WO2012093798A2 - 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 - Google Patents
입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 Download PDFInfo
- Publication number
- WO2012093798A2 WO2012093798A2 PCT/KR2011/010175 KR2011010175W WO2012093798A2 WO 2012093798 A2 WO2012093798 A2 WO 2012093798A2 KR 2011010175 W KR2011010175 W KR 2011010175W WO 2012093798 A2 WO2012093798 A2 WO 2012093798A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- concentration
- concentration gradient
- positive electrode
- secondary battery
- Prior art date
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000002245 particle Substances 0.000 title claims description 53
- 239000006183 anode active material Substances 0.000 title abstract 4
- 229910052751 metal Inorganic materials 0.000 claims description 65
- 239000002184 metal Substances 0.000 claims description 65
- 239000011149 active material Substances 0.000 claims description 40
- 239000007864 aqueous solution Substances 0.000 claims description 33
- 239000007774 positive electrode material Substances 0.000 claims description 33
- 150000003839 salts Chemical class 0.000 claims description 28
- 239000002243 precursor Substances 0.000 claims description 23
- 239000006182 cathode active material Substances 0.000 claims description 18
- 230000007423 decrease Effects 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000002738 chelating agent Substances 0.000 claims description 12
- 229910003002 lithium salt Inorganic materials 0.000 claims description 11
- 159000000002 lithium salts Chemical class 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000012266 salt solution Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 6
- 239000002131 composite material Substances 0.000 abstract 2
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 239000000203 mixture Substances 0.000 description 17
- 239000011572 manganese Substances 0.000 description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000243 solution Substances 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000000975 co-precipitation Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 229910017709 Ni Co Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013553 LiNO Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 2
- 150000002696 manganese Chemical class 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- -1 ammonium ions Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/02—Oxides; Hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/502—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/523—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/54—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a particle total concentration gradient lithium secondary battery positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same. More specifically, the crystal structure is stabilized to provide excellent life characteristics and charge and discharge characteristics, and heat at high temperatures. It relates to a particle total concentration gradient lithium secondary battery positive electrode active material having a stability, a manufacturing method thereof, and a lithium secondary battery comprising the same.
- lithium secondary batteries have an operating voltage of 3.7 V or more, and have a higher energy density per unit weight than nickel-cadmium batteries or nickel-hydrogen batteries. It is increasing day by day.
- P-HEV plug-in hybrid
- LiCoO 2 LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li 1 + X [Mn 2-x M x ] O 4 , and LiFePO 4 .
- LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high battery voltage, high stability, and flat discharge voltage characteristics.
- Co has low reserves, is expensive, and toxic to humans. Therefore, development of other anode materials is desired.
- Korean Patent Publication No. 2005-0083869 proposes a lithium transition metal oxide having a concentration gradient of a metal composition.
- This method is a method of synthesizing the internal material of a certain composition and then applying a material having a different composition to the outside to prepare a double layer, and then mixed with a lithium salt to heat treatment.
- As the internal material a commercially available lithium transition metal oxide may be used.
- this method discontinuously changes the metal composition of the positive electrode active material between the produced internal and external material compositions, and does not continuously change gradually.
- the powder synthesized by the present invention is not suitable for use as a cathode active material for lithium secondary batteries because the tap density is low because ammonia, which is a chelating agent, is not used.
- Korean Patent Laid-Open Publication No. 2007-0097923 proposes a cathode active material having an inner bulk portion and an outer bulk portion and having a continuous concentration distribution according to the position of metal components in the outer bulk portion.
- this method since the concentration is constant in the inner bulk portion and the metal composition is changed only in the outer bulk portion, there is a need to develop a positive electrode active material having a better structure in terms of stability and capacity.
- An object of the present invention is to provide a cathode active material for a lithium secondary battery having a stable crystal structure, excellent life and charge and discharge characteristics, and thermal stability at high temperatures.
- Another object of the present invention is to provide a method for producing the positive electrode active material for a lithium secondary battery.
- Still another object of the present invention is to provide a lithium secondary battery including the cathode active material.
- the present invention is characterized in that in the lithium secondary battery positive electrode active material for the above purpose, the concentration of all the metals constituting the lithium secondary battery positive electrode active material shows a concentration gradient continuously in the entire region from the center of the particle to the surface portion It provides a particle total concentration gradient lithium secondary battery cathode active material.
- the total particle concentration gradient lithium secondary battery cathode active material is lithium secondary battery cathode active material
- the concentrations of M1, M2, and M3 from the central portion toward the surface portion have a continuous concentration gradient.
- M1, M2 and M3 are selected from the group consisting of Ni, Co, Mn, and combinations thereof, and M4 is Fe, Na, Mg, Ca , Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B and combinations thereof, 0 ⁇ a1 ⁇ 1.1, 0 ⁇ a2 ⁇ 1.1, 0 ⁇ x1 ⁇ 1, 0 ⁇ x2 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ z1 ⁇ 1, 0 ⁇ z2 ⁇ 1, 0 ⁇ w ⁇ 0.1, 0.0 ⁇ 0.02 , 0 ⁇ x1 + y1 + z1 ⁇ 1, 0 ⁇ x2 + y2 + z2 ⁇ 1, x1 ⁇ x2, y1 ⁇ y2, z2 ⁇ z1.)
- the present invention also includes a metal salt solution M1, M2, M3, wherein the concentration of M1, M2 and M3 is different from the first step of preparing a metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion;
- the mixing ratio of the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion is gradually changed from 100 v%: 0 v% to 0 v%: 100 v%, and the chelating agent and the basic aqueous solution are added to the reactor. Mixing and forming a precipitate such that concentrations of M1, M2, and M3 have a continuous concentration gradient from the center portion to the surface portion;
- It provides a method for producing a cathode active material for a lithium battery comprising a fourth step of heat treatment after mixing the active material precursor and a lithium salt.
- the present invention also provides a lithium secondary battery comprising the cathode active material according to the present invention.
- the concentration of the metal is constant in the inner region, and the concentration gradient of the metal in the outer region is gradual, all the metals constituting the cathode active material are from the center of the particle to the surface.
- the concentration of the metal in the entire region of represents a continuous concentration gradient.
- the concentration of all the metals constituting the cathode active material is increased and decreased while showing a concentration gradient continuously in the entire region from the center to the surface of the particles, respectively.
- the concentration of M1, M2 increases with a continuous concentration gradient from the center portion to the surface portion
- the concentration of M3 decreases with a continuous concentration gradient from the center portion to the surface portion
- the concentration of M2 increases with a continuous concentration gradient from the center to the surface portion
- the concentrations of M1 and M3 decrease with a continuous concentration gradient from the center to the surface portion. Characterized in that.
- the concentration of the metal continuously shows a concentration gradient means that the concentration of the metal except lithium is present in a concentration distribution in which the concentration of the active material particles gradually changes from the center of the active material to the surface.
