WO2012093798A2 - 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 - Google Patents

입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2012093798A2
WO2012093798A2 PCT/KR2011/010175 KR2011010175W WO2012093798A2 WO 2012093798 A2 WO2012093798 A2 WO 2012093798A2 KR 2011010175 W KR2011010175 W KR 2011010175W WO 2012093798 A2 WO2012093798 A2 WO 2012093798A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
concentration
concentration gradient
positive electrode
secondary battery
Prior art date
Application number
PCT/KR2011/010175
Other languages
English (en)
French (fr)
Other versions
WO2012093798A3 (ko
Inventor
선양국
노형주
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to PL11854697.7T priority Critical patent/PL2662915T3/pl
Priority to EP11854697.7A priority patent/EP2662915B1/en
Priority to JP2013548341A priority patent/JP6204197B2/ja
Priority to CN201180064406.0A priority patent/CN103354958B/zh
Priority to US13/978,041 priority patent/US9493365B2/en
Publication of WO2012093798A2 publication Critical patent/WO2012093798A2/ko
Publication of WO2012093798A3 publication Critical patent/WO2012093798A3/ko
Priority to US15/264,829 priority patent/US10930922B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a particle total concentration gradient lithium secondary battery positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same. More specifically, the crystal structure is stabilized to provide excellent life characteristics and charge and discharge characteristics, and heat at high temperatures. It relates to a particle total concentration gradient lithium secondary battery positive electrode active material having a stability, a manufacturing method thereof, and a lithium secondary battery comprising the same.
  • lithium secondary batteries have an operating voltage of 3.7 V or more, and have a higher energy density per unit weight than nickel-cadmium batteries or nickel-hydrogen batteries. It is increasing day by day.
  • P-HEV plug-in hybrid
  • LiCoO 2 LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li 1 + X [Mn 2-x M x ] O 4 , and LiFePO 4 .
  • LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high battery voltage, high stability, and flat discharge voltage characteristics.
  • Co has low reserves, is expensive, and toxic to humans. Therefore, development of other anode materials is desired.
  • Korean Patent Publication No. 2005-0083869 proposes a lithium transition metal oxide having a concentration gradient of a metal composition.
  • This method is a method of synthesizing the internal material of a certain composition and then applying a material having a different composition to the outside to prepare a double layer, and then mixed with a lithium salt to heat treatment.
  • As the internal material a commercially available lithium transition metal oxide may be used.
  • this method discontinuously changes the metal composition of the positive electrode active material between the produced internal and external material compositions, and does not continuously change gradually.
  • the powder synthesized by the present invention is not suitable for use as a cathode active material for lithium secondary batteries because the tap density is low because ammonia, which is a chelating agent, is not used.
  • Korean Patent Laid-Open Publication No. 2007-0097923 proposes a cathode active material having an inner bulk portion and an outer bulk portion and having a continuous concentration distribution according to the position of metal components in the outer bulk portion.
  • this method since the concentration is constant in the inner bulk portion and the metal composition is changed only in the outer bulk portion, there is a need to develop a positive electrode active material having a better structure in terms of stability and capacity.
  • An object of the present invention is to provide a cathode active material for a lithium secondary battery having a stable crystal structure, excellent life and charge and discharge characteristics, and thermal stability at high temperatures.
  • Another object of the present invention is to provide a method for producing the positive electrode active material for a lithium secondary battery.
  • Still another object of the present invention is to provide a lithium secondary battery including the cathode active material.
  • the present invention is characterized in that in the lithium secondary battery positive electrode active material for the above purpose, the concentration of all the metals constituting the lithium secondary battery positive electrode active material shows a concentration gradient continuously in the entire region from the center of the particle to the surface portion It provides a particle total concentration gradient lithium secondary battery cathode active material.
  • the total particle concentration gradient lithium secondary battery cathode active material is lithium secondary battery cathode active material
  • the concentrations of M1, M2, and M3 from the central portion toward the surface portion have a continuous concentration gradient.
  • M1, M2 and M3 are selected from the group consisting of Ni, Co, Mn, and combinations thereof, and M4 is Fe, Na, Mg, Ca , Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B and combinations thereof, 0 ⁇ a1 ⁇ 1.1, 0 ⁇ a2 ⁇ 1.1, 0 ⁇ x1 ⁇ 1, 0 ⁇ x2 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ z1 ⁇ 1, 0 ⁇ z2 ⁇ 1, 0 ⁇ w ⁇ 0.1, 0.0 ⁇ 0.02 , 0 ⁇ x1 + y1 + z1 ⁇ 1, 0 ⁇ x2 + y2 + z2 ⁇ 1, x1 ⁇ x2, y1 ⁇ y2, z2 ⁇ z1.)
  • the present invention also includes a metal salt solution M1, M2, M3, wherein the concentration of M1, M2 and M3 is different from the first step of preparing a metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion;
  • the mixing ratio of the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion is gradually changed from 100 v%: 0 v% to 0 v%: 100 v%, and the chelating agent and the basic aqueous solution are added to the reactor. Mixing and forming a precipitate such that concentrations of M1, M2, and M3 have a continuous concentration gradient from the center portion to the surface portion;
  • It provides a method for producing a cathode active material for a lithium battery comprising a fourth step of heat treatment after mixing the active material precursor and a lithium salt.
  • the present invention also provides a lithium secondary battery comprising the cathode active material according to the present invention.
  • the concentration of the metal is constant in the inner region, and the concentration gradient of the metal in the outer region is gradual, all the metals constituting the cathode active material are from the center of the particle to the surface.
  • the concentration of the metal in the entire region of represents a continuous concentration gradient.
  • the concentration of all the metals constituting the cathode active material is increased and decreased while showing a concentration gradient continuously in the entire region from the center to the surface of the particles, respectively.
  • the concentration of M1, M2 increases with a continuous concentration gradient from the center portion to the surface portion
  • the concentration of M3 decreases with a continuous concentration gradient from the center portion to the surface portion
  • the concentration of M2 increases with a continuous concentration gradient from the center to the surface portion
  • the concentrations of M1 and M3 decrease with a continuous concentration gradient from the center to the surface portion. Characterized in that.
  • the concentration of the metal continuously shows a concentration gradient means that the concentration of the metal except lithium is present in a concentration distribution in which the concentration of the active material particles gradually changes from the center of the active material to the surface.
  • the concentration distribution means that there is a difference of 0.1 to 30 mol%, preferably 0.1 to 20 mol%, more preferably 1 to 10 mol%, of a change in metal concentration per 0.1 ⁇ m from the center of the particle to the surface portion.
  • the central portion of the particles means within 0.2 ⁇ m of the radius from the center of the active material particles
  • the surface portion of the particles means within 0.2 ⁇ m from the outermost part of the particles.
  • the gradient of the concentration gradient of M1, M2, and M3 is preferably constant from the particle center to the surface portion. That is, in the present invention, the concentrations of M1 and M2 represent a continuous concentration gradient that continues to increase from the center portion to the surface portion, and the concentration of M3 continues to decrease from the center portion to the surface portion. It is preferable from the viewpoint of stability of the structure. In addition, in the present invention, the concentration of M2 represents a continuous concentration gradient that continues to increase from the center portion to the surface portion, and the concentrations of M1 and M3 continue to decrease from the center portion to the surface portion. It is preferable from the viewpoint of stability of the structure.
  • M1 is Co
  • M2 is Mn
  • M3 is characterized in that Ni. That is, the concentration of Ni decreases throughout the particle, the concentration of Mn increases throughout the particle, and the concentration of Co shows a concentration gradient throughout the particle, but both increasing and decreasing structures are possible.
  • the concentration z1 at the center of M3 is 0.6 ⁇
  • the concentration of nickel is maintained at a high concentration at the center, and the difference in concentration of nickel at the center and the surface is 0.2 ⁇
  • the concentration x1 in the center of M1 is in the range of 0 ⁇ x1 ⁇ 0.2 and 0.05 ⁇
  • the concentration y1 at the center of M2 is in the range of 0 ⁇ x1 ⁇ 0.1, so that the Mn content at the surface portion is 0.2 or more, indicating thermal stability and preventing a decrease in capacity.
  • the difference in concentration is characterized in that 0.2 ⁇
  • M1, M2, and M3 are included as aqueous metal salt solutions, and the concentrations of M1, M2 and M3 are different from each other to prepare a metal salt aqueous solution for forming a central portion and a metal salt aqueous solution M for forming a surface portion.
  • the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion may be prepared by adding a salt including nickel salt, cobalt salt, manganese salt, and M to the solvent, and each nickel salt, cobalt salt, manganese salt, And after preparing an aqueous solution containing the M salt may be used by mixing them.
  • a salt including nickel salt, cobalt salt, manganese salt, and M may be used by mixing them.
  • the metal salt sulfates, nitrates, acetates, halides, hydroxides, and the like may be used, and are not particularly limited, as long as they can be dissolved in water.
  • the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion are mixed, and the chelating agent and the basic aqueous solution are mixed in the reactor, and the concentration of M1, M2, and M3 is continuously changed from the center portion to the surface portion. Obtain a precipitate to have.
  • the present invention by continuously supplying the aqueous metal salt solution for forming the center portion and the aqueous metal salt solution for forming the surface portion from the beginning of the formation of the particles, a continuous concentration gradient from the center of the particles to the surface in one coprecipitation process from the formation of the particles It is possible to obtain a precipitate with.
