8. 제 7 항의 리튬 이차 전지를 전기화학적으로 활성화시키는 방법.
  9. 제 8 항에 있어서, Lio에 대하여 4.4 V 이상의 전압을 인가하는 것을 특징으로 하는 리튬 이차 전지를 전기화학적으로 활성화시키는 방법.
  10. 제 8 항에 있어서, Li2MnO3 에 대하여 4.4 V 이상의 전압을 인가하는 것을 특징으로 하는 리튬 이차 전지를 전기화학적으로 활성화시키는 방법.
PCT/KR2012/005096 2011-06-27 2012-06-27 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법 WO2013002559A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110062022 2011-06-27
KR10-2011-0062022 2011-06-27
KR1020120069019A KR101378580B1 (ko) 2011-06-27 2012-06-27 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
KR10-2012-0069019 2012-06-27

Publications (2)

Publication Number Publication Date
WO2013002559A2 true WO2013002559A2 (ko) 2013-01-03
WO2013002559A3 WO2013002559A3 (ko) 2013-04-04

Family

ID=47424669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005096 WO2013002559A2 (ko) 2011-06-27 2012-06-27 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법

Country Status (1)

Country Link
WO (1) WO2013002559A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281649A (zh) * 2013-04-29 2018-07-13 汉阳大学校产学协力团 锂二次电池用正极活物质
WO2019120973A1 (en) * 2017-12-22 2019-06-27 Umicore Positive electrode material for rechargeable lithium ion batteries
US11522186B2 (en) 2017-12-22 2022-12-06 Umicore Positive electrode material for rechargeable lithium ion batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725399B1 (ko) * 2005-06-23 2007-06-07 한양대학교 산학협력단 코아·쉘 구조를 가지는 리튬이차전지용 양극활물질, 그를사용한 리튬이차전지 및 그 제조 방법
KR20070097923A (ko) * 2006-03-30 2007-10-05 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
US20100248033A1 (en) * 2007-01-10 2010-09-30 Sujeet Kumar Lithium batteries with nano-composite positive electrode material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725399B1 (ko) * 2005-06-23 2007-06-07 한양대학교 산학협력단 코아·쉘 구조를 가지는 리튬이차전지용 양극활물질, 그를사용한 리튬이차전지 및 그 제조 방법
KR20070097923A (ko) * 2006-03-30 2007-10-05 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
US20100248033A1 (en) * 2007-01-10 2010-09-30 Sujeet Kumar Lithium batteries with nano-composite positive electrode material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281649A (zh) * 2013-04-29 2018-07-13 汉阳大学校产学协力团 锂二次电池用正极活物质
CN108281649B (zh) * 2013-04-29 2021-08-20 汉阳大学校产学协力团 锂二次电池用正极活物质
WO2019120973A1 (en) * 2017-12-22 2019-06-27 Umicore Positive electrode material for rechargeable lithium ion batteries
US11522186B2 (en) 2017-12-22 2022-12-06 Umicore Positive electrode material for rechargeable lithium ion batteries
US11522187B2 (en) 2017-12-22 2022-12-06 Umicore Positive electrode material for rechargeable lithium ion batteries

Also Published As

Publication number Publication date
WO2013002559A3 (ko) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
KR102217302B1 (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2019112279A2 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2013147537A1 (ko) 리튬 이차 전지용 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 및 이를 포함하는 리튬 이차 전지용 양극활물질
WO2014178625A1 (ko) 리튬 이차 전지용 양극활물질
WO2012093798A2 (ko) 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2011105833A9 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2014204213A1 (ko) 리튬이차전지용 양극 활물질 및 그의 제조방법
WO2012115411A2 (ko) 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지
WO2013048112A2 (ko) 안전성 및 수명특성이 향상된 양극활물질 및 이를 포함하는 리튬 이차전지
WO2017069407A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2012108702A2 (ko) 출력특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2014126312A1 (ko) 리튬이차전지용 양극복합소재 제조방법 및 이를 이용한 전극 제조방법 및 상기 전극의 충방전 방법
WO2012064053A2 (ko) 리튬 망간 복합 산화물 및 이의 제조 방법
KR20180077026A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2011126182A1 (ko) 금속복합산화물을 포함하는 2차 전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 금속복합산화물을 포함하는 2차 전지용 양극 활물질
WO2014077662A1 (ko) 공침법을 이용한 나트륨 이차전지용 양극활물질 전구체의 제조 방법 및 이에 의하여 제조된 나트륨 이차전지용 양극활물질 전구체
WO2019240496A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
WO2014077663A1 (ko) 나트륨 이차전지용 양극활물질 및 이의 제조 방법
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20150050152A (ko) 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질
KR20190044445A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2013162213A1 (ko) 출력 특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
WO2013002559A2 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804671

Country of ref document: EP

Kind code of ref document: A2