- the concentration distribution means that there is a difference of 0.1 to 30 mol%, preferably 0.1 to 20 mol%, more preferably 1 to 10 mol%, of a change in metal concentration per 0.1 ⁇ m from the center of the particle to the surface portion.
- the central portion of the particles means within 0.2 ⁇ m of the radius from the center of the active material particles
- the surface portion of the particles means within 0.2 ⁇ m from the outermost part of the particles.
- the gradient of the concentration gradient of M1, M2, and M3 is preferably constant from the particle center to the surface portion. That is, in the present invention, the concentrations of M1 and M2 represent a continuous concentration gradient that continues to increase from the center portion to the surface portion, and the concentration of M3 continues to decrease from the center portion to the surface portion. It is preferable from the viewpoint of stability of the structure. In addition, in the present invention, the concentration of M2 represents a continuous concentration gradient that continues to increase from the center portion to the surface portion, and the concentrations of M1 and M3 continue to decrease from the center portion to the surface portion. It is preferable from the viewpoint of stability of the structure.
- M1 is Co
- M2 is Mn
- M3 is characterized in that Ni. That is, the concentration of Ni decreases throughout the particle, the concentration of Mn increases throughout the particle, and the concentration of Co shows a concentration gradient throughout the particle, but both increasing and decreasing structures are possible.
- the concentration z1 at the center of M3 is 0.6 ⁇
- the concentration of nickel is maintained at a high concentration at the center, and the difference in concentration of nickel at the center and the surface is 0.2 ⁇
- the concentration x1 in the center of M1 is in the range of 0 ⁇ x1 ⁇ 0.2 and 0.05 ⁇
- the concentration y1 at the center of M2 is in the range of 0 ⁇ x1 ⁇ 0.1, so that the Mn content at the surface portion is 0.2 or more, indicating thermal stability and preventing a decrease in capacity.
- the difference in concentration is characterized in that 0.2 ⁇
- M1, M2, and M3 are included as aqueous metal salt solutions, and the concentrations of M1, M2 and M3 are different from each other to prepare a metal salt aqueous solution for forming a central portion and a metal salt aqueous solution M for forming a surface portion.
- the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion may be prepared by adding a salt including nickel salt, cobalt salt, manganese salt, and M to the solvent, and each nickel salt, cobalt salt, manganese salt, And after preparing an aqueous solution containing the M salt may be used by mixing them.
- a salt including nickel salt, cobalt salt, manganese salt, and M may be used by mixing them.
- the metal salt sulfates, nitrates, acetates, halides, hydroxides, and the like may be used, and are not particularly limited, as long as they can be dissolved in water.
- the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion are mixed, and the chelating agent and the basic aqueous solution are mixed in the reactor, and the concentration of M1, M2, and M3 is continuously changed from the center portion to the surface portion. Obtain a precipitate to have.
- the present invention by continuously supplying the aqueous metal salt solution for forming the center portion and the aqueous metal salt solution for forming the surface portion from the beginning of the formation of the particles, a continuous concentration gradient from the center of the particles to the surface in one coprecipitation process from the formation of the particles It is possible to obtain a precipitate with.
- the resulting concentration gradient and its slope are controlled by the composition and the mixed feed ratio of the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion.
- By adjusting the reaction time to 1 to 10 hours it is possible to control the size of the whole particle.
- the molar ratio of the chelating agent and the metal salt aqueous solution is characterized in that 0.2 to 1.0: 1.
- an aqueous ammonia solution As the chelating agent, an aqueous ammonia solution, an aqueous ammonium sulfate solution, a mixture thereof, and the like may be used.
- the molar ratio of the chelating agent and the metal salt aqueous solution is preferably 0.2 to 0.5: 1, 0.2 to 0.4: 1.
- the molar ratio of the chelating agent to 0.2 to 1.0 per mol of the aqueous metal solution means that the chelating agent reacts with the metal at least one to one to form a complex, but the complex is reacted with caustic soda and the remaining chelating agent is medium. This is because it can be converted into a product, recovered and used as a chelating agent, and furthermore, since this is an optimal condition for increasing and stabilizing crystallinity of the positive electrode active material.
- concentration of the said basic aqueous solution it is preferable to use 2M-10M.
- concentration of the basic aqueous solution is less than 2M, the particle formation time is long, the tap density may be decreased, and the yield of the coprecipitation reactant may be decreased. It is undesirable because the particles are difficult to form and the tap density can also drop.
- the reaction atmosphere of the aqueous transition metal solution in the second step is a nitrogen flow, pH is within 10 to 12.5, the reaction temperature is within 30 to 80 °C, the reaction stirring rate is preferably within 100 to 2000 rpm.
- the obtained precipitate is dried or heat treated to prepare an active material precursor.
- the drying process may be dried for 15 to 30 hours at 110 °C to 400 °C.
- the active material precursor and the lithium salt are mixed and then heat treated to obtain an active material.
- the heat treatment is preferably performed at 700 ° C to 1100 ° C.
- the heat treatment atmosphere is preferably an oxidizing atmosphere of air or oxygen, or a reducing atmosphere containing nitrogen or hydrogen, and the heat treatment time is preferably 10 to 30 hours.
- the metal is diffused even at a constant internal metal concentration, and as a result, a metal oxide having a continuous metal concentration distribution from the center to the surface can be obtained.
- Preliminary baking may be performed by maintaining at 250-650 degreeC for 5 to 20 hours before the said heat processing process.
- the annealing process may be performed at 600 to 750 ° C. for 10 to 20 hours after the heat treatment process.
- a sintering additive when mixing the active material precursor and the lithium salt.
- the sintering additive may preferably be any one selected from the group consisting of compounds containing ammonium ions, metal oxides, metal halides, and combinations thereof.
- the compound containing the ammonium ion is preferably any one selected from the group consisting of NH 4 F, NH 4 NO 3 , (NH 4 ) 2 SO 4 , and combinations thereof, wherein the metal oxide is B 2 O 3 , Bi 2 O 3 , and any one selected from the group consisting of a combination thereof, the metal halide is preferably any one selected from the group consisting of NiCl 2 , CaCl 2 , and combinations thereof. .
- the sintering additive is preferably used in an amount of 0.01 to 0.2 mole per 1 mole of the active material precursor.
- the sintering additive is preferably used in an amount of 0.01 to 0.2 mole per 1 mole of the active material precursor.
- the content of the sintering additive is too low, the effect of improving the sintering characteristics of the active material precursor may be insignificant. If the content of the sintering additive is higher than the above range, the initial capacity may be decreased during charging and discharging, or the performance as the positive electrode active material may be deteriorated.
- the present invention also provides a lithium secondary battery comprising the cathode active material according to the present invention.