  • the resulting concentration gradient and its slope are controlled by the composition and the mixed feed ratio of the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion.
  • By adjusting the reaction time to 1 to 10 hours it is possible to control the size of the whole particle.
  • the molar ratio of the chelating agent and the metal salt aqueous solution is characterized in that 0.2 to 1.0: 1.
  • an aqueous ammonia solution As the chelating agent, an aqueous ammonia solution, an aqueous ammonium sulfate solution, a mixture thereof, and the like may be used.
  • the molar ratio of the chelating agent and the metal salt aqueous solution is preferably 0.2 to 0.5: 1, 0.2 to 0.4: 1.
  • the molar ratio of the chelating agent to 0.2 to 1.0 per mol of the aqueous metal solution means that the chelating agent reacts with the metal at least one to one to form a complex, but the complex is reacted with caustic soda and the remaining chelating agent is medium. This is because it can be converted into a product, recovered and used as a chelating agent, and furthermore, since this is an optimal condition for increasing and stabilizing crystallinity of the positive electrode active material.
  • concentration of the said basic aqueous solution it is preferable to use 2M-10M.
  • concentration of the basic aqueous solution is less than 2M, the particle formation time is long, the tap density may be decreased, and the yield of the coprecipitation reactant may be decreased. It is undesirable because the particles are difficult to form and the tap density can also drop.
  • the reaction atmosphere of the aqueous transition metal solution in the second step is a nitrogen flow, pH is within 10 to 12.5, the reaction temperature is within 30 to 80 °C, the reaction stirring rate is preferably within 100 to 2000 rpm.
  • the obtained precipitate is dried or heat treated to prepare an active material precursor.
  • the drying process may be dried for 15 to 30 hours at 110 °C to 400 °C.
  • the active material precursor and the lithium salt are mixed and then heat treated to obtain an active material.
  • the heat treatment is preferably performed at 700 ° C to 1100 ° C.
  • the heat treatment atmosphere is preferably an oxidizing atmosphere of air or oxygen, or a reducing atmosphere containing nitrogen or hydrogen, and the heat treatment time is preferably 10 to 30 hours.
  • the metal is diffused even at a constant internal metal concentration, and as a result, a metal oxide having a continuous metal concentration distribution from the center to the surface can be obtained.
  • Preliminary baking may be performed by maintaining at 250-650 degreeC for 5 to 20 hours before the said heat processing process.
  • the annealing process may be performed at 600 to 750 ° C. for 10 to 20 hours after the heat treatment process.
  • a sintering additive when mixing the active material precursor and the lithium salt.
  • the sintering additive may preferably be any one selected from the group consisting of compounds containing ammonium ions, metal oxides, metal halides, and combinations thereof.
  • the compound containing the ammonium ion is preferably any one selected from the group consisting of NH 4 F, NH 4 NO 3 , (NH 4 ) 2 SO 4 , and combinations thereof, wherein the metal oxide is B 2 O 3 , Bi 2 O 3 , and any one selected from the group consisting of a combination thereof, the metal halide is preferably any one selected from the group consisting of NiCl 2 , CaCl 2 , and combinations thereof. .
  • the sintering additive is preferably used in an amount of 0.01 to 0.2 mole per 1 mole of the active material precursor.
  • the sintering additive is preferably used in an amount of 0.01 to 0.2 mole per 1 mole of the active material precursor.
  • the content of the sintering additive is too low, the effect of improving the sintering characteristics of the active material precursor may be insignificant. If the content of the sintering additive is higher than the above range, the initial capacity may be decreased during charging and discharging, or the performance as the positive electrode active material may be deteriorated.
  • the present invention also provides a lithium secondary battery comprising the cathode active material according to the present invention.
  • the lithium battery includes a positive electrode including the positive electrode active material having the above constitution, a negative electrode including the negative electrode active material, and a separator present therebetween. It also includes an electrolyte that is impregnated with the positive electrode, the negative electrode, and the separator. It is preferable that the negative electrode active material reversibly occlude / discharge lithium ions, and for example, those containing artificial graphite, natural graphite, graphitized carbon fiber, amorphous, and the like may be used. It can be used as an active material.
  • the electrolyte may be a liquid electrolyte containing a lithium salt and a non-aqueous organic solvent, or may be a polymer gel electrolyte.
  • the positive electrode active material for a lithium secondary battery according to the present invention exhibits a structure in which the concentration of all metals included in the positive electrode active material increases and decreases with a continuous concentration gradient from the center of the particle to the surface, thus providing a sharp phase boundary region from the center to the surface. It is not present, which stabilizes the crystal structure and increases the thermal stability.
  • a metal aqueous solution containing nickel sulfate: cobalt sulfate: manganese sulfate in a molar ratio of 55:15:30 was prepared using a 2.4 M metal solution mixed with a 90:10 molar ratio and a metal salt aqueous solution for forming a surface portion.
  • the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion were added at a rate of 0.3 liter / hour while mixing at a predetermined ratio.
  • a 3.6 M ammonia solution was continuously added to the reactor at 0.03 liters / hour.
  • an aqueous NaOH solution at a concentration of 4.8 M was supplied for pH adjustment so that the pH in the reactor was maintained at 11. Subsequently, coprecipitation reaction was performed until the diameter of the precipitate obtained by adjusting the impeller speed of a reactor to 1000 rpm became 1 micrometer.
  • the flow rate was adjusted so that the average residence time of the solution in the reactor was about 2 hours, and after the reaction reached a steady state, a steady state duration was given to the reactant to obtain a more dense coprecipitation compound.
  • the compound was filtered, washed with water and then dried in a warm air dryer at 110 ° C. for 15 hours to obtain an active material precursor.
  • LiNO 3 was mixed with the obtained active material precursor as a lithium salt, and then heated at a temperature increase rate of 2 ° C./min, maintained at 280 ° C. for 10 hours, followed by preliminary firing at 750 ° C. for 15 hours. Got.
  • the size of the finally obtained active material particle was 12 micrometers.
  • the active material particles were obtained in the same manner as in Example 1 except that the molar ratio of nickel sulfate: cobalt sulfate: manganese sulfate in the metal salt aqueous solution for forming the center portion and the aqueous metal salt solution for forming the surface portion was as shown in Table 1 below.
  • a positive electrode active material of the same composition as in Example 1 was prepared using a batch reactor.
  • LiNO 3 was mixed with the obtained active material precursor as a lithium salt, and then heated at a temperature increase rate of 2 ° C./min, maintained at 280 ° C. for 10 hours, followed by preliminary firing at 750 ° C. for 15 hours. Got.
  • the size of the finally obtained active material particle was 12 micrometers.
  • Example 1 Metal salt solution for forming core Metal salt solution for forming surface part Ni Co Mn Ni Co Mn
  • Example 2 90 10 0 60 13 27
  • Example 3 90 10 0 65 05 33
  • Example 4 90 10 0 75 05 20
  • Example 5 85 10 5 70 05 25
  • Example 6 90 10 0 55 15 30
  • the molar ratios of nickel, cobalt, and manganese are shown in Table 1, respectively, and a cathode active material was prepared such that the concentrations of the active materials did not change in the entire active material.
  • the concentration of Ni metal decreases from the center to the surface, and the Co and Mn concentrations show a constant slope and gradually increase.
  • each precursor is moved from the center to the surface by using an EPN (Electron Probe Micro Analyzer).
  • EPN Electro Probe Micro Analyzer
  • the atomic ratio in the particles was measured and the results are shown in FIGS. 7 to 12, respectively.
  • a positive electrode was prepared using the active materials prepared in Examples 1 to 6 and the active materials prepared in Comparative Examples 1 to 7, and was applied to a cylindrical lithium secondary battery.
  • the charge and discharge test and cycle characteristics of the battery using the active materials prepared in Examples 1 to 6 were measured, and the results are shown in FIGS. 13 to 18.
  • the charging and discharging was performed 10 times for each sample under the condition of 0.2C between 2.7 and 4.3V, and the average value was taken.
  • Examples 1 to 6 show the charging and discharging results of Examples 1 to 6, Comparative Examples corresponding to respective bulk compositions, and Comparative Examples showing respective center compositions.
  • Examples 1 to 6 have similar charge and discharge characteristics to the comparative examples corresponding to the bulk compositions, but the charge and discharge characteristics of the comparative examples representing the respective center compositions are very poor.
  • Example 1 In a state where 4.3V of the positive electrode including each of the active materials prepared in Examples 1 to 6 and the active materials prepared in Comparative Examples 1 to 4 were charged, respectively, 10 ° C. / using a differential scanning thermal analyzer (DSC) It measured while heating up at the speed of min, and the result is shown in following FIGS. 19-24.
  • DSC differential scanning thermal analyzer
  • each of the bulk compositions is shown, and a comparative example of constant metal concentration in the whole particles and a respective center composition are shown.
  • the temperature at which the exothermic peak appears in comparison with the comparative example is measured, and in the case of including the active materials prepared in Examples 1 to 6 according to the present invention, the heat is higher than the case in which the active materials prepared in Comparative Examples 1 to 7 are included. It can be seen that the stability is greatly improved.
  • the concentration of all metals constituting the particles from the central portion of the particles to the surface portion according to the present invention increases or decreases continuously while showing a gradient, thereby stably exhibiting stability without sudden change in structure, resulting in greatly improved thermal stability. You can check it.
  • the positive electrode active material for a lithium secondary battery according to the present invention exhibits a structure in which the concentration of all metals included in the positive electrode active material increases and decreases with a continuous concentration gradient from the center of the particle to the surface, thus providing a sharp phase boundary region from the center to the surface. It is not present, which stabilizes the crystal structure and increases the thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 보다 상세하게는 결정 구조가 안정화되어 수명 특성과 충방전 특성이 우수하며, 고온에서도 열안정성을 가지는 복합 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지에 관한 것이다.