- the lithium battery includes a positive electrode including the positive electrode active material having the above constitution, a negative electrode including the negative electrode active material, and a separator present therebetween. It also includes an electrolyte that is impregnated with the positive electrode, the negative electrode, and the separator. It is preferable that the negative electrode active material reversibly occlude / discharge lithium ions, and for example, those containing artificial graphite, natural graphite, graphitized carbon fiber, amorphous, and the like may be used. It can be used as an active material.
- the electrolyte may be a liquid electrolyte containing a lithium salt and a non-aqueous organic solvent, or may be a polymer gel electrolyte.
- the positive electrode active material for a lithium secondary battery according to the present invention exhibits a structure in which the concentration of all metals included in the positive electrode active material increases and decreases with a continuous concentration gradient from the center of the particle to the surface, thus providing a sharp phase boundary region from the center to the surface. It is not present, which stabilizes the crystal structure and increases the thermal stability.
- a metal aqueous solution containing nickel sulfate: cobalt sulfate: manganese sulfate in a molar ratio of 55:15:30 was prepared using a 2.4 M metal solution mixed with a 90:10 molar ratio and a metal salt aqueous solution for forming a surface portion.
- the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion were added at a rate of 0.3 liter / hour while mixing at a predetermined ratio.
- a 3.6 M ammonia solution was continuously added to the reactor at 0.03 liters / hour.
- an aqueous NaOH solution at a concentration of 4.8 M was supplied for pH adjustment so that the pH in the reactor was maintained at 11. Subsequently, coprecipitation reaction was performed until the diameter of the precipitate obtained by adjusting the impeller speed of a reactor to 1000 rpm became 1 micrometer.
- the flow rate was adjusted so that the average residence time of the solution in the reactor was about 2 hours, and after the reaction reached a steady state, a steady state duration was given to the reactant to obtain a more dense coprecipitation compound.
- the compound was filtered, washed with water and then dried in a warm air dryer at 110 ° C. for 15 hours to obtain an active material precursor.
- LiNO 3 was mixed with the obtained active material precursor as a lithium salt, and then heated at a temperature increase rate of 2 ° C./min, maintained at 280 ° C. for 10 hours, followed by preliminary firing at 750 ° C. for 15 hours. Got.
- the size of the finally obtained active material particle was 12 micrometers.
- the active material particles were obtained in the same manner as in Example 1 except that the molar ratio of nickel sulfate: cobalt sulfate: manganese sulfate in the metal salt aqueous solution for forming the center portion and the aqueous metal salt solution for forming the surface portion was as shown in Table 1 below.
- a positive electrode active material of the same composition as in Example 1 was prepared using a batch reactor.
- LiNO 3 was mixed with the obtained active material precursor as a lithium salt, and then heated at a temperature increase rate of 2 ° C./min, maintained at 280 ° C. for 10 hours, followed by preliminary firing at 750 ° C. for 15 hours. Got.
- the size of the finally obtained active material particle was 12 micrometers.
- Example 1 Metal salt solution for forming core Metal salt solution for forming surface part Ni Co Mn Ni Co Mn
- Example 2 90 10 0 60 13 27
- Example 3 90 10 0 65 05 33
- Example 4 90 10 0 75 05 20
- Example 5 85 10 5 70 05 25
- Example 6 90 10 0 55 15 30
- the molar ratios of nickel, cobalt, and manganese are shown in Table 1, respectively, and a cathode active material was prepared such that the concentrations of the active materials did not change in the entire active material.
- the concentration of Ni metal decreases from the center to the surface, and the Co and Mn concentrations show a constant slope and gradually increase.
- each precursor is moved from the center to the surface by using an EPN (Electron Probe Micro Analyzer).
- EPN Electro Probe Micro Analyzer
- the atomic ratio in the particles was measured and the results are shown in FIGS. 7 to 12, respectively.
- a positive electrode was prepared using the active materials prepared in Examples 1 to 6 and the active materials prepared in Comparative Examples 1 to 7, and was applied to a cylindrical lithium secondary battery.
- the charge and discharge test and cycle characteristics of the battery using the active materials prepared in Examples 1 to 6 were measured, and the results are shown in FIGS. 13 to 18.
- the charging and discharging was performed 10 times for each sample under the condition of 0.2C between 2.7 and 4.3V, and the average value was taken.
- Examples 1 to 6 show the charging and discharging results of Examples 1 to 6, Comparative Examples corresponding to respective bulk compositions, and Comparative Examples showing respective center compositions.
- Examples 1 to 6 have similar charge and discharge characteristics to the comparative examples corresponding to the bulk compositions, but the charge and discharge characteristics of the comparative examples representing the respective center compositions are very poor.
- Example 1 In a state where 4.3V of the positive electrode including each of the active materials prepared in Examples 1 to 6 and the active materials prepared in Comparative Examples 1 to 4 were charged, respectively, 10 ° C. / using a differential scanning thermal analyzer (DSC) It measured while heating up at the speed of min, and the result is shown in following FIGS. 19-24.
- DSC differential scanning thermal analyzer
- each of the bulk compositions is shown, and a comparative example of constant metal concentration in the whole particles and a respective center composition are shown.
- the temperature at which the exothermic peak appears in comparison with the comparative example is measured, and in the case of including the active materials prepared in Examples 1 to 6 according to the present invention, the heat is higher than the case in which the active materials prepared in Comparative Examples 1 to 7 are included. It can be seen that the stability is greatly improved.
- the concentration of all metals constituting the particles from the central portion of the particles to the surface portion according to the present invention increases or decreases continuously while showing a gradient, thereby stably exhibiting stability without sudden change in structure, resulting in greatly improved thermal stability. You can check it.
- the positive electrode active material for a lithium secondary battery according to the present invention exhibits a structure in which the concentration of all metals included in the positive electrode active material increases and decreases with a continuous concentration gradient from the center of the particle to the surface, thus providing a sharp phase boundary region from the center to the surface. It is not present, which stabilizes the crystal structure and increases the thermal stability.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
중심부 형성용 금속염 수용액 | 표면부 형성용 금속염 수용액 | |||||
Ni | Co | Mn | Ni | Co | Mn | |
실시예 1 | 90 | 10 | 0 | 55 | 75 | 30 |
실시예 2 | 90 | 10 | 0 | 60 | 13 | 27 |
실시예 3 | 90 | 10 | 0 | 65 | 05 | 33 |
실시예 4 | 90 | 10 | 0 | 75 | 05 | 20 |
실시예 5 | 85 | 10 | 5 | 70 | 05 | 25 |
실시예 6 | 90 | 10 | 0 | 55 | 15 | 30 |
Ni | Co | Mn | |
비교예 1 | 80 | 07 | 13 |
비교예 2 | 75 | 07 | 18 |
비교예 3 | 70 | 09 | 21 |
비교예 4 | 65 | 10 | 25 |
비교예 5 | 75 | 07 | 18 |
비교예 6 | 90 | 10 | 0 |
비교예 7 | 85 | 10 | 5 |
Claims (17)
- 리튬이차전지 양극활물질에 있어서,상기 양극활물질을 구성하는 모든 금속의 농도가 입자 중심부에서부터 표면부까지의 전체 영역에서 연속적으로 농도 구배를 나타내는 것을 특징으로 하는 입자 전체 농도 구배 리튬이차전지 양극활물질.