Description

입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
본 발명은 입자 전체 농도 구배 리튬이차전지 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 보다 상세하게는 결정 구조가 안정화되어 수명 특성과 충방전 특성이 우수하며, 고온에서도 열안정성을 가지는 입자 전체 농도 구배 리튬이차전지 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
최근 전자, 통신, 컴퓨터 산업 등의 급속한 발전에 힘입어, 캠코더, 휴대폰, 노트북 PC 등 휴대용 전자제품의 사용이 일반화됨으로써, 가볍고 오래 사용할 수 있으며 신뢰성이 높은 전지에 대한 요구가 높아지고 있다.
특히, 리튬 이차 전지는 작동 전압이 3.7 V 이상으로서, 니켈-카드뮴 전지나 니켈-수소 전지보다 단위 중량당 에너지 밀도가 높다는 측면에서 이들 휴대용 전자정보 통신기기들을 구동할 동력원으로서 리튬 이차 전지에 대한 수요가 나날이 증가하고 있다.
최근에는 내연기관과 리튬 이차 전지를 혼성화(hybrid)하여 전기자동차용 동력원으로 사용하고자 하는 연구가 미국, 일본, 유럽 등에서 활발히 진행 중에 있다. 하루에 60마일 미만의 주행거리를 갖는 자동차에 사용되는 플러그인 하이브리드 (P-HEV) 전지 개발이 미국을 중심으로 활발히 진행 중이다. 상기 P-HEV용 전지는 거의 전기자동차에 가까운 특성을 갖는 전지로 고용량 전지 개발이 최대의 과제이다. 특히, 2.0 g/cc 이상의 높은 탭 밀도와 230 mAh/g 이상의 고용량 특성을 갖는 양극 재료를 개발하는 것이 최대의 과제이다.
현재 상용화되었거나 개발 중인 양극 재료로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li1+X[Mn2-xMx]O4, LiFePO4 등이 있다. 이 중에서 LiCoO2는 안정된 충방전 특성, 우수한 전자전도성, 높은 전지 전압, 높은 안정성, 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이다. 그러나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. 또한, 충전시의 탈 리튬에 의하여 결정 구조가 불안정하여 열적 특성이 매우 열악한 단점을 가지고 있다.
이를 개선하기 위해, 니켈의 일부를 전이금속 원소로 치환하여, 발열 시작 온도를 고온 측으로 이동시키거나 급격한 발열을 방지하기 위하여 발열 피크를 완만하게(broad)하려는 시도가 많이 이루어지고 있다. 그러나, 아직도 만족할 만한 결과는 얻어지고 있지 않다.
즉, 니켈의 일부를 코발트로 치환한 LiNi1-xCoxO2(x=0.1-0.3) 물질의 경우 우수한 충방전 특성과 수명특성을 보이나, 열적 안전성 문제는 해결하지 못하였다. 또한, 뿐만 아니라 유럽특허 제0872450호에서는 Ni 자리에 Co와 Mn 뿐만 아니라 다른 금속이 치환된 LiaCobMncMdNi1-(b+c+d)O2(M=B, Al, Si. Fe, Cr, Cu, Zn, W, Ti, Ga) 형을 개시하였으나, 여전히 Ni계의 열적 안전성은 해결하지 못하였다.
이러한 단점을 없애기 위하여 대한민국 특허 공개 제2005-0083869호에는 금속 조성의 농도 구배를 갖는 리튬 전이 금속 산화물이 제안되어 있다. 이 방법은 일단 일정 조성의 내부 물질을 합성한 후 외부에 다른 조성을 갖는 물질을 입혀 이중층으로 제조한 후 리튬염과 혼합하여 열처리 하는 방법이다. 상기 내부 물질로는 시판되는 리튬 전이 금속 산화물을 사용할 수도 있다. 그러나, 이 방법은 생성된 내부 물질과 외부 물질 조성사이에서 양극활물질의 금속 조성이 불연속적으로 변화하며, 연속적으로 점진적으로 변하지 않는다. 또한, 이 발명으로 합성된 분말은 킬레이팅제인 암모니아를 사용하지 않기 때문에 탭 밀도가 낮아 리튬 이차 전지용 양극활물질로 사용하기에는 부적합하였다.
이러한 점을 개선하기 위해 대한민국 특허 공개 제2007-0097923호에서는 내부 벌크부와 외부 벌크부를 두고 외부 벌크부에서 금속 성분들이 위치에 따라 연속적인 농도 분포를 가지는 양극활물질이 제안되어 있다. 그러나, 이 방법에서는 내부 벌크부에서는 농도가 일정하고 외부 벌크부에서만 금속 조성이 변화하기 때문에 안정성 및 용량 면에서 좀더 우수한 새로운 구조의 양극활물질을 개발할 필요성이 있었다.
본 발명은 상기한 과제를 해결하기 위한 것으로서, 결정 구조가 안정화되어 수명 특성과 충방전 특성이 우수하며, 고온에서도 열안정성을 가지는 리튬 이차전지용 양극 활물질을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기 리튬 이차전지용 양극 활물질의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은 상기 양극 활물질을 포함하는 리튬 이차 전지를 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 목적을 위하여 리튬이차전지 양극활물질에 있어서, 상기 리튬이차전지 양극활물질을 구성하는 모든 금속의 농도가 입자 중심부로부터 표면부까지의 전체 영역에서 연속적으로 농도 구배를 나타내는 것을 특징으로 하는 입자 전체 농도 구배 리튬이차전지 양극활물질을 제공한다.
본 발명에 있어서, 상기 입자 전체 농도 구배 리튬이차전지 양극활물질은
하기 화학식 1로 표시되는 중심부; 및
하기 화학식 2로 표시되는 표면부;를 포함하며,
상기 중심부로부터 상기 표면부로 갈수록 M1, M2 및 M3 의 농도는 연속적인 농도 구배를 가지는 것을 특징으로 한다.
[화학식 1]
Lia1M1x1M2y1M3z1M4wO2+δ
[화학식 2]
Lia2M1x2M2y2M3z2M4wO2+δ (상기 화학식 1, 2에서 M1, M2 및 M3 는 Ni, Co, Mn 및 이들의 조합으로 이루어진 군에서 선택되고, M4는 Fe, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B 및 이들의 조합으로 이루어진 군에서 선택되며, 0<a1≤1.1, 0<a2≤1.1, 0≤x1≤1, 0≤x2≤1, 0≤y1≤1, 0≤y2≤1, 0≤z1≤1, 0≤z2≤1, 0≤w≤0.1, 0.0≤δ≤0.02, 0<x1+y1+z1≤1, 0<x2+y2+z2≤1 , x1≤x2, y1≤y2, z2≤z1 이다.)
본 발명은 또한, 금속염 수용액으로서 M1, M2, M3 를 포함하고, 상기 M1, M2 및 M3 의 농도는 서로 다른 중심부 형성용 금속염 수용액과 표면부 형성용 금속염 수용액을 준비하는 제 1 단계; 및
상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 혼합 비율이 100 v%:0 v% 에서 0 v% :100 v% 까지 점진적으로 변화하는 혼합하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합하여 상기 M1, M2, M3 의 농도는 중심부로부터 표면부까지 연속적인 농도 구배를 가지도록 침전물을 형성하는 제 2 단계;
상기 얻어진 침전물을 건조하거나 열처리하여 활물질 전구체를 제조하는 제 3 단계; 및
상기 활물질 전구체와 리튬염을 혼합한 후 열처리하는 제 4 단계를 포함하는 리튬 전지용 양극 활물질의 제조방법을 제공한다.
본 발명은 또한, 본 발명에 의한 상기 양극활물질을 포함하는 리튬 이차전지를 제공한다.
이하 본 발명을 상세히 설명한다.
본 발명의 양극활물질 입자는, 내부 영역에서는 금속의 농도가 일정하고, 외부 영역에서만 금속의 농도가 점진적인 농도 구배를 나타내는 종래 기술과는 달리, 양극활물질을 구성하는 모든 금속이 입자의 중심에서부터 표면까지의 전체 영역에서 금속의 농도가 연속적인 농도 구배를 나타낸다.
즉, 본 발명의 양극활물질 입자는 상기 양극활물질을 구성하는 모든 금속의 농도가 각각 입자의 중심에서부터 표면까지의 전체 영역에서 연속적으로 농도 구배를 나타내면서 증가, 감소한다.
본 발명에 있어서, M1, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고, 상기 M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것을 특징으로 한다.
또한, 본 발명에 있어서, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고, 상기 M1, M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것을 특징으로 한다.
본 발명에서 "금속의 농도가 연속적으로 농도 구배를 나타낸다"는 의미는 리튬을 제외한 금속의 농도가 활물질 입자 중심부에서부터 표면부까지 점진적으로 변화하는 농도 분포로 존재한다는 것이다. 농도 분포는 입자의 중심부에서부터 표면부까지 0.1㎛당 금속 농도의 변화가 0.1 내지 30 몰%, 바람직하게는 0.1 내지 20 몰%, 보다 바람직하게는 1 내지 10 몰%의 차이가 있는 것을 의미한다. 본 발명에 있어서 입자의 중심부는 활물질 입자의 정중앙으로부터 반경 0.2㎛ 이내를 의미하며, 입자의 표면부는 입자의 최외각으로부터 0.2㎛ 이내를 의미한다.
본 발명에 있어서, 상기 M1, M2, M3 의 농도 구배 기울기는 입자 중심부로부터 표면부까지 일정한 것이 바람직하다. 즉, 본 발명에 있어서, 상기 M1, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 증가하는 연속적인 농도 구배를 나타내고, 상기 M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 감소하는 연속적인 농도 구배를 나타내는 것이 구조의 안정성면에서 바람직하다. 또한, 본 발명에 있어서, 상기 M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 증가하는 연속적인 농도 구배를 나타내고, 상기 M1, M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 감소하는 연속적인 농도 구배를 나타내는 것이 구조의 안정성면에서 바람직하다.
본 발명에 있어서, 상기 M1 은 Co, 상기 M2 는 Mn, 상기 M3 는 Ni 인 것을 특징으로 한다. 즉, Ni 의 농도는 입자 전체에서 감소하고, Mn 의 농도는 입자 전체에서 증가하며, Co 의 농도는 입자 전체에서 농도 구배를 나타내지만, 증가하거나, 감소하는 구조 모두 가능하다.
본 발명에 있어서, 상기 M3 의 중심부에서의 농도 z1 의 범위가 0.6≤|z1|≤1 로 중심부에서 니켈의 농도를 고농도로 유지하고, 중심부와 표면부의 니켈의 농도 차이는 0.2≤|x2-z1|≤0.4 인 것이 열안정성을 나타내면서도 용량의 감소를 막을 수 있으므로 바람직하다.
본 발명에 있어서, 상기 M1 의 중심부에서의 농도 x1 의 범위가 0≤x1≤0.2 이고, 0.05≤|x2-x1|≤0.1 인 것이 Co 의 사용량을 줄이면서도 용량의 감소를 막을 수 있으므로 바람직하다.
본 발명에 있어서, 상기 M2 의 중심부에서의 농도 y1 의 범위가 0≤x1≤0.1 로 표면부에서 Mn 의 함량이 0.2 이상이어야 열안정성을 나타내면서도 용량의 감소를 막을 수 있으며, 중심부와 표면부의 망간의 농도 차이는 0.2≤|y2-y1|≤0.4 인 것을 특징으로 한다.
이하에서는, 상기 본 발명의 양극활물질의 제조 방법을 설명한다.
먼저, 금속염 수용액으로서 M1, M2, M3 를 포함하고, 상기 M1, M2 및 M3 의 농도는 서로 다른 중심부 형성용 금속염 수용액과 표면부 형성용 금속염 수용액 M을 준비한다.
상기 중심부 형성용 금속염 수용액과 표면부 형성용 금속염 수용액은 니켈염, 코발트염, 망간염, 및 M을 포함하는 염을 용매에 첨가하여 제조할 수도 있고, 각각의 니켈염, 코발트염, 망간염, 및 M염을 포함하는 수용액을 제조한 후 이를 혼합하여 사용할 수도 있다. 상기 금속염으로는 황산염, 질산염, 초산염, 할라이드, 수산화물 등이 사용될 수 있으며 물에 용해될 수 있으면 되므로 특별히 한정되지는 않는다.
다음으로 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액을 혼합하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합하여 상기 M1, M2, M3 의 농도는 중심부로부터 표면부까지 연속적인 농도 구배를 가지도록 침전물을 얻는다.
본 발명에 있어서, 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액을 입자 형성 초기부터 혼합하면서 연속적으로 공급함으로써 입자의 형성 과정에서부터 하나의 공침 과정에서 입자의 중심에서부터 표면까지 연속적인 농도 구배를 가지는 침전물을 얻을수 있게 된다. 생성되는 농도 구배와 그 기울기는 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 조성과 혼합 공급 비율로 조절된다. 상기 반응시간을 1 내지 10시간으로 조절하여 전체적인 입자의 크기를 조절할 수 있게 된다.
또한, 본 발명에 있어서, 상기 킬레이팅제와 금속염 수용액의 몰 비는 0.2 내지 1.0: 1 인 것을 특징으로 한다.
상기 킬레이팅제로는 암모니아 수용액, 황산 암모늄 수용액, 이들의 혼합물 등이 사용될 수 있다. 상기 킬레이팅제와 금속염 수용액의 몰 비는 0.2 내지 0.5: 1, 0.2 내지 0.4: 1인 것이 바람직하다. 킬레이팅제의 몰 비를 금속 수용액 1몰에 대하여 0.2 내지 1.0 으로 한 것은 킬레이팅제는 금속과 1 대 1 이상으로 반응하여 착체를 형성하지만, 이 착체가 가성소다와 반응하고 남은 킬레이팅제가 중간 생성물로 변하여 킬레이팅제로 회수되어 사용될 수 있기 때문이며, 나아가 이것이 양극 활물질의 결정성을 높이고 안정화하기 위한 최적의 조건이기 때문이다.
상기 염기성 수용액의 농도는 2M 내지 10M의 것을 사용하는 것이 바람직하다. 상기 염기성 수용액의 농도가 2M 미만인 경우 입자형성 시간이 길어지고 탭 밀도가 떨어지고, 공침 반응물의 수득율이 떨어질 수 있으며, 그 농도가 10M을 초과하는 경우 급격한 반응에 의해서 입자의 성장이 급격하게 이루어져 균일한 입자를 형성하기 어렵고 탭 밀도 역시 떨어질 수 있어 바람직하지 못하다.
상기 제 2 단계에서 전이금속수용액의 반응 분위기는 질소 흐름 하에서, pH는 10 내지 12.5 이내, 반응온도는 30 내지 80℃ 이내이며, 반응 교반 속도는 100 내지 2000 rpm 이내인 것이 바람직하다.
이후, 제 3 단계에서는 상기 얻어진 침전물을 건조하거나 열처리하여 활물질 전구체를 제조한다. 상기 건조 공정은 110℃ 내지 400℃에서 15 내지 30시간 건조할 수 있다.
마지막으로 상기 활물질 전구체와 리튬염을 혼합한 후 열처리하여 활물질을 얻는다.
상기 활물질 전구체와 리튬 염을 혼합한 후 열처리 공정은 700℃ 내지 1100℃에서 실시하는 것이 바람직하다. 열처리 분위기는 공기나 산소의 산화성 분위기나 질소 혹은 수소가 포함된 환원성 분위기가 바람직하고 열처리 시간은 10 내지 30 시간인 것이 바람직하다. 이와 같은 열처리 과정에서 내부 금속 농도가 일정한 부분에서도 금속의 확산이 일어나게 되며, 결과적으로 중심에서 표면까지 연속적인 금속의 농도 분포를 갖는 금속 산화물을 얻을 수 있다.
상기 열처리 공정 전에 250 내지 650℃ 에서 5 내지 20시간 유지시켜 예비 소성을 실시할 수도 있다. 또한 상기 열처리 공정 후에 600 내지 750℃ 에서 10 내지 20시간 어닐링 공정을 실시할 수도 있다.
또한, 상기 활물질 전구체와 리튬염 혼합시 소결 첨가제를 첨가하는 단계를 더 포함하는 것이 바람직하다. 상기 소결 첨가제는 암모늄 이온을 함유한 화합물, 금속산화물, 금속할로겐화물, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것을 바람직하게 사용할 수 있다.
상기 암모늄 이온을 함유한 화합물은 NH4F, NH4NO3, (NH4)2SO4, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하고, 상기 금속 산화물은 B2O3, Bi2O3, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하고, 상기 금속할로겐화물은 NiCl2, CaCl2, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하다.
상기 소결 첨가제는 활물질 전구체 1몰에 대하여 0.01~0.2몰의 함량으로 사용하는 것이 바람직하다. 상기 소결 첨가제의 함량이 너무 낮으면 활물질 전구체의 소결 특성의 향상 효과가 미미할 수 있고, 상기 범위 보다 높으면 충방전 진행시 초기 용량이 감소하거나 오히려 양극 활물질로서의 성능이 떨어질 수 있다.
본 발명은 또한, 본 발명에 따른 양극 활물질을 포함하는 리튬 이차 전지를 제공한다.
상기 리튬 전지는 상기 구성을 가지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극 및 이들 사이에 존재하는 세퍼레이터를 포함한다. 또한, 양극, 음극, 세퍼레이터에 함침되어 존재하는 전해질을 포함한다. 상기 음극 활물질로는 가역적으로 리튬 이온을 흡장/방출할 수 있는 것이 바람직하고, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정 소 등을 포함하는 것을 사용할 수 있고, 금속 리튬도 음극 활물질로 사용할 수 있다. 상기 전해질은 리튬염과 비수성 유기 용매를 포함하는 액상의 전해질일 수도 있고 폴리머 겔 전해질일 수도 있다.
본 발명에 따른 리튬 이차 전지용 양극 활물질은 상기 양극활물질에 포함되는 모든 금속의 농도가 입자 중심에서부터 표면까지 연속적인 농도 구배를 가지고 증가 및 감소하는 구조를 나타내어 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다.
도 1 내지 도 6은 본 발명의 실시예 1 내지 6 에서 제조된 각 전구체 입자에서의 원소비(atomic ratio)를 측정한 결과를 나타낸다.
도 7 내지 도 12는 본 발명의 실시예 1 내지 6 에서 제조된 각 전구체 입자를 열처리 한 후의 원소비(atomic ratio)를 측정한 결과를 나타낸다.
도 13 내지 도 18은 본 발명의 실시예 1 내지 6 에서 제조된 활물질과 비교예 1 내지 7 에서 제조된 활물질들을 이용한 전지에 대하여 충방전 테스트와 사이클 특성을 측정한 결과를 나타낸다.