- 제 1 항에 있어서,상기 입자 전체 농도 구배 리튬이차전지 양극활물질은하기 화학식 1로 표시되는 중심부; 및하기 화학식 2로 표시되는 표면부;를 포함하며,상기 중심부로부터 상기 표면부로 갈수록 M1, M2 및 M3 의 농도는 연속적인 농도 구배를 가지는 것을 특징으로 하는 입자 전체 농도 구배 리튬이차전지 양극활물질.[화학식 1]Lia1M1x1M2y1M3z1M4wO2+δ[화학식 2]Lia2M1x2M2y2M3z2M4wO2+δ(상기 화학식 1, 2에서 M1, M2 및 M3 는 Ni, Co, Mn 및 이들의 조합으로 이루어진 군에서 선택되고, M4는 Fe, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B 및 이들의 조합으로 이루어진 군에서 선택되며, 0<a1≤1.1, 0<a2≤1.1, 0≤x1≤1, 0≤x2≤1, 0≤y1≤1, 0≤y2≤1, 0≤z1≤1, 0≤z2≤1, 0≤w≤0.1, 0.0≤δ≤0.02, 0<x1+y1+z1≤1, 0<x2+y2+z2≤1 , x1≤x2, y1≤y2, z2≤z1 이다.)
- 제 2 항에 있어서,상기 M1, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고,상기 M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
- 제 2 항에 있어서,상기 M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고,상기 M1, M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
- 제 3 항 또는 제 4항에 있어서,상기 M1 은 Co, 상기 M2 는 Mn, 상기 M3 는 Ni 인 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
- 제 3 항 또는 제 4항에 있어서,상기 M3 의 중심부에서의 농도 z1 의 범위가 0.6≤z1≤1 이고, 상기 M3 의중심부와 표면부에서의 농도 차이가 0.2≤| z2-z1|≤0.4 인 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질.
- 제 3 항 또는 제 4항에 있어서,상기 M1 의 중심부에서의 농도 x1 의 범위가 0≤x1≤0.2 이고, 상기 M1 의중심부와 표면부에서의 농도 차이가 0.05≤|x2-z1|≤0.1 인 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질.
- 제 3 항 또는 제 4항에 있어서,상기 M2 의 중심부에서의 농도 y1 의 범위가 0≤y1≤=0.1 이고, 상기 M2 의중심부와 표면부에서의 농도 차이가 0.2≤| y2-y1|≤0.4 인 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
- 제 3 항에 있어서,상기 M1, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 증가 하는 연속적인 농도 구배를 나타내고,상기 M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 감소하는 연속적인 농도 구배를 나타내는 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
- 제 4 항에 있어서,상기 M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 증가 하는 연속적인 농도 구배를 나타내고,상기 M1, M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 감소하는 연속적인 농도 구배를 나타내는 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
- 제 9 항 또는 제 10 항에 있어서,상기 M1, M2 및 M3 의 농도 구배 기울기가 입자 중심부로부터 표면부까지 일정한 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
- 금속염 수용액으로서 M1, M2, M3 를 포함하고, 상기 M1, M2 및 M3 의 농도는 서로 다른 중심부 형성용 금속염 수용액과 표면부 형성용 금속염 수용액을 준비하는 제 1 단계; 및상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 혼합 비율이 100 v%:0 v% 에서 0 v% :100 v% 까지 점진적으로 변화하면서 혼합하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합하여, 상기 M1, M2, M3 의 농도는 중심부로부터 표면부까지 연속적인 농도 구배를 가지도록 침전물을 형성하는 제 2 단계;상기 얻어진 침전물을 건조하거나 열처리하여 활물질 전구체를 제조하는 제 3 단계; 및상기 활물질 전구체와 리튬염을 혼합한 후 열처리하는 제 4 단계를 포함하는 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
- 제 12 항에 있어서,상기 킬레이팅제와 상기 금속염 수용액의 몰 비는 0.2 내지 1.0 : 1 인 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
- 제 12 항에 있어서,상기 활물질 전구체와 리튬염을 혼합한 후 열처리 공정은 700 ℃내지 1100℃에서 실시하는 것인 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
- 제 12 항에 있어서,상기 활물질 전구체와 리튬염을 혼합한 후 열처리하기 전에 250℃ 내지 650℃에서 5 내지 20시간 유지시켜 예비 소성하는 공정을 더 포함하는 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
- 제 12 항에 있어서,상기 제 2 단계에서는 질소 흐름하에서, pH는 10 내지 12.5 이내, 반응온도는 30내지 80℃ 이내, 반응 교반 속도는 100 내지 2000 rpm 이내인 것인 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
- 제 1 항 내지 제 10 항 중 어느 하나의 입자 전체 농도 구배 리튬 전지용 양극 활물질을 포함하는 리튬 이차 전지.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11854697.7T PL2662915T3 (pl) | 2011-01-05 | 2011-12-27 | Materiał aktywny anody z gradientem stężenia całych cząstek do litowej baterii akumulatorowej, sposób jego wytwarzania i zawierająca go litowa bateria akumulatorowa |
EP11854697.7A EP2662915B1 (en) | 2011-01-05 | 2011-12-27 | Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same |
JP2013548341A JP6204197B2 (ja) | 2011-01-05 | 2011-12-27 | 全粒子濃度勾配を有するリチウム二次電池の正極活物質、その製造方法、及びそれを含むリチウム二次電池 |
CN201180064406.0A CN103354958B (zh) | 2011-01-05 | 2011-12-27 | 用于锂二次电池的具有全粒子浓度梯度的正极活性材料,其制备方法及具有其的锂二次电池 |
US13/978,041 US9493365B2 (en) | 2011-01-05 | 2011-12-27 | Cathode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same |
US15/264,829 US10930922B2 (en) | 2011-01-05 | 2016-09-14 | Positive electrode active material and secondary battery comprising the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0000841 | 2011-01-05 | ||
KR20110000841 | 2011-01-05 | ||
KR10-2011-0021579 | 2011-03-10 | ||
KR20110021579 | 2011-03-10 | ||
KR10-2011-0122544 | 2011-11-22 | ||
KR1020110122544A KR101292757B1 (ko) | 2011-01-05 | 2011-11-22 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/978,041 A-371-Of-International US9493365B2 (en) | 2011-01-05 | 2011-12-27 | Cathode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same |
PCT/KR2014/003808 Continuation-In-Part WO2014178623A1 (ko) | 2011-01-05 | 2014-04-29 | 리튬 이차 전지용 양극활물질 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012093798A2 true WO2012093798A2 (ko) | 2012-07-12 |
WO2012093798A3 WO2012093798A3 (ko) | 2012-10-18 |
Family
ID=46712646
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/010173 WO2012093797A2 (ko) | 2011-01-05 | 2011-12-27 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
PCT/KR2011/010175 WO2012093798A2 (ko) | 2011-01-05 | 2011-12-27 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/010173 WO2012093797A2 (ko) | 2011-01-05 | 2011-12-27 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