도 19 내지 도 24는 본 발명의 실시예 1 내지 6 에서 제조된 각 활물질과 비교예 1 내지 7 에서 제조된 활물질들을 포함하는 양극을 각각 4.3V 충전시킨 상태에서, 시차주사열분석기(DSC)를 이용하여 10/min 의 속도로 승온시키면서 측정한 결과를 나타낸다.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 실시예에 의하여 한정되는 것은 아니다.
<실시예 1>
니켈의 농도는 중심부로부터 표면부까지 연속적으로 감소하고, 코발트와 망간의 농도는 중심부로부터 표면부까지 연속적으로 증가하는 활물질을 제조하기 위하여 먼저, 중심부 형성용 금속염 수용액으로 황산니켈:황산코발트:황산망간을 90:10 몰비로 혼합한 2.4M 농도의 금속 수용액과 표면부 형성용 금속염 수용액으로 황산니켈:황산코발트:황산망간을 55:15:30 몰비로 포함하는 금속 수용액을 준비하였다.
공침 반응기(용량 4L, 회전모터의 출력 80W)에 증류수 4리터를 넣은 뒤 질소가스를 반응기에 0.5리터/분의 속도로 공급함으로써, 용존 산소를 제거하고 반응기의 온도를 50℃ 로 유지시키면서 1000 rpm으로 교반하였다.
상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액을 일정 비율로 혼합하면서 0.3 리터/시간으로 투입하였다. 또한, 3.6 M 농도의 암모니아 용액을 0.03 리터/시간으로 반응기에 연속적으로 투입하였다. 또한, pH 조정을 위해 4.8M 농도의 NaOH 수용액을 공급하여 반응기 내의 pH를 11로 유지되도록 하였다. 이어서, 반응기의 임펠러 속도를 1000 rpm으로 조절하여 얻어지는 침전물의 지름이 1㎛ 가 될 때까지 공침 반응을 수행하였다. 이때 유량을 조절하여 용액의 반응기 내의 평균 체류 시간은 2 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 상기 반응물에 대해 정상 상태 지속시간을 주어 좀 더 밀도가 높은 공침 화합물을 얻도록 하였다. 상기 화합물을 여과하고, 물로 세척한 다음, 110 ℃의 온풍 건조기에서 15 시간 동안 건조시켜, 활물질 전구체를 얻었다.
상기 얻어진 활물질 전구체에 리튬염으로서 LiNO3를 혼합한 후에 2℃ /min의 승온 속도로 가열한 후 280℃ 에서 10시간 동안 유지시켜 예비 소성을 수행하였으며, 뒤이어 750℃ 에서 15시간 소성시켜 최종 활물질 입자를 얻었다. 최종 얻어진 활물질 입자의 크기는 12㎛ 였다.
<실시예 2 내지 실시예 5>
중심부 형성용 금속염 수용액과 표면부 형성용 금속염 수용액의 황산니켈:황산코발트:황산망간의 몰비를 아래 표 1에서 보는 바와 같이 하는 것을 제외하고는 상기 실시예 1과 동일하게 하여 활물질 입자를 얻었다.
<실시예 6>
상기 실시예 1 과 동일 조성의 양극활물질을 회분식 반응기를 이용하여 제조하였다.
회분식 공침 반응기(용량 8L, 회전모터의 출력 180W)에 증류수 2.5리터를 넣은 뒤 질소가스를 반응기에 0.6리터/분의 속도로 공급함으로써, 용존 산소를 제거하고 반응기의 온도를 50℃ 로 유지시키면서 450 rpm으로 교반하였다.
상기 실시예 3에서와 동일한 농도의 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액을 일정 비율로 혼합하면서 0.2 리터/시간으로 투입였다. 또한, 4.8 M 농도의 암모니아 용액을 0.1 리터/시간으로 반응기에 연속적으로 투입하였다. 또한, pH 조정을 위해 10M 농도의 NaOH 수용액을 공급하여 반응기 내의 pH를 11로 유지되도록 하였다. 이어서, 반응기의 임펠러 속도를 450 rpm으로 조절하여 최초 투입한 증류수와 투입한 금속수용액, 암모니아 용액 및 NaOH 용액의 양의 합이 8L가 될 때 까지 반응액을 주입하였다. 상기 화합물을 여과하고, 물로 세척한 다음, 110℃ 의 온풍 건조기에서 15 시간 동안 건조시켜, 활물질 전구체를 얻었다.
상기 얻어진 활물질 전구체에 리튬염으로서 LiNO3를 혼합한 후에 2℃ /min의 승온 속도로 가열한 후 280℃ 에서 10시간 동안 유지시켜 예비 소성을 수행하였으며, 뒤이어 750℃ 에서 15시간 소성시켜 최종 활물질 입자를 얻었다. 최종 얻어진 활물질 입자의 크기는 12㎛ 였다.
표 1
중심부 형성용 금속염 수용액 표면부 형성용 금속염 수용액
Ni Co Mn Ni Co Mn
실시예 1 90 10 0 55 75 30
실시예 2 90 10 0 60 13 27
실시예 3 90 10 0 65 05 33
실시예 4 90 10 0 75 05 20
실시예 5 85 10 5 70 05 25
실시예 6 90 10 0 55 15 30
<비교예>
비교예로서 니켈, 코발트, 망간의 몰비가 각각 아래 표 1과 같으며 활물질 전체에서 각각의 농도가 변하지 않고 일정한 조성을 나타내도록 양극활물질을 제조하였다.
표 2
Ni Co Mn
비교예 1 80 07 13
비교예 2 75 07 18
비교예 3 70 09 21
비교예 4 65 10 25
비교예 5 75 07 18
비교예 6 90 10 0
비교예 7 85 10 5
<실험예 1 : 전구체 입자에서의 농도 구배 구조의 확인>
본 발명의 전구체 입자에서 중심으로부터 표면에 이르기까지 각각 금속의 농도 구배 구조를 확인하기 위하여, EPMA(전자선 마이크로 애널라이저: Electron Probe Micro Analyzer)를 이용하여 중심으로부터 표면으로 이동하면서 상기 실시예 1 내지 6 에서 제조된 각 전구체 입자에서의 원소비(atomic ratio)를 측정하였으며 그 결과를 각각 도 1 내지 도 6 으로 나타내었다.
도 1 내지 도 6 에서 보는 바와 같이 상기 실시예 1 내지 6 에서 제조된 전구체의 경우 중심에서 표면까지 Ni 금속의 농도가 감소하고, Co 와 Mn 농도는 일정한 기울기를 나타내며 점점 증가하는 것을 확인할 수 있다.
<실험예 2 : 열처리 후 활물질 입자에서의 농도 구배 구조의 확인>
본 발명에 의하여 제조된 열처리 후 활물질 입자에서 중심으로부터 표면에 이르기까지 각각 금속의 농도 구배 구조를 확인하기 위하여, EPMA(전자선 마이크로 애널라이저: Electron Probe Micro Analyzer)를 이용하여 중심으로부터 표면으로 이동하면서 각 전구체 입자에서의 원소비(atomic ratio)를 측정하였으며 그 결과를 각각 도 7 내지 도 12 로 나타내었다.
도 7 내지 도 12 에서 Ni 금속의 농도가 감소하고, 중심부에서 Co 와 Mn 의 농도가 금속 염간의 확산에 의해서 농도가 조금 변하였지만, Co 와 Mn 농도는 일정한 기울기를 나타내며 점점 증가하는 것을 확인할 수 있다.
<실험예 3 : 충방전 용량, 및 사이클 특성 측정>
상기 실시예 1 내지 6 에서 제조된 각 활물질과 상기 비교예 1 내지 7에서 제조된 활물질들을 이용하여 양극을 제조하고, 이를 원통형 리튬 이차 전지에 적용하였다.
상기 실시예 1 내지 6 에서 제조된 활물질을 이용한 전지에 대하여 충방전 테스트와 사이클 특성을 측정하였으며, 그 결과를 도 13 내지 도 18 에 나타내었다. 상기 충방전은 2.7~4.3V의 사이에서 0.2C의 조건에서 각 샘플마다 10회씩 진행하여, 그 평균값을 취하였다.
도 13 내지 도 18에서 실시예 1 내지 6 과, 각각의 bulk 조성에 해당하는 비교예와, 각각의 중심부 조성을 나타내는 비교예들의 충방전 결과를 나타내었다. 도 13 내지 도 18에서 실시예 1 내지 6 은 각각의 bulk 조성에 해당하는 비교예와 충방전 특성이 유사하지만, 각각의 중심부 조성을 나타내는 비교예의 경우 충방전 특성이 매우 열악함을 확인할 수 있다.
<실험예 4 : DSC 측정을 통한 열안정성 평가>
상기 실시예 실시예 1 내지 6 에서 제조된 각 활물질과 상기 비교예 1 내지 4에서 제조된 활물질들을 포함하는 양극을 각각 4.3V 충전시킨 상태에서, 시차주사열분석기(DSC)를 이용하여 10℃/min 의 속도로 승온시키면서 측정하였으며, 그 결과를 다음 도 19 내지 도 24 에 나타내었다.
도 19 내지 도 24 에서 실시예 1 내지 6 과, 각각의 bulk 조성에 해당하는 비교예와, 각각의 중심부 조성을 나타내는 비교예들의 충방전 결과를 비교하여 나타내었다.
도 19 내지 도 24 에서 보는 바와 같이, 본 발명에 따른 상기 실시예 1 내지 6 에서 제조된 각 활물질을 포함하는 경우, 각각의 벌크 조성을 나타내며 입자 전체에서 금속 농도가 일정한 비교예 및 각각의 중심부 조성을 나타내는 비교예와 대비하여 발열 피크가 나타나는 온도가 높게 측정되어, 본 발명에 따른 상기 실시예 1 내지 6 에서 제조된 각 활물질을 포함하는 경우 상기 비교예 1 내지 7에서 제조된 활물질들을 포함하는 경우보다 열안정성이 크게 개선됨을 알 수 있다.
즉, 본 발명에 의한 입자의 중심부로부터 표면부까지 입자를 구성하는 모든 금속의 농도가 연속적으로 구배를 나타내면서 증가하거나 감소하도록 함으로써 구조가 급격하게 변하지 않고 안정성을 나타내게 됨으로써 결과적으로 열안정성이 크게 향상된 것을 확인할 수 있다.
본 발명에 따른 리튬 이차 전지용 양극 활물질은 상기 양극활물질에 포함되는 모든 금속의 농도가 입자 중심에서부터 표면까지 연속적인 농도 구배를 가지고 증가 및 감소하는 구조를 나타내어 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다.

Claims (17)

  1. 리튬이차전지 양극활물질에 있어서,
    상기 양극활물질을 구성하는 모든 금속의 농도가 입자 중심부에서부터 표면부까지의 전체 영역에서 연속적으로 농도 구배를 나타내는 것을 특징으로 하는 입자 전체 농도 구배 리튬이차전지 양극활물질.
  2. 제 1 항에 있어서,
    상기 입자 전체 농도 구배 리튬이차전지 양극활물질은
    하기 화학식 1로 표시되는 중심부; 및
    하기 화학식 2로 표시되는 표면부;를 포함하며,
    상기 중심부로부터 상기 표면부로 갈수록 M1, M2 및 M3 의 농도는 연속적인 농도 구배를 가지는 것을 특징으로 하는 입자 전체 농도 구배 리튬이차전지 양극활물질.
    [화학식 1]
    Lia1M1x1M2y1M3z1M4wO2+δ
    [화학식 2]
    Lia2M1x2M2y2M3z2M4wO2+δ(상기 화학식 1, 2에서 M1, M2 및 M3 는 Ni, Co, Mn 및 이들의 조합으로 이루어진 군에서 선택되고, M4는 Fe, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B 및 이들의 조합으로 이루어진 군에서 선택되며, 0<a1≤1.1, 0<a2≤1.1, 0≤x1≤1, 0≤x2≤1, 0≤y1≤1, 0≤y2≤1, 0≤z1≤1, 0≤z2≤1, 0≤w≤0.1, 0.0≤δ≤0.02, 0<x1+y1+z1≤1, 0<x2+y2+z2≤1 , x1≤x2, y1≤y2, z2≤z1 이다.)
  3. 제 2 항에 있어서,
    상기 M1, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고,
    상기 M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
  4. 제 2 항에 있어서,
    상기 M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고,
    상기 M1, M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
  5. 제 3 항 또는 제 4항에 있어서,
    상기 M1 은 Co, 상기 M2 는 Mn, 상기 M3 는 Ni 인 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
  6. 제 3 항 또는 제 4항에 있어서,
    상기 M3 의 중심부에서의 농도 z1 의 범위가 0.6≤z1≤1 이고, 상기 M3 의중심부와 표면부에서의 농도 차이가 0.2≤| z2-z1|≤0.4 인 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질.
  7. 제 3 항 또는 제 4항에 있어서,
    상기 M1 의 중심부에서의 농도 x1 의 범위가 0≤x1≤0.2 이고, 상기 M1 의중심부와 표면부에서의 농도 차이가 0.05≤|x2-z1|≤0.1 인 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질.
  8. 제 3 항 또는 제 4항에 있어서,
    상기 M2 의 중심부에서의 농도 y1 의 범위가 0≤y1≤=0.1 이고, 상기 M2 의중심부와 표면부에서의 농도 차이가 0.2≤| y2-y1|≤0.4 인 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
  9. 제 3 항에 있어서,
    상기 M1, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 증가 하는 연속적인 농도 구배를 나타내고,
    상기 M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 감소하는 연속적인 농도 구배를 나타내는 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
  10. 제 4 항에 있어서,
    상기 M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 증가 하는 연속적인 농도 구배를 나타내고,
    상기 M1, M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 계속 감소하는 연속적인 농도 구배를 나타내는 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
  11. 제 9 항 또는 제 10 항에 있어서,
    상기 M1, M2 및 M3 의 농도 구배 기울기가 입자 중심부로부터 표면부까지 일정한 것을 특징으로 하는 입자 전체 농도 구배 리튬 이차 전지용 양극활물질
  12. 금속염 수용액으로서 M1, M2, M3 를 포함하고, 상기 M1, M2 및 M3 의 농도는 서로 다른 중심부 형성용 금속염 수용액과 표면부 형성용 금속염 수용액을 준비하는 제 1 단계; 및
    상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 혼합 비율이 100 v%:0 v% 에서 0 v% :100 v% 까지 점진적으로 변화하면서 혼합하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합하여, 상기 M1, M2, M3 의 농도는 중심부로부터 표면부까지 연속적인 농도 구배를 가지도록 침전물을 형성하는 제 2 단계;
    상기 얻어진 침전물을 건조하거나 열처리하여 활물질 전구체를 제조하는 제 3 단계; 및
    상기 활물질 전구체와 리튬염을 혼합한 후 열처리하는 제 4 단계를 포함하는 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
  13. 제 12 항에 있어서,
    상기 킬레이팅제와 상기 금속염 수용액의 몰 비는 0.2 내지 1.0 : 1 인 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
  14. 제 12 항에 있어서,
    상기 활물질 전구체와 리튬염을 혼합한 후 열처리 공정은 700 ℃내지 1100℃에서 실시하는 것인 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
  15. 제 12 항에 있어서,
    상기 활물질 전구체와 리튬염을 혼합한 후 열처리하기 전에 250℃ 내지 650℃에서 5 내지 20시간 유지시켜 예비 소성하는 공정을 더 포함하는 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
  16. 제 12 항에 있어서,
    상기 제 2 단계에서는 질소 흐름하에서, pH는 10 내지 12.5 이내, 반응온도는 30내지 80℃ 이내, 반응 교반 속도는 100 내지 2000 rpm 이내인 것인 입자 전체 농도 구배 리튬 전지용 양극 활물질의 제조방법.
  17. 제 1 항 내지 제 10 항 중 어느 하나의 입자 전체 농도 구배 리튬 전지용 양극 활물질을 포함하는 리튬 이차 전지.
PCT/KR2011/010175 2011-01-05 2011-12-27 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 WO2012093798A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL11854697.7T PL2662915T3 (pl) 2011-01-05 2011-12-27 Materiał aktywny anody z gradientem stężenia całych cząstek do litowej baterii akumulatorowej, sposób jego wytwarzania i zawierająca go litowa bateria akumulatorowa
EP11854697.7A EP2662915B1 (en) 2011-01-05 2011-12-27 Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
JP2013548341A JP6204197B2 (ja) 2011-01-05 2011-12-27 全粒子濃度勾配を有するリチウム二次電池の正極活物質、その製造方法、及びそれを含むリチウム二次電池
CN201180064406.0A CN103354958B (zh) 2011-01-05 2011-12-27 用于锂二次电池的具有全粒子浓度梯度的正极活性材料,其制备方法及具有其的锂二次电池
US13/978,041 US9493365B2 (en) 2011-01-05 2011-12-27 Cathode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
US15/264,829 US10930922B2 (en) 2011-01-05 2016-09-14 Positive electrode active material and secondary battery comprising the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0000841 2011-01-05
KR20110000841 2011-01-05
KR10-2011-0021579 2011-03-10
KR20110021579 2011-03-10
KR10-2011-0122544 2011-11-22
KR1020110122544A KR101292757B1 (ko) 2011-01-05 2011-11-22 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/978,041 A-371-Of-International US9493365B2 (en) 2011-01-05 2011-12-27 Cathode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
PCT/KR2014/003808 Continuation-In-Part WO2014178623A1 (ko) 2011-01-05 2014-04-29 리튬 이차 전지용 양극활물질

Publications (2)

Publication Number Publication Date
WO2012093798A2 true WO2012093798A2 (ko) 2012-07-12
WO2012093798A3 WO2012093798A3 (ko) 2012-10-18

Family

ID=46712646

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/010173 WO2012093797A2 (ko) 2011-01-05 2011-12-27 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
PCT/KR2011/010175 WO2012093798A2 (ko) 2011-01-05 2011-12-27 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010173 WO2012093797A2 (ko) 2011-01-05 2011-12-27 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Country Status (7)

Country Link
US (3) US8926860B2 (ko)
EP (3) EP3300147A1 (ko)
JP (4) JP6204197B2 (ko)
KR (2) KR101292757B1 (ko)
CN (4) CN103354958B (ko)
PL (1) PL2662915T3 (ko)
WO (2) WO2012093797A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904318A (zh) * 2012-12-28 2014-07-02 惠州比亚迪电池有限公司 一种锂电池正极材料及其制备方法
CN104347867A (zh) * 2013-07-26 2015-02-11 比亚迪股份有限公司 一种锂电池正极材料及其制备方法
CN104347866B (zh) * 2013-07-26 2016-12-28 比亚迪股份有限公司 一种锂电池正极材料及其制备方法
KR20170080483A (ko) * 2015-12-31 2017-07-10 주식회사 에코프로비엠 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질
WO2019004602A1 (ko) * 2017-06-29 2019-01-03 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체의 제조 방법
EP2940761B1 (en) 2012-12-26 2019-12-18 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Cathode active material for lithium secondary batteries
CN115362133A (zh) * 2020-04-03 2022-11-18 株式会社田中化学研究所 复合氢氧化物的制备方法以及复合氢氧化物