Country Status (7)
Country | Link |
---|---|
US (3) | US8926860B2 (ko) |
EP (3) | EP3300147A1 (ko) |
JP (4) | JP6204197B2 (ko) |
KR (2) | KR101292757B1 (ko) |
CN (4) | CN103354958B (ko) |
PL (1) | PL2662915T3 (ko) |
WO (2) | WO2012093797A2 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103904318A (zh) * | 2012-12-28 | 2014-07-02 | 惠州比亚迪电池有限公司 | 一种锂电池正极材料及其制备方法 |
CN104347867A (zh) * | 2013-07-26 | 2015-02-11 | 比亚迪股份有限公司 | 一种锂电池正极材料及其制备方法 |
CN104347866B (zh) * | 2013-07-26 | 2016-12-28 | 比亚迪股份有限公司 | 一种锂电池正极材料及其制备方法 |
KR20170080483A (ko) * | 2015-12-31 | 2017-07-10 | 주식회사 에코프로비엠 | 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질 |
WO2019004602A1 (ko) * | 2017-06-29 | 2019-01-03 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질 전구체의 제조 방법 |
EP2940761B1 (en) | 2012-12-26 | 2019-12-18 | IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) | Cathode active material for lithium secondary batteries |
CN115362133A (zh) * | 2020-04-03 | 2022-11-18 | 株式会社田中化学研究所 | 复合氢氧化物的制备方法以及复合氢氧化物 |
Families Citing this family (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014178624A1 (ko) * | 2013-04-29 | 2014-11-06 | 한양대학교 산학협력단 | 리튬 이차 전지용 양극활물질 |
KR102157479B1 (ko) * | 2013-04-29 | 2020-10-23 | 한양대학교 산학협력단 | 리튬 이차 전지용 양극활물질 |
KR101292757B1 (ko) * | 2011-01-05 | 2013-08-02 | 한양대학교 산학협력단 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
JP5979251B2 (ja) * | 2013-01-25 | 2016-08-24 | 株式会社豊田自動織機 | 高電圧特性に優れる活物質 |
JP6094372B2 (ja) * | 2013-03-04 | 2017-03-15 | 株式会社豊田自動織機 | 複合金属酸化物、並びにこれを用いたリチウムイオン二次電池用正極、及びリチウムイオン二次電池 |
KR102223214B1 (ko) * | 2013-05-08 | 2021-03-04 | 바스프 에스이 | 구형 입자들, 그것의 제조 및 용도 |
KR102082516B1 (ko) * | 2013-05-31 | 2020-02-27 | 한양대학교 산학협력단 | 나트륨 이차 전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 나트륨 이차 전지 |
WO2014193204A1 (ko) * | 2013-05-31 | 2014-12-04 | 한양대학교 산학협력단 | 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지 |
CN105409036A (zh) * | 2013-05-31 | 2016-03-16 | 汉阳大学校产学协力团 | 锂二次电池用正极活物质的制造方法及通过其制造的锂二次电池 |
KR101746899B1 (ko) | 2013-05-31 | 2017-06-14 | 한양대학교 산학협력단 | 리튬 전지용 양극 활물질 및 이의 제조방법 |
WO2015003947A1 (en) * | 2013-07-08 | 2015-01-15 | Basf Se | Electrode materials for lithium ion batteries |
KR101589292B1 (ko) * | 2013-11-28 | 2016-01-28 | 주식회사 포스코 | 이차전지용 양극재 및 그 제조방법 |
KR101630421B1 (ko) * | 2013-12-26 | 2016-06-15 | 주식회사 포스코 | 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 사용한 리튬 이차 전지 |
JP6311925B2 (ja) * | 2014-05-13 | 2018-04-18 | 株式会社豊田自動織機 | リチウム複合金属酸化物及びその製造方法 |
US10217991B2 (en) | 2014-06-02 | 2019-02-26 | Sk Innovation Co., Ltd. | Lithium secondary battery |
KR102352203B1 (ko) * | 2014-06-02 | 2022-01-17 | 에스케이온 주식회사 | 리튬 이차 전지 |
US10490851B2 (en) | 2014-06-02 | 2019-11-26 | Sk Innovation Co., Ltd. | Lithium secondary battery |
KR102349731B1 (ko) * | 2014-06-02 | 2022-01-11 | 에스케이온 주식회사 | 리튬 이차 전지 |
JP2016033903A (ja) | 2014-07-31 | 2016-03-10 | ソニー株式会社 | 正極活物質、正極および電池 |
CN105336915B (zh) | 2014-08-13 | 2019-01-01 | 微宏动力系统(湖州)有限公司 | 锂离子二次电池用正极材料、其制备方法及锂离子二次电池 |
KR101702572B1 (ko) * | 2014-08-22 | 2017-02-13 | 주식회사 포스코이에스엠 | 무코발트 농도 구배 양극활물질의 제조 방법 및 이에 의하여 제조된 무코발트 농도 구배 양극활물질 |
CN104332619A (zh) * | 2014-09-22 | 2015-02-04 | 上海中聚佳华电池科技有限公司 | 一种聚吡咯包覆全梯度正极材料及其制备方法 |
KR101762508B1 (ko) * | 2014-10-02 | 2017-07-27 | 주식회사 엘지화학 | 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 |
KR101593401B1 (ko) * | 2014-10-14 | 2016-02-12 | 주식회사 이엔에프테크놀로지 | 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법 |
KR101659806B1 (ko) * | 2014-10-15 | 2016-09-27 | 주식회사 포스코 | 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
US10526212B2 (en) * | 2014-11-07 | 2020-01-07 | Basf Se | Mixed transition metal oxides for lithium ion batteries |
US11870068B2 (en) | 2014-11-14 | 2024-01-09 | Sk On Co., Ltd. | Lithium ion secondary battery |
KR102296854B1 (ko) * | 2014-11-14 | 2021-09-01 | 에스케이이노베이션 주식회사 | 리튬이온 이차전지 |
KR102311460B1 (ko) * | 2014-11-21 | 2021-10-08 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
KR102296877B1 (ko) * | 2014-12-03 | 2021-08-31 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
KR102312369B1 (ko) | 2014-12-16 | 2021-10-12 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
KR102349703B1 (ko) | 2014-12-22 | 2022-01-12 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102296819B1 (ko) * | 2014-12-30 | 2021-08-31 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
KR101953155B1 (ko) * | 2014-12-31 | 2019-02-28 | 주식회사 에코프로비엠 | 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질 |
KR102355196B1 (ko) * | 2015-01-26 | 2022-01-24 | 에스케이온 주식회사 | 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 및 리튬 이차 전지 |
EP3291340B1 (en) | 2015-04-30 | 2018-11-14 | LG Chem, Ltd. | Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same |
KR102366065B1 (ko) * | 2015-06-11 | 2022-02-21 | 에스케이온 주식회사 | 리튬 이차 전지 |
WO2016204563A1 (ko) * | 2015-06-17 | 2016-12-22 | 주식회사 엘지화학 | 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 |
KR101913906B1 (ko) * | 2015-06-17 | 2018-10-31 | 주식회사 엘지화학 | 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 |