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178624A1 (ko) * 2013-04-29 2014-11-06 한양대학교 산학협력단 리튬 이차 전지용 양극활물질
KR102157479B1 (ko) * 2013-04-29 2020-10-23 한양대학교 산학협력단 리튬 이차 전지용 양극활물질
KR101292757B1 (ko) * 2011-01-05 2013-08-02 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP5979251B2 (ja) * 2013-01-25 2016-08-24 株式会社豊田自動織機 高電圧特性に優れる活物質
JP6094372B2 (ja) * 2013-03-04 2017-03-15 株式会社豊田自動織機 複合金属酸化物、並びにこれを用いたリチウムイオン二次電池用正極、及びリチウムイオン二次電池
KR102223214B1 (ko) * 2013-05-08 2021-03-04 바스프 에스이 구형 입자들, 그것의 제조 및 용도
KR102082516B1 (ko) * 2013-05-31 2020-02-27 한양대학교 산학협력단 나트륨 이차 전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 나트륨 이차 전지
WO2014193204A1 (ko) * 2013-05-31 2014-12-04 한양대학교 산학협력단 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지
CN105409036A (zh) * 2013-05-31 2016-03-16 汉阳大学校产学协力团 锂二次电池用正极活物质的制造方法及通过其制造的锂二次电池
KR101746899B1 (ko) 2013-05-31 2017-06-14 한양대학교 산학협력단 리튬 전지용 양극 활물질 및 이의 제조방법
WO2015003947A1 (en) * 2013-07-08 2015-01-15 Basf Se Electrode materials for lithium ion batteries
KR101589292B1 (ko) * 2013-11-28 2016-01-28 주식회사 포스코 이차전지용 양극재 및 그 제조방법
KR101630421B1 (ko) * 2013-12-26 2016-06-15 주식회사 포스코 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 사용한 리튬 이차 전지
JP6311925B2 (ja) * 2014-05-13 2018-04-18 株式会社豊田自動織機 リチウム複合金属酸化物及びその製造方法
US10217991B2 (en) 2014-06-02 2019-02-26 Sk Innovation Co., Ltd. Lithium secondary battery
KR102352203B1 (ko) * 2014-06-02 2022-01-17 에스케이온 주식회사 리튬 이차 전지
US10490851B2 (en) 2014-06-02 2019-11-26 Sk Innovation Co., Ltd. Lithium secondary battery
KR102349731B1 (ko) * 2014-06-02 2022-01-11 에스케이온 주식회사 리튬 이차 전지
JP2016033903A (ja) 2014-07-31 2016-03-10 ソニー株式会社 正極活物質、正極および電池
CN105336915B (zh) 2014-08-13 2019-01-01 微宏动力系统(湖州)有限公司 锂离子二次电池用正极材料、其制备方法及锂离子二次电池
KR101702572B1 (ko) * 2014-08-22 2017-02-13 주식회사 포스코이에스엠 무코발트 농도 구배 양극활물질의 제조 방법 및 이에 의하여 제조된 무코발트 농도 구배 양극활물질
CN104332619A (zh) * 2014-09-22 2015-02-04 上海中聚佳华电池科技有限公司 一种聚吡咯包覆全梯度正极材料及其制备方法
KR101762508B1 (ko) * 2014-10-02 2017-07-27 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101593401B1 (ko) * 2014-10-14 2016-02-12 주식회사 이엔에프테크놀로지 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법
KR101659806B1 (ko) * 2014-10-15 2016-09-27 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US10526212B2 (en) * 2014-11-07 2020-01-07 Basf Se Mixed transition metal oxides for lithium ion batteries
US11870068B2 (en) 2014-11-14 2024-01-09 Sk On Co., Ltd. Lithium ion secondary battery
KR102296854B1 (ko) * 2014-11-14 2021-09-01 에스케이이노베이션 주식회사 리튬이온 이차전지
KR102311460B1 (ko) * 2014-11-21 2021-10-08 에스케이이노베이션 주식회사 리튬 이차 전지
KR102296877B1 (ko) * 2014-12-03 2021-08-31 에스케이이노베이션 주식회사 리튬 이차 전지
KR102312369B1 (ko) 2014-12-16 2021-10-12 에스케이이노베이션 주식회사 리튬 이차 전지
KR102349703B1 (ko) 2014-12-22 2022-01-12 에스케이온 주식회사 리튬 이차 전지
KR102296819B1 (ko) * 2014-12-30 2021-08-31 에스케이이노베이션 주식회사 리튬 이차 전지
KR101953155B1 (ko) * 2014-12-31 2019-02-28 주식회사 에코프로비엠 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질
KR102355196B1 (ko) * 2015-01-26 2022-01-24 에스케이온 주식회사 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 및 리튬 이차 전지
EP3291340B1 (en) 2015-04-30 2018-11-14 LG Chem, Ltd. Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same
KR102366065B1 (ko) * 2015-06-11 2022-02-21 에스케이온 주식회사 리튬 이차 전지
WO2016204563A1 (ko) * 2015-06-17 2016-12-22 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR101913906B1 (ko) * 2015-06-17 2018-10-31 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
JP6390915B2 (ja) * 2015-07-29 2018-09-19 トヨタ自動車株式会社 非水電解質二次電池用正極活物質
KR102494741B1 (ko) * 2015-08-10 2023-01-31 에스케이온 주식회사 리튬 이차 전지
KR102486526B1 (ko) * 2015-09-10 2023-01-09 에스케이온 주식회사 리튬 이차 전지
CN105226270B (zh) * 2015-10-22 2018-05-18 北京科技大学 具有镍锰浓度梯度的锂镍锰氧化物正极材料及其制备方法
KR102460961B1 (ko) * 2015-11-06 2022-10-31 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질, 그 제조방법 및 이를 포함한 양극을 구비한 리튬이차전지
EP3378114B1 (en) 2015-11-16 2024-07-31 Hheli, LLC Synthesized surface-functionalized, acidified metal oxide materials for energy storage, catalytic, photovoltaic, and sensor applications
KR102227306B1 (ko) * 2015-11-30 2021-03-15 주식회사 엘지화학 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101927295B1 (ko) 2015-11-30 2018-12-10 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102227303B1 (ko) * 2015-11-30 2021-03-15 주식회사 엘지화학 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102521323B1 (ko) 2015-12-09 2023-04-13 에스케이온 주식회사 리튬이차전지
KR101941638B1 (ko) * 2015-12-21 2019-04-11 한국과학기술연구원 리튬 이차전지용 양극 활물질의 제조방법 및 이를 통해 제조된 리튬 이차전지용 양극 활물질
KR101909216B1 (ko) * 2015-12-23 2018-10-18 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN106935803B (zh) * 2015-12-31 2020-07-10 北京当升材料科技股份有限公司 一种锂离子电池正极材料的制备方法
KR20180091938A (ko) * 2016-01-05 2018-08-16 바스프 코포레이션 알칼리 재충전식 배터리를 위한 수산화니켈 복합 물질
KR102580002B1 (ko) * 2016-01-13 2023-09-19 에스케이온 주식회사 리튬 이차 전지
KR102516459B1 (ko) * 2016-04-08 2023-04-04 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
PL3279978T3 (pl) * 2016-08-02 2021-04-19 Ecopro Bm Co., Ltd. Złożony tlenek litu dla dodatniego materiału aktywnego baterii akumulatorowej i sposób jego wytwarzania
US10700349B2 (en) 2016-11-15 2020-06-30 HHeLI, LLC Surface-functionalized, acidified metal oxide material in an acidified electrolyte system or an acidified electrode system
DE202017007568U1 (de) 2016-11-18 2022-11-18 Sk Innovation Co., Ltd. Lithium-Sekundärbatterie
US10199650B2 (en) * 2016-11-18 2019-02-05 Sk Innovation Co., Ltd. Lithium secondary battery and method of fabricating the same
KR102086535B1 (ko) * 2016-12-02 2020-03-10 주식회사 엘지화학 이차전지용 양극활물질 전구체의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질의 전구체
CN110168785B (zh) * 2016-12-02 2022-05-27 三星Sdi株式会社 镍基活性物质前驱体及其制备方法、镍基活性物质以及锂二次电池
US11936041B2 (en) * 2016-12-16 2024-03-19 Sk On Co., Ltd. Lithium secondary battery
KR20180071714A (ko) * 2016-12-20 2018-06-28 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102024744B1 (ko) 2016-12-28 2019-09-25 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
US10892488B2 (en) 2017-01-17 2021-01-12 Samsung Electronics Co., Ltd. Electrode active material, lithium secondary battery containing the electrode active material, and method of preparing the electrode active material
JP6945879B2 (ja) * 2017-02-06 2021-10-06 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
EP3610526A4 (en) 2017-04-10 2020-12-16 Hheli, LLC BATTERY WITH NEW ELEMENTS
CN110870102B (zh) 2017-05-17 2023-06-30 氢氦锂有限公司 具有酸化阴极和锂阳极的电池
WO2018213616A2 (en) 2017-05-17 2018-11-22 HHeLI, LLC Battery cell with novel construction
US10978731B2 (en) 2017-06-21 2021-04-13 HHeLI, LLC Ultra high capacity performance battery cell
KR20190003110A (ko) * 2017-06-30 2019-01-09 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
DE102017215146A1 (de) 2017-08-30 2019-02-28 Bayerische Motoren Werke Aktiengesellschaft POSITIVES AKTIVMATERIAL ZUR VERWENDUNG IN EINER SEKUNDÄREN LITHIUM-IONEN-Zelle und -BATTERIE
MY194984A (en) 2017-08-30 2022-12-29 Microvast Power Systems Co Ltd Method of preparing lithium-ion cathode particles and cathode active material formed therefrom
EP3685458A4 (en) 2017-09-22 2021-07-07 Hheli, LLC CONSTRUCTION OF VERY HIGH CAPACITY PERFORMANCE BATTERY ELEMENTS
KR102306545B1 (ko) 2017-10-19 2021-09-30 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN107768646A (zh) * 2017-10-23 2018-03-06 兰州金川新材料科技股份有限公司 一种掺杂元素梯度分布的四氧化三钴制备方法
CN107863525A (zh) * 2017-10-23 2018-03-30 兰州金川新材料科技股份有限公司 一种梯度掺杂钴酸锂的制备方法
KR102159243B1 (ko) 2017-11-22 2020-09-23 주식회사 에코프로비엠 리튬 이차 전지용 양극활물질
KR102559218B1 (ko) 2017-12-07 2023-07-25 에스케이온 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
KR102023063B1 (ko) 2017-12-15 2019-09-19 주식회사 포스코 이차 전지용 양극 활물질 전구체 제조 방법 및 이를 이용한 제조 장치
KR102008875B1 (ko) * 2017-12-26 2019-08-08 주식회사 포스코 농도 구배 전구체의 제조 장치 및 그 재료 투입 스케줄링 방법
CN109461893B (zh) * 2017-12-29 2020-05-26 北京当升材料科技股份有限公司 一种新型锂离子电池正极材料及其制备方法
WO2019139445A1 (ko) * 2018-01-12 2019-07-18 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102472882B1 (ko) * 2018-01-18 2022-11-30 에스케이온 주식회사 리튬 이차 전지
KR102313091B1 (ko) 2018-01-19 2021-10-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102391531B1 (ko) 2018-01-31 2022-04-28 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102325728B1 (ko) 2018-01-31 2021-11-12 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN108417826A (zh) * 2018-02-02 2018-08-17 昆明理工大学 一种镍钴铝三元素梯度分布的镍钴铝酸锂正极材料的制备方法
RU2749604C1 (ru) * 2018-05-21 2021-06-16 Микроваст Пауэр Системс Ко., Лтд. Способ получения частиц прекурсора, частица прекурсора, полученная этим способом, и способ получения активных катодных частиц
KR102531434B1 (ko) * 2018-06-12 2023-05-12 에스케이온 주식회사 리튬 이차전지
KR102485994B1 (ko) * 2018-06-20 2023-01-05 에스케이온 주식회사 리튬 이차 전지 및 이의 제조 방법
CN108878869B (zh) * 2018-07-31 2021-07-13 桑顿新能源科技(长沙)有限公司 锂离子电池用梯度结构的ncm三元正极材料及制法与应用
CA3112390A1 (en) 2018-09-10 2020-03-19 HHeLI, LLC Methods of use of ultra high capacity performance battery cell
KR102436308B1 (ko) 2018-10-18 2022-08-24 에스케이온 주식회사 리튬 이차 전지
CN109817904B (zh) * 2018-12-29 2020-05-12 广东邦普循环科技有限公司 一种高电压长循环高镍单晶正极材料及其制备方法和应用
WO2020175782A1 (ko) * 2019-02-28 2020-09-03 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
CN113412548B (zh) * 2019-02-28 2024-07-23 Sm研究所股份有限公司 阳极活性物质、其制备方法以及包括该阳极活性物质的阳极的锂二次电池
US11735710B2 (en) 2019-05-21 2023-08-22 Uchicago Argonne, Llc Cathode materials for secondary batteries
EP3745502A1 (en) * 2019-05-27 2020-12-02 SK Innovation Co., Ltd. Lithium secondary battery
US11876158B2 (en) 2019-06-25 2024-01-16 Enevate Corporation Method and system for an ultra-high voltage cobalt-free cathode for alkali ion batteries
CN110534714A (zh) * 2019-08-14 2019-12-03 江苏海基新能源股份有限公司 一种全梯度三元正极材料的制备方法
KR102144057B1 (ko) * 2019-12-24 2020-08-12 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR102178781B1 (ko) * 2019-12-24 2020-11-13 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US12095083B2 (en) * 2020-03-04 2024-09-17 Uchicago Argonne, Llc Cathode materials for secondary batteries
CN116547068A (zh) 2020-09-24 2023-08-04 6K有限公司 用于启动等离子体的系统、装置及方法
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders
KR102615680B1 (ko) 2020-11-25 2023-12-19 주식회사 씨앤씨머티리얼즈 2차전지 양극재 코팅 방법
JP2024515034A (ja) 2021-03-31 2024-04-04 シックスケー インコーポレイテッド 金属窒化物セラミックの積層造形のためのシステム及び方法
CN114551863A (zh) * 2022-04-21 2022-05-27 浙江帕瓦新能源股份有限公司 元素浓度梯度分布的前驱体材料及其制备方法、正极材料
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
US12094688B2 (en) 2022-08-25 2024-09-17 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872450A1 (en) 1997-04-15 1998-10-21 SANYO ELECTRIC Co., Ltd. Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
KR20050083869A (ko) 2003-10-31 2005-08-26 주식회사 엘지화학 금속성분의 조성에 구배를 갖는 리튬 전이금속 산화물
KR20070097923A (ko) 2006-03-30 2007-10-05 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3928231B2 (ja) * 1997-12-15 2007-06-13 株式会社日立製作所 リチウム2次電池
KR100326460B1 (ko) * 2000-02-10 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
US6921609B2 (en) * 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
KR100399642B1 (ko) * 2001-10-24 2003-09-29 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조방법
US7049031B2 (en) * 2002-01-29 2006-05-23 The University Of Chicago Protective coating on positive lithium-metal-oxide electrodes for lithium batteries
NZ520452A (en) * 2002-10-31 2005-03-24 Lg Chemical Ltd Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition
KR100752703B1 (ko) * 2006-06-29 2007-08-29 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 그 제조 방법 및 그를사용한 리튬 이차 전지
KR101342509B1 (ko) * 2007-02-26 2013-12-17 삼성에스디아이 주식회사 리튬 이차 전지
JP5376417B2 (ja) * 2007-07-30 2013-12-25 株式会社ジャパンディスプレイ 半透過型液晶表示パネル
EP2202828B1 (en) * 2007-09-04 2013-12-11 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder, method for manufacturing the same and lithium secondary battery positive electrode and lithium secondary battery using the same
WO2009063613A1 (ja) 2007-11-12 2009-05-22 Toda Kogyo Corporation 非水電解液二次電池用Li-Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5189384B2 (ja) 2008-02-29 2013-04-24 株式会社日立製作所 リチウム二次電池
CN101373832A (zh) * 2008-10-16 2009-02-25 中信国安盟固利新能源科技有限公司 一种高电压锂离子电池掺杂正极材料及其制备方法
JP2011134670A (ja) * 2009-12-25 2011-07-07 Toyota Motor Corp リチウム二次電池用正極活物質
KR101185366B1 (ko) * 2010-01-14 2012-09-24 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법
US8591774B2 (en) * 2010-09-30 2013-11-26 Uchicago Argonne, Llc Methods for preparing materials for lithium ion batteries
KR101292757B1 (ko) * 2011-01-05 2013-08-02 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872450A1 (en) 1997-04-15 1998-10-21 SANYO ELECTRIC Co., Ltd. Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
KR20050083869A (ko) 2003-10-31 2005-08-26 주식회사 엘지화학 금속성분의 조성에 구배를 갖는 리튬 전이금속 산화물
KR20070097923A (ko) 2006-03-30 2007-10-05 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662915A2