JP6390915B2 (ja) * | 2015-07-29 | 2018-09-19 | トヨタ自動車株式会社 | 非水電解質二次電池用正極活物質 |
KR102494741B1 (ko) * | 2015-08-10 | 2023-01-31 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102486526B1 (ko) * | 2015-09-10 | 2023-01-09 | 에스케이온 주식회사 | 리튬 이차 전지 |
CN105226270B (zh) * | 2015-10-22 | 2018-05-18 | 北京科技大学 | 具有镍锰浓度梯度的锂镍锰氧化物正极材料及其制备方法 |
KR102460961B1 (ko) * | 2015-11-06 | 2022-10-31 | 삼성에스디아이 주식회사 | 리튬이차전지용 양극 활물질, 그 제조방법 및 이를 포함한 양극을 구비한 리튬이차전지 |
EP3378114B1 (en) | 2015-11-16 | 2024-07-31 | Hheli, LLC | Synthesized surface-functionalized, acidified metal oxide materials for energy storage, catalytic, photovoltaic, and sensor applications |
KR102227306B1 (ko) * | 2015-11-30 | 2021-03-15 | 주식회사 엘지화학 | 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR101927295B1 (ko) | 2015-11-30 | 2018-12-10 | 주식회사 엘지화학 | 이차전지용 양극활물질 및 이를 포함하는 이차전지 |
KR102227303B1 (ko) * | 2015-11-30 | 2021-03-15 | 주식회사 엘지화학 | 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR102521323B1 (ko) | 2015-12-09 | 2023-04-13 | 에스케이온 주식회사 | 리튬이차전지 |
KR101941638B1 (ko) * | 2015-12-21 | 2019-04-11 | 한국과학기술연구원 | 리튬 이차전지용 양극 활물질의 제조방법 및 이를 통해 제조된 리튬 이차전지용 양극 활물질 |
KR101909216B1 (ko) * | 2015-12-23 | 2018-10-18 | 주식회사 포스코 | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
CN106935803B (zh) * | 2015-12-31 | 2020-07-10 | 北京当升材料科技股份有限公司 | 一种锂离子电池正极材料的制备方法 |
KR20180091938A (ko) * | 2016-01-05 | 2018-08-16 | 바스프 코포레이션 | 알칼리 재충전식 배터리를 위한 수산화니켈 복합 물질 |
KR102580002B1 (ko) * | 2016-01-13 | 2023-09-19 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102516459B1 (ko) * | 2016-04-08 | 2023-04-04 | 한양대학교 산학협력단 | 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 |
PL3279978T3 (pl) * | 2016-08-02 | 2021-04-19 | Ecopro Bm Co., Ltd. | Złożony tlenek litu dla dodatniego materiału aktywnego baterii akumulatorowej i sposób jego wytwarzania |
US10700349B2 (en) | 2016-11-15 | 2020-06-30 | HHeLI, LLC | Surface-functionalized, acidified metal oxide material in an acidified electrolyte system or an acidified electrode system |
DE202017007568U1 (de) | 2016-11-18 | 2022-11-18 | Sk Innovation Co., Ltd. | Lithium-Sekundärbatterie |
US10199650B2 (en) * | 2016-11-18 | 2019-02-05 | Sk Innovation Co., Ltd. | Lithium secondary battery and method of fabricating the same |
KR102086535B1 (ko) * | 2016-12-02 | 2020-03-10 | 주식회사 엘지화학 | 이차전지용 양극활물질 전구체의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질의 전구체 |
CN110168785B (zh) * | 2016-12-02 | 2022-05-27 | 三星Sdi株式会社 | 镍基活性物质前驱体及其制备方法、镍基活性物质以及锂二次电池 |
US11936041B2 (en) * | 2016-12-16 | 2024-03-19 | Sk On Co., Ltd. | Lithium secondary battery |
KR20180071714A (ko) * | 2016-12-20 | 2018-06-28 | 주식회사 포스코 | 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
KR102024744B1 (ko) | 2016-12-28 | 2019-09-25 | 주식회사 엘지화학 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
US10892488B2 (en) | 2017-01-17 | 2021-01-12 | Samsung Electronics Co., Ltd. | Electrode active material, lithium secondary battery containing the electrode active material, and method of preparing the electrode active material |
JP6945879B2 (ja) * | 2017-02-06 | 2021-10-06 | エルジー・ケム・リミテッド | 二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池 |
EP3610526A4 (en) | 2017-04-10 | 2020-12-16 | Hheli, LLC | BATTERY WITH NEW ELEMENTS |
CN110870102B (zh) | 2017-05-17 | 2023-06-30 | 氢氦锂有限公司 | 具有酸化阴极和锂阳极的电池 |
WO2018213616A2 (en) | 2017-05-17 | 2018-11-22 | HHeLI, LLC | Battery cell with novel construction |
US10978731B2 (en) | 2017-06-21 | 2021-04-13 | HHeLI, LLC | Ultra high capacity performance battery cell |
KR20190003110A (ko) * | 2017-06-30 | 2019-01-09 | 삼성전자주식회사 | 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법 |
DE102017215146A1 (de) | 2017-08-30 | 2019-02-28 | Bayerische Motoren Werke Aktiengesellschaft | POSITIVES AKTIVMATERIAL ZUR VERWENDUNG IN EINER SEKUNDÄREN LITHIUM-IONEN-Zelle und -BATTERIE |
MY194984A (en) | 2017-08-30 | 2022-12-29 | Microvast Power Systems Co Ltd | Method of preparing lithium-ion cathode particles and cathode active material formed therefrom |
EP3685458A4 (en) | 2017-09-22 | 2021-07-07 | Hheli, LLC | CONSTRUCTION OF VERY HIGH CAPACITY PERFORMANCE BATTERY ELEMENTS |
KR102306545B1 (ko) | 2017-10-19 | 2021-09-30 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
CN107768646A (zh) * | 2017-10-23 | 2018-03-06 | 兰州金川新材料科技股份有限公司 | 一种掺杂元素梯度分布的四氧化三钴制备方法 |
CN107863525A (zh) * | 2017-10-23 | 2018-03-30 | 兰州金川新材料科技股份有限公司 | 一种梯度掺杂钴酸锂的制备方法 |
KR102159243B1 (ko) | 2017-11-22 | 2020-09-23 | 주식회사 에코프로비엠 | 리튬 이차 전지용 양극활물질 |
KR102559218B1 (ko) | 2017-12-07 | 2023-07-25 | 에스케이온 주식회사 | 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지 |
KR102023063B1 (ko) | 2017-12-15 | 2019-09-19 | 주식회사 포스코 | 이차 전지용 양극 활물질 전구체 제조 방법 및 이를 이용한 제조 장치 |
KR102008875B1 (ko) * | 2017-12-26 | 2019-08-08 | 주식회사 포스코 | 농도 구배 전구체의 제조 장치 및 그 재료 투입 스케줄링 방법 |
CN109461893B (zh) * | 2017-12-29 | 2020-05-26 | 北京当升材料科技股份有限公司 | 一种新型锂离子电池正极材料及其制备方法 |
WO2019139445A1 (ko) * | 2018-01-12 | 2019-07-18 | 한양대학교 산학협력단 | 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
KR102472882B1 (ko) * | 2018-01-18 | 2022-11-30 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102313091B1 (ko) | 2018-01-19 | 2021-10-18 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
KR102391531B1 (ko) | 2018-01-31 | 2022-04-28 | 주식회사 엘지에너지솔루션 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
KR102325728B1 (ko) | 2018-01-31 | 2021-11-12 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
CN108417826A (zh) * | 2018-02-02 | 2018-08-17 | 昆明理工大学 | 一种镍钴铝三元素梯度分布的镍钴铝酸锂正极材料的制备方法 |
RU2749604C1 (ru) * | 2018-05-21 | 2021-06-16 | Микроваст Пауэр Системс Ко., Лтд. | Способ получения частиц прекурсора, частица прекурсора, полученная этим способом, и способ получения активных катодных частиц |
KR102531434B1 (ko) * | 2018-06-12 | 2023-05-12 | 에스케이온 주식회사 | 리튬 이차전지 |
KR102485994B1 (ko) * | 2018-06-20 | 2023-01-05 | 에스케이온 주식회사 | 리튬 이차 전지 및 이의 제조 방법 |
CN108878869B (zh) * | 2018-07-31 | 2021-07-13 | 桑顿新能源科技(长沙)有限公司 | 锂离子电池用梯度结构的ncm三元正极材料及制法与应用 |
CA3112390A1 (en) | 2018-09-10 | 2020-03-19 | HHeLI, LLC | Methods of use of ultra high capacity performance battery cell |
KR102436308B1 (ko) | 2018-10-18 | 2022-08-24 | 에스케이온 주식회사 | 리튬 이차 전지 |
CN109817904B (zh) * | 2018-12-29 | 2020-05-12 | 广东邦普循环科技有限公司 | 一种高电压长循环高镍单晶正极材料及其制备方法和应用 |
WO2020175782A1 (ko) * | 2019-02-28 | 2020-09-03 | 주식회사 에스엠랩 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
CN113412548B (zh) * | 2019-02-28 | 2024-07-23 | Sm研究所股份有限公司 | 阳极活性物质、其制备方法以及包括该阳极活性物质的阳极的锂二次电池 |
US11735710B2 (en) | 2019-05-21 | 2023-08-22 | Uchicago Argonne, Llc | Cathode materials for secondary batteries |
EP3745502A1 (en) * | 2019-05-27 | 2020-12-02 | SK Innovation Co., Ltd. | Lithium secondary battery |
US11876158B2 (en) | 2019-06-25 | 2024-01-16 | Enevate Corporation | Method and system for an ultra-high voltage cobalt-free cathode for alkali ion batteries |
CN110534714A (zh) * | 2019-08-14 | 2019-12-03 | 江苏海基新能源股份有限公司 | 一种全梯度三元正极材料的制备方法 |
KR102144057B1 (ko) * | 2019-12-24 | 2020-08-12 | 주식회사 에스엠랩 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
KR102178781B1 (ko) * | 2019-12-24 | 2020-11-13 | 주식회사 에스엠랩 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
US12095083B2 (en) * | 2020-03-04 | 2024-09-17 | Uchicago Argonne, Llc | Cathode materials for secondary batteries |
CN116547068A (zh) | 2020-09-24 | 2023-08-04 | 6K有限公司 | 用于启动等离子体的系统、装置及方法 |
AU2021371051A1 (en) | 2020-10-30 | 2023-03-30 | 6K Inc. | Systems and methods for synthesis of spheroidized metal powders |
KR102615680B1 (ko) | 2020-11-25 | 2023-12-19 | 주식회사 씨앤씨머티리얼즈 | 2차전지 양극재 코팅 방법 |
JP2024515034A (ja) | 2021-03-31 | 2024-04-04 | シックスケー インコーポレイテッド | 金属窒化物セラミックの積層造形のためのシステム及び方法 |
CN114551863A (zh) * | 2022-04-21 | 2022-05-27 | 浙江帕瓦新能源股份有限公司 | 元素浓度梯度分布的前驱体材料及其制备方法、正极材料 |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
US12094688B2 (en) | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0872450A1 (en) | 1997-04-15 | 1998-10-21 | SANYO ELECTRIC Co., Ltd. | Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery |
KR20050083869A (ko) | 2003-10-31 | 2005-08-26 | 주식회사 엘지화학 | 금속성분의 조성에 구배를 갖는 리튬 전이금속 산화물 |
KR20070097923A (ko) | 2006-03-30 | 2007-10-05 | 한양대학교 산학협력단 | 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3928231B2 (ja) * | 1997-12-15 | 2007-06-13 | 株式会社日立製作所 | リチウム2次電池 |
KR100326460B1 (ko) * | 2000-02-10 | 2002-02-28 | 김순택 | 리튬 이차 전지용 양극 활물질 및 그의 제조 방법 |
US6921609B2 (en) * | 2001-06-15 | 2005-07-26 | Kureha Chemical Industry Co., Ltd. | Gradient cathode material for lithium rechargeable batteries |
KR100399642B1 (ko) * | 2001-10-24 | 2003-09-29 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 그 제조방법 |
US7049031B2 (en) * | 2002-01-29 | 2006-05-23 | The University Of Chicago | Protective coating on positive lithium-metal-oxide electrodes for lithium batteries |
NZ520452A (en) * | 2002-10-31 | 2005-03-24 | Lg Chemical Ltd | Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition |
KR100752703B1 (ko) * | 2006-06-29 | 2007-08-29 | 한양대학교 산학협력단 | 리튬 이차 전지용 양극 활물질, 그 제조 방법 및 그를사용한 리튬 이차 전지 |
KR101342509B1 (ko) * | 2007-02-26 | 2013-12-17 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
JP5376417B2 (ja) * | 2007-07-30 | 2013-12-25 | 株式会社ジャパンディスプレイ | 半透過型液晶表示パネル |
EP2202828B1 (en) * | 2007-09-04 | 2013-12-11 | Mitsubishi Chemical Corporation | Lithium transition metal-type compound powder, method for manufacturing the same and lithium secondary battery positive electrode and lithium secondary battery using the same |
WO2009063613A1 (ja) | 2007-11-12 | 2009-05-22 | Toda Kogyo Corporation | 非水電解液二次電池用Li-Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
JP5189384B2 (ja) | 2008-02-29 | 2013-04-24 | 株式会社日立製作所 | リチウム二次電池 |
CN101373832A (zh) * | 2008-10-16 | 2009-02-25 | 中信国安盟固利新能源科技有限公司 | 一种高电压锂离子电池掺杂正极材料及其制备方法 |
JP2011134670A (ja) * | 2009-12-25 | 2011-07-07 | Toyota Motor Corp | リチウム二次電池用正極活物質 |
KR101185366B1 (ko) * | 2010-01-14 | 2012-09-24 | 주식회사 에코프로 | 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법 |
US8591774B2 (en) * | 2010-09-30 | 2013-11-26 | Uchicago Argonne, Llc | Methods for preparing materials for lithium ion batteries |