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940761B1 (en) 2012-12-26 2019-12-18 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Cathode active material for lithium secondary batteries
CN103904318A (zh) * 2012-12-28 2014-07-02 惠州比亚迪电池有限公司 一种锂电池正极材料及其制备方法
CN104347867A (zh) * 2013-07-26 2015-02-11 比亚迪股份有限公司 一种锂电池正极材料及其制备方法
CN104347866B (zh) * 2013-07-26 2016-12-28 比亚迪股份有限公司 一种锂电池正极材料及其制备方法
KR20170080483A (ko) * 2015-12-31 2017-07-10 주식회사 에코프로비엠 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질
KR101921981B1 (ko) * 2015-12-31 2019-02-20 주식회사 에코프로비엠 양극활물질의 제조 방법 및 이에 의하여 제조된 양극활물질
WO2019004602A1 (ko) * 2017-06-29 2019-01-03 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체의 제조 방법
US11183685B2 (en) 2017-06-29 2021-11-23 Lg Chem, Ltd. Method for preparing positive electrode active material precursor for lithium secondary battery
CN115362133A (zh) * 2020-04-03 2022-11-18 株式会社田中化学研究所 复合氢氧化物的制备方法以及复合氢氧化物

Also Published As

Publication number Publication date
US20140131616A1 (en) 2014-05-15
CN103354958A (zh) 2013-10-16
EP2662915A4 (en) 2015-01-07
EP2662914A4 (en) 2015-01-07
US8926860B2 (en) 2015-01-06
US9493365B2 (en) 2016-11-15
CN106848262A (zh) 2017-06-13
US9463984B2 (en) 2016-10-11
EP2662915A2 (en) 2013-11-13
JP6204196B2 (ja) 2017-09-27
WO2012093797A3 (ko) 2012-10-11
EP2662914A2 (en) 2013-11-13
US20140027670A1 (en) 2014-01-30
KR20120079801A (ko) 2012-07-13
PL2662915T3 (pl) 2024-03-11
CN103370818A (zh) 2013-10-23
JP6204197B2 (ja) 2017-09-27
EP2662915B1 (en) 2023-11-01
CN106058177A (zh) 2016-10-26
JP2014506388A (ja) 2014-03-13
WO2012093797A2 (ko) 2012-07-12
EP2662914B1 (en) 2017-12-13
EP3300147A1 (en) 2018-03-28
CN106848262B (zh) 2020-12-29
WO2012093798A3 (ko) 2012-10-18
KR101292757B1 (ko) 2013-08-02
US20140356713A1 (en) 2014-12-04
KR101292756B1 (ko) 2013-08-02
CN103354958B (zh) 2017-05-03
JP2018022692A (ja) 2018-02-08
JP2014505334A (ja) 2014-02-27
CN106058177B (zh) 2020-01-21
CN103370818B (zh) 2016-08-10
JP2018049820A (ja) 2018-03-29
KR20120079802A (ko) 2012-07-13

Similar Documents

Publication Publication Date Title
WO2012093798A2 (ko) 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2013147537A1 (ko) 리튬 이차 전지용 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 및 이를 포함하는 리튬 이차 전지용 양극활물질
WO2014178625A1 (ko) 리튬 이차 전지용 양극활물질
WO2019112279A2 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2014193203A1 (ko) 리튬 전지용 양극 활물질 및 이의 제조방법
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2012011785A2 (ko) 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2017069405A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2015053580A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019103522A2 (ko) 양극 활물질의 제조방법
WO2011129636A2 (ko) 초급속연소법을 이용한 나노전극재료 합성방법 및 그 방법으로 합성된 나노전극재료
WO2016068681A1 (ko) 전이금속 산화물의 전구체, 그 제조방법, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지
WO2021125870A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2013085306A1 (ko) 리튬이차전지용 양극 활물질의 제조방법
WO2012124970A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법 및 그에 의하여 제조된 리튬 이차전지용 양극 활물질
WO2019013587A1 (ko) 양극 활물질의 제조방법
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2016068682A1 (ko) 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법
WO2015047023A1 (ko) 이차전지용 양극활물질 및 이의 제조 방법
WO2014178624A1 (ko) 리튬 이차 전지용 양극활물질
WO2013002559A2 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
KR20200071989A (ko) 코어-쉘-쉘&#39; 삼중층 구조를 가지는 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 이차전지
WO2022149675A1 (ko) 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854697

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013548341

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011854697

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13978041

Country of ref document: US