KR101292757B1 (ko) * | 2011-01-05 | 2013-08-02 | 한양대학교 산학협력단 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
-
2011
- 2011-11-22 KR KR1020110122544A patent/KR101292757B1/ko active IP Right Grant
- 2011-11-22 KR KR1020110122542A patent/KR101292756B1/ko active IP Right Grant
- 2011-12-27 EP EP17199448.6A patent/EP3300147A1/en not_active Withdrawn
- 2011-12-27 CN CN201180064406.0A patent/CN103354958B/zh active Active
- 2011-12-27 WO PCT/KR2011/010173 patent/WO2012093797A2/ko active Application Filing
- 2011-12-27 EP EP11854594.6A patent/EP2662914B1/en active Active
- 2011-12-27 JP JP2013548341A patent/JP6204197B2/ja active Active
- 2011-12-27 JP JP2013548340A patent/JP6204196B2/ja active Active
- 2011-12-27 CN CN201610500391.2A patent/CN106058177B/zh active Active
- 2011-12-27 PL PL11854697.7T patent/PL2662915T3/pl unknown
- 2011-12-27 EP EP11854697.7A patent/EP2662915B1/en active Active
- 2011-12-27 CN CN201710211237.8A patent/CN106848262B/zh active Active
- 2011-12-27 WO PCT/KR2011/010175 patent/WO2012093798A2/ko active Application Filing
- 2011-12-27 US US13/978,067 patent/US8926860B2/en active Active
- 2011-12-27 CN CN201180064349.6A patent/CN103370818B/zh active Active
- 2011-12-27 US US13/978,041 patent/US9493365B2/en active Active
-
2014
- 2014-08-19 US US14/463,170 patent/US9463984B2/en active Active
-
2017
- 2017-08-31 JP JP2017168038A patent/JP2018022692A/ja active Pending
- 2017-08-31 JP JP2017168032A patent/JP2018049820A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0872450A1 (en) | 1997-04-15 | 1998-10-21 | SANYO ELECTRIC Co., Ltd. | Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery |
KR20050083869A (ko) | 2003-10-31 | 2005-08-26 | 주식회사 엘지화학 | 금속성분의 조성에 구배를 갖는 리튬 전이금속 산화물 |
KR20070097923A (ko) | 2006-03-30 | 2007-10-05 | 한양대학교 산학협력단 | 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2662915A2 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2940761B1 (en) | 2012-12-26 | 2019-12-18 | IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) | Cathode active material for lithium secondary batteries |
CN103904318A (zh) * | 2012-12-28 | 2014-07-02 | 惠州比亚迪电池有限公司 | 一种锂电池正极材料及其制备方法 |
CN104347867A (zh) * | 2013-07-26 | 2015-02-11 | 比亚迪股份有限公司 | 一种锂电池正极材料及其制备方法 |
CN104347866B (zh) * | 2013-07-26 | 2016-12-28 | 比亚迪股份有限公司 | 一种锂电池正极材料及其制备方法 |
KR20170080483A (ko) * | 2015-12-31 | 2017-07-10 | 주식회사 에코프로비엠 | 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질 |
KR101921981B1 (ko) * | 2015-12-31 | 2019-02-20 | 주식회사 에코프로비엠 | 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질 |
WO2019004602A1 (ko) * | 2017-06-29 | 2019-01-03 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질 전구체의 제조 방법 |
US11183685B2 (en) | 2017-06-29 | 2021-11-23 | Lg Chem, Ltd. | Method for preparing positive electrode active material precursor for lithium secondary battery |
CN115362133A (zh) * | 2020-04-03 | 2022-11-18 | 株式会社田中化学研究所 | 复合氢氧化物的制备方法以及复合氢氧化物 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012093798A2 (ko) | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
WO2013147537A1 (ko) | 리튬 이차 전지용 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 및 이를 포함하는 리튬 이차 전지용 양극활물질 | |
WO2014178625A1 (ko) | 리튬 이차 전지용 양극활물질 | |
WO2019112279A2 (ko) | 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2014193203A1 (ko) | 리튬 전지용 양극 활물질 및 이의 제조방법 | |
WO2013002457A1 (ko) | 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지 | |
WO2012011785A2 (ko) | 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지 | |
WO2016175597A1 (ko) | 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 | |
WO2017069405A1 (ko) | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 | |
WO2015053580A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2019103522A2 (ko) | 양극 활물질의 제조방법 | |
WO2011129636A2 (ko) | 초급속연소법을 이용한 나노전극재료 합성방법 및 그 방법으로 합성된 나노전극재료 | |
WO2016068681A1 (ko) | 전이금속 산화물의 전구체, 그 제조방법, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 | |
WO2021125870A1 (ko) | 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
WO2013085306A1 (ko) | 리튬이차전지용 양극 활물질의 제조방법 | |
WO2012124970A2 (ko) | 리튬 이차전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 리튬 이차전지용 양극 활물질 | |
WO2019013587A1 (ko) | 양극 활물질의 제조방법 | |
WO2020153701A1 (ko) | 이차전지용 양극 활물질의 제조방법 | |
WO2016068682A1 (ko) | 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 | |
WO2021060911A1 (ko) | 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법 | |
WO2015047023A1 (ko) | 이차전지용 양극활물질 및 이의 제조 방법 | |
WO2014178624A1 (ko) | 리튬 이차 전지용 양극활물질 | |
WO2013002559A2 (ko) | 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법 | |
KR20200071989A (ko) | 코어-쉘-쉘' 삼중층 구조를 가지는 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 이차전지 | |
WO2022149675A1 (ko) | 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11854697 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2013548341 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011854697 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13978041 Country of ref document: